1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013-2017 Damien P. George |
7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal |
10 | * in the Software without restriction, including without limitation the rights |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | * copies of the Software, and to permit persons to whom the Software is |
13 | * furnished to do so, subject to the following conditions: |
14 | * |
15 | * The above copyright notice and this permission notice shall be included in |
16 | * all copies or substantial portions of the Software. |
17 | * |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
24 | * THE SOFTWARE. |
25 | */ |
26 | |
27 | #include <stdbool.h> |
28 | #include <stdint.h> |
29 | #include <stdio.h> |
30 | #include <unistd.h> // for ssize_t |
31 | #include <assert.h> |
32 | #include <string.h> |
33 | |
34 | #include "py/lexer.h" |
35 | #include "py/parse.h" |
36 | #include "py/parsenum.h" |
37 | #include "py/runtime.h" |
38 | #include "py/objint.h" |
39 | #include "py/objstr.h" |
40 | #include "py/builtin.h" |
41 | |
42 | #if MICROPY_ENABLE_COMPILER |
43 | |
44 | #define RULE_ACT_ARG_MASK (0x0f) |
45 | #define RULE_ACT_KIND_MASK (0x30) |
46 | #define RULE_ACT_ALLOW_IDENT (0x40) |
47 | #define RULE_ACT_ADD_BLANK (0x80) |
48 | #define RULE_ACT_OR (0x10) |
49 | #define RULE_ACT_AND (0x20) |
50 | #define RULE_ACT_LIST (0x30) |
51 | |
52 | #define RULE_ARG_KIND_MASK (0xf000) |
53 | #define RULE_ARG_ARG_MASK (0x0fff) |
54 | #define RULE_ARG_TOK (0x1000) |
55 | #define RULE_ARG_RULE (0x2000) |
56 | #define RULE_ARG_OPT_RULE (0x3000) |
57 | |
58 | // *FORMAT-OFF* |
59 | |
60 | enum { |
61 | // define rules with a compile function |
62 | #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, |
63 | #define DEF_RULE_NC(rule, kind, ...) |
64 | #include "py/grammar.h" |
65 | #undef DEF_RULE |
66 | #undef DEF_RULE_NC |
67 | RULE_const_object, // special node for a constant, generic Python object |
68 | |
69 | // define rules without a compile function |
70 | #define DEF_RULE(rule, comp, kind, ...) |
71 | #define DEF_RULE_NC(rule, kind, ...) RULE_##rule, |
72 | #include "py/grammar.h" |
73 | #undef DEF_RULE |
74 | #undef DEF_RULE_NC |
75 | }; |
76 | |
77 | // Define an array of actions corresponding to each rule |
78 | STATIC const uint8_t rule_act_table[] = { |
79 | #define or(n) (RULE_ACT_OR | n) |
80 | #define and(n) (RULE_ACT_AND | n) |
81 | #define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT) |
82 | #define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK) |
83 | #define one_or_more (RULE_ACT_LIST | 2) |
84 | #define list (RULE_ACT_LIST | 1) |
85 | #define list_with_end (RULE_ACT_LIST | 3) |
86 | |
87 | #define DEF_RULE(rule, comp, kind, ...) kind, |
88 | #define DEF_RULE_NC(rule, kind, ...) |
89 | #include "py/grammar.h" |
90 | #undef DEF_RULE |
91 | #undef DEF_RULE_NC |
92 | |
93 | 0, // RULE_const_object |
94 | |
95 | #define DEF_RULE(rule, comp, kind, ...) |
96 | #define DEF_RULE_NC(rule, kind, ...) kind, |
97 | #include "py/grammar.h" |
98 | #undef DEF_RULE |
99 | #undef DEF_RULE_NC |
100 | |
101 | #undef or |
102 | #undef and |
103 | #undef and_ident |
104 | #undef and_blank |
105 | #undef one_or_more |
106 | #undef list |
107 | #undef list_with_end |
108 | }; |
109 | |
110 | // Define the argument data for each rule, as a combined array |
111 | STATIC const uint16_t rule_arg_combined_table[] = { |
112 | #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) |
113 | #define rule(r) (RULE_ARG_RULE | RULE_##r) |
114 | #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) |
115 | |
116 | #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__, |
117 | #define DEF_RULE_NC(rule, kind, ...) |
118 | #include "py/grammar.h" |
119 | #undef DEF_RULE |
120 | #undef DEF_RULE_NC |
121 | |
122 | #define DEF_RULE(rule, comp, kind, ...) |
123 | #define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__, |
124 | #include "py/grammar.h" |
125 | #undef DEF_RULE |
126 | #undef DEF_RULE_NC |
127 | |
128 | #undef tok |
129 | #undef rule |
130 | #undef opt_rule |
131 | }; |
132 | |
133 | // Macro to create a list of N identifiers where N is the number of variable arguments to the macro |
134 | #define RULE_EXPAND(x) x |
135 | #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule)) |
136 | #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__)) |
137 | #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__ |
138 | #define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, |
139 | |
140 | // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table |
141 | enum { |
142 | #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
143 | #define DEF_RULE_NC(rule, kind, ...) |
144 | #include "py/grammar.h" |
145 | #undef DEF_RULE |
146 | #undef DEF_RULE_NC |
147 | #define DEF_RULE(rule, comp, kind, ...) |
148 | #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
149 | #include "py/grammar.h" |
150 | #undef DEF_RULE |
151 | #undef DEF_RULE_NC |
152 | }; |
153 | |
154 | // Macro to compute the start of a rule in rule_arg_combined_table |
155 | #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule)) |
156 | #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__)) |
157 | #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14 |
158 | #define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r, |
159 | |
