| 1 | /* |
| 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
| 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 5 | * |
| 6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * @a M. L. Kersten, P. Boncz, N. Nes |
| 11 | * @* BAT Module |
| 12 | * In this Chapter we describe the BAT implementation in more detail. |
| 13 | * The routines mentioned are primarily meant to simplify the library |
| 14 | * implementation. |
| 15 | * |
| 16 | * @+ BAT Construction |
| 17 | * BATs are implemented in several blocks of memory, prepared for disk |
| 18 | * storage and easy shipment over a network. |
| 19 | * |
| 20 | * The BAT starts with a descriptor, which indicates the required BAT |
| 21 | * library version and the BAT administration details. In particular, |
| 22 | * it describes the binary relationship maintained and the location of |
| 23 | * fields required for storage. |
| 24 | * |
| 25 | * The general layout of the BAT in this implementation is as follows. |
| 26 | * Each BAT comes with a heap for the loc-size buns and, optionally, |
| 27 | * with heaps to manage the variable-sized data items of both |
| 28 | * dimensions. The buns are assumed to be stored as loc-size objects. |
| 29 | * This is essentially an array of structs to store the associations. |
| 30 | * The size is determined at BAT creation time using an upper bound on |
| 31 | * the number of elements to be accommodated. In case of overflow, |
| 32 | * its storage space is extended automatically. |
| 33 | * |
| 34 | * The capacity of a BAT places an upper limit on the number of BUNs |
| 35 | * to be stored initially. The actual space set aside may be quite |
| 36 | * large. Moreover, the size is aligned to int boundaries to speedup |
| 37 | * access and avoid some machine limitations. |
| 38 | * |
| 39 | * Initialization of the variable parts rely on type specific routines |
| 40 | * called atomHeap. |
| 41 | */ |
| 42 | #include "monetdb_config.h" |
| 43 | #include "gdk.h" |
| 44 | #include "gdk_private.h" |
| 45 | |
| 46 | #ifdef ALIGN |
| 47 | #undef ALIGN |
| 48 | #endif |
| 49 | #define ALIGN(n,b) ((b)?(b)*(1+(((n)-1)/(b))):n) |
| 50 | |
| 51 | #define ATOMneedheap(tpe) (BATatoms[tpe].atomHeap != NULL) |
| 52 | |
| 53 | static char *BATstring_t = "t" ; |
| 54 | |
| 55 | #define default_ident(s) ((s) == BATstring_t) |
| 56 | |
| 57 | void |
| 58 | BATinit_idents(BAT *bn) |
| 59 | { |
| 60 | bn->tident = BATstring_t; |
| 61 | } |
| 62 | |
| 63 | BAT * |
| 64 | BATcreatedesc(oid hseq, int tt, bool heapnames, role_t role) |
| 65 | { |
| 66 | BAT *bn; |
| 67 | |
| 68 | /* |
| 69 | * Alloc space for the BAT and its dependent records. |
| 70 | */ |
| 71 | assert(tt >= 0); |
| 72 | |
| 73 | bn = GDKzalloc(sizeof(BAT)); |
| 74 | |
| 75 | if (bn == NULL) |
| 76 | return NULL; |
| 77 | |
| 78 | /* |
| 79 | * Fill in basic column info |
| 80 | */ |
| 81 | bn->hseqbase = hseq; |
| 82 | |
| 83 | bn->ttype = tt; |
| 84 | bn->tkey = false; |
| 85 | bn->tunique = false; |
| 86 | bn->tnonil = true; |
| 87 | bn->tnil = false; |
| 88 | bn->tsorted = bn->trevsorted = ATOMlinear(tt); |
| 89 | bn->tident = BATstring_t; |
| 90 | bn->tseqbase = oid_nil; |
| 91 | bn->tprops = NULL; |
| 92 | |
| 93 | bn->batRole = role; |
| 94 | bn->batTransient = true; |
| 95 | /* |
| 96 | * add to BBP |
| 97 | */ |
| 98 | if (BBPinsert(bn) == 0) { |
| 99 | GDKfree(bn); |
| 100 | return NULL; |
| 101 | } |
| 102 | /* |
| 103 | * Default zero for order oid index |
| 104 | */ |
| 105 | bn->torderidx = NULL; |
| 106 | /* |
| 107 | * fill in heap names, so HEAPallocs can resort to disk for |
| 108 | * very large writes. |
| 109 | */ |
| 110 | assert(bn->batCacheid > 0); |
| 111 | |
| 112 | const char *nme = BBP_physical(bn->batCacheid); |
| 113 | strconcat_len(bn->theap.filename, sizeof(bn->theap.filename), |
| 114 | nme, ".tail" , NULL); |
| 115 | bn->theap.farmid = BBPselectfarm(role, bn->ttype, offheap); |
| 116 | if (heapnames && ATOMneedheap(tt)) { |
| 117 | if ((bn->tvheap = (Heap *) GDKzalloc(sizeof(Heap))) == NULL) |
| 118 | goto bailout; |
| 119 | strconcat_len(bn->tvheap->filename, |
| 120 | sizeof(bn->tvheap->filename), |
| 121 | nme, ".theap" , NULL); |
| 122 | bn->tvheap->parentid = bn->batCacheid; |
| 123 | bn->tvheap->farmid = BBPselectfarm(role, bn->ttype, varheap); |
| 124 | } |
| 125 | char name[16]; |
| 126 | snprintf(name, sizeof(name), "BATlock%d" , bn->batCacheid); /* fits */ |
| 127 | MT_lock_init(&bn->batIdxLock, name); |
| 128 | bn->batDirtydesc = true; |
| 129 | return bn; |
| 130 | bailout: |
| 131 | BBPclear(bn->batCacheid); |
| 132 | if (tt) |
| 133 | HEAPfree(&bn->theap, true); |
| 134 | if (bn->tvheap) { |
| 135 | HEAPfree(bn->tvheap, true); |
| 136 | GDKfree(bn->tvheap); |
| 137 | } |
| 138 | GDKfree(bn); |
| 139 | return NULL; |
| 140 | } |
| 141 | |
| 142 | uint8_t |
| 143 | ATOMelmshift(int sz) |
| 144 | { |
| 145 | uint8_t sh; |
| 146 | int i = sz >> 1; |
| 147 | |
| 148 | for (sh = 0; i != 0; sh++) { |
| 149 | i >>= 1; |
| 150 | } |
| 151 | return sh; |
| 152 | } |
| 153 | |
| 154 | |
| 155 | void |
| 156 | BATsetdims(BAT *b) |
| 157 | { |
| 158 | b->twidth = b->ttype == TYPE_str ? 1 : ATOMsize(b->ttype); |
| 159 | b->tshift = ATOMelmshift(Tsize(b)); |
| 160 | assert_shift_width(b->tshift, b->twidth); |
| 161 | b->tvarsized = b->ttype == TYPE_void || BATatoms[b->ttype].atomPut != NULL; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * @- BAT allocation |
| 166 | * Allocate BUN heap and variable-size atomheaps (see e.g. strHeap). |
| 167 | * We now initialize new BATs with their heapname such that the |
| 168 | * modified HEAPalloc/HEAPextend primitives can possibly use memory |
| 169 | * mapped files as temporary heap storage. |
| 170 | * |
| 171 | * In case of huge bats, we want HEAPalloc to write a file to disk, |
| 172 | * and memory map it. To make this possible, we must provide it with |
| 173 | * filenames. |
| 174 | */ |
| 175 | BAT * |
| 176 | COLnew(oid hseq, int tt, BUN cap, role_t role) |
| 177 | { |
| 178 | BAT *bn; |
| 179 | |
| 180 | assert(cap <= BUN_MAX); |
| 181 | assert(hseq <= oid_nil); |
| 182 | assert(tt != TYPE_bat); |
| 183 | ERRORcheck((tt < 0) || (tt > GDKatomcnt), "COLnew:tt error\n" , NULL); |
| 184 | |
| 185 | /* round up to multiple of BATTINY */ |
| 186 | if (cap < BUN_MAX - BATTINY) |
| 187 | cap = (cap + BATTINY - 1) & ~(BATTINY - 1); |
| 188 | if (cap < BATTINY) |
| 189 | cap = BATTINY; |
| 190 | /* limit the size */ |
| 191 | if (cap > BUN_MAX) |
| 192 | cap = BUN_MAX; |
| 193 | |
| 194 | bn = BATcreatedesc(hseq, tt, tt != TYPE_void, role); |
| 195 | if (bn == NULL) |
| 196 | return NULL; |
| 197 | |
| 198 | BATsetdims(bn); |
| 199 | bn->batCapacity = cap; |
| 200 | |
| 201 | /* alloc the main heaps */ |
| 202 | if (tt && HEAPalloc(&bn->theap, cap, bn->twidth) != GDK_SUCCEED) { |
| 203 | goto bailout; |
| 204 | } |
| 205 | |
| 206 | if (bn->tvheap && ATOMheap(tt, bn->tvheap, cap) != GDK_SUCCEED) { |
| 207 | GDKfree(bn->tvheap); |
| 208 | goto bailout; |
| 209 | } |
| 210 | DELTAinit(bn); |
| 211 | if (BBPcacheit(bn, true) != GDK_SUCCEED) { |
| 212 | GDKfree(bn->tvheap); |
| 213 | goto bailout; |
| 214 | } |
| 215 | ALGODEBUG fprintf(stderr, "#COLnew()=" ALGOBATFMT "\n" , ALGOBATPAR(bn)); |
| 216 | return bn; |
| 217 | bailout: |
| 218 | BBPclear(bn->batCacheid); |
| 219 | HEAPfree(&bn->theap, true); |
| 220 | MT_lock_destroy(&bn->batIdxLock); |
| 221 | GDKfree(bn); |
| 222 | return NULL; |
| 223 | } |
| 224 | |
| 225 | BAT * |
| 226 | BATdense(oid hseq, oid tseq, BUN cnt) |
| 227 | { |
| 228 | BAT *bn; |
| 229 | |
| 230 | bn = COLnew(hseq, TYPE_void, 0, TRANSIENT); |
| 231 | if (bn != NULL) { |
| 232 | BATtseqbase(bn, tseq); |
| 233 | BATsetcount(bn, cnt); |
