| 1 | /* |
| 2 | * This file is part of the MicroPython project, http://micropython.org/ |
| 3 | * |
| 4 | * The MIT License (MIT) |
| 5 | * |
| 6 | * Copyright (c) 2013-2017 Damien P. George |
| 7 | * |
| 8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | * of this software and associated documentation files (the "Software"), to deal |
| 10 | * in the Software without restriction, including without limitation the rights |
| 11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | * copies of the Software, and to permit persons to whom the Software is |
| 13 | * furnished to do so, subject to the following conditions: |
| 14 | * |
| 15 | * The above copyright notice and this permission notice shall be included in |
| 16 | * all copies or substantial portions of the Software. |
| 17 | * |
| 18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 | * THE SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | #include <stdbool.h> |
| 28 | #include <stdint.h> |
| 29 | #include <stdio.h> |
| 30 | #include <unistd.h> // for ssize_t |
| 31 | #include <assert.h> |
| 32 | #include <string.h> |
| 33 | |
| 34 | #include "py/lexer.h" |
| 35 | #include "py/parse.h" |
| 36 | #include "py/parsenum.h" |
| 37 | #include "py/runtime.h" |
| 38 | #include "py/objint.h" |
| 39 | #include "py/objstr.h" |
| 40 | #include "py/builtin.h" |
| 41 | |
| 42 | #if MICROPY_ENABLE_COMPILER |
| 43 | |
| 44 | #define RULE_ACT_ARG_MASK (0x0f) |
| 45 | #define RULE_ACT_KIND_MASK (0x30) |
| 46 | #define RULE_ACT_ALLOW_IDENT (0x40) |
| 47 | #define RULE_ACT_ADD_BLANK (0x80) |
| 48 | #define RULE_ACT_OR (0x10) |
| 49 | #define RULE_ACT_AND (0x20) |
| 50 | #define RULE_ACT_LIST (0x30) |
| 51 | |
| 52 | #define RULE_ARG_KIND_MASK (0xf000) |
| 53 | #define RULE_ARG_ARG_MASK (0x0fff) |
| 54 | #define RULE_ARG_TOK (0x1000) |
| 55 | #define RULE_ARG_RULE (0x2000) |
| 56 | #define RULE_ARG_OPT_RULE (0x3000) |
| 57 | |
| 58 | // *FORMAT-OFF* |
| 59 | |
| 60 | enum { |
| 61 | // define rules with a compile function |
| 62 | #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, |
| 63 | #define DEF_RULE_NC(rule, kind, ...) |
| 64 | #include "py/grammar.h" |
| 65 | #undef DEF_RULE |
| 66 | #undef DEF_RULE_NC |
| 67 | RULE_const_object, // special node for a constant, generic Python object |
| 68 | |
| 69 | // define rules without a compile function |
| 70 | #define DEF_RULE(rule, comp, kind, ...) |
| 71 | #define DEF_RULE_NC(rule, kind, ...) RULE_##rule, |
| 72 | #include "py/grammar.h" |
| 73 | #undef DEF_RULE |
| 74 | #undef DEF_RULE_NC |
| 75 | }; |
| 76 | |
| 77 | // Define an array of actions corresponding to each rule |
| 78 | STATIC const uint8_t rule_act_table[] = { |
| 79 | #define or(n) (RULE_ACT_OR | n) |
| 80 | #define and(n) (RULE_ACT_AND | n) |
| 81 | #define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT) |
| 82 | #define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK) |
| 83 | #define one_or_more (RULE_ACT_LIST | 2) |
| 84 | #define list (RULE_ACT_LIST | 1) |
| 85 | #define list_with_end (RULE_ACT_LIST | 3) |
| 86 | |
| 87 | #define DEF_RULE(rule, comp, kind, ...) kind, |
| 88 | #define DEF_RULE_NC(rule, kind, ...) |
| 89 | #include "py/grammar.h" |
| 90 | #undef DEF_RULE |
| 91 | #undef DEF_RULE_NC |
| 92 | |
| 93 | 0, // RULE_const_object |
| 94 | |
| 95 | #define DEF_RULE(rule, comp, kind, ...) |
| 96 | #define DEF_RULE_NC(rule, kind, ...) kind, |
| 97 | #include "py/grammar.h" |
| 98 | #undef DEF_RULE |
| 99 | #undef DEF_RULE_NC |
| 100 | |
| 101 | #undef or |
| 102 | #undef and |
| 103 | #undef and_ident |
| 104 | #undef and_blank |
| 105 | #undef one_or_more |
| 106 | #undef list |
| 107 | #undef list_with_end |
| 108 | }; |
| 109 | |
| 110 | // Define the argument data for each rule, as a combined array |
| 111 | STATIC const uint16_t rule_arg_combined_table[] = { |
| 112 | #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) |
| 113 | #define rule(r) (RULE_ARG_RULE | RULE_##r) |
| 114 | #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) |
| 115 | |
| 116 | #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__, |
| 117 | #define DEF_RULE_NC(rule, kind, ...) |
| 118 | #include "py/grammar.h" |
| 119 | #undef DEF_RULE |
| 120 | #undef DEF_RULE_NC |
| 121 | |
| 122 | #define DEF_RULE(rule, comp, kind, ...) |
| 123 | #define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__, |
| 124 | #include "py/grammar.h" |
| 125 | #undef DEF_RULE |
| 126 | #undef DEF_RULE_NC |
| 127 | |
| 128 | #undef tok |
| 129 | #undef rule |
| 130 | #undef opt_rule |
| 131 | }; |
| 132 | |
| 133 | // Macro to create a list of N identifiers where N is the number of variable arguments to the macro |
| 134 | #define RULE_EXPAND(x) x |
| 135 | #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule)) |
| 136 | #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__)) |
| 137 | #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__ |
| 138 | #define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, |
| 139 | |
| 140 | // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table |
| 141 | enum { |
| 142 | #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
| 143 | #define DEF_RULE_NC(rule, kind, ...) |
| 144 | #include "py/grammar.h" |
| 145 | #undef DEF_RULE |
| 146 | #undef DEF_RULE_NC |
| 147 | #define DEF_RULE(rule, comp, kind, ...) |
| 148 | #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
| 149 | #include "py/grammar.h" |
| 150 | #undef DEF_RULE |
| 151 | #undef DEF_RULE_NC |
| 152 | }; |
| 153 | |
| 154 | // Macro to compute the start of a rule in rule_arg_combined_table |
| 155 | #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule)) |
| 156 | #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__)) |
