1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013, 2014 Damien P. George |
7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal |
10 | * in the Software without restriction, including without limitation the rights |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | * copies of the Software, and to permit persons to whom the Software is |
13 | * furnished to do so, subject to the following conditions: |
14 | * |
15 | * The above copyright notice and this permission notice shall be included in |
16 | * all copies or substantial portions of the Software. |
17 | * |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
24 | * THE SOFTWARE. |
25 | */ |
26 | |
27 | #include <stdbool.h> |
28 | #include <stdlib.h> |
29 | |
30 | #include "py/runtime.h" |
31 | #include "py/parsenumbase.h" |
32 | #include "py/parsenum.h" |
33 | #include "py/smallint.h" |
34 | |
35 | #if MICROPY_PY_BUILTINS_FLOAT |
36 | #include <math.h> |
37 | #endif |
38 | |
39 | STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) { |
40 | // if lex!=NULL then the parser called us and we need to convert the |
41 | // exception's type from ValueError to SyntaxError and add traceback info |
42 | if (lex != NULL) { |
43 | ((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError; |
44 | mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); |
45 | } |
46 | nlr_raise(exc); |
47 | } |
48 | |
49 | mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) { |
50 | const byte *restrict str = (const byte *)str_; |
51 | const byte *restrict top = str + len; |
52 | bool neg = false; |
53 | mp_obj_t ret_val; |
54 | |
55 | // check radix base |
56 | if ((base != 0 && base < 2) || base > 36) { |
57 | // this won't be reached if lex!=NULL |
58 | mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36" )); |
59 | } |
60 | |
61 | // skip leading space |
62 | for (; str < top && unichar_isspace(*str); str++) { |
63 | } |
64 | |
65 | // parse optional sign |
66 | if (str < top) { |
67 | if (*str == '+') { |
68 | str++; |
69 | } else if (*str == '-') { |
70 | str++; |
71 | neg = true; |
72 | } |
73 | } |
74 | |
75 | // parse optional base prefix |
76 | str += mp_parse_num_base((const char *)str, top - str, &base); |
77 | |
78 | // string should be an integer number |
79 | mp_int_t int_val = 0; |
80 | const byte *restrict str_val_start = str; |
81 | for (; str < top; str++) { |
82 | // get next digit as a value |
83 | mp_uint_t dig = *str; |
84 | if ('0' <= dig && dig <= '9') { |
85 | dig -= '0'; |
86 | } else if (dig == '_') { |
87 | continue; |
88 | } else { |
89 | dig |= 0x20; // make digit lower-case |
90 | if ('a' <= dig && dig <= 'z') { |
91 | dig -= 'a' - 10; |
92 | } else { |
93 | // unknown character |
94 | break; |
95 | } |
96 | } |
97 | if (dig >= (mp_uint_t)base) { |
98 | break; |
99 | } |
100 | |
101 | // add next digi and check for overflow |
102 | if (mp_small_int_mul_overflow(int_val, base)) { |
103 | goto overflow; |
104 | } |
105 | int_val = int_val * base + dig; |
106 | if (!MP_SMALL_INT_FITS(int_val)) { |
107 | goto overflow; |
108 | } |
109 | } |
110 | |
111 | // negate value if needed |
112 | if (neg) { |
113 | int_val = -int_val; |
114 | } |
115 | |
116 | // create the small int |
117 | ret_val = MP_OBJ_NEW_SMALL_INT(int_val); |
118 | |
119 | have_ret_val: |
120 | // check we parsed something |
121 | if (str == str_val_start) { |
122 | goto value_error; |
123 | } |
124 | |
125 | // skip trailing space |
126 | for (; str < top && unichar_isspace(*str); str++) { |
127 | } |
128 | |
129 | // check we reached the end of the string |
130 | if (str != top) { |
131 | goto value_error; |
132 | } |
133 | |
134 | // return the object |
135 | return ret_val; |
136 | |
137 | overflow: |