| 234 | ALGODEBUG fprintf(stderr, "#BATdense()=" ALGOBATFMT "\n" , ALGOBATPAR(bn)); |
| 235 | } |
| 236 | return bn; |
| 237 | } |
| 238 | |
| 239 | BAT * |
| 240 | BATattach(int tt, const char *heapfile, role_t role) |
| 241 | { |
| 242 | BAT *bn; |
| 243 | char *p; |
| 244 | size_t m; |
| 245 | FILE *f; |
| 246 | |
| 247 | ERRORcheck(tt <= 0 , "BATattach: bad tail type (<=0)\n" , NULL); |
| 248 | ERRORcheck(ATOMvarsized(tt) && ATOMstorage(tt) != TYPE_str, "BATattach: bad tail type (varsized and not str)\n" , NULL); |
| 249 | ERRORcheck(heapfile == NULL, "BATattach: bad heapfile name\n" , NULL); |
| 250 | |
| 251 | if ((f = fopen(heapfile, "rb" )) == NULL) { |
| 252 | GDKsyserror("BATattach: cannot open %s\n" , heapfile); |
| 253 | return NULL; |
| 254 | } |
| 255 | if (ATOMstorage(tt) == TYPE_str) { |
| 256 | size_t n; |
| 257 | char *s; |
| 258 | int c, u; |
| 259 | |
| 260 | if ((bn = COLnew(0, tt, 0, role)) == NULL) { |
| 261 | fclose(f); |
| 262 | return NULL; |
| 263 | } |
| 264 | m = 4096; |
| 265 | n = 0; |
| 266 | u = 0; |
| 267 | s = p = GDKmalloc(m); |
| 268 | if (p == NULL) { |
| 269 | fclose(f); |
| 270 | BBPreclaim(bn); |
| 271 | return NULL; |
| 272 | } |
| 273 | while ((c = getc(f)) != EOF) { |
| 274 | if (n == m) { |
| 275 | m += 4096; |
| 276 | s = GDKrealloc(p, m); |
| 277 | if (s == NULL) { |
| 278 | GDKfree(p); |
| 279 | BBPreclaim(bn); |
| 280 | fclose(f); |
| 281 | return NULL; |
| 282 | } |
| 283 | p = s; |
| 284 | s = p + n; |
| 285 | } |
| 286 | if (c == '\n' && n > 0 && s[-1] == '\r') { |
| 287 | /* deal with CR-LF sequence */ |
| 288 | s[-1] = c; |
| 289 | } else { |
| 290 | *s++ = c; |
| 291 | n++; |
| 292 | } |
| 293 | if (u) { |
| 294 | if ((c & 0xC0) == 0x80) |
| 295 | u--; |
| 296 | else |
| 297 | goto notutf8; |
| 298 | } else if ((c & 0xF8) == 0xF0) |
| 299 | u = 3; |
| 300 | else if ((c & 0xF0) == 0xE0) |
| 301 | u = 2; |
| 302 | else if ((c & 0xE0) == 0xC0) |
| 303 | u = 1; |
| 304 | else if ((c & 0x80) == 0x80) |
| 305 | goto notutf8; |
| 306 | else if (c == 0) { |
| 307 | if (BUNappend(bn, p, false) != GDK_SUCCEED) { |
| 308 | BBPreclaim(bn); |
| 309 | fclose(f); |
| 310 | GDKfree(p); |
| 311 | return NULL; |
| 312 | } |
| 313 | s = p; |
| 314 | n = 0; |
| 315 | } |
| 316 | } |
| 317 | fclose(f); |
| 318 | GDKfree(p); |
| 319 | if (n > 0) { |
| 320 | BBPreclaim(bn); |
| 321 | GDKerror("BATattach: last string is not null-terminated\n" ); |
| 322 | return NULL; |
| 323 | } |
| 324 | } else { |
| 325 | struct stat st; |
| 326 | unsigned int atomsize; |
| 327 | BUN cap; |
| 328 | lng n; |
| 329 | |
| 330 | if (fstat(fileno(f), &st) < 0) { |
| 331 | GDKsyserror("BATattach: cannot stat %s\n" , heapfile); |
| 332 | fclose(f); |
| 333 | return NULL; |
| 334 | } |
| 335 | atomsize = ATOMsize(tt); |
| 336 | if (st.st_size % atomsize != 0) { |
| 337 | fclose(f); |
| 338 | GDKerror("BATattach: heapfile size not integral number of atoms\n" ); |
| 339 | return NULL; |
| 340 | } |
| 341 | if ((size_t) (st.st_size / atomsize) > (size_t) BUN_MAX) { |
| 342 | fclose(f); |
| 343 | GDKerror("BATattach: heapfile too large\n" ); |
| 344 | return NULL; |
| 345 | } |
| 346 | cap = (BUN) (st.st_size / atomsize); |
| 347 | bn = COLnew(0, tt, cap, role); |
| 348 | if (bn == NULL) { |
| 349 | fclose(f); |
| 350 | return NULL; |
| 351 | } |
| 352 | p = Tloc(bn, 0); |
| 353 | n = (lng) st.st_size; |
| 354 | while (n > 0 && (m = fread(p, 1, (size_t) MIN(1024*1024, n), f)) > 0) { |
| 355 | p += m; |
| 356 | n -= m; |
| 357 | } |
| 358 | fclose(f); |
| 359 | if (n > 0) { |
| 360 | GDKerror("BATattach: couldn't read the complete file\n" ); |
| 361 | BBPreclaim(bn); |
| 362 | return NULL; |
| 363 | } |
| 364 | BATsetcount(bn, cap); |
| 365 | bn->tnonil = cap == 0; |
| 366 | bn->tnil = false; |
| 367 | bn->tseqbase = oid_nil; |
| 368 | if (cap > 1) { |
| 369 | bn->tsorted = false; |
| 370 | bn->trevsorted = false; |
| 371 | bn->tkey = false; |
| 372 | } else { |
| 373 | bn->tsorted = true; |
| 374 | bn->trevsorted = true; |
| 375 | bn->tkey = true; |
| 376 | } |
| 377 | } |
| 378 | return bn; |
| 379 | |
| 380 | notutf8: |
| 381 | fclose(f); |
| 382 | BBPreclaim(bn); |
| 383 | GDKfree(p); |
| 384 | GDKerror("BATattach: input is not UTF-8\n" ); |
| 385 | return NULL; |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * If the BAT runs out of storage for BUNS it will reallocate space. |
| 390 | * For memory mapped BATs we simple extend the administration after |
| 391 | * having an assurance that the BAT still can be safely stored away. |
| 392 | */ |
| 393 | BUN |
| 394 | BATgrows(BAT *b) |
| 395 | { |
| 396 | BUN oldcap, newcap; |
| 397 | |
| 398 | BATcheck(b, "BATgrows" , 0); |
| 399 | |
| 400 | newcap = oldcap = BATcapacity(b); |
| 401 | if (newcap < BATTINY) |
| 402 | newcap = 2 * BATTINY; |
| 403 | else if (newcap < 10 * BATTINY) |
| 404 | newcap = 4 * newcap; |
| 405 | else if (newcap < 50 * BATTINY) |
| 406 | newcap = 2 * newcap; |
| 407 | else if ((double) newcap * BATMARGIN <= (double) BUN_MAX) |
| 408 | newcap = (BUN) ((double) newcap * BATMARGIN); |
| 409 | else |
| 410 | newcap = BUN_MAX; |
| 411 | if (newcap == oldcap) { |
| 412 | if (newcap <= BUN_MAX - 10) |
| 413 | newcap += 10; |
| 414 | else |
| 415 | newcap = BUN_MAX; |
| 416 | } |
| 417 | return newcap; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * The routine should ensure that the BAT keeps its location in the |
| 422 | * BAT buffer. |
| 423 | * |
| 424 | * Overflow in the other heaps are dealt with in the atom routines. |
| 425 | * Here we merely copy their references into the new administration |
| 426 | * space. |
| 427 | */ |
| 428 | gdk_return |
| 429 | BATextend(BAT *b, BUN newcap) |
| 430 | { |
| 431 | size_t theap_size = newcap; |
| 432 | |
| 433 | assert(newcap <= BUN_MAX); |
| 434 | BATcheck(b, "BATextend" , GDK_FAIL); |
| 435 | /* |
| 436 | * The main issue is to properly predict the new BAT size. |
| 437 | * storage overflow. The assumption taken is that capacity |
| 438 | * overflow is rare. It is changed only when the position of |
| 439 | * the next available BUN surpasses the free area marker. Be |
| 440 | * aware that the newcap should be greater than the old value, |
| 441 | * otherwise you may easily corrupt the administration of |
| 442 | * malloc. |
| 443 | */ |
| 444 | if (newcap <= BATcapacity(b)) { |
| 445 | return GDK_SUCCEED; |
| 446 | } |
| 447 | |
| 448 | b->batCapacity = newcap; |
| 449 | |
| 450 | theap_size *= Tsize(b); |
| 451 | if (b->theap.base && GDKdebug & HEAPMASK) |
| 452 | fprintf(stderr, "#HEAPextend in BATextend %s %zu %zu\n" , b->theap.filename, b->theap.size, theap_size); |
| 453 | if (b->theap.base && |
| 454 | HEAPextend(&b->theap, theap_size, b->batRestricted == BAT_READ) != GDK_SUCCEED) |
| 455 | return GDK_FAIL; |
| 456 | HASHdestroy(b); |
| 457 | IMPSdestroy(b); |
| 458 | OIDXdestroy(b); |
| 459 | return GDK_SUCCEED; |
| 460 | } |
| 461 | |
| 462 | |
| 463 | |
| 464 | /* |
| 465 | * @+ BAT destruction |
| 466 | * BATclear quickly removes all elements from a BAT. It must respect |
| 467 | * the transaction rules; so stable elements must be moved to the |
| 468 | * "deleted" section of the BAT (they cannot be fully deleted |
| 469 | * yet). For the elements that really disappear, we must free |
| 470 | * heapspace and unfix the atoms if they have fix/unfix handles. As an |
| 471 | * optimization, in the case of no stable elements, we quickly empty |
| 472 | * the heaps by copying a standard small empty image over them. |
| 473 | */ |
| 474 | gdk_return |
| 475 | BATclear(BAT *b, bool force) |
| 476 | { |
| 477 | BUN p, q; |
| 478 | |
| 479 | BATcheck(b, "BATclear" , GDK_FAIL); |
| 480 | |
| 481 | if (!force && b->batInserted > 0) { |
| 482 | GDKerror("BATclear: cannot clear committed BAT\n" ); |