| 157 | #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14 |
| 158 | #define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r, |
| 159 | |
| 160 | // Use the above enum values to create a table of offsets for each rule's arg |
| 161 | // data, which indexes rule_arg_combined_table. The offsets require 9 bits of |
| 162 | // storage but only the lower 8 bits are stored here. The 9th bit is computed |
| 163 | // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant. |
| 164 | STATIC const uint8_t rule_arg_offset_table[] = { |
| 165 | #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
| 166 | #define DEF_RULE_NC(rule, kind, ...) |
| 167 | #include "py/grammar.h" |
| 168 | #undef DEF_RULE |
| 169 | #undef DEF_RULE_NC |
| 170 | 0, // RULE_const_object |
| 171 | #define DEF_RULE(rule, comp, kind, ...) |
| 172 | #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
| 173 | #include "py/grammar.h" |
| 174 | #undef DEF_RULE |
| 175 | #undef DEF_RULE_NC |
| 176 | }; |
| 177 | |
| 178 | // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table |
| 179 | static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 = |
| 180 | #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
| 181 | #define DEF_RULE_NC(rule, kind, ...) |
| 182 | #include "py/grammar.h" |
| 183 | #undef DEF_RULE |
| 184 | #undef DEF_RULE_NC |
| 185 | #define DEF_RULE(rule, comp, kind, ...) |
| 186 | #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
| 187 | #include "py/grammar.h" |
| 188 | #undef DEF_RULE |
| 189 | #undef DEF_RULE_NC |
| 190 | 0; |
| 191 | |
| 192 | #if MICROPY_DEBUG_PARSE_RULE_NAME |
| 193 | // Define an array of rule names corresponding to each rule |
| 194 | STATIC const char *const rule_name_table[] = { |
| 195 | #define DEF_RULE(rule, comp, kind, ...) #rule, |
| 196 | #define DEF_RULE_NC(rule, kind, ...) |
| 197 | #include "py/grammar.h" |
| 198 | #undef DEF_RULE |
| 199 | #undef DEF_RULE_NC |
| 200 | "" , // RULE_const_object |
| 201 | #define DEF_RULE(rule, comp, kind, ...) |
| 202 | #define DEF_RULE_NC(rule, kind, ...) #rule, |
| 203 | #include "py/grammar.h" |
| 204 | #undef DEF_RULE |
| 205 | #undef DEF_RULE_NC |
| 206 | }; |
| 207 | #endif |
| 208 | |
| 209 | // *FORMAT-ON* |
| 210 | |
| 211 | typedef struct _rule_stack_t { |
| 212 | size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number |
| 213 | size_t rule_id : 8; // this must be large enough to fit largest rule number |
| 214 | size_t arg_i; // this dictates the maximum nodes in a "list" of things |
| 215 | } rule_stack_t; |
| 216 | |
| 217 | typedef struct _mp_parse_chunk_t { |
| 218 | size_t alloc; |
| 219 | union { |
| 220 | size_t used; |
| 221 | struct _mp_parse_chunk_t *next; |
| 222 | } union_; |
| 223 | byte data[]; |
| 224 | } mp_parse_chunk_t; |
| 225 | |
| 226 | typedef struct _parser_t { |
| 227 | size_t rule_stack_alloc; |
| 228 | size_t rule_stack_top; |
| 229 | rule_stack_t *rule_stack; |
| 230 | |
| 231 | size_t result_stack_alloc; |
| 232 | size_t result_stack_top; |
| 233 | mp_parse_node_t *result_stack; |
| 234 | |
| 235 | mp_lexer_t *lexer; |
| 236 | |
| 237 | mp_parse_tree_t tree; |
| 238 | mp_parse_chunk_t *cur_chunk; |
| 239 | |
| 240 | #if MICROPY_COMP_CONST |
| 241 | mp_map_t consts; |
| 242 | #endif |
| 243 | } parser_t; |
| 244 | |
| 245 | STATIC const uint16_t *get_rule_arg(uint8_t r_id) { |
| 246 | size_t off = rule_arg_offset_table[r_id]; |
| 247 | if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) { |
| 248 | off |= 0x100; |
| 249 | } |
| 250 | return &rule_arg_combined_table[off]; |
| 251 | } |
| 252 | |
| 253 | STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) { |
| 254 | // use a custom memory allocator to store parse nodes sequentially in large chunks |
| 255 | |
| 256 | mp_parse_chunk_t *chunk = parser->cur_chunk; |
| 257 | |
| 258 | if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) { |
| 259 | // not enough room at end of previously allocated chunk so try to grow |
| 260 | mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk, |
| 261 | sizeof(mp_parse_chunk_t) + chunk->alloc, |
| 262 | sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false); |
| 263 | if (new_data == NULL) { |
| 264 | // could not grow existing memory; shrink it to fit previous |
| 265 | (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, |
| 266 | sizeof(mp_parse_chunk_t) + chunk->union_.used, false); |
| 267 | chunk->alloc = chunk->union_.used; |
| 268 | chunk->union_.next = parser->tree.chunk; |
| 269 | parser->tree.chunk = chunk; |
| 270 | chunk = NULL; |
| 271 | } else { |
| 272 | // could grow existing memory |
| 273 | chunk->alloc += num_bytes; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | if (chunk == NULL) { |
| 278 | // no previous chunk, allocate a new chunk |
| 279 | size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT; |
| 280 | if (alloc < num_bytes) { |
| 281 | alloc = num_bytes; |
| 282 | } |
| 283 | chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc); |
| 284 | chunk->alloc = alloc; |
| 285 | chunk->union_.used = 0; |
| 286 | parser->cur_chunk = chunk; |
| 287 | } |
| 288 | |
| 289 | byte *ret = chunk->data + chunk->union_.used; |
| 290 | chunk->union_.used += num_bytes; |
| 291 | return ret; |
| 292 | } |
| 293 | |
| 294 | STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) { |
| 295 | if (parser->rule_stack_top >= parser->rule_stack_alloc) { |
| 296 | rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC); |
| 297 | parser->rule_stack = rs; |
| 298 | parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; |
| 299 | } |
| 300 | rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; |
| 301 | rs->src_line = src_line; |