160 | // Use the above enum values to create a table of offsets for each rule's arg |
161 | // data, which indexes rule_arg_combined_table. The offsets require 9 bits of |
162 | // storage but only the lower 8 bits are stored here. The 9th bit is computed |
163 | // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant. |
164 | STATIC const uint8_t rule_arg_offset_table[] = { |
165 | #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
166 | #define DEF_RULE_NC(rule, kind, ...) |
167 | #include "py/grammar.h" |
168 | #undef DEF_RULE |
169 | #undef DEF_RULE_NC |
170 | 0, // RULE_const_object |
171 | #define DEF_RULE(rule, comp, kind, ...) |
172 | #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
173 | #include "py/grammar.h" |
174 | #undef DEF_RULE |
175 | #undef DEF_RULE_NC |
176 | }; |
177 | |
178 | // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table |
179 | static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 = |
180 | #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
181 | #define DEF_RULE_NC(rule, kind, ...) |
182 | #include "py/grammar.h" |
183 | #undef DEF_RULE |
184 | #undef DEF_RULE_NC |
185 | #define DEF_RULE(rule, comp, kind, ...) |
186 | #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
187 | #include "py/grammar.h" |
188 | #undef DEF_RULE |
189 | #undef DEF_RULE_NC |
190 | 0; |
191 | |
192 | #if MICROPY_DEBUG_PARSE_RULE_NAME |
193 | // Define an array of rule names corresponding to each rule |
194 | STATIC const char *const rule_name_table[] = { |
195 | #define DEF_RULE(rule, comp, kind, ...) #rule, |
196 | #define DEF_RULE_NC(rule, kind, ...) |
197 | #include "py/grammar.h" |
198 | #undef DEF_RULE |
199 | #undef DEF_RULE_NC |
200 | "" , // RULE_const_object |
201 | #define DEF_RULE(rule, comp, kind, ...) |
202 | #define DEF_RULE_NC(rule, kind, ...) #rule, |
203 | #include "py/grammar.h" |
204 | #undef DEF_RULE |
205 | #undef DEF_RULE_NC |
206 | }; |
207 | #endif |
208 | |
209 | // *FORMAT-ON* |
210 | |
211 | typedef struct _rule_stack_t { |
212 | size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number |
213 | size_t rule_id : 8; // this must be large enough to fit largest rule number |
214 | size_t arg_i; // this dictates the maximum nodes in a "list" of things |
215 | } rule_stack_t; |
216 | |
217 | typedef struct _mp_parse_chunk_t { |
218 | size_t alloc; |
219 | union { |
220 | size_t used; |
221 | struct _mp_parse_chunk_t *next; |
222 | } union_; |
223 | byte data[]; |
224 | } mp_parse_chunk_t; |
225 | |
226 | typedef struct _parser_t { |
227 | size_t rule_stack_alloc; |
228 | size_t rule_stack_top; |
229 | rule_stack_t *rule_stack; |
230 | |
231 | size_t result_stack_alloc; |
232 | size_t result_stack_top; |
233 | mp_parse_node_t *result_stack; |
234 | |
235 | mp_lexer_t *lexer; |
236 | |
237 | mp_parse_tree_t tree; |
238 | mp_parse_chunk_t *cur_chunk; |
239 | |
240 | #if MICROPY_COMP_CONST |
241 | mp_map_t consts; |
242 | #endif |
243 | } parser_t; |
244 | |
245 | STATIC const uint16_t *get_rule_arg(uint8_t r_id) { |
246 | size_t off = rule_arg_offset_table[r_id]; |
247 | if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) { |
248 | off |= 0x100; |
249 | } |
250 | return &rule_arg_combined_table[off]; |
251 | } |
252 | |
253 | STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) { |
254 | // use a custom memory allocator to store parse nodes sequentially in large chunks |
255 | |
256 | mp_parse_chunk_t *chunk = parser->cur_chunk; |
257 | |
258 | if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) { |
259 | // not enough room at end of previously allocated chunk so try to grow |
260 | mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk, |
261 | sizeof(mp_parse_chunk_t) + chunk->alloc, |
262 | sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false); |
263 | if (new_data == NULL) { |
264 | // could not grow existing memory; shrink it to fit previous |
265 | (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, |
266 | sizeof(mp_parse_chunk_t) + chunk->union_.used, false); |
267 | chunk->alloc = chunk->union_.used; |
268 | chunk->union_.next = parser->tree.chunk; |
269 | parser->tree.chunk = chunk; |
270 | chunk = NULL; |
271 | } else { |
272 | // could grow existing memory |
273 | chunk->alloc += num_bytes; |
274 | } |
275 | } |
276 | |
277 | if (chunk == NULL) { |
278 | // no previous chunk, allocate a new chunk |
279 | size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT; |
280 | if (alloc < num_bytes) { |
281 | alloc = num_bytes; |
282 | } |
283 | chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc); |
284 | chunk->alloc = alloc; |
285 | chunk->union_.used = 0; |
286 | parser->cur_chunk = chunk; |
287 | } |
288 | |
289 | byte *ret = chunk->data + chunk->union_.used; |
290 | chunk->union_.used += num_bytes; |
291 | return ret; |
292 | } |
293 | |
294 | STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) { |
295 | if (parser->rule_stack_top >= parser->rule_stack_alloc) { |
296 | rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC); |
297 | parser->rule_stack = rs; |
298 | parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; |
299 | } |
300 | rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; |
301 | rs->src_line = src_line; |
302 | rs->rule_id = rule_id; |
303 | rs->arg_i = arg_i; |
304 | } |
305 | |
306 | STATIC void push_rule_from_arg(parser_t *parser, size_t arg) { |