| 483 | return GDK_FAIL; |
| 484 | } |
| 485 | |
| 486 | /* kill all search accelerators */ |
| 487 | HASHdestroy(b); |
| 488 | IMPSdestroy(b); |
| 489 | OIDXdestroy(b); |
| 490 | PROPdestroy(b); |
| 491 | |
| 492 | /* we must dispose of all inserted atoms */ |
| 493 | if (force && BATatoms[b->ttype].atomDel == NULL) { |
| 494 | assert(b->tvheap == NULL || b->tvheap->parentid == b->batCacheid); |
| 495 | /* no stable elements: we do a quick heap clean */ |
| 496 | /* need to clean heap which keeps data even though the |
| 497 | BUNs got removed. This means reinitialize when |
| 498 | free > 0 |
| 499 | */ |
| 500 | if (b->tvheap && b->tvheap->free > 0) { |
| 501 | Heap th; |
| 502 | |
| 503 | th = (Heap) { |
| 504 | .farmid = b->tvheap->farmid, |
| 505 | }; |
| 506 | strcpy_len(th.filename, b->tvheap->filename, sizeof(th.filename)); |
| 507 | if (ATOMheap(b->ttype, &th, 0) != GDK_SUCCEED) |
| 508 | return GDK_FAIL; |
| 509 | th.parentid = b->tvheap->parentid; |
| 510 | th.dirty = true; |
| 511 | HEAPfree(b->tvheap, false); |
| 512 | *b->tvheap = th; |
| 513 | } |
| 514 | } else { |
| 515 | /* do heap-delete of all inserted atoms */ |
| 516 | void (*tatmdel)(Heap*,var_t*) = BATatoms[b->ttype].atomDel; |
| 517 | |
| 518 | /* TYPE_str has no del method, so we shouldn't get here */ |
| 519 | assert(tatmdel == NULL || b->twidth == sizeof(var_t)); |
| 520 | if (tatmdel) { |
| 521 | BATiter bi = bat_iterator(b); |
| 522 | |
| 523 | for (p = b->batInserted, q = BUNlast(b); p < q; p++) |
| 524 | (*tatmdel)(b->tvheap, (var_t*) BUNtloc(bi,p)); |
| 525 | b->tvheap->dirty = true; |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | if (force) |
| 530 | b->batInserted = 0; |
| 531 | BATsetcount(b,0); |
| 532 | BAThseqbase(b, 0); |
| 533 | BATtseqbase(b, ATOMtype(b->ttype) == TYPE_oid ? 0 : oid_nil); |
| 534 | b->batDirtydesc = true; |
| 535 | b->theap.dirty = true; |
| 536 | BATsettrivprop(b); |
| 537 | b->tnosorted = b->tnorevsorted = 0; |
| 538 | b->tnokey[0] = b->tnokey[1] = 0; |
| 539 | return GDK_SUCCEED; |
| 540 | } |
| 541 | |
| 542 | /* free a cached BAT; leave the bat descriptor cached */ |
| 543 | void |
| 544 | BATfree(BAT *b) |
| 545 | { |
| 546 | if (b == NULL) |
| 547 | return; |
| 548 | |
| 549 | /* deallocate all memory for a bat */ |
| 550 | assert(b->batCacheid > 0); |
| 551 | if (b->tident && !default_ident(b->tident)) |
| 552 | GDKfree(b->tident); |
| 553 | b->tident = BATstring_t; |
| 554 | PROPdestroy(b); |
| 555 | HASHfree(b); |
| 556 | IMPSfree(b); |
| 557 | OIDXfree(b); |
| 558 | if (b->ttype) |
| 559 | HEAPfree(&b->theap, false); |
| 560 | else |
| 561 | assert(!b->theap.base); |
| 562 | if (b->tvheap) { |
| 563 | assert(b->tvheap->parentid == b->batCacheid); |
| 564 | HEAPfree(b->tvheap, false); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /* free a cached BAT descriptor */ |
| 569 | void |
| 570 | BATdestroy(BAT *b) |
| 571 | { |
| 572 | if (b->tident && !default_ident(b->tident)) |
| 573 | GDKfree(b->tident); |
| 574 | b->tident = BATstring_t; |
| 575 | if (b->tvheap) |
| 576 | GDKfree(b->tvheap); |
| 577 | PROPdestroy(b); |
| 578 | MT_lock_destroy(&b->batIdxLock); |
| 579 | GDKfree(b); |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * @+ BAT copying |
| 584 | * |
| 585 | * BAT copying is an often used operation. So it deserves attention. |
| 586 | * When making a copy of a BAT, the following aspects are of |
| 587 | * importance: |
| 588 | * |
| 589 | * - the requested head and tail types. The purpose of the copy may be |
| 590 | * to slightly change these types (e.g. void <-> oid). We may also |
| 591 | * remap between types as long as they share the same |
| 592 | * ATOMstorage(type), i.e. the types have the same physical |
| 593 | * implementation. We may even want to allow 'dirty' trick such as |
| 594 | * viewing a flt-column suddenly as int. |
| 595 | * |
| 596 | * To allow such changes, the desired column-types is a |
| 597 | * parameter of COLcopy. |
| 598 | * |
| 599 | * - access mode. If we want a read-only copy of a read-only BAT, a |
| 600 | * VIEW may do (in this case, the user may be after just an |
| 601 | * independent BAT header and id). This is indicated by the |
| 602 | * parameter (writable = FALSE). |
| 603 | * |
| 604 | * In other cases, we really want an independent physical copy |
| 605 | * (writable = TRUE). Changing the mode to BAT_WRITE will be a |
| 606 | * zero-cost operation if the BAT was copied with (writable = TRUE). |
| 607 | * |
| 608 | * In GDK, the result is a BAT that is BAT_WRITE iff (writable == |
| 609 | * TRUE). |
| 610 | * |
| 611 | * In these cases the copy becomes a logical view on the original, |
| 612 | * which ensures that the original cannot be modified or destroyed |
| 613 | * (which could affect the shared heaps). |
| 614 | */ |
| 615 | static void |
| 616 | heapmove(Heap *dst, Heap *src) |
| 617 | { |
| 618 | HEAPfree(dst, false); |
| 619 | *dst = *src; |
| 620 | } |
| 621 | |
| 622 | static bool |
| 623 | wrongtype(int t1, int t2) |
| 624 | { |
| 625 | /* check if types are compatible. be extremely forgiving */ |
| 626 | if (t1 != TYPE_void) { |
| 627 | t1 = ATOMtype(ATOMstorage(t1)); |
| 628 | t2 = ATOMtype(ATOMstorage(t2)); |
| 629 | if (t1 != t2) { |
| 630 | if (ATOMvarsized(t1) || |
| 631 | ATOMvarsized(t2) || |
| 632 | ATOMsize(t1) != ATOMsize(t2) || |
| 633 | BATatoms[t1].atomFix || |
| 634 | BATatoms[t2].atomFix) |
| 635 | return true; |
| 636 | } |
| 637 | } |
| 638 | return false; |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * There are four main implementation cases: |
| 643 | * (1) we are allowed to return a view (zero effort), |
| 644 | * (2) the result is void,void (zero effort), |
| 645 | * (3) we can copy the heaps (memcopy, or even VM page sharing) |
| 646 | * (4) we must insert BUN-by-BUN into the result (fallback) |
| 647 | * The latter case is still optimized for the case that the result |
| 648 | * is bat[void,T] for a simple fixed-size type T. In that case we |
| 649 | * do inline array[T] inserts. |
| 650 | */ |
| 651 | /* TODO make it simpler, ie copy per column */ |
| 652 | BAT * |
| 653 | COLcopy(BAT *b, int tt, bool writable, role_t role) |
| 654 | { |
| 655 | BUN bunstocopy = BUN_NONE; |
| 656 | BUN cnt; |
| 657 | BAT *bn = NULL; |
| 658 | |
| 659 | BATcheck(b, "BATcopy" , NULL); |
| 660 | assert(tt != TYPE_bat); |
| 661 | cnt = b->batCount; |
| 662 | |
| 663 | /* maybe a bit ugly to change the requested bat type?? */ |
| 664 | if (b->ttype == TYPE_void && !writable) |
| 665 | tt = TYPE_void; |
| 666 | |
| 667 | if (tt != b->ttype && wrongtype(tt, b->ttype)) { |
| 668 | GDKerror("BATcopy: wrong tail-type requested\n" ); |
| 669 | return NULL; |
| 670 | } |
| 671 | |
| 672 | /* first try case (1); create a view, possibly with different |
| 673 | * atom-types */ |
| 674 | if (role == b->batRole && |
| 675 | b->batRestricted == BAT_READ && |
| 676 | (!VIEWtparent(b) || |
| 677 | BBP_cache(VIEWtparent(b))->batRestricted == BAT_READ) && |
| 678 | !writable) { |
| 679 | bn = VIEWcreate(b->hseqbase, b); |
| 680 | if (bn == NULL) |
| 681 | return NULL; |
| 682 | if (tt != bn->ttype) { |
| 683 | bn->ttype = tt; |
| 684 | bn->tvarsized = ATOMvarsized(tt); |
| 685 | bn->tseqbase = ATOMtype(tt) == TYPE_oid ? b->tseqbase : oid_nil; |
| 686 | } |
| 687 | } else { |
| 688 | /* check whether we need case (4); BUN-by-BUN copy (by |
| 689 | * setting bunstocopy != BUN_NONE) */ |
| 690 | if (ATOMsize(tt) != ATOMsize(b->ttype)) { |
| 691 | /* oops, void materialization */ |
| 692 | bunstocopy = cnt; |
| 693 | } else if (BATatoms[tt].atomFix) { |
| 694 | /* oops, we need to fix/unfix atoms */ |
| 695 | bunstocopy = cnt; |
| 696 | } else if (isVIEW(b)) { |
| 697 | /* extra checks needed for views */ |