| 302 | rs->rule_id = rule_id; |
| 303 | rs->arg_i = arg_i; |
| 304 | } |
| 305 | |
| 306 | STATIC void push_rule_from_arg(parser_t *parser, size_t arg) { |
| 307 | assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); |
| 308 | size_t rule_id = arg & RULE_ARG_ARG_MASK; |
| 309 | push_rule(parser, parser->lexer->tok_line, rule_id, 0); |
| 310 | } |
| 311 | |
| 312 | STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) { |
| 313 | parser->rule_stack_top -= 1; |
| 314 | uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id; |
| 315 | *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; |
| 316 | *src_line = parser->rule_stack[parser->rule_stack_top].src_line; |
| 317 | return rule_id; |
| 318 | } |
| 319 | |
| 320 | bool mp_parse_node_is_const_false(mp_parse_node_t pn) { |
| 321 | return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE) |
| 322 | || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0); |
| 323 | } |
| 324 | |
| 325 | bool mp_parse_node_is_const_true(mp_parse_node_t pn) { |
| 326 | return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) |
| 327 | || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0); |
| 328 | } |
| 329 | |
| 330 | bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) { |
| 331 | if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| 332 | *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn)); |
| 333 | return true; |
| 334 | } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { |
| 335 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| 336 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| 337 | // nodes are 32-bit pointers, but need to extract 64-bit object |
| 338 | *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); |
| 339 | #else |
| 340 | *o = (mp_obj_t)pns->nodes[0]; |
| 341 | #endif |
| 342 | return mp_obj_is_int(*o); |
| 343 | } else { |
| 344 | return false; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | size_t (mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) { |
| 349 | if (MP_PARSE_NODE_IS_NULL(*pn)) { |
| 350 | *nodes = NULL; |
| 351 | return 0; |
| 352 | } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { |
| 353 | *nodes = pn; |
| 354 | return 1; |
| 355 | } else { |
| 356 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn); |
| 357 | if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { |
| 358 | *nodes = pn; |
| 359 | return 1; |
| 360 | } else { |
| 361 | *nodes = pns->nodes; |
| 362 | return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | #if MICROPY_DEBUG_PRINTERS |
| 368 | void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) { |
| 369 | if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| 370 | mp_printf(print, "[% 4d] " , (int)((mp_parse_node_struct_t *)pn)->source_line); |
| 371 | } else { |
| 372 | mp_printf(print, " " ); |
| 373 | } |
| 374 | for (size_t i = 0; i < indent; i++) { |
| 375 | mp_printf(print, " " ); |
| 376 | } |
| 377 | if (MP_PARSE_NODE_IS_NULL(pn)) { |
| 378 | mp_printf(print, "NULL\n" ); |
| 379 | } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| 380 | mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
| 381 | mp_printf(print, "int(" INT_FMT ")\n" , arg); |
| 382 | } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| 383 | uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| 384 | switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
| 385 | case MP_PARSE_NODE_ID: |
| 386 | mp_printf(print, "id(%s)\n" , qstr_str(arg)); |
| 387 | break; |
| 388 | case MP_PARSE_NODE_STRING: |
| 389 | mp_printf(print, "str(%s)\n" , qstr_str(arg)); |
| 390 | break; |
| 391 | case MP_PARSE_NODE_BYTES: |
| 392 | mp_printf(print, "bytes(%s)\n" , qstr_str(arg)); |
| 393 | break; |
| 394 | default: |
| 395 | assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN); |
| 396 | mp_printf(print, "tok(%u)\n" , (uint)arg); |
| 397 | break; |
| 398 | } |
| 399 | } else { |
| 400 | // node must be a mp_parse_node_struct_t |
| 401 | mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| 402 | if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) { |
| 403 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| 404 | mp_printf(print, "literal const(%016llx)\n" , (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32)); |
| 405 | #else |
| 406 | mp_printf(print, "literal const(%p)\n" , (mp_obj_t)pns->nodes[0]); |
| 407 | #endif |
| 408 | } else { |
| 409 | size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| 410 | #if MICROPY_DEBUG_PARSE_RULE_NAME |
| 411 | mp_printf(print, "%s(%u) (n=%u)\n" , rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
| 412 | #else |
| 413 | mp_printf(print, "rule(%u) (n=%u)\n" , (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
| 414 | #endif |
| 415 | for (size_t i = 0; i < n; i++) { |
| 416 | mp_parse_node_print(print, pns->nodes[i], indent + 2); |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | #endif // MICROPY_DEBUG_PRINTERS |
| 422 | |
| 423 | /* |
| 424 | STATIC void result_stack_show(const mp_print_t *print, parser_t *parser) { |
| 425 | mp_printf(print, "result stack, most recent first\n"); |
| 426 | for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) { |
| 427 | mp_parse_node_print(print, parser->result_stack[i], 0); |
| 428 | } |
| 429 | } |
| 430 | */ |
| 431 | |
| 432 | STATIC mp_parse_node_t pop_result(parser_t *parser) { |
| 433 | assert(parser->result_stack_top > 0); |
| 434 | return parser->result_stack[--parser->result_stack_top]; |
| 435 | } |
| 436 | |
| 437 | STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) { |
| 438 | assert(parser->result_stack_top > pos); |
| 439 | return parser->result_stack[parser->result_stack_top - 1 - pos]; |
| 440 | } |
| 441 | |