307 | assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); |
308 | size_t rule_id = arg & RULE_ARG_ARG_MASK; |
309 | push_rule(parser, parser->lexer->tok_line, rule_id, 0); |
310 | } |
311 | |
312 | STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) { |
313 | parser->rule_stack_top -= 1; |
314 | uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id; |
315 | *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; |
316 | *src_line = parser->rule_stack[parser->rule_stack_top].src_line; |
317 | return rule_id; |
318 | } |
319 | |
320 | bool mp_parse_node_is_const_false(mp_parse_node_t pn) { |
321 | return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE) |
322 | || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0); |
323 | } |
324 | |
325 | bool mp_parse_node_is_const_true(mp_parse_node_t pn) { |
326 | return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) |
327 | || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0); |
328 | } |
329 | |
330 | bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) { |
331 | if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
332 | *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn)); |
333 | return true; |
334 | } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { |
335 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
336 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
337 | // nodes are 32-bit pointers, but need to extract 64-bit object |
338 | *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); |
339 | #else |
340 | *o = (mp_obj_t)pns->nodes[0]; |
341 | #endif |
342 | return mp_obj_is_int(*o); |
343 | } else { |
344 | return false; |
345 | } |
346 | } |
347 | |
348 | size_t (mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) { |
349 | if (MP_PARSE_NODE_IS_NULL(*pn)) { |
350 | *nodes = NULL; |
351 | return 0; |
352 | } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { |
353 | *nodes = pn; |
354 | return 1; |
355 | } else { |
356 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn); |
357 | if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { |
358 | *nodes = pn; |
359 | return 1; |
360 | } else { |
361 | *nodes = pns->nodes; |
362 | return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
363 | } |
364 | } |
365 | } |
366 | |
367 | #if MICROPY_DEBUG_PRINTERS |
368 | void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) { |
369 | if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
370 | mp_printf(print, "[% 4d] " , (int)((mp_parse_node_struct_t *)pn)->source_line); |
371 | } else { |
372 | mp_printf(print, " " ); |
373 | } |
374 | for (size_t i = 0; i < indent; i++) { |
375 | mp_printf(print, " " ); |
376 | } |
377 | if (MP_PARSE_NODE_IS_NULL(pn)) { |
378 | mp_printf(print, "NULL\n" ); |
379 | } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
380 | mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
381 | mp_printf(print, "int(" INT_FMT ")\n" , arg); |
382 | } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
383 | uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
384 | switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
385 | case MP_PARSE_NODE_ID: |
386 | mp_printf(print, "id(%s)\n" , qstr_str(arg)); |
387 | break; |
388 | case MP_PARSE_NODE_STRING: |
389 | mp_printf(print, "str(%s)\n" , qstr_str(arg)); |
390 | break; |
391 | case MP_PARSE_NODE_BYTES: |
392 | mp_printf(print, "bytes(%s)\n" , qstr_str(arg)); |
393 | break; |
394 | default: |
395 | assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN); |
396 | mp_printf(print, "tok(%u)\n" , (uint)arg); |
397 | break; |
398 | } |
399 | } else { |
400 | // node must be a mp_parse_node_struct_t |
401 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
402 | if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) { |
403 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
404 | mp_printf(print, "literal const(%016llx)\n" , (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32)); |
405 | #else |
406 | mp_printf(print, "literal const(%p)\n" , (mp_obj_t)pns->nodes[0]); |
407 | #endif |
408 | } else { |
409 | size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
410 | #if MICROPY_DEBUG_PARSE_RULE_NAME |
411 | mp_printf(print, "%s(%u) (n=%u)\n" , rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
412 | #else |
413 | mp_printf(print, "rule(%u) (n=%u)\n" , (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
414 | #endif |
415 | for (size_t i = 0; i < n; i++) { |
416 | mp_parse_node_print(print, pns->nodes[i], indent + 2); |
417 | } |
418 | } |
419 | } |
420 | } |
421 | #endif // MICROPY_DEBUG_PRINTERS |
422 | |
423 | /* |
424 | STATIC void result_stack_show(const mp_print_t *print, parser_t *parser) { |
425 | mp_printf(print, "result stack, most recent first\n"); |
426 | for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) { |
427 | mp_parse_node_print(print, parser->result_stack[i], 0); |
428 | } |
429 | } |
430 | */ |
431 | |
432 | STATIC mp_parse_node_t pop_result(parser_t *parser) { |
433 | assert(parser->result_stack_top > 0); |
434 | return parser->result_stack[--parser->result_stack_top]; |
435 | } |
436 | |
437 | STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) { |
438 | assert(parser->result_stack_top > pos); |
439 | return parser->result_stack[parser->result_stack_top - 1 - pos]; |
440 | } |
441 | |
442 | STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) { |