| 698 | bat tp = VIEWtparent(b); |
| 699 | |
| 700 | if (tp != 0 && BATcapacity(BBP_cache(tp)) > cnt + cnt) |
| 701 | /* reduced slice view: do not copy too |
| 702 | * much garbage */ |
| 703 | bunstocopy = cnt; |
| 704 | } |
| 705 | |
| 706 | bn = COLnew(b->hseqbase, tt, MAX(1, bunstocopy == BUN_NONE ? 0 : bunstocopy), role); |
| 707 | if (bn == NULL) |
| 708 | return NULL; |
| 709 | |
| 710 | if (bn->tvarsized && bn->ttype && bunstocopy == BUN_NONE) { |
| 711 | bn->tshift = b->tshift; |
| 712 | bn->twidth = b->twidth; |
| 713 | if (HEAPextend(&bn->theap, BATcapacity(bn) << bn->tshift, true) != GDK_SUCCEED) |
| 714 | goto bunins_failed; |
| 715 | } |
| 716 | |
| 717 | if (tt == TYPE_void) { |
| 718 | /* case (2): a void,void result => nothing to |
| 719 | * copy! */ |
| 720 | bn->theap.free = 0; |
| 721 | } else if (bunstocopy == BUN_NONE) { |
| 722 | /* case (3): just copy the heaps; if possible |
| 723 | * with copy-on-write VM support */ |
| 724 | Heap bthp, thp; |
| 725 | |
| 726 | bthp = (Heap) { |
| 727 | .farmid = BBPselectfarm(role, b->ttype, offheap), |
| 728 | }; |
| 729 | thp = (Heap) { |
| 730 | .farmid = BBPselectfarm(role, b->ttype, varheap), |
| 731 | }; |
| 732 | strconcat_len(bthp.filename, sizeof(bthp.filename), |
| 733 | BBP_physical(bn->batCacheid), |
| 734 | ".tail" , NULL); |
| 735 | strconcat_len(thp.filename, sizeof(thp.filename), |
| 736 | BBP_physical(bn->batCacheid), |
| 737 | ".theap" , NULL); |
| 738 | if ((b->ttype && HEAPcopy(&bthp, &b->theap) != GDK_SUCCEED) || |
| 739 | (bn->tvheap && HEAPcopy(&thp, b->tvheap) != GDK_SUCCEED)) { |
| 740 | HEAPfree(&thp, true); |
| 741 | HEAPfree(&bthp, true); |
| 742 | BBPreclaim(bn); |
| 743 | return NULL; |
| 744 | } |
| 745 | /* succeeded; replace dummy small heaps by the |
| 746 | * real ones */ |
| 747 | heapmove(&bn->theap, &bthp); |
| 748 | thp.parentid = bn->batCacheid; |
| 749 | if (bn->tvheap) |
| 750 | heapmove(bn->tvheap, &thp); |
| 751 | |
| 752 | /* make sure we use the correct capacity */ |
| 753 | bn->batCapacity = (BUN) (bn->ttype ? bn->theap.size >> bn->tshift : 0); |
| 754 | |
| 755 | |
| 756 | /* first/inserted must point equally far into |
| 757 | * the heap as in the source */ |
| 758 | bn->batInserted = b->batInserted; |
| 759 | } else if (BATatoms[tt].atomFix || tt != TYPE_void || ATOMextern(tt)) { |
| 760 | /* case (4): one-by-one BUN insert (really slow) */ |
| 761 | BUN p, q, r = 0; |
| 762 | BATiter bi = bat_iterator(b); |
| 763 | |
| 764 | BATloop(b, p, q) { |
| 765 | const void *t = BUNtail(bi, p); |
| 766 | |
| 767 | bunfastapp_nocheck(bn, r, t, Tsize(bn)); |
| 768 | r++; |
| 769 | } |
| 770 | bn->theap.dirty |= bunstocopy > 0; |
| 771 | } else if (tt != TYPE_void && b->ttype == TYPE_void) { |
| 772 | /* case (4): optimized for unary void |
| 773 | * materialization */ |
| 774 | oid cur = b->tseqbase, *dst = (oid *) bn->theap.base; |
| 775 | oid inc = !is_oid_nil(cur); |
| 776 | |
| 777 | bn->theap.free = bunstocopy * sizeof(oid); |
| 778 | bn->theap.dirty |= bunstocopy > 0; |
| 779 | while (bunstocopy--) { |
| 780 | *dst++ = cur; |
| 781 | cur += inc; |
| 782 | } |
| 783 | } else { |
| 784 | /* case (4): optimized for simple array copy */ |
| 785 | bn->theap.free = bunstocopy * Tsize(bn); |
| 786 | bn->theap.dirty |= bunstocopy > 0; |
| 787 | memcpy(Tloc(bn, 0), Tloc(b, 0), bn->theap.free); |
| 788 | } |
| 789 | /* copy all properties (size+other) from the source bat */ |
| 790 | BATsetcount(bn, cnt); |
| 791 | } |
| 792 | /* set properties (note that types may have changed in the copy) */ |
| 793 | if (ATOMtype(tt) == ATOMtype(b->ttype)) { |
| 794 | if (ATOMtype(tt) == TYPE_oid) { |
| 795 | BATtseqbase(bn, b->tseqbase); |
| 796 | } else { |
| 797 | BATtseqbase(bn, oid_nil); |
| 798 | } |
| 799 | BATkey(bn, BATtkey(b)); |
| 800 | bn->tsorted = BATtordered(b); |
| 801 | bn->trevsorted = BATtrevordered(b); |
| 802 | bn->batDirtydesc = true; |
| 803 | bn->tnorevsorted = b->tnorevsorted; |
| 804 | if (b->tnokey[0] != b->tnokey[1]) { |
| 805 | bn->tnokey[0] = b->tnokey[0]; |
| 806 | bn->tnokey[1] = b->tnokey[1]; |
| 807 | } else { |
| 808 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 809 | } |
| 810 | bn->tnosorted = b->tnosorted; |
| 811 | bn->tnonil = b->tnonil; |
| 812 | bn->tnil = b->tnil; |
| 813 | } else if (ATOMstorage(tt) == ATOMstorage(b->ttype) && |
| 814 | ATOMcompare(tt) == ATOMcompare(b->ttype)) { |
| 815 | BUN h = BUNlast(b); |
| 816 | bn->tsorted = b->tsorted; |
| 817 | bn->trevsorted = b->trevsorted; |
| 818 | if (b->tkey) |
| 819 | BATkey(bn, true); |
| 820 | bn->tnonil = b->tnonil; |
| 821 | bn->tnil = b->tnil; |
| 822 | if (b->tnosorted > 0 && b->tnosorted < h) |
| 823 | bn->tnosorted = b->tnosorted; |
| 824 | else |
| 825 | bn->tnosorted = 0; |
| 826 | if (b->tnorevsorted > 0 && b->tnorevsorted < h) |
| 827 | bn->tnorevsorted = b->tnorevsorted; |
| 828 | else |
| 829 | bn->tnorevsorted = 0; |
| 830 | if (b->tnokey[0] < h && |
| 831 | b->tnokey[1] < h && |
| 832 | b->tnokey[0] != b->tnokey[1]) { |
| 833 | bn->tnokey[0] = b->tnokey[0]; |
| 834 | bn->tnokey[1] = b->tnokey[1]; |
| 835 | } else { |
| 836 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 837 | } |
| 838 | } else { |
| 839 | bn->tsorted = bn->trevsorted = false; /* set based on count later */ |
| 840 | bn->tnonil = bn->tnil = false; |
| 841 | bn->tnosorted = bn->tnorevsorted = 0; |
| 842 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 843 | } |
| 844 | if (BATcount(bn) <= 1) { |
| 845 | bn->tsorted = ATOMlinear(b->ttype); |
| 846 | bn->trevsorted = ATOMlinear(b->ttype); |
| 847 | bn->tkey = true; |
| 848 | } |
| 849 | if (!writable) |
| 850 | bn->batRestricted = BAT_READ; |
| 851 | ALGODEBUG fprintf(stderr, "#COLcopy(" ALGOBATFMT ")=" ALGOBATFMT "\n" , |
| 852 | ALGOBATPAR(b), ALGOBATPAR(bn)); |
| 853 | return bn; |
| 854 | bunins_failed: |
| 855 | BBPreclaim(bn); |
| 856 | return NULL; |
| 857 | } |
| 858 | |
| 859 | #ifdef HAVE_HGE |
| 860 | #define un_move_sz16(src, dst, sz) \ |
| 861 | if (sz == 16) { \ |
| 862 | * (hge *) dst = * (hge *) src; \ |
| 863 | } else |
| 864 | #else |
| 865 | #define un_move_sz16(src, dst, sz) |
| 866 | #endif |
| 867 | |
| 868 | #define un_move(src, dst, sz) \ |
| 869 | do { \ |
| 870 | un_move_sz16(src,dst,sz) \ |
| 871 | if (sz == 8) { \ |
| 872 | * (lng *) dst = * (lng *) src; \ |
| 873 | } else if (sz == 4) { \ |
| 874 | * (int *) dst = * (int *) src; \ |
| 875 | } else if (sz > 0) { \ |
| 876 | char *_dst = (char *) dst; \ |
| 877 | char *_src = (char *) src; \ |
| 878 | char *_end = _src + sz; \ |
| 879 | \ |
| 880 | while (_src < _end) \ |
| 881 | *_dst++ = *_src++; \ |
| 882 | } \ |
| 883 | } while (0) |
| 884 | #define acc_move(l, p) \ |
| 885 | do { \ |
| 886 | char tmp[16]; \ |
| 887 | /* avoid compiler warning: dereferencing type-punned pointer \ |
| 888 | * will break strict-aliasing rules */ \ |
| 889 | char *tmpp = tmp; \ |
| 890 | \ |
| 891 | assert(ts <= 16); \ |
| 892 | \ |
| 893 | /* move first to tmp */ \ |
| 894 | un_move(Tloc(b, l), tmpp, ts); \ |
| 895 | /* move delete to first */ \ |
| 896 | un_move(Tloc(b, p), Tloc(b, l), ts); \ |
| 897 | /* move first to deleted */ \ |
| 898 | un_move(tmpp, Tloc(b, p), ts); \ |
| 899 | } while (0) |
| 900 | |
| 901 | static void |
| 902 | setcolprops(BAT *b, const void *x) |
| 903 | { |
| 904 | bool isnil = b->ttype != TYPE_void && |
| 905 | ATOMcmp(b->ttype, x, ATOMnilptr(b->ttype)) == 0; |
| 906 | BATiter bi; |
| 907 | BUN pos; |
| 908 | const void *prv; |
| 909 | int cmp; |
| 910 | |
| 911 | /* x may only be NULL if the column type is VOID */ |
| 912 | assert(x != NULL || b->ttype == TYPE_void); |
| 913 | if (b->batCount == 0) { |
| 914 | /* first value */ |
| 915 | b->tsorted = b->trevsorted = ATOMlinear(b->ttype); |