| 442 | STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) { |
| 443 | if (parser->result_stack_top >= parser->result_stack_alloc) { |
| 444 | mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC); |
| 445 | parser->result_stack = stack; |
| 446 | parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC; |
| 447 | } |
| 448 | parser->result_stack[parser->result_stack_top++] = pn; |
| 449 | } |
| 450 | |
| 451 | STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) { |
| 452 | mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t)); |
| 453 | pn->source_line = src_line; |
| 454 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| 455 | // nodes are 32-bit pointers, but need to store 64-bit object |
| 456 | pn->kind_num_nodes = RULE_const_object | (2 << 8); |
| 457 | pn->nodes[0] = (uint64_t)obj; |
| 458 | pn->nodes[1] = (uint64_t)obj >> 32; |
| 459 | #else |
| 460 | pn->kind_num_nodes = RULE_const_object | (1 << 8); |
| 461 | pn->nodes[0] = (uintptr_t)obj; |
| 462 | #endif |
| 463 | return (mp_parse_node_t)pn; |
| 464 | } |
| 465 | |
| 466 | STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) { |
| 467 | (void)parser; |
| 468 | mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val); |
| 469 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| 470 | // A parse node is only 32-bits and the small-int value must fit in 31-bits |
| 471 | if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) { |
| 472 | return make_node_const_object(parser, 0, o_val); |
| 473 | } |
| 474 | #endif |
| 475 | return mp_parse_node_new_small_int(val); |
| 476 | } |
| 477 | |
| 478 | STATIC void push_result_token(parser_t *parser, uint8_t rule_id) { |
| 479 | mp_parse_node_t pn; |
| 480 | mp_lexer_t *lex = parser->lexer; |
| 481 | if (lex->tok_kind == MP_TOKEN_NAME) { |
| 482 | qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
| 483 | #if MICROPY_COMP_CONST |
| 484 | // if name is a standalone identifier, look it up in the table of dynamic constants |
| 485 | mp_map_elem_t *elem; |
| 486 | if (rule_id == RULE_atom |
| 487 | && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) { |
| 488 | if (mp_obj_is_small_int(elem->value)) { |
| 489 | pn = mp_parse_node_new_small_int_checked(parser, elem->value); |
| 490 | } else { |
| 491 | pn = make_node_const_object(parser, lex->tok_line, elem->value); |
| 492 | } |
| 493 | } else { |
| 494 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
| 495 | } |
| 496 | #else |
| 497 | (void)rule_id; |
| 498 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
| 499 | #endif |
| 500 | } else if (lex->tok_kind == MP_TOKEN_INTEGER) { |
| 501 | mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); |
| 502 | if (mp_obj_is_small_int(o)) { |
| 503 | pn = mp_parse_node_new_small_int_checked(parser, o); |
| 504 | } else { |
| 505 | pn = make_node_const_object(parser, lex->tok_line, o); |
| 506 | } |
| 507 | } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { |
| 508 | mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex); |
| 509 | pn = make_node_const_object(parser, lex->tok_line, o); |
| 510 | } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { |
| 511 | // Don't automatically intern all strings/bytes. doc strings (which are usually large) |
| 512 | // will be discarded by the compiler, and so we shouldn't intern them. |
| 513 | qstr qst = MP_QSTRnull; |
| 514 | if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { |
| 515 | // intern short strings |
| 516 | qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
| 517 | } else { |
| 518 | // check if this string is already interned |
| 519 | qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len); |
| 520 | } |
| 521 | if (qst != MP_QSTRnull) { |
| 522 | // qstr exists, make a leaf node |
| 523 | pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst); |
| 524 | } else { |
| 525 | // not interned, make a node holding a pointer to the string/bytes object |
| 526 | mp_obj_t o = mp_obj_new_str_copy( |
| 527 | lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes, |
| 528 | (const byte *)lex->vstr.buf, lex->vstr.len); |
| 529 | pn = make_node_const_object(parser, lex->tok_line, o); |
| 530 | } |
| 531 | } else { |
| 532 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind); |
| 533 | } |
| 534 | push_result_node(parser, pn); |
| 535 | } |
| 536 | |
| 537 | #if MICROPY_COMP_MODULE_CONST |
| 538 | STATIC const mp_rom_map_elem_t mp_constants_table[] = { |
| 539 | #if MICROPY_PY_UERRNO |
| 540 | { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) }, |
| 541 | #endif |
| 542 | #if MICROPY_PY_UCTYPES |
| 543 | { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, |
| 544 | #endif |
| 545 | // Extra constants as defined by a port |
| 546 | MICROPY_PORT_CONSTANTS |
| 547 | }; |
| 548 | STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); |
| 549 | #endif |
| 550 | |
| 551 | STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args); |
| 552 | |
| 553 | #if MICROPY_COMP_CONST_FOLDING |
| 554 | STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) { |
| 555 | if (rule_id == RULE_or_test |
| 556 | || rule_id == RULE_and_test) { |
| 557 | // folding for binary logical ops: or and |
| 558 | size_t copy_to = *num_args; |
| 559 | for (size_t i = copy_to; i > 0;) { |
| 560 | mp_parse_node_t pn = peek_result(parser, --i); |
| 561 | parser->result_stack[parser->result_stack_top - copy_to] = pn; |
| 562 | if (i == 0) { |
| 563 | // always need to keep the last value |
| 564 | break; |
| 565 | } |
| 566 | if (rule_id == RULE_or_test) { |
| 567 | if (mp_parse_node_is_const_true(pn)) { |
| 568 | // |
| 569 | break; |
| 570 | } else if (!mp_parse_node_is_const_false(pn)) { |