443 | if (parser->result_stack_top >= parser->result_stack_alloc) { |
444 | mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC); |
445 | parser->result_stack = stack; |
446 | parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC; |
447 | } |
448 | parser->result_stack[parser->result_stack_top++] = pn; |
449 | } |
450 | |
451 | STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) { |
452 | mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t)); |
453 | pn->source_line = src_line; |
454 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
455 | // nodes are 32-bit pointers, but need to store 64-bit object |
456 | pn->kind_num_nodes = RULE_const_object | (2 << 8); |
457 | pn->nodes[0] = (uint64_t)obj; |
458 | pn->nodes[1] = (uint64_t)obj >> 32; |
459 | #else |
460 | pn->kind_num_nodes = RULE_const_object | (1 << 8); |
461 | pn->nodes[0] = (uintptr_t)obj; |
462 | #endif |
463 | return (mp_parse_node_t)pn; |
464 | } |
465 | |
466 | STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) { |
467 | (void)parser; |
468 | mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val); |
469 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
470 | // A parse node is only 32-bits and the small-int value must fit in 31-bits |
471 | if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) { |
472 | return make_node_const_object(parser, 0, o_val); |
473 | } |
474 | #endif |
475 | return mp_parse_node_new_small_int(val); |
476 | } |
477 | |
478 | STATIC void push_result_token(parser_t *parser, uint8_t rule_id) { |
479 | mp_parse_node_t pn; |
480 | mp_lexer_t *lex = parser->lexer; |
481 | if (lex->tok_kind == MP_TOKEN_NAME) { |
482 | qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
483 | #if MICROPY_COMP_CONST |
484 | // if name is a standalone identifier, look it up in the table of dynamic constants |
485 | mp_map_elem_t *elem; |
486 | if (rule_id == RULE_atom |
487 | && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) { |
488 | if (mp_obj_is_small_int(elem->value)) { |
489 | pn = mp_parse_node_new_small_int_checked(parser, elem->value); |
490 | } else { |
491 | pn = make_node_const_object(parser, lex->tok_line, elem->value); |
492 | } |
493 | } else { |
494 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
495 | } |
496 | #else |
497 | (void)rule_id; |
498 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
499 | #endif |
500 | } else if (lex->tok_kind == MP_TOKEN_INTEGER) { |
501 | mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); |
502 | if (mp_obj_is_small_int(o)) { |
503 | pn = mp_parse_node_new_small_int_checked(parser, o); |
504 | } else { |
505 | pn = make_node_const_object(parser, lex->tok_line, o); |
506 | } |
507 | } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { |
508 | mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex); |
509 | pn = make_node_const_object(parser, lex->tok_line, o); |
510 | } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { |
511 | // Don't automatically intern all strings/bytes. doc strings (which are usually large) |
512 | // will be discarded by the compiler, and so we shouldn't intern them. |
513 | qstr qst = MP_QSTRnull; |
514 | if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { |
515 | // intern short strings |
516 | qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
517 | } else { |
518 | // check if this string is already interned |
519 | qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len); |
520 | } |
521 | if (qst != MP_QSTRnull) { |
522 | // qstr exists, make a leaf node |
523 | pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst); |
524 | } else { |
525 | // not interned, make a node holding a pointer to the string/bytes object |
526 | mp_obj_t o = mp_obj_new_str_copy( |
527 | lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes, |
528 | (const byte *)lex->vstr.buf, lex->vstr.len); |
529 | pn = make_node_const_object(parser, lex->tok_line, o); |
530 | } |
531 | } else { |
532 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind); |
533 | } |
534 | push_result_node(parser, pn); |
535 | } |
536 | |
537 | #if MICROPY_COMP_MODULE_CONST |
538 | STATIC const mp_rom_map_elem_t mp_constants_table[] = { |
539 | #if MICROPY_PY_UERRNO |
540 | { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) }, |
541 | #endif |
542 | #if MICROPY_PY_UCTYPES |
543 | { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, |
544 | #endif |
545 | // Extra constants as defined by a port |
546 | MICROPY_PORT_CONSTANTS |
547 | }; |
548 | STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); |
549 | #endif |
550 | |
551 | STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args); |
552 | |
553 | #if MICROPY_COMP_CONST_FOLDING |
554 | STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) { |
555 | if (rule_id == RULE_or_test |
556 | || rule_id == RULE_and_test) { |
557 | // folding for binary logical ops: or and |
558 | size_t copy_to = *num_args; |
559 | for (size_t i = copy_to; i > 0;) { |
560 | mp_parse_node_t pn = peek_result(parser, --i); |
561 | parser->result_stack[parser->result_stack_top - copy_to] = pn; |
562 | if (i == 0) { |
563 | // always need to keep the last value |
564 | break; |
565 | } |
566 | if (rule_id == RULE_or_test) { |
567 | if (mp_parse_node_is_const_true(pn)) { |
568 | // |
569 | break; |
570 | } else if (!mp_parse_node_is_const_false(pn)) { |
571 | copy_to -= 1; |
572 | } |