138 | // reparse using long int |
139 | { |
140 | const char *s2 = (const char *)str_val_start; |
141 | ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base); |
142 | str = (const byte *)s2; |
143 | goto have_ret_val; |
144 | } |
145 | |
146 | value_error: |
147 | { |
148 | #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE |
149 | mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError, |
150 | MP_ERROR_TEXT("invalid syntax for integer" )); |
151 | raise_exc(exc, lex); |
152 | #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL |
153 | mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError, |
154 | MP_ERROR_TEXT("invalid syntax for integer with base %d" ), base); |
155 | raise_exc(exc, lex); |
156 | #else |
157 | vstr_t vstr; |
158 | mp_print_t print; |
159 | vstr_init_print(&vstr, 50, &print); |
160 | mp_printf(&print, "invalid syntax for integer with base %d: " , base); |
161 | mp_str_print_quoted(&print, str_val_start, top - str_val_start, true); |
162 | mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError, |
163 | mp_obj_new_str_from_vstr(&mp_type_str, &vstr)); |
164 | raise_exc(exc, lex); |
165 | #endif |
166 | } |
167 | } |
168 | |
169 | typedef enum { |
170 | PARSE_DEC_IN_INTG, |
171 | PARSE_DEC_IN_FRAC, |
172 | PARSE_DEC_IN_EXP, |
173 | } parse_dec_in_t; |
174 | |
175 | mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) { |
176 | #if MICROPY_PY_BUILTINS_FLOAT |
177 | |
178 | // DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing |
179 | // SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float |
180 | // EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float |
181 | // Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n |
182 | // so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's |
183 | // exponent). |
184 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
185 | #define DEC_VAL_MAX 1e20F |
186 | #define SMALL_NORMAL_VAL (1e-37F) |
187 | #define SMALL_NORMAL_EXP (-37) |
188 | #define EXACT_POWER_OF_10 (9) |
189 | #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
190 | #define DEC_VAL_MAX 1e200 |
191 | #define SMALL_NORMAL_VAL (1e-307) |
192 | #define SMALL_NORMAL_EXP (-307) |
193 | #define EXACT_POWER_OF_10 (22) |
194 | #endif |
195 | |
196 | const char *top = str + len; |
197 | mp_float_t dec_val = 0; |
198 | bool dec_neg = false; |
199 | bool imag = false; |
200 | |
201 | // skip leading space |
202 | for (; str < top && unichar_isspace(*str); str++) { |
203 | } |
204 | |
205 | // parse optional sign |
206 | if (str < top) { |
207 | if (*str == '+') { |
208 | str++; |
209 | } else if (*str == '-') { |
210 | str++; |
211 | dec_neg = true; |
212 | } |
213 | } |
214 | |
215 | const char *str_val_start = str; |
216 | |
217 | // determine what the string is |
218 | if (str < top && (str[0] | 0x20) == 'i') { |
219 | // string starts with 'i', should be 'inf' or 'infinity' (case insensitive) |
220 | if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') { |
221 | // inf |
222 | str += 3; |
223 | dec_val = (mp_float_t)INFINITY; |
224 | if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') { |
225 | // infinity |
226 | str += 5; |
227 | } |
228 | } |
229 | } else if (str < top && (str[0] | 0x20) == 'n') { |
230 | // string starts with 'n', should be 'nan' (case insensitive) |
231 | if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') { |
232 | // NaN |
233 | str += 3; |
234 | dec_val = MICROPY_FLOAT_C_FUN(nan)("" ); |
235 | } |
236 | } else { |
237 | // string should be a decimal number |
238 | parse_dec_in_t in = PARSE_DEC_IN_INTG; |
239 | bool exp_neg = false; |
240 | int exp_val = 0; |
241 | int = 0; |
242 | while (str < top) { |
243 | unsigned int dig = *str++; |