| 571 | copy_to -= 1; |
| 572 | } |
| 573 | } else { |
| 574 | // RULE_and_test |
| 575 | if (mp_parse_node_is_const_false(pn)) { |
| 576 | break; |
| 577 | } else if (!mp_parse_node_is_const_true(pn)) { |
| 578 | copy_to -= 1; |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | copy_to -= 1; // copy_to now contains number of args to pop |
| 583 | |
| 584 | // pop and discard all the short-circuited expressions |
| 585 | for (size_t i = 0; i < copy_to; ++i) { |
| 586 | pop_result(parser); |
| 587 | } |
| 588 | *num_args -= copy_to; |
| 589 | |
| 590 | // we did a complete folding if there's only 1 arg left |
| 591 | return *num_args == 1; |
| 592 | |
| 593 | } else if (rule_id == RULE_not_test_2) { |
| 594 | // folding for unary logical op: not |
| 595 | mp_parse_node_t pn = peek_result(parser, 0); |
| 596 | if (mp_parse_node_is_const_false(pn)) { |
| 597 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE); |
| 598 | } else if (mp_parse_node_is_const_true(pn)) { |
| 599 | pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE); |
| 600 | } else { |
| 601 | return false; |
| 602 | } |
| 603 | pop_result(parser); |
| 604 | push_result_node(parser, pn); |
| 605 | return true; |
| 606 | } |
| 607 | |
| 608 | return false; |
| 609 | } |
| 610 | |
| 611 | STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) { |
| 612 | // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 |
| 613 | // it does not do partial folding, eg 1 + 2 + x -> 3 + x |
| 614 | |
| 615 | mp_obj_t arg0; |
| 616 | if (rule_id == RULE_expr |
| 617 | || rule_id == RULE_xor_expr |
| 618 | || rule_id == RULE_and_expr |
| 619 | || rule_id == RULE_power) { |
| 620 | // folding for binary ops: | ^ & ** |
| 621 | mp_parse_node_t pn = peek_result(parser, num_args - 1); |
| 622 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| 623 | return false; |
| 624 | } |
| 625 | mp_binary_op_t op; |
| 626 | if (rule_id == RULE_expr) { |
| 627 | op = MP_BINARY_OP_OR; |
| 628 | } else if (rule_id == RULE_xor_expr) { |
| 629 | op = MP_BINARY_OP_XOR; |
| 630 | } else if (rule_id == RULE_and_expr) { |
| 631 | op = MP_BINARY_OP_AND; |
| 632 | } else { |
| 633 | op = MP_BINARY_OP_POWER; |
| 634 | } |
| 635 | for (ssize_t i = num_args - 2; i >= 0; --i) { |
| 636 | pn = peek_result(parser, i); |
| 637 | mp_obj_t arg1; |
| 638 | if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
| 639 | return false; |
| 640 | } |
| 641 | if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) { |
| 642 | // ** can't have negative rhs |
| 643 | return false; |
| 644 | } |
| 645 | arg0 = mp_binary_op(op, arg0, arg1); |
| 646 | } |
| 647 | } else if (rule_id == RULE_shift_expr |
| 648 | || rule_id == RULE_arith_expr |
| 649 | || rule_id == RULE_term) { |
| 650 | // folding for binary ops: << >> + - * @ / % // |
| 651 | mp_parse_node_t pn = peek_result(parser, num_args - 1); |
| 652 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| 653 | return false; |
| 654 | } |
| 655 | for (ssize_t i = num_args - 2; i >= 1; i -= 2) { |
| 656 | pn = peek_result(parser, i - 1); |
| 657 | mp_obj_t arg1; |
| 658 | if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
| 659 | return false; |
| 660 | } |
| 661 | mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); |
| 662 | if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) { |
| 663 | // Can't fold @ or / |
| 664 | return false; |
| 665 | } |
| 666 | mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS); |
| 667 | int rhs_sign = mp_obj_int_sign(arg1); |
| 668 | if (op <= MP_BINARY_OP_RSHIFT) { |
| 669 | // << and >> can't have negative rhs |
| 670 | if (rhs_sign < 0) { |
| 671 | return false; |
| 672 | } |
| 673 | } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { |
| 674 | // % and // can't have zero rhs |
| 675 | if (rhs_sign == 0) { |
| 676 | return false; |
| 677 | } |
| 678 | } |
| 679 | arg0 = mp_binary_op(op, arg0, arg1); |
| 680 | } |
| 681 | } else if (rule_id == RULE_factor_2) { |
| 682 | // folding for unary ops: + - ~ |
| 683 | mp_parse_node_t pn = peek_result(parser, 0); |
| 684 | if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| 685 | return false; |
| 686 | } |
| 687 | mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); |
| 688 | mp_unary_op_t op; |
| 689 | if (tok == MP_TOKEN_OP_TILDE) { |
| 690 | op = MP_UNARY_OP_INVERT; |
| 691 | } else { |
| 692 | assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be |
| 693 | op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS); |
| 694 | } |
| 695 | arg0 = mp_unary_op(op, arg0); |
| 696 | |
| 697 | #if MICROPY_COMP_CONST |
| 698 | } else if (rule_id == RULE_expr_stmt) { |
| 699 | mp_parse_node_t pn1 = peek_result(parser, 0); |
| 700 | if (!MP_PARSE_NODE_IS_NULL(pn1) |
| 701 | && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) |
| 702 | || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { |
| 703 | // this node is of the form <x> = <y> |
| 704 | mp_parse_node_t pn0 = peek_result(parser, 1); |
| 705 | if (MP_PARSE_NODE_IS_ID(pn0) |
| 706 | && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) |
| 707 | && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0]) |
| 708 | && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const |
| 709 | && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren) |
| 710 | ) { |
| 711 | // code to assign dynamic constants: id = const(value) |
| 712 | |
| 713 | // get the id |
| 714 | qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); |
| 715 | |
| 716 | // get the value |
| 717 | mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0]; |
| 718 | mp_obj_t value; |
| 719 | if (!mp_parse_node_get_int_maybe(pn_value, &value)) { |
| 720 | mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