573 | } else { |
574 | // RULE_and_test |
575 | if (mp_parse_node_is_const_false(pn)) { |
576 | break; |
577 | } else if (!mp_parse_node_is_const_true(pn)) { |
578 | copy_to -= 1; |
579 | } |
580 | } |
581 | } |
582 | copy_to -= 1; // copy_to now contains number of args to pop |
583 | |
584 | // pop and discard all the short-circuited expressions |
585 | for (size_t i = 0; i < copy_to; ++i) { |
586 | pop_result(parser); |
587 | } |
588 | *num_args -= copy_to; |
589 | |
590 | // we did a complete folding if there's only 1 arg left |
591 | return *num_args == 1; |
592 | |
593 | } else if (rule_id == RULE_not_test_2) { |
594 | // folding for unary logical op: not |
595 | mp_parse_node_t pn = peek_result(parser, 0); |
596 | if (mp_parse_node_is_const_false(pn)) { |
597 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE); |
598 | } else if (mp_parse_node_is_const_true(pn)) { |
599 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE); |
600 | } else { |
601 | return false; |
602 | } |
603 | pop_result(parser); |
604 | push_result_node(parser, pn); |
605 | return true; |
606 | } |
607 | |
608 | return false; |
609 | } |
610 | |
611 | STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) { |
612 | // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 |
613 | // it does not do partial folding, eg 1 + 2 + x -> 3 + x |
614 | |
615 | mp_obj_t arg0; |
616 | if (rule_id == RULE_expr |
617 | || rule_id == RULE_xor_expr |
618 | || rule_id == RULE_and_expr |
619 | || rule_id == RULE_power) { |
620 | // folding for binary ops: | ^ & ** |
621 | mp_parse_node_t pn = peek_result(parser, num_args - 1); |
622 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
623 | return false; |
624 | } |
625 | mp_binary_op_t op; |
626 | if (rule_id == RULE_expr) { |
627 | op = MP_BINARY_OP_OR; |
628 | } else if (rule_id == RULE_xor_expr) { |
629 | op = MP_BINARY_OP_XOR; |
630 | } else if (rule_id == RULE_and_expr) { |
631 | op = MP_BINARY_OP_AND; |
632 | } else { |
633 | op = MP_BINARY_OP_POWER; |
634 | } |
635 | for (ssize_t i = num_args - 2; i >= 0; --i) { |
636 | pn = peek_result(parser, i); |
637 | mp_obj_t arg1; |
638 | if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
639 | return false; |
640 | } |
641 | if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) { |
642 | // ** can't have negative rhs |
643 | return false; |
644 | } |
645 | arg0 = mp_binary_op(op, arg0, arg1); |
646 | } |
647 | } else if (rule_id == RULE_shift_expr |
648 | || rule_id == RULE_arith_expr |
649 | || rule_id == RULE_term) { |
650 | // folding for binary ops: << >> + - * @ / % // |
651 | mp_parse_node_t pn = peek_result(parser, num_args - 1); |
652 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
653 | return false; |
654 | } |
655 | for (ssize_t i = num_args - 2; i >= 1; i -= 2) { |
656 | pn = peek_result(parser, i - 1); |
657 | mp_obj_t arg1; |
658 | if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
659 | return false; |
660 | } |
661 | mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); |
662 | if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) { |
663 | // Can't fold @ or / |
664 | return false; |
665 | } |
666 | mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS); |
667 | int rhs_sign = mp_obj_int_sign(arg1); |
668 | if (op <= MP_BINARY_OP_RSHIFT) { |
669 | // << and >> can't have negative rhs |
670 | if (rhs_sign < 0) { |
671 | return false; |
672 | } |
673 | } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { |
674 | // % and // can't have zero rhs |
675 | if (rhs_sign == 0) { |
676 | return false; |
677 | } |
678 | } |
679 | arg0 = mp_binary_op(op, arg0, arg1); |
680 | } |
681 | } else if (rule_id == RULE_factor_2) { |
682 | // folding for unary ops: + - ~ |
683 | mp_parse_node_t pn = peek_result(parser, 0); |
684 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
685 | return false; |
686 | } |
687 | mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); |
688 | mp_unary_op_t op; |
689 | if (tok == MP_TOKEN_OP_TILDE) { |
690 | op = MP_UNARY_OP_INVERT; |
691 | } else { |
692 | assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be |
693 | op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS); |
694 | } |
695 | arg0 = mp_unary_op(op, arg0); |
696 | |
697 | #if MICROPY_COMP_CONST |
698 | } else if (rule_id == RULE_expr_stmt) { |
699 | mp_parse_node_t pn1 = peek_result(parser, 0); |
700 | if (!MP_PARSE_NODE_IS_NULL(pn1) |
701 | && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) |
702 | || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { |
703 | // this node is of the form <x> = <y> |
704 | mp_parse_node_t pn0 = peek_result(parser, 1); |
705 | if (MP_PARSE_NODE_IS_ID(pn0) |
706 | && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) |
707 | && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0]) |
708 | && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const |
709 | && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren) |
710 | ) { |
711 | // code to assign dynamic constants: id = const(value) |
712 | |
713 | // get the id |
714 | qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); |
715 | |
716 | // get the value |
717 | mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0]; |
718 | mp_obj_t value; |
719 | if (!mp_parse_node_get_int_maybe(pn_value, &value)) { |
720 | mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