| 916 | b->tnosorted = b->tnorevsorted = 0; |
| 917 | b->tkey = true; |
| 918 | b->tnokey[0] = b->tnokey[1] = 0; |
| 919 | if (b->ttype == TYPE_void) { |
| 920 | if (x) { |
| 921 | b->tseqbase = * (const oid *) x; |
| 922 | } |
| 923 | b->tnil = is_oid_nil(b->tseqbase); |
| 924 | b->tnonil = !b->tnil; |
| 925 | } else { |
| 926 | b->tnil = isnil; |
| 927 | b->tnonil = !isnil; |
| 928 | if (b->ttype == TYPE_oid) { |
| 929 | b->tseqbase = * (const oid *) x; |
| 930 | } |
| 931 | if (!isnil && ATOMlinear(b->ttype)) { |
| 932 | BATsetprop(b, GDK_MAX_VALUE, b->ttype, x); |
| 933 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, x); |
| 934 | } |
| 935 | } |
| 936 | return; |
| 937 | } else if (b->ttype == TYPE_void) { |
| 938 | /* not the first value in a VOID column: we keep the |
| 939 | * seqbase, and x is not used, so only some properties |
| 940 | * are affected */ |
| 941 | if (!is_oid_nil(b->tseqbase)) { |
| 942 | if (b->trevsorted) { |
| 943 | b->tnorevsorted = BUNlast(b); |
| 944 | b->trevsorted = false; |
| 945 | } |
| 946 | b->tnil = false; |
| 947 | b->tnonil = true; |
| 948 | } else { |
| 949 | if (b->tkey) { |
| 950 | b->tnokey[0] = 0; |
| 951 | b->tnokey[1] = BUNlast(b); |
| 952 | b->tkey = false; |
| 953 | } |
| 954 | b->tnil = true; |
| 955 | b->tnonil = false; |
| 956 | } |
| 957 | return; |
| 958 | } else if (ATOMlinear(b->ttype)) { |
| 959 | PROPrec *prop; |
| 960 | |
| 961 | bi = bat_iterator(b); |
| 962 | pos = BUNlast(b); |
| 963 | prv = BUNtail(bi, pos - 1); |
| 964 | cmp = ATOMcmp(b->ttype, prv, x); |
| 965 | |
| 966 | if (!b->tunique && /* assume outside check if tunique */ |
| 967 | b->tkey && |
| 968 | (cmp == 0 || /* definitely not KEY */ |
| 969 | (b->batCount > 1 && /* can't guarantee KEY if unordered */ |
| 970 | ((b->tsorted && cmp > 0) || |
| 971 | (b->trevsorted && cmp < 0) || |
| 972 | (!b->tsorted && !b->trevsorted))))) { |
| 973 | b->tkey = false; |
| 974 | if (cmp == 0) { |
| 975 | b->tnokey[0] = pos - 1; |
| 976 | b->tnokey[1] = pos; |
| 977 | } |
| 978 | } |
| 979 | if (b->tsorted) { |
| 980 | if (cmp > 0) { |
| 981 | /* out of order */ |
| 982 | b->tsorted = false; |
| 983 | b->tnosorted = pos; |
| 984 | } else if (cmp < 0 && !isnil) { |
| 985 | /* new largest value */ |
| 986 | BATsetprop(b, GDK_MAX_VALUE, b->ttype, x); |
| 987 | } |
| 988 | } else if (!isnil && |
| 989 | (prop = BATgetprop(b, GDK_MAX_VALUE)) != NULL && |
| 990 | ATOMcmp(b->ttype, VALptr(&prop->v), x) < 0) { |
| 991 | BATsetprop(b, GDK_MAX_VALUE, b->ttype, x); |
| 992 | } |
| 993 | if (b->trevsorted) { |
| 994 | if (cmp < 0) { |
| 995 | /* out of order */ |
| 996 | b->trevsorted = false; |
| 997 | b->tnorevsorted = pos; |
| 998 | /* if there is a nil in the BAT, it is |
| 999 | * the smallest, but that doesn't |
| 1000 | * count for the property, so the new |
| 1001 | * value may still be smaller than the |
| 1002 | * smallest non-nil so far */ |
| 1003 | if (!b->tnonil && !isnil && |
| 1004 | (prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL && |
| 1005 | ATOMcmp(b->ttype, VALptr(&prop->v), x) > 0) { |
| 1006 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, x); |
| 1007 | } |
| 1008 | } else if (cmp > 0 && !isnil) { |
| 1009 | /* new smallest value */ |
| 1010 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, x); |
| 1011 | } |
| 1012 | } else if (!isnil && |
| 1013 | (prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL && |
| 1014 | ATOMcmp(b->ttype, VALptr(&prop->v), x) > 0) { |
| 1015 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, x); |
| 1016 | } |
| 1017 | if (BATtdense(b) && (cmp >= 0 || * (const oid *) prv + 1 != * (const oid *) x)) { |
| 1018 | assert(b->ttype == TYPE_oid); |
| 1019 | b->tseqbase = oid_nil; |
| 1020 | } |
| 1021 | } |
| 1022 | if (isnil) { |
| 1023 | b->tnonil = false; |
| 1024 | b->tnil = true; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * @+ BUNappend |
| 1030 | * The BUNappend function can be used to add a single value to void |
| 1031 | * and oid headed bats. The new head value will be a unique number, |
| 1032 | * (max(bat)+1). |
| 1033 | */ |
| 1034 | gdk_return |
| 1035 | BUNappend(BAT *b, const void *t, bool force) |
| 1036 | { |
| 1037 | BUN p; |
| 1038 | size_t tsize = 0; |
| 1039 | |
| 1040 | BATcheck(b, "BUNappend" , GDK_FAIL); |
| 1041 | |
| 1042 | assert(!VIEWtparent(b)); |
| 1043 | if (b->tunique && BUNfnd(b, t) != BUN_NONE) { |
| 1044 | return GDK_SUCCEED; |
| 1045 | } |
| 1046 | |
| 1047 | p = BUNlast(b); /* insert at end */ |
| 1048 | if (p == BUN_MAX || b->batCount == BUN_MAX) { |
| 1049 | GDKerror("BUNappend: bat too large\n" ); |
| 1050 | return GDK_FAIL; |
| 1051 | } |
| 1052 | |
| 1053 | ALIGNapp(b, "BUNappend" , force, GDK_FAIL); |
| 1054 | b->batDirtydesc = true; |
| 1055 | if (b->thash && b->tvheap) |
| 1056 | tsize = b->tvheap->size; |
| 1057 | |
| 1058 | if (b->ttype == TYPE_void && BATtdense(b)) { |
| 1059 | if (b->batCount == 0) { |
| 1060 | b->tseqbase = * (const oid *) t; |
| 1061 | } else if (is_oid_nil(* (oid *) t) || |
| 1062 | b->tseqbase + b->batCount != *(const oid *) t) { |
| 1063 | if (BATmaterialize(b) != GDK_SUCCEED) |
| 1064 | return GDK_FAIL; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | if (unshare_string_heap(b) != GDK_SUCCEED) { |
| 1069 | return GDK_FAIL; |
| 1070 | } |
| 1071 | |
| 1072 | setcolprops(b, t); |
| 1073 | |
| 1074 | if (b->ttype != TYPE_void) { |
| 1075 | bunfastapp(b, t); |
| 1076 | b->theap.dirty = true; |
| 1077 | } else { |
| 1078 | BATsetcount(b, b->batCount + 1); |
| 1079 | } |
| 1080 | |
| 1081 | |
| 1082 | IMPSdestroy(b); /* no support for inserts in imprints yet */ |
| 1083 | OIDXdestroy(b); |
| 1084 | #if 0 /* enable if we have more properties than just min/max */ |
| 1085 | PROPrec *prop; |
| 1086 | do { |
| 1087 | for (prop = b->tprops; prop; prop = prop->next) |
| 1088 | if (prop->id != GDK_MAX_VALUE && |
| 1089 | prop->id != GDK_MIN_VALUE && |
| 1090 | prop->id != GDK_HASH_MASK) { |
| 1091 | BATrmprop(b, prop->id); |
| 1092 | break; |
| 1093 | } |
| 1094 | } while (prop); |
| 1095 | #endif |
| 1096 | if (b->thash) { |
| 1097 | HASHins(b, p, t); |
| 1098 | if (tsize && tsize != b->tvheap->size) |
| 1099 | HEAPwarm(b->tvheap); |
| 1100 | } |
| 1101 | return GDK_SUCCEED; |
| 1102 | bunins_failed: |
| 1103 | return GDK_FAIL; |
| 1104 | } |
| 1105 | |
| 1106 | gdk_return |
| 1107 | BUNdelete(BAT *b, oid o) |
| 1108 | { |
| 1109 | BUN p; |
| 1110 | BATiter bi = bat_iterator(b); |
| 1111 | const void *val; |
| 1112 | PROPrec *prop; |
| 1113 | |
| 1114 | assert(!is_oid_nil(b->hseqbase) || BATcount(b) == 0); |
| 1115 | if (o < b->hseqbase || o >= b->hseqbase + BATcount(b)) { |
| 1116 | /* value already not there */ |
| 1117 | return GDK_SUCCEED; |
| 1118 | } |
| 1119 | assert(BATcount(b) > 0); /* follows from "if" above */ |
| 1120 | p = o - b->hseqbase; |
| 1121 | if (p < b->batInserted) { |
| 1122 | GDKerror("BUNdelete: cannot delete committed value\n" ); |
| 1123 | return GDK_FAIL; |
| 1124 | } |
| 1125 | b->batDirtydesc = true; |
| 1126 | val = BUNtail(bi, p); |
| 1127 | if (ATOMcmp(b->ttype, ATOMnilptr(b->ttype), val) != 0) { |
| 1128 | if ((prop = BATgetprop(b, GDK_MAX_VALUE)) != NULL |
| 1129 | && ATOMcmp(b->ttype, VALptr(&prop->v), val) >= 0) |
| 1130 | BATrmprop(b, GDK_MAX_VALUE); |
| 1131 | if ((prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL |
| 1132 | && ATOMcmp(b->ttype, VALptr(&prop->v), val) <= 0) |
| 1133 | BATrmprop(b, GDK_MIN_VALUE); |
| 1134 | } |
| 1135 | ATOMunfix(b->ttype, val); |
| 1136 | ATOMdel(b->ttype, b->tvheap, (var_t *) BUNtloc(bi, p)); |
| 1137 | if (p != BUNlast(b) - 1 && |
| 1138 | (b->ttype != TYPE_void || BATtdense(b))) { |
| 1139 | /* replace to-be-delete BUN with last BUN; materialize |