| 721 | MP_ERROR_TEXT("constant must be an integer" )); |
| 722 | mp_obj_exception_add_traceback(exc, parser->lexer->source_name, |
| 723 | ((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull); |
| 724 | nlr_raise(exc); |
| 725 | } |
| 726 | |
| 727 | // store the value in the table of dynamic constants |
| 728 | mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); |
| 729 | assert(elem->value == MP_OBJ_NULL); |
| 730 | elem->value = value; |
| 731 | |
| 732 | // If the constant starts with an underscore then treat it as a private |
| 733 | // variable and don't emit any code to store the value to the id. |
| 734 | if (qstr_str(id)[0] == '_') { |
| 735 | pop_result(parser); // pop const(value) |
| 736 | pop_result(parser); // pop id |
| 737 | push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass" |
| 738 | return true; |
| 739 | } |
| 740 | |
| 741 | // replace const(value) with value |
| 742 | pop_result(parser); |
| 743 | push_result_node(parser, pn_value); |
| 744 | |
| 745 | // finished folding this assignment, but we still want it to be part of the tree |
| 746 | return false; |
| 747 | } |
| 748 | } |
| 749 | return false; |
| 750 | #endif |
| 751 | |
| 752 | #if MICROPY_COMP_MODULE_CONST |
| 753 | } else if (rule_id == RULE_atom_expr_normal) { |
| 754 | mp_parse_node_t pn0 = peek_result(parser, 1); |
| 755 | mp_parse_node_t pn1 = peek_result(parser, 0); |
| 756 | if (!(MP_PARSE_NODE_IS_ID(pn0) |
| 757 | && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { |
| 758 | return false; |
| 759 | } |
| 760 | // id1.id2 |
| 761 | // look it up in constant table, see if it can be replaced with an integer |
| 762 | mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1; |
| 763 | assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| 764 | qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); |
| 765 | qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); |
| 766 | mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); |
| 767 | if (elem == NULL) { |
| 768 | return false; |
| 769 | } |
| 770 | mp_obj_t dest[2]; |
| 771 | mp_load_method_maybe(elem->value, q_attr, dest); |
| 772 | if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) { |
| 773 | return false; |
| 774 | } |
| 775 | arg0 = dest[0]; |
| 776 | #endif |
| 777 | |
| 778 | } else { |
| 779 | return false; |
| 780 | } |
| 781 | |
| 782 | // success folding this rule |
| 783 | |
| 784 | for (size_t i = num_args; i > 0; i--) { |
| 785 | pop_result(parser); |
| 786 | } |
| 787 | if (mp_obj_is_small_int(arg0)) { |
| 788 | push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0)); |
| 789 | } else { |
| 790 | // TODO reuse memory for parse node struct? |
| 791 | push_result_node(parser, make_node_const_object(parser, 0, arg0)); |
| 792 | } |
| 793 | |
| 794 | return true; |
| 795 | } |
| 796 | #endif |
| 797 | |
| 798 | STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) { |
| 799 | // optimise away parenthesis around an expression if possible |
| 800 | if (rule_id == RULE_atom_paren) { |
| 801 | // there should be just 1 arg for this rule |
| 802 | mp_parse_node_t pn = peek_result(parser, 0); |
| 803 | if (MP_PARSE_NODE_IS_NULL(pn)) { |
| 804 | // need to keep parenthesis for () |
| 805 | } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) { |
| 806 | // need to keep parenthesis for (a, b, ...) |
| 807 | } else { |
| 808 | // parenthesis around a single expression, so it's just the expression |
| 809 | return; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | #if MICROPY_COMP_CONST_FOLDING |
| 814 | if (fold_logical_constants(parser, rule_id, &num_args)) { |
| 815 | // we folded this rule so return straight away |
| 816 | return; |
| 817 | } |
| 818 | if (fold_constants(parser, rule_id, num_args)) { |
| 819 | // we folded this rule so return straight away |
| 820 | return; |
| 821 | } |
| 822 | #endif |
| 823 | |
| 824 | mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); |
| 825 | pn->source_line = src_line; |
| 826 | pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8); |
| 827 | for (size_t i = num_args; i > 0; i--) { |
| 828 | pn->nodes[i - 1] = pop_result(parser); |
| 829 | } |
| 830 | push_result_node(parser, (mp_parse_node_t)pn); |
| 831 | } |
| 832 | |
| 833 | mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { |
| 834 | |
| 835 | // initialise parser and allocate memory for its stacks |
| 836 | |
| 837 | parser_t parser; |
| 838 | |
| 839 | parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; |
| 840 | parser.rule_stack_top = 0; |
| 841 | parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc); |
| 842 | |
| 843 | parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; |
| 844 | parser.result_stack_top = 0; |
| 845 | parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc); |
| 846 | |
| 847 | parser.lexer = lex; |
| 848 | |
| 849 | parser.tree.chunk = NULL; |
| 850 | parser.cur_chunk = NULL; |
| 851 | |
| 852 | #if MICROPY_COMP_CONST |
| 853 | mp_map_init(&parser.consts, 0); |
| 854 | #endif |
| 855 | |
| 856 | // work out the top-level rule to use, and push it on the stack |
| 857 | size_t top_level_rule; |
| 858 | switch (input_kind) { |
| 859 | case MP_PARSE_SINGLE_INPUT: |
| 860 | top_level_rule = RULE_single_input; |
| 861 | break; |
| 862 | case MP_PARSE_EVAL_INPUT: |
| 863 | top_level_rule = RULE_eval_input; |
| 864 | break; |
| 865 | default: |
| 866 | top_level_rule = RULE_file_input; |
| 867 | } |
| 868 | push_rule(&parser, lex->tok_line, top_level_rule, 0); |
| 869 | |
| 870 | // parse! |
| 871 | |
| 872 | bool backtrack = false; |
| 873 | |
| 874 | for (;;) { |
| 875 | next_rule: |
| 876 | if (parser.rule_stack_top == 0) { |
| 877 | break; |