721 | MP_ERROR_TEXT("constant must be an integer" )); |
722 | mp_obj_exception_add_traceback(exc, parser->lexer->source_name, |
723 | ((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull); |
724 | nlr_raise(exc); |
725 | } |
726 | |
727 | // store the value in the table of dynamic constants |
728 | mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); |
729 | assert(elem->value == MP_OBJ_NULL); |
730 | elem->value = value; |
731 | |
732 | // If the constant starts with an underscore then treat it as a private |
733 | // variable and don't emit any code to store the value to the id. |
734 | if (qstr_str(id)[0] == '_') { |
735 | pop_result(parser); // pop const(value) |
736 | pop_result(parser); // pop id |
737 | push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass" |
738 | return true; |
739 | } |
740 | |
741 | // replace const(value) with value |
742 | pop_result(parser); |
743 | push_result_node(parser, pn_value); |
744 | |
745 | // finished folding this assignment, but we still want it to be part of the tree |
746 | return false; |
747 | } |
748 | } |
749 | return false; |
750 | #endif |
751 | |
752 | #if MICROPY_COMP_MODULE_CONST |
753 | } else if (rule_id == RULE_atom_expr_normal) { |
754 | mp_parse_node_t pn0 = peek_result(parser, 1); |
755 | mp_parse_node_t pn1 = peek_result(parser, 0); |
756 | if (!(MP_PARSE_NODE_IS_ID(pn0) |
757 | && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { |
758 | return false; |
759 | } |
760 | // id1.id2 |
761 | // look it up in constant table, see if it can be replaced with an integer |
762 | mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1; |
763 | assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
764 | qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); |
765 | qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); |
766 | mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); |
767 | if (elem == NULL) { |
768 | return false; |
769 | } |
770 | mp_obj_t dest[2]; |
771 | mp_load_method_maybe(elem->value, q_attr, dest); |
772 | if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) { |
773 | return false; |
774 | } |
775 | arg0 = dest[0]; |
776 | #endif |
777 | |
778 | } else { |
779 | return false; |
780 | } |
781 | |
782 | // success folding this rule |
783 | |
784 | for (size_t i = num_args; i > 0; i--) { |
785 | pop_result(parser); |
786 | } |
787 | if (mp_obj_is_small_int(arg0)) { |
788 | push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0)); |
789 | } else { |
790 | // TODO reuse memory for parse node struct? |
791 | push_result_node(parser, make_node_const_object(parser, 0, arg0)); |
792 | } |
793 | |
794 | return true; |
795 | } |
796 | #endif |
797 | |
798 | STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) { |
799 | // optimise away parenthesis around an expression if possible |
800 | if (rule_id == RULE_atom_paren) { |
801 | // there should be just 1 arg for this rule |
802 | mp_parse_node_t pn = peek_result(parser, 0); |
803 | if (MP_PARSE_NODE_IS_NULL(pn)) { |
804 | // need to keep parenthesis for () |
805 | } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) { |
806 | // need to keep parenthesis for (a, b, ...) |
807 | } else { |
808 | // parenthesis around a single expression, so it's just the expression |
809 | return; |
810 | } |
811 | } |
812 | |
813 | #if MICROPY_COMP_CONST_FOLDING |
814 | if (fold_logical_constants(parser, rule_id, &num_args)) { |
815 | // we folded this rule so return straight away |
816 | return; |
817 | } |
818 | if (fold_constants(parser, rule_id, num_args)) { |
819 | // we folded this rule so return straight away |
820 | return; |
821 | } |
822 | #endif |
823 | |
824 | mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); |
825 | pn->source_line = src_line; |
826 | pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8); |
827 | for (size_t i = num_args; i > 0; i--) { |
828 | pn->nodes[i - 1] = pop_result(parser); |
829 | } |
830 | push_result_node(parser, (mp_parse_node_t)pn); |
831 | } |
832 | |
833 | mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { |
834 | |
835 | // initialise parser and allocate memory for its stacks |
836 | |
837 | parser_t parser; |
838 | |
839 | parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; |
840 | parser.rule_stack_top = 0; |
841 | parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc); |
842 | |
843 | parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; |
844 | parser.result_stack_top = 0; |
845 | parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc); |
846 | |
847 | parser.lexer = lex; |
848 | |
849 | parser.tree.chunk = NULL; |
850 | parser.cur_chunk = NULL; |
851 | |
852 | #if MICROPY_COMP_CONST |
853 | mp_map_init(&parser.consts, 0); |
854 | #endif |
855 | |
856 | // work out the top-level rule to use, and push it on the stack |
857 | size_t top_level_rule; |
858 | switch (input_kind) { |
859 | case MP_PARSE_SINGLE_INPUT: |
860 | top_level_rule = RULE_single_input; |
861 | break; |
862 | case MP_PARSE_EVAL_INPUT: |
863 | top_level_rule = RULE_eval_input; |
864 | break; |
865 | default: |
866 | top_level_rule = RULE_file_input; |
867 | } |
868 | push_rule(&parser, lex->tok_line, top_level_rule, 0); |
869 | |
870 | // parse! |
871 | |
872 | bool backtrack = false; |
873 | |
874 | for (;;) { |
875 | next_rule: |
876 | if (parser.rule_stack_top == 0) { |
877 | break; |
878 | } |
879 | |