| 1140 | * void column before doing so */ |
| 1141 | if (b->ttype == TYPE_void && |
| 1142 | BATmaterialize(b) != GDK_SUCCEED) |
| 1143 | return GDK_FAIL; |
| 1144 | memcpy(Tloc(b, p), Tloc(b, BUNlast(b) - 1), Tsize(b)); |
| 1145 | /* no longer sorted */ |
| 1146 | b->tsorted = b->trevsorted = false; |
| 1147 | b->theap.dirty = true; |
| 1148 | } |
| 1149 | if (b->tnosorted >= p) |
| 1150 | b->tnosorted = 0; |
| 1151 | if (b->tnorevsorted >= p) |
| 1152 | b->tnorevsorted = 0; |
| 1153 | b->batCount--; |
| 1154 | if (b->batCount <= 1) { |
| 1155 | /* some trivial properties */ |
| 1156 | b->tkey = true; |
| 1157 | b->tsorted = b->trevsorted = true; |
| 1158 | b->tnosorted = b->tnorevsorted = 0; |
| 1159 | if (b->batCount == 0) { |
| 1160 | b->tnil = false; |
| 1161 | b->tnonil = true; |
| 1162 | } |
| 1163 | } |
| 1164 | IMPSdestroy(b); |
| 1165 | OIDXdestroy(b); |
| 1166 | HASHdestroy(b); |
| 1167 | #if 0 /* enable if we have more properties than just min/max */ |
| 1168 | do { |
| 1169 | for (prop = b->tprops; prop; prop = prop->next) |
| 1170 | if (prop->id != GDK_MAX_VALUE && |
| 1171 | prop->id != GDK_MIN_VALUE && |
| 1172 | prop->id != GDK_HASH_MASK) { |
| 1173 | BATrmprop(b, prop->id); |
| 1174 | break; |
| 1175 | } |
| 1176 | } while (prop); |
| 1177 | #endif |
| 1178 | return GDK_SUCCEED; |
| 1179 | } |
| 1180 | |
| 1181 | /* @- BUN replace |
| 1182 | * The last operation in this context is BUN replace. It assumes that |
| 1183 | * the header denotes a key. The old value association is destroyed |
| 1184 | * (if it exists in the first place) and the new value takes its |
| 1185 | * place. |
| 1186 | * |
| 1187 | * In order to make updates on void columns workable; replaces on them |
| 1188 | * are always done in-place. Performing them without bun-movements |
| 1189 | * greatly simplifies the problem. The 'downside' is that when |
| 1190 | * transaction management has to be performed, replaced values should |
| 1191 | * be saved explicitly. |
| 1192 | */ |
| 1193 | gdk_return |
| 1194 | BUNinplace(BAT *b, BUN p, const void *t, bool force) |
| 1195 | { |
| 1196 | BUN last = BUNlast(b) - 1; |
| 1197 | BATiter bi = bat_iterator(b); |
| 1198 | int tt; |
| 1199 | BUN prv, nxt; |
| 1200 | const void *val; |
| 1201 | |
| 1202 | assert(p >= b->batInserted || force); |
| 1203 | |
| 1204 | /* uncommitted BUN elements */ |
| 1205 | |
| 1206 | /* zap alignment info */ |
| 1207 | if (!force && (b->batRestricted != BAT_WRITE || b->batSharecnt > 0)) { |
| 1208 | GDKerror("BUNinplace: access denied to %s, aborting.\n" , |
| 1209 | BATgetId(b)); |
| 1210 | return GDK_FAIL; |
| 1211 | } |
| 1212 | val = BUNtail(bi, p); /* old value */ |
| 1213 | if (b->tnil && |
| 1214 | ATOMcmp(b->ttype, val, ATOMnilptr(b->ttype)) == 0 && |
| 1215 | ATOMcmp(b->ttype, t, ATOMnilptr(b->ttype)) != 0) { |
| 1216 | /* if old value is nil and new value isn't, we're not |
| 1217 | * sure anymore about the nil property, so we must |
| 1218 | * clear it */ |
| 1219 | b->tnil = false; |
| 1220 | } |
| 1221 | HASHdestroy(b); |
| 1222 | if (b->ttype != TYPE_void && ATOMlinear(b->ttype)) { |
| 1223 | PROPrec *prop; |
| 1224 | |
| 1225 | if ((prop = BATgetprop(b, GDK_MAX_VALUE)) != NULL) { |
| 1226 | if (ATOMcmp(b->ttype, t, ATOMnilptr(b->ttype)) != 0 && |
| 1227 | ATOMcmp(b->ttype, VALptr(&prop->v), t) < 0) { |
| 1228 | /* new value is larger than previous |
| 1229 | * largest */ |
| 1230 | BATsetprop(b, GDK_MAX_VALUE, b->ttype, t); |
| 1231 | } else if (ATOMcmp(b->ttype, t, val) != 0 && |
| 1232 | ATOMcmp(b->ttype, VALptr(&prop->v), val) == 0) { |
| 1233 | /* old value is equal to largest and |
| 1234 | * new value is smaller (see above), |
| 1235 | * so we don't know anymore which is |
| 1236 | * the largest */ |
| 1237 | BATrmprop(b, GDK_MAX_VALUE); |
| 1238 | } |
| 1239 | } |
| 1240 | if ((prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL) { |
| 1241 | if (ATOMcmp(b->ttype, t, ATOMnilptr(b->ttype)) != 0 && |
| 1242 | ATOMcmp(b->ttype, VALptr(&prop->v), t) > 0) { |
| 1243 | /* new value is smaller than previous |
| 1244 | * smallest */ |
| 1245 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, t); |
| 1246 | } else if (ATOMcmp(b->ttype, t, val) != 0 && |
| 1247 | ATOMcmp(b->ttype, VALptr(&prop->v), val) <= 0) { |
| 1248 | /* old value is equal to smallest and |
| 1249 | * new value is larger (see above), so |
| 1250 | * we don't know anymore which is the |
| 1251 | * smallest */ |
| 1252 | BATrmprop(b, GDK_MIN_VALUE); |
| 1253 | } |
| 1254 | } |
| 1255 | #if 0 /* enable if we have more properties than just min/max */ |
| 1256 | do { |
| 1257 | for (prop = b->tprops; prop; prop = prop->next) |
| 1258 | if (prop->id != GDK_MAX_VALUE && |
| 1259 | prop->id != GDK_MIN_VALUE && |
| 1260 | prop->id != GDK_HASH_MASK) { |
| 1261 | BATrmprop(b, prop->id); |
| 1262 | break; |
| 1263 | } |
| 1264 | } while (prop); |
| 1265 | #endif |
| 1266 | } else { |
| 1267 | PROPdestroy(b); |
| 1268 | } |
| 1269 | OIDXdestroy(b); |
| 1270 | IMPSdestroy(b); |
| 1271 | if (b->tvarsized && b->ttype) { |
| 1272 | var_t _d; |
| 1273 | ptr _ptr; |
| 1274 | _ptr = BUNtloc(bi, p); |
| 1275 | switch (b->twidth) { |
| 1276 | case 1: |
| 1277 | _d = (var_t) * (uint8_t *) _ptr + GDK_VAROFFSET; |
| 1278 | break; |
| 1279 | case 2: |
| 1280 | _d = (var_t) * (uint16_t *) _ptr + GDK_VAROFFSET; |
| 1281 | break; |
| 1282 | case 4: |
| 1283 | _d = (var_t) * (uint32_t *) _ptr; |
| 1284 | break; |
| 1285 | #if SIZEOF_VAR_T == 8 |
| 1286 | case 8: |
| 1287 | _d = (var_t) * (uint64_t *) _ptr; |
| 1288 | break; |
| 1289 | #endif |
| 1290 | } |
| 1291 | ATOMreplaceVAR(b->ttype, b->tvheap, &_d, t); |
| 1292 | if (b->twidth < SIZEOF_VAR_T && |
| 1293 | (b->twidth <= 2 ? _d - GDK_VAROFFSET : _d) >= ((size_t) 1 << (8 * b->twidth))) { |
| 1294 | /* doesn't fit in current heap, upgrade it */ |
| 1295 | if (GDKupgradevarheap(b, _d, false, b->batRestricted == BAT_READ) != GDK_SUCCEED) |
| 1296 | goto bunins_failed; |
| 1297 | } |
| 1298 | _ptr = BUNtloc(bi, p); |
| 1299 | switch (b->twidth) { |
| 1300 | case 1: |
| 1301 | * (uint8_t *) _ptr = (uint8_t) (_d - GDK_VAROFFSET); |
| 1302 | break; |
| 1303 | case 2: |
| 1304 | * (uint16_t *) _ptr = (uint16_t) (_d - GDK_VAROFFSET); |
| 1305 | break; |
| 1306 | case 4: |
| 1307 | * (uint32_t *) _ptr = (uint32_t) _d; |
| 1308 | break; |
| 1309 | #if SIZEOF_VAR_T == 8 |
| 1310 | case 8: |
| 1311 | * (uint64_t *) _ptr = (uint64_t) _d; |
| 1312 | break; |
| 1313 | #endif |
| 1314 | } |
| 1315 | } else { |
| 1316 | assert(BATatoms[b->ttype].atomPut == NULL); |
| 1317 | ATOMfix(b->ttype, t); |
| 1318 | ATOMunfix(b->ttype, BUNtloc(bi, p)); |
| 1319 | switch (ATOMsize(b->ttype)) { |
| 1320 | case 0: /* void */ |
| 1321 | break; |
| 1322 | case 1: |
| 1323 | ((bte *) b->theap.base)[p] = * (bte *) t; |
| 1324 | break; |
| 1325 | case 2: |
| 1326 | ((sht *) b->theap.base)[p] = * (sht *) t; |
| 1327 | break; |
| 1328 | case 4: |
| 1329 | ((int *) b->theap.base)[p] = * (int *) t; |
| 1330 | break; |
| 1331 | case 8: |
| 1332 | ((lng *) b->theap.base)[p] = * (lng *) t; |
| 1333 | break; |
| 1334 | #ifdef HAVE_HGE |
| 1335 | case 16: |
| 1336 | ((hge *) b->theap.base)[p] = * (hge *) t; |
| 1337 | break; |
| 1338 | #endif |
| 1339 | default: |
| 1340 | memcpy(BUNtloc(bi, p), t, ATOMsize(b->ttype)); |
| 1341 | break; |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | tt = b->ttype; |
| 1346 | prv = p > 0 ? p - 1 : BUN_NONE; |
| 1347 | nxt = p < last ? p + 1 : BUN_NONE; |
| 1348 | |
| 1349 | if (BATtordered(b)) { |
| 1350 | if (prv != BUN_NONE && |
| 1351 | ATOMcmp(tt, t, BUNtail(bi, prv)) < 0) { |
| 1352 | b->tsorted = false; |
| 1353 | b->tnosorted = p; |
| 1354 | } else if (nxt != BUN_NONE && |
| 1355 | ATOMcmp(tt, t, BUNtail(bi, nxt)) > 0) { |