| 878 | } |
| 879 | |
| 880 | // Pop the next rule to process it |
| 881 | size_t i; // state for the current rule |
| 882 | size_t rule_src_line; // source line for the first token matched by the current rule |
| 883 | uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line); |
| 884 | uint8_t rule_act = rule_act_table[rule_id]; |
| 885 | const uint16_t *rule_arg = get_rule_arg(rule_id); |
| 886 | size_t n = rule_act & RULE_ACT_ARG_MASK; |
| 887 | |
| 888 | #if 0 |
| 889 | // debugging |
| 890 | printf("depth=" UINT_FMT " " , parser.rule_stack_top); |
| 891 | for (int j = 0; j < parser.rule_stack_top; ++j) { |
| 892 | printf(" " ); |
| 893 | } |
| 894 | printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n" , rule_name_table[rule_id], n, i, backtrack); |
| 895 | #endif |
| 896 | |
| 897 | switch (rule_act & RULE_ACT_KIND_MASK) { |
| 898 | case RULE_ACT_OR: |
| 899 | if (i > 0 && !backtrack) { |
| 900 | goto next_rule; |
| 901 | } else { |
| 902 | backtrack = false; |
| 903 | } |
| 904 | for (; i < n; ++i) { |
| 905 | uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK; |
| 906 | if (kind == RULE_ARG_TOK) { |
| 907 | if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) { |
| 908 | push_result_token(&parser, rule_id); |
| 909 | mp_lexer_to_next(lex); |
| 910 | goto next_rule; |
| 911 | } |
| 912 | } else { |
| 913 | assert(kind == RULE_ARG_RULE); |
| 914 | if (i + 1 < n) { |
| 915 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule |
| 916 | } |
| 917 | push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule |
| 918 | goto next_rule; |
| 919 | } |
| 920 | } |
| 921 | backtrack = true; |
| 922 | break; |
| 923 | |
| 924 | case RULE_ACT_AND: { |
| 925 | |
| 926 | // failed, backtrack if we can, else syntax error |
| 927 | if (backtrack) { |
| 928 | assert(i > 0); |
| 929 | if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { |
| 930 | // an optional rule that failed, so continue with next arg |
| 931 | push_result_node(&parser, MP_PARSE_NODE_NULL); |
| 932 | backtrack = false; |
| 933 | } else { |
| 934 | // a mandatory rule that failed, so propagate backtrack |
| 935 | if (i > 1) { |
| 936 | // already eaten tokens so can't backtrack |
| 937 | goto syntax_error; |
| 938 | } else { |
| 939 | goto next_rule; |
| 940 | } |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | // progress through the rule |
| 945 | for (; i < n; ++i) { |
| 946 | if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| 947 | // need to match a token |
| 948 | mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK; |
| 949 | if (lex->tok_kind == tok_kind) { |
| 950 | // matched token |
| 951 | if (tok_kind == MP_TOKEN_NAME) { |
| 952 | push_result_token(&parser, rule_id); |
| 953 | } |
| 954 | mp_lexer_to_next(lex); |
| 955 | } else { |
| 956 | // failed to match token |
| 957 | if (i > 0) { |
| 958 | // already eaten tokens so can't backtrack |
| 959 | goto syntax_error; |
| 960 | } else { |
| 961 | // this rule failed, so backtrack |
| 962 | backtrack = true; |
| 963 | goto next_rule; |
| 964 | } |
| 965 | } |
| 966 | } else { |
| 967 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule |
| 968 | push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule |
| 969 | goto next_rule; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | assert(i == n); |
| 974 | |
| 975 | // matched the rule, so now build the corresponding parse_node |
| 976 | |
| 977 | #if !MICROPY_ENABLE_DOC_STRING |
| 978 | // this code discards lonely statements, such as doc strings |
| 979 | if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { |
| 980 | mp_parse_node_t p = peek_result(&parser, 1); |
| 981 | if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) |
| 982 | || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { |
| 983 | pop_result(&parser); // MP_PARSE_NODE_NULL |
| 984 | pop_result(&parser); // const expression (leaf or RULE_const_object) |
| 985 | // Pushing the "pass" rule here will overwrite any RULE_const_object |
| 986 | // entry that was on the result stack, allowing the GC to reclaim |
| 987 | // the memory from the const object when needed. |
| 988 | push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0); |
| 989 | break; |
| 990 | } |
| 991 | } |
| 992 | #endif |
| 993 | |
| 994 | // count number of arguments for the parse node |
| 995 | i = 0; |
| 996 | size_t num_not_nil = 0; |
| 997 | for (size_t x = n; x > 0;) { |
| 998 | --x; |
| 999 | if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| 1000 | mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK; |
| 1001 | if (tok_kind == MP_TOKEN_NAME) { |
| 1002 | // only tokens which were names are pushed to stack |
| 1003 | i += 1; |
| 1004 | num_not_nil += 1; |
| 1005 | } |
| 1006 | } else { |
| 1007 | // rules are always pushed |
| 1008 | if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { |
| 1009 | num_not_nil += 1; |
| 1010 | } |
| 1011 | i += 1; |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) { |
| 1016 | // this rule has only 1 argument and should not be emitted |
| 1017 | mp_parse_node_t pn = MP_PARSE_NODE_NULL; |
| 1018 | for (size_t x = 0; x < i; ++x) { |
| 1019 | mp_parse_node_t pn2 = pop_result(&parser); |
| 1020 | if (pn2 != MP_PARSE_NODE_NULL) { |
| 1021 | pn = pn2; |
| 1022 | } |
| 1023 | } |
| 1024 | push_result_node(&parser, pn); |
| 1025 | } else { |
| 1026 | // this rule must be emitted |
| 1027 | |
| 1028 | if (rule_act & RULE_ACT_ADD_BLANK) { |
| 1029 | // and add an extra blank node at the end (used by the compiler to store data) |
| 1030 | push_result_node(&parser, MP_PARSE_NODE_NULL); |
| 1031 | i += 1; |
| 1032 | } |
| 1033 | |
| 1034 | push_result_rule(&parser, rule_src_line, rule_id, i); |