880 | // Pop the next rule to process it |
881 | size_t i; // state for the current rule |
882 | size_t rule_src_line; // source line for the first token matched by the current rule |
883 | uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line); |
884 | uint8_t rule_act = rule_act_table[rule_id]; |
885 | const uint16_t *rule_arg = get_rule_arg(rule_id); |
886 | size_t n = rule_act & RULE_ACT_ARG_MASK; |
887 | |
888 | #if 0 |
889 | // debugging |
890 | printf("depth=" UINT_FMT " " , parser.rule_stack_top); |
891 | for (int j = 0; j < parser.rule_stack_top; ++j) { |
892 | printf(" " ); |
893 | } |
894 | printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n" , rule_name_table[rule_id], n, i, backtrack); |
895 | #endif |
896 | |
897 | switch (rule_act & RULE_ACT_KIND_MASK) { |
898 | case RULE_ACT_OR: |
899 | if (i > 0 && !backtrack) { |
900 | goto next_rule; |
901 | } else { |
902 | backtrack = false; |
903 | } |
904 | for (; i < n; ++i) { |
905 | uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK; |
906 | if (kind == RULE_ARG_TOK) { |
907 | if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) { |
908 | push_result_token(&parser, rule_id); |
909 | mp_lexer_to_next(lex); |
910 | goto next_rule; |
911 | } |
912 | } else { |
913 | assert(kind == RULE_ARG_RULE); |
914 | if (i + 1 < n) { |
915 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule |
916 | } |
917 | push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule |
918 | goto next_rule; |
919 | } |
920 | } |
921 | backtrack = true; |
922 | break; |
923 | |
924 | case RULE_ACT_AND: { |
925 | |
926 | // failed, backtrack if we can, else syntax error |
927 | if (backtrack) { |
928 | assert(i > 0); |
929 | if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { |
930 | // an optional rule that failed, so continue with next arg |
931 | push_result_node(&parser, MP_PARSE_NODE_NULL); |
932 | backtrack = false; |
933 | } else { |
934 | // a mandatory rule that failed, so propagate backtrack |
935 | if (i > 1) { |
936 | // already eaten tokens so can't backtrack |
937 | goto syntax_error; |
938 | } else { |
939 | goto next_rule; |
940 | } |
941 | } |
942 | } |
943 | |
944 | // progress through the rule |
945 | for (; i < n; ++i) { |
946 | if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
947 | // need to match a token |
948 | mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK; |
949 | if (lex->tok_kind == tok_kind) { |
950 | // matched token |
951 | if (tok_kind == MP_TOKEN_NAME) { |
952 | push_result_token(&parser, rule_id); |
953 | } |
954 | mp_lexer_to_next(lex); |
955 | } else { |
956 | // failed to match token |
957 | if (i > 0) { |
958 | // already eaten tokens so can't backtrack |
959 | goto syntax_error; |
960 | } else { |
961 | // this rule failed, so backtrack |
962 | backtrack = true; |
963 | goto next_rule; |
964 | } |
965 | } |
966 | } else { |
967 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule |
968 | push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule |
969 | goto next_rule; |
970 | } |
971 | } |
972 | |
973 | assert(i == n); |
974 | |
975 | // matched the rule, so now build the corresponding parse_node |
976 | |
977 | #if !MICROPY_ENABLE_DOC_STRING |
978 | // this code discards lonely statements, such as doc strings |
979 | if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { |
980 | mp_parse_node_t p = peek_result(&parser, 1); |
981 | if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) |
982 | || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { |
983 | pop_result(&parser); // MP_PARSE_NODE_NULL |
984 | pop_result(&parser); // const expression (leaf or RULE_const_object) |
985 | // Pushing the "pass" rule here will overwrite any RULE_const_object |
986 | // entry that was on the result stack, allowing the GC to reclaim |
987 | // the memory from the const object when needed. |
988 | push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0); |
989 | break; |
990 | } |
991 | } |
992 | #endif |
993 | |
994 | // count number of arguments for the parse node |
995 | i = 0; |
996 | size_t num_not_nil = 0; |
997 | for (size_t x = n; x > 0;) { |
998 | --x; |
999 | if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
1000 | mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK; |
1001 | if (tok_kind == MP_TOKEN_NAME) { |
1002 | // only tokens which were names are pushed to stack |
1003 | i += 1; |
1004 | num_not_nil += 1; |
1005 | } |
1006 | } else { |
1007 | // rules are always pushed |
1008 | if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { |
1009 | num_not_nil += 1; |
1010 | } |
1011 | i += 1; |
1012 | } |
1013 | } |
1014 | |
1015 | if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) { |
1016 | // this rule has only 1 argument and should not be emitted |
1017 | mp_parse_node_t pn = MP_PARSE_NODE_NULL; |
1018 | for (size_t x = 0; x < i; ++x) { |
1019 | mp_parse_node_t pn2 = pop_result(&parser); |
1020 | if (pn2 != MP_PARSE_NODE_NULL) { |
1021 | pn = pn2; |
1022 | } |
1023 | } |
1024 | push_result_node(&parser, pn); |
1025 | } else { |
1026 | // this rule must be emitted |
1027 | |
1028 | if (rule_act & RULE_ACT_ADD_BLANK) { |
1029 | // and add an extra blank node at the end (used by the compiler to store data) |
1030 | push_result_node(&parser, MP_PARSE_NODE_NULL); |
1031 | i += 1; |
1032 | } |
1033 | |
1034 | push_result_rule(&parser, rule_src_line, rule_id, i); |