244 | if ('0' <= dig && dig <= '9') { |
245 | dig -= '0'; |
246 | if (in == PARSE_DEC_IN_EXP) { |
247 | // don't overflow exp_val when adding next digit, instead just truncate |
248 | // it and the resulting float will still be correct, either inf or 0.0 |
249 | // (use INT_MAX/2 to allow adding exp_extra at the end without overflow) |
250 | if (exp_val < (INT_MAX / 2 - 9) / 10) { |
251 | exp_val = 10 * exp_val + dig; |
252 | } |
253 | } else { |
254 | if (dec_val < DEC_VAL_MAX) { |
255 | // dec_val won't overflow so keep accumulating |
256 | dec_val = 10 * dec_val + dig; |
257 | if (in == PARSE_DEC_IN_FRAC) { |
258 | --exp_extra; |
259 | } |
260 | } else { |
261 | // dec_val might overflow and we anyway can't represent more digits |
262 | // of precision, so ignore the digit and just adjust the exponent |
263 | if (in == PARSE_DEC_IN_INTG) { |
264 | ++exp_extra; |
265 | } |
266 | } |
267 | } |
268 | } else if (in == PARSE_DEC_IN_INTG && dig == '.') { |
269 | in = PARSE_DEC_IN_FRAC; |
270 | } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { |
271 | in = PARSE_DEC_IN_EXP; |
272 | if (str < top) { |
273 | if (str[0] == '+') { |
274 | str++; |
275 | } else if (str[0] == '-') { |
276 | str++; |
277 | exp_neg = true; |
278 | } |
279 | } |
280 | if (str == top) { |
281 | goto value_error; |
282 | } |
283 | } else if (allow_imag && (dig | 0x20) == 'j') { |
284 | imag = true; |
285 | break; |
286 | } else if (dig == '_') { |
287 | continue; |
288 | } else { |
289 | // unknown character |
290 | str--; |
291 | break; |
292 | } |
293 | } |
294 | |
295 | // work out the exponent |
296 | if (exp_neg) { |
297 | exp_val = -exp_val; |
298 | } |
299 | |
300 | // apply the exponent, making sure it's not a subnormal value |
301 | exp_val += exp_extra; |
302 | if (exp_val < SMALL_NORMAL_EXP) { |
303 | exp_val -= SMALL_NORMAL_EXP; |
304 | dec_val *= SMALL_NORMAL_VAL; |
305 | } |
306 | |
307 | // At this point, we need to multiply the mantissa by its base 10 exponent. If possible, |
308 | // we would rather manipulate numbers that have an exact representation in IEEE754. It |
309 | // turns out small positive powers of 10 do, whereas small negative powers of 10 don't. |
310 | // So in that case, we'll yield a division of exact values rather than a multiplication |
311 | // of slightly erroneous values. |
312 | if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) { |
313 | dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val); |
314 | } else { |
315 | dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val); |
316 | } |
317 | } |
318 | |
319 | // negate value if needed |
320 | if (dec_neg) { |
321 | dec_val = -dec_val; |
322 | } |
323 | |
324 | // check we parsed something |
325 | if (str == str_val_start) { |
326 | goto value_error; |
327 | } |
328 | |
329 | // skip trailing space |
330 | for (; str < top && unichar_isspace(*str); str++) { |
331 | } |
332 | |
333 | // check we reached the end of the string |
334 | if (str != top) { |
335 | goto value_error; |
336 | } |
337 | |
338 | // return the object |
339 | #if MICROPY_PY_BUILTINS_COMPLEX |
340 | if (imag) { |
341 | return mp_obj_new_complex(0, dec_val); |
342 | } else if (force_complex) { |
343 | return mp_obj_new_complex(dec_val, 0); |
344 | } |
345 | #else |
346 | if (imag || force_complex) { |
347 | raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported" )), lex); |
348 | } |
349 | #endif |
350 | else { |
351 | return mp_obj_new_float(dec_val); |
352 | } |
353 | |
354 | value_error: |
355 | raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number" )), lex); |
356 | |
357 | #else |
358 | raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported" )), lex); |
359 | #endif |
360 | } |
361 | |