| 1356 | b->tsorted = false; |
| 1357 | b->tnosorted = nxt; |
| 1358 | } else if (b->ttype != TYPE_void && BATtdense(b)) { |
| 1359 | if (prv != BUN_NONE && |
| 1360 | 1 + * (oid *) BUNtloc(bi, prv) != * (oid *) t) { |
| 1361 | b->tseqbase = oid_nil; |
| 1362 | } else if (nxt != BUN_NONE && |
| 1363 | * (oid *) BUNtloc(bi, nxt) != 1 + * (oid *) t) { |
| 1364 | b->tseqbase = oid_nil; |
| 1365 | } else if (prv == BUN_NONE && |
| 1366 | nxt == BUN_NONE) { |
| 1367 | b->tseqbase = * (oid *) t; |
| 1368 | } |
| 1369 | } |
| 1370 | } else if (b->tnosorted >= p) |
| 1371 | b->tnosorted = 0; |
| 1372 | if (BATtrevordered(b)) { |
| 1373 | if (prv != BUN_NONE && |
| 1374 | ATOMcmp(tt, t, BUNtail(bi, prv)) > 0) { |
| 1375 | b->trevsorted = false; |
| 1376 | b->tnorevsorted = p; |
| 1377 | } else if (nxt != BUN_NONE && |
| 1378 | ATOMcmp(tt, t, BUNtail(bi, nxt)) < 0) { |
| 1379 | b->trevsorted = false; |
| 1380 | b->tnorevsorted = nxt; |
| 1381 | } |
| 1382 | } else if (b->tnorevsorted >= p) |
| 1383 | b->tnorevsorted = 0; |
| 1384 | if (((b->ttype != TYPE_void) & b->tkey & !b->tunique) && b->batCount > 1) { |
| 1385 | BATkey(b, false); |
| 1386 | } else if (!b->tkey && (b->tnokey[0] == p || b->tnokey[1] == p)) |
| 1387 | b->tnokey[0] = b->tnokey[1] = 0; |
| 1388 | if (b->tnonil) |
| 1389 | b->tnonil = t && ATOMcmp(b->ttype, t, ATOMnilptr(b->ttype)) != 0; |
| 1390 | b->theap.dirty = true; |
| 1391 | if (b->tvheap) |
| 1392 | b->tvheap->dirty = true; |
| 1393 | |
| 1394 | return GDK_SUCCEED; |
| 1395 | |
| 1396 | bunins_failed: |
| 1397 | return GDK_FAIL; |
| 1398 | } |
| 1399 | |
| 1400 | /* very much like void_inplace, except this materializes a void tail |
| 1401 | * column if necessarry */ |
| 1402 | gdk_return |
| 1403 | BUNreplace(BAT *b, oid id, const void *t, bool force) |
| 1404 | { |
| 1405 | BATcheck(b, "BUNreplace" , GDK_FAIL); |
| 1406 | BATcheck(t, "BUNreplace: tail value is nil" , GDK_FAIL); |
| 1407 | |
| 1408 | if (id < b->hseqbase || id >= b->hseqbase + BATcount(b)) |
| 1409 | return GDK_SUCCEED; |
| 1410 | |
| 1411 | if (b->tunique && BUNfnd(b, t) != BUN_NONE) { |
| 1412 | return GDK_SUCCEED; |
| 1413 | } |
| 1414 | if (b->ttype == TYPE_void) { |
| 1415 | /* no need to materialize if value doesn't change */ |
| 1416 | if (is_oid_nil(b->tseqbase) || |
| 1417 | b->tseqbase + id - b->hseqbase == *(const oid *) t) |
| 1418 | return GDK_SUCCEED; |
| 1419 | if (BATmaterialize(b) != GDK_SUCCEED) |
| 1420 | return GDK_FAIL; |
| 1421 | } |
| 1422 | |
| 1423 | return BUNinplace(b, id - b->hseqbase, t, force); |
| 1424 | } |
| 1425 | |
| 1426 | /* very much like BUNreplace, but this doesn't make any changes if the |
| 1427 | * tail column is void */ |
| 1428 | gdk_return |
| 1429 | void_inplace(BAT *b, oid id, const void *val, bool force) |
| 1430 | { |
| 1431 | assert(id >= b->hseqbase && id < b->hseqbase + BATcount(b)); |
| 1432 | if (id < b->hseqbase || id >= b->hseqbase + BATcount(b)) { |
| 1433 | GDKerror("void_inplace: id out of range\n" ); |
| 1434 | return GDK_FAIL; |
| 1435 | } |
| 1436 | if (b->tunique && BUNfnd(b, val) != BUN_NONE) |
| 1437 | return GDK_SUCCEED; |
| 1438 | if (b->ttype == TYPE_void) |
| 1439 | return GDK_SUCCEED; |
| 1440 | return BUNinplace(b, id - b->hseqbase, val, force); |
| 1441 | } |
| 1442 | |
| 1443 | gdk_return |
| 1444 | void_replace_bat(BAT *b, BAT *p, BAT *u, bool force) |
| 1445 | { |
| 1446 | BUN r, s; |
| 1447 | BATiter uvi = bat_iterator(u); |
| 1448 | |
| 1449 | BATloop(u, r, s) { |
| 1450 | oid updid = BUNtoid(p, r); |
| 1451 | const void *val = BUNtail(uvi, r); |
| 1452 | |
| 1453 | if (void_inplace(b, updid, val, force) != GDK_SUCCEED) |
| 1454 | return GDK_FAIL; |
| 1455 | } |
| 1456 | return GDK_SUCCEED; |
| 1457 | } |
| 1458 | |
| 1459 | /* |
| 1460 | * @- BUN Lookup |
| 1461 | * Location of a BUN using a value should use the available indexes to |
| 1462 | * speed up access. If indexes are lacking then a hash index is |
| 1463 | * constructed under the assumption that 1) multiple access to the BAT |
| 1464 | * can be expected and 2) building the hash is only slightly more |
| 1465 | * expensive than the full linear scan. BUN_NONE is returned if no |
| 1466 | * such element could be found. In those cases where the type is |
| 1467 | * known and a hash index is available, one should use the inline |
| 1468 | * functions to speed-up processing. |
| 1469 | */ |
| 1470 | static BUN |
| 1471 | slowfnd(BAT *b, const void *v) |
| 1472 | { |
| 1473 | BATiter bi = bat_iterator(b); |
| 1474 | BUN p, q; |
| 1475 | int (*cmp)(const void *, const void *) = ATOMcompare(b->ttype); |
| 1476 | |
| 1477 | BATloop(b, p, q) { |
| 1478 | if ((*cmp)(v, BUNtail(bi, p)) == 0) |
| 1479 | return p; |
| 1480 | } |
| 1481 | return BUN_NONE; |
| 1482 | } |
| 1483 | |
| 1484 | BUN |
| 1485 | BUNfnd(BAT *b, const void *v) |
| 1486 | { |
| 1487 | BUN r = BUN_NONE; |
| 1488 | BATiter bi; |
| 1489 | |
| 1490 | BATcheck(b, "BUNfnd" , BUN_NONE); |
| 1491 | if (!v) |
| 1492 | return r; |
| 1493 | if (b->ttype == TYPE_void && b->tvheap != NULL) { |
| 1494 | struct canditer ci; |
| 1495 | canditer_init(&ci, NULL, b); |
| 1496 | return canditer_search(&ci, * (const oid *) v, false); |
| 1497 | } |
| 1498 | if (BATtvoid(b)) |
| 1499 | return BUNfndVOID(b, v); |
| 1500 | if (!BATcheckhash(b)) { |
| 1501 | if (BATordered(b) || BATordered_rev(b)) |
| 1502 | return SORTfnd(b, v); |
| 1503 | } |
| 1504 | bi = bat_iterator(b); |
| 1505 | switch (ATOMbasetype(b->ttype)) { |
| 1506 | case TYPE_bte: |
| 1507 | HASHfnd_bte(r, bi, v); |
| 1508 | break; |
| 1509 | case TYPE_sht: |
| 1510 | HASHfnd_sht(r, bi, v); |
| 1511 | break; |
| 1512 | case TYPE_int: |
| 1513 | HASHfnd_int(r, bi, v); |
| 1514 | break; |
| 1515 | case TYPE_flt: |
| 1516 | HASHfnd_flt(r, bi, v); |
| 1517 | break; |
| 1518 | case TYPE_dbl: |
| 1519 | HASHfnd_dbl(r, bi, v); |
| 1520 | break; |
| 1521 | case TYPE_lng: |
| 1522 | HASHfnd_lng(r, bi, v); |
| 1523 | break; |
| 1524 | #ifdef HAVE_HGE |
| 1525 | case TYPE_hge: |
| 1526 | HASHfnd_hge(r, bi, v); |
| 1527 | break; |
| 1528 | #endif |
| 1529 | case TYPE_str: |
| 1530 | HASHfnd_str(r, bi, v); |
| 1531 | break; |
| 1532 | default: |
| 1533 | HASHfnd(r, bi, v); |
| 1534 | } |
| 1535 | return r; |
| 1536 | hashfnd_failed: |
| 1537 | /* can't build hash table, search the slow way */ |
| 1538 | return slowfnd(b, v); |
| 1539 | } |
| 1540 | |
| 1541 | /* |
| 1542 | * @+ BAT Property Management |
| 1543 | * |
| 1544 | * The function BATcount returns the number of active elements in a |
| 1545 | * BAT. Counting is type independent. It can be implemented quickly, |
| 1546 | * because the system ensures a dense BUN list. |
| 1547 | */ |
| 1548 | void |
| 1549 | BATsetcapacity(BAT *b, BUN cnt) |
| 1550 | { |
| 1551 | b->batCapacity = cnt; |
| 1552 | assert(b->batCount <= cnt); |
| 1553 | } |
| 1554 | |
| 1555 | void |
| 1556 | BATsetcount(BAT *b, BUN cnt) |
| 1557 | { |
| 1558 | /* head column is always VOID, and some head properties never change */ |
| 1559 | assert(!is_oid_nil(b->hseqbase)); |
| 1560 | assert(cnt <= BUN_MAX); |
| 1561 | |
| 1562 | b->batCount = cnt; |
| 1563 | b->batDirtydesc = true; |
| 1564 | b->theap.free = tailsize(b, cnt); |
| 1565 | if (b->ttype == TYPE_void) |
| 1566 | b->batCapacity = cnt; |
| 1567 | if (cnt <= 1) { |
| 1568 | b->tsorted = b->trevsorted = ATOMlinear(b->ttype); |
| 1569 | b->tnosorted = b->tnorevsorted = 0; |
| 1570 | } |
| 1571 | /* if the BAT was made smaller, we need to zap some values */ |
| 1572 | if (b->tnosorted >= BUNlast(b)) |
| 1573 | b->tnosorted = 0; |
| 1574 | if (b->tnorevsorted >= BUNlast(b)) |
| 1575 | b->tnorevsorted = 0; |
| 1576 | if (b->tnokey[0] >= BUNlast(b) || b->tnokey[1] >= BUNlast(b)) { |