1035 | } |
1036 | break; |
1037 | } |
1038 | |
1039 | default: { |
1040 | assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); |
1041 | |
1042 | // n=2 is: item item* |
1043 | // n=1 is: item (sep item)* |
1044 | // n=3 is: item (sep item)* [sep] |
1045 | bool had_trailing_sep; |
1046 | if (backtrack) { |
1047 | list_backtrack: |
1048 | had_trailing_sep = false; |
1049 | if (n == 2) { |
1050 | if (i == 1) { |
1051 | // fail on item, first time round; propagate backtrack |
1052 | goto next_rule; |
1053 | } else { |
1054 | // fail on item, in later rounds; finish with this rule |
1055 | backtrack = false; |
1056 | } |
1057 | } else { |
1058 | if (i == 1) { |
1059 | // fail on item, first time round; propagate backtrack |
1060 | goto next_rule; |
1061 | } else if ((i & 1) == 1) { |
1062 | // fail on item, in later rounds; have eaten tokens so can't backtrack |
1063 | if (n == 3) { |
1064 | // list allows trailing separator; finish parsing list |
1065 | had_trailing_sep = true; |
1066 | backtrack = false; |
1067 | } else { |
1068 | // list doesn't allowing trailing separator; fail |
1069 | goto syntax_error; |
1070 | } |
1071 | } else { |
1072 | // fail on separator; finish parsing list |
1073 | backtrack = false; |
1074 | } |
1075 | } |
1076 | } else { |
1077 | for (;;) { |
1078 | size_t arg = rule_arg[i & 1 & n]; |
1079 | if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
1080 | if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { |
1081 | if (i & 1 & n) { |
1082 | // separators which are tokens are not pushed to result stack |
1083 | } else { |
1084 | push_result_token(&parser, rule_id); |
1085 | } |
1086 | mp_lexer_to_next(lex); |
1087 | // got element of list, so continue parsing list |
1088 | i += 1; |
1089 | } else { |
1090 | // couldn't get element of list |
1091 | i += 1; |
1092 | backtrack = true; |
1093 | goto list_backtrack; |
1094 | } |
1095 | } else { |
1096 | assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); |
1097 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule |
1098 | push_rule_from_arg(&parser, arg); // push child of list-rule |
1099 | goto next_rule; |
1100 | } |
1101 | } |
1102 | } |
1103 | assert(i >= 1); |
1104 | |
1105 | // compute number of elements in list, result in i |
1106 | i -= 1; |
1107 | if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
1108 | // don't count separators when they are tokens |
1109 | i = (i + 1) / 2; |
1110 | } |
1111 | |
1112 | if (i == 1) { |
1113 | // list matched single item |
1114 | if (had_trailing_sep) { |
1115 | // if there was a trailing separator, make a list of a single item |
1116 | push_result_rule(&parser, rule_src_line, rule_id, i); |
1117 | } else { |
1118 | // just leave single item on stack (ie don't wrap in a list) |
1119 | } |
1120 | } else { |
1121 | push_result_rule(&parser, rule_src_line, rule_id, i); |
1122 | } |
1123 | break; |
1124 | } |
1125 | } |
1126 | } |
1127 | |
1128 | #if MICROPY_COMP_CONST |
1129 | mp_map_deinit(&parser.consts); |
1130 | #endif |
1131 | |
1132 | // truncate final chunk and link into chain of chunks |
1133 | if (parser.cur_chunk != NULL) { |
1134 | (void)m_renew_maybe(byte, parser.cur_chunk, |
1135 | sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, |
1136 | sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, |
1137 | false); |
1138 | parser.cur_chunk->alloc = parser.cur_chunk->union_.used; |
1139 | parser.cur_chunk->union_.next = parser.tree.chunk; |
1140 | parser.tree.chunk = parser.cur_chunk; |
1141 | } |
1142 | |
1143 | if ( |
1144 | lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream |
1145 | || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) |
1146 | ) { |
1147 | syntax_error:; |
1148 | mp_obj_t exc; |
1149 | if (lex->tok_kind == MP_TOKEN_INDENT) { |
1150 | exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
1151 | MP_ERROR_TEXT("unexpected indent" )); |
1152 | } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { |
1153 | exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
1154 | MP_ERROR_TEXT("unindent doesn't match any outer indent level" )); |
1155 | } else { |
1156 | exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
1157 | MP_ERROR_TEXT("invalid syntax" )); |
1158 | } |
1159 | // add traceback to give info about file name and location |
1160 | // we don't have a 'block' name, so just pass the NULL qstr to indicate this |
1161 | mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); |
1162 | nlr_raise(exc); |
1163 | } |
1164 | |
1165 | // get the root parse node that we created |
1166 | assert(parser.result_stack_top == 1); |
1167 | parser.tree.root = parser.result_stack[0]; |
1168 | |
1169 | // free the memory that we don't need anymore |
1170 | m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); |
1171 | m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); |
1172 | |
1173 | // we also free the lexer on behalf of the caller |
1174 | mp_lexer_free(lex); |
1175 | |
1176 | return parser.tree; |
1177 | } |
1178 | |
1179 | void mp_parse_tree_clear(mp_parse_tree_t *tree) { |
1180 | mp_parse_chunk_t *chunk = tree->chunk; |
1181 | while (chunk != NULL) { |
1182 | mp_parse_chunk_t *next = chunk->union_.next; |
1183 | m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); |
1184 | chunk = next; |
1185 | } |
1186 | } |
1187 | |
1188 | #endif // MICROPY_ENABLE_COMPILER |
1189 | |