| 1035 | } |
| 1036 | break; |
| 1037 | } |
| 1038 | |
| 1039 | default: { |
| 1040 | assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); |
| 1041 | |
| 1042 | // n=2 is: item item* |
| 1043 | // n=1 is: item (sep item)* |
| 1044 | // n=3 is: item (sep item)* [sep] |
| 1045 | bool had_trailing_sep; |
| 1046 | if (backtrack) { |
| 1047 | list_backtrack: |
| 1048 | had_trailing_sep = false; |
| 1049 | if (n == 2) { |
| 1050 | if (i == 1) { |
| 1051 | // fail on item, first time round; propagate backtrack |
| 1052 | goto next_rule; |
| 1053 | } else { |
| 1054 | // fail on item, in later rounds; finish with this rule |
| 1055 | backtrack = false; |
| 1056 | } |
| 1057 | } else { |
| 1058 | if (i == 1) { |
| 1059 | // fail on item, first time round; propagate backtrack |
| 1060 | goto next_rule; |
| 1061 | } else if ((i & 1) == 1) { |
| 1062 | // fail on item, in later rounds; have eaten tokens so can't backtrack |
| 1063 | if (n == 3) { |
| 1064 | // list allows trailing separator; finish parsing list |
| 1065 | had_trailing_sep = true; |
| 1066 | backtrack = false; |
| 1067 | } else { |
| 1068 | // list doesn't allowing trailing separator; fail |
| 1069 | goto syntax_error; |
| 1070 | } |
| 1071 | } else { |
| 1072 | // fail on separator; finish parsing list |
| 1073 | backtrack = false; |
| 1074 | } |
| 1075 | } |
| 1076 | } else { |
| 1077 | for (;;) { |
| 1078 | size_t arg = rule_arg[i & 1 & n]; |
| 1079 | if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| 1080 | if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { |
| 1081 | if (i & 1 & n) { |
| 1082 | // separators which are tokens are not pushed to result stack |
| 1083 | } else { |
| 1084 | push_result_token(&parser, rule_id); |
| 1085 | } |
| 1086 | mp_lexer_to_next(lex); |
| 1087 | // got element of list, so continue parsing list |
| 1088 | i += 1; |
| 1089 | } else { |
| 1090 | // couldn't get element of list |
| 1091 | i += 1; |
| 1092 | backtrack = true; |
| 1093 | goto list_backtrack; |
| 1094 | } |
| 1095 | } else { |
| 1096 | assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); |
| 1097 | push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule |
| 1098 | push_rule_from_arg(&parser, arg); // push child of list-rule |
| 1099 | goto next_rule; |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | assert(i >= 1); |
| 1104 | |
| 1105 | // compute number of elements in list, result in i |
| 1106 | i -= 1; |
| 1107 | if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| 1108 | // don't count separators when they are tokens |
| 1109 | i = (i + 1) / 2; |
| 1110 | } |
| 1111 | |
| 1112 | if (i == 1) { |
| 1113 | // list matched single item |
| 1114 | if (had_trailing_sep) { |
| 1115 | // if there was a trailing separator, make a list of a single item |
| 1116 | push_result_rule(&parser, rule_src_line, rule_id, i); |
| 1117 | } else { |
| 1118 | // just leave single item on stack (ie don't wrap in a list) |
| 1119 | } |
| 1120 | } else { |
| 1121 | push_result_rule(&parser, rule_src_line, rule_id, i); |
| 1122 | } |
| 1123 | break; |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | #if MICROPY_COMP_CONST |
| 1129 | mp_map_deinit(&parser.consts); |
| 1130 | #endif |
| 1131 | |
| 1132 | // truncate final chunk and link into chain of chunks |
| 1133 | if (parser.cur_chunk != NULL) { |
| 1134 | (void)m_renew_maybe(byte, parser.cur_chunk, |
| 1135 | sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, |
| 1136 | sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, |
| 1137 | false); |
| 1138 | parser.cur_chunk->alloc = parser.cur_chunk->union_.used; |
| 1139 | parser.cur_chunk->union_.next = parser.tree.chunk; |
| 1140 | parser.tree.chunk = parser.cur_chunk; |
| 1141 | } |
| 1142 | |
| 1143 | if ( |
| 1144 | lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream |
| 1145 | || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) |
| 1146 | ) { |
| 1147 | syntax_error:; |
| 1148 | mp_obj_t exc; |
| 1149 | if (lex->tok_kind == MP_TOKEN_INDENT) { |
| 1150 | exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
| 1151 | MP_ERROR_TEXT("unexpected indent" )); |
| 1152 | } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { |
| 1153 | exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
| 1154 | MP_ERROR_TEXT("unindent doesn't match any outer indent level" )); |
| 1155 | } else { |
| 1156 | exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
| 1157 | MP_ERROR_TEXT("invalid syntax" )); |
| 1158 | } |
| 1159 | // add traceback to give info about file name and location |
| 1160 | // we don't have a 'block' name, so just pass the NULL qstr to indicate this |
| 1161 | mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); |
| 1162 | nlr_raise(exc); |
| 1163 | } |
| 1164 | |
| 1165 | // get the root parse node that we created |
| 1166 | assert(parser.result_stack_top == 1); |
| 1167 | parser.tree.root = parser.result_stack[0]; |
| 1168 | |
| 1169 | // free the memory that we don't need anymore |
| 1170 | m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); |
| 1171 | m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); |
| 1172 | |
| 1173 | // we also free the lexer on behalf of the caller |
| 1174 | mp_lexer_free(lex); |
| 1175 | |
| 1176 | return parser.tree; |
| 1177 | } |
| 1178 | |
| 1179 | void mp_parse_tree_clear(mp_parse_tree_t *tree) { |
| 1180 | mp_parse_chunk_t *chunk = tree->chunk; |
| 1181 | while (chunk != NULL) { |
| 1182 | mp_parse_chunk_t *next = chunk->union_.next; |
| 1183 | m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); |
| 1184 | chunk = next; |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | #endif // MICROPY_ENABLE_COMPILER |
| 1189 | |