| 1577 | b->tnokey[0] = 0; |
| 1578 | b->tnokey[1] = 0; |
| 1579 | } |
| 1580 | if (b->ttype == TYPE_void) { |
| 1581 | b->tsorted = true; |
| 1582 | if (is_oid_nil(b->tseqbase)) { |
| 1583 | b->tkey = cnt <= 1; |
| 1584 | b->trevsorted = true; |
| 1585 | b->tnil = true; |
| 1586 | b->tnonil = false; |
| 1587 | } else { |
| 1588 | b->tkey = true; |
| 1589 | b->trevsorted = cnt <= 1; |
| 1590 | b->tnil = false; |
| 1591 | b->tnonil = true; |
| 1592 | } |
| 1593 | } |
| 1594 | assert(b->batCapacity >= cnt); |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * The key and name properties can be changed at any time. Keyed |
| 1599 | * dimensions are automatically supported by an auxiliary hash-based |
| 1600 | * access structure to speed up searching. Turning off the key |
| 1601 | * integrity property does not cause the index to disappear. It can |
| 1602 | * still be used to speed-up retrieval. The routine BATkey sets the |
| 1603 | * key property of the association head. |
| 1604 | */ |
| 1605 | gdk_return |
| 1606 | BATkey(BAT *b, bool flag) |
| 1607 | { |
| 1608 | BATcheck(b, "BATkey" , GDK_FAIL); |
| 1609 | assert(b->batCacheid > 0); |
| 1610 | assert(!b->tunique || flag); |
| 1611 | if (b->ttype == TYPE_void) { |
| 1612 | if (BATtdense(b) && !flag) { |
| 1613 | GDKerror("BATkey: dense column must be unique.\n" ); |
| 1614 | return GDK_FAIL; |
| 1615 | } |
| 1616 | if (is_oid_nil(b->tseqbase) && flag && b->batCount > 1) { |
| 1617 | GDKerror("BATkey: void column cannot be unique.\n" ); |
| 1618 | return GDK_FAIL; |
| 1619 | } |
| 1620 | } |
| 1621 | if (b->tkey != flag) |
| 1622 | b->batDirtydesc = true; |
| 1623 | b->tkey = flag; |
| 1624 | if (!flag) { |
| 1625 | b->tseqbase = oid_nil; |
| 1626 | } else |
| 1627 | b->tnokey[0] = b->tnokey[1] = 0; |
| 1628 | if (flag && VIEWtparent(b)) { |
| 1629 | /* if a view is key, then so is the parent if the two |
| 1630 | * are aligned */ |
| 1631 | BAT *bp = BBP_cache(VIEWtparent(b)); |
| 1632 | if (BATcount(b) == BATcount(bp) && |
| 1633 | ATOMtype(BATttype(b)) == ATOMtype(BATttype(bp)) && |
| 1634 | !BATtkey(bp) && |
| 1635 | ((BATtvoid(b) && BATtvoid(bp) && b->tseqbase == bp->tseqbase) || |
| 1636 | BATcount(b) == 0)) |
| 1637 | return BATkey(bp, true); |
| 1638 | } |
| 1639 | return GDK_SUCCEED; |
| 1640 | } |
| 1641 | |
| 1642 | void |
| 1643 | BAThseqbase(BAT *b, oid o) |
| 1644 | { |
| 1645 | if (b != NULL) { |
| 1646 | assert(o <= GDK_oid_max); /* i.e., not oid_nil */ |
| 1647 | assert(o + BATcount(b) <= GDK_oid_max); |
| 1648 | assert(b->batCacheid > 0); |
| 1649 | if (b->hseqbase != o) { |
| 1650 | b->batDirtydesc = true; |
| 1651 | b->hseqbase = o; |
| 1652 | } |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | void |
| 1657 | BATtseqbase(BAT *b, oid o) |
| 1658 | { |
| 1659 | assert(o <= oid_nil); |
| 1660 | if (b == NULL) |
| 1661 | return; |
| 1662 | assert(is_oid_nil(o) || o + BATcount(b) <= GDK_oid_max); |
| 1663 | assert(b->batCacheid > 0); |
| 1664 | if (b->tseqbase != o) { |
| 1665 | b->batDirtydesc = true; |
| 1666 | } |
| 1667 | if (ATOMtype(b->ttype) == TYPE_oid) { |
| 1668 | b->tseqbase = o; |
| 1669 | |
| 1670 | /* adapt keyness */ |
| 1671 | if (BATtvoid(b)) { |
| 1672 | b->tsorted = true; |
| 1673 | if (is_oid_nil(o)) { |
| 1674 | b->tkey = b->batCount <= 1; |
| 1675 | b->tnonil = b->batCount == 0; |
| 1676 | b->tnil = b->batCount > 0; |
| 1677 | b->trevsorted = true; |
| 1678 | b->tnosorted = b->tnorevsorted = 0; |
| 1679 | if (!b->tkey) { |
| 1680 | b->tnokey[0] = 0; |
| 1681 | b->tnokey[1] = 1; |
| 1682 | } else { |
| 1683 | b->tnokey[0] = b->tnokey[1] = 0; |
| 1684 | } |
| 1685 | } else { |
| 1686 | if (!b->tkey) { |
| 1687 | b->tkey = true; |
| 1688 | b->tnokey[0] = b->tnokey[1] = 0; |
| 1689 | } |
| 1690 | b->tnonil = true; |
| 1691 | b->tnil = false; |
| 1692 | b->trevsorted = b->batCount <= 1; |
| 1693 | if (!b->trevsorted) |
| 1694 | b->tnorevsorted = 1; |
| 1695 | } |
| 1696 | } |
| 1697 | } else { |
| 1698 | assert(o == oid_nil); |
| 1699 | b->tseqbase = oid_nil; |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | gdk_return |
| 1704 | BATroles(BAT *b, const char *tnme) |
| 1705 | { |
| 1706 | if (b == NULL) |
| 1707 | return GDK_SUCCEED; |
| 1708 | if (b->tident && !default_ident(b->tident)) |
| 1709 | GDKfree(b->tident); |
| 1710 | if (tnme) |
| 1711 | b->tident = GDKstrdup(tnme); |
| 1712 | else |
| 1713 | b->tident = BATstring_t; |
| 1714 | return b->tident ? GDK_SUCCEED : GDK_FAIL; |
| 1715 | } |
| 1716 | |
| 1717 | /* |
| 1718 | * @- Change the BAT access permissions (read, append, write) |
| 1719 | * Regrettably, BAT access-permissions, persistent status and memory |
| 1720 | * map modes, interact in ways that makes one's brain sizzle. This |
| 1721 | * makes BATsetaccess and TMcommit (where a change in BAT persistence |
| 1722 | * mode is made permanent) points in which the memory map status of |
| 1723 | * bats needs to be carefully re-assessed and ensured. |
| 1724 | * |
| 1725 | * Another complication is the fact that during commit, concurrent |
| 1726 | * users may access the heaps, such that the simple solution |
| 1727 | * unmap;re-map is out of the question. |
| 1728 | * Even worse, it is not possible to even rename an open mmap file in |
| 1729 | * Windows. For this purpose, we dropped the old .priv scheme, which |
| 1730 | * relied on file moves. Now, the file that is opened with mmap is |
| 1731 | * always the X file, in case of newstorage=STORE_PRIV, we save in a |
| 1732 | * new file X.new |
| 1733 | * |
| 1734 | * we must consider the following dimensions: |
| 1735 | * |
| 1736 | * persistence: |
| 1737 | * not simply the current persistence mode but whether the bat *was* |
| 1738 | * present at the last commit point (BBP status & BBPEXISTING). |
| 1739 | * The crucial issue is namely whether we must guarantee recovery |
| 1740 | * to a previous sane state. |
| 1741 | * |
| 1742 | * access: |
| 1743 | * whether the BAT is BAT_READ or BAT_WRITE. Note that BAT_APPEND |
| 1744 | * is usually the same as BAT_READ (as our concern are only data pages |
| 1745 | * that already existed at the last commit). |
| 1746 | * |
| 1747 | * storage: |
| 1748 | * the current way the heap file X is memory-mapped; |
| 1749 | * STORE_MMAP uses direct mapping (so dirty pages may be flushed |
| 1750 | * at any time to disk), STORE_PRIV uses copy-on-write. |
| 1751 | * |
| 1752 | * newstorage: |
| 1753 | * the current save-regime. STORE_MMAP calls msync() on the heap X, |
| 1754 | * whereas STORE_PRIV writes the *entire* heap in a file: X.new |
| 1755 | * If a BAT is loaded from disk, the field newstorage is used |
| 1756 | * to set storage as well (so before change-access and commit- |
| 1757 | * persistence mayhem, we always have newstorage=storage). |
| 1758 | * |
| 1759 | * change-access: |
| 1760 | * what happens if the bat-access mode is changed from |
| 1761 | * BAT_READ into BAT_WRITE (or vice versa). |
| 1762 | * |
| 1763 | * commit-persistence: |
| 1764 | * what happens during commit if the bat-persistence mode was |
| 1765 | * changed (from TRANSIENT into PERSISTENT, or vice versa). |
| 1766 | * |
| 1767 | * this is the scheme: |
| 1768 | * |
| 1769 | * persistence access newstorage storage change-access commit-persistence |
| 1770 | * =========== ========= ========== ========== ============= ================== |
| 1771 | * 0 transient BAT_READ STORE_MMAP STORE_MMAP =>2 =>4 |
| 1772 | * 1 transient BAT_READ STORE_PRIV STORE_PRIV =>3 =>5 |
| 1773 | * 2 transient BAT_WRITE STORE_MMAP STORE_MMAP =>0 =>6+ |
| 1774 | * 3 transient BAT_WRITE STORE_PRIV STORE_PRIV =>1 =>7 |
| 1775 | * 4 persistent BAT_READ STORE_MMAP STORE_MMAP =>6+ =>0 |
| 1776 | * 5 persistent BAT_READ STORE_PRIV STORE_PRIV =>7 =>1 |
| 1777 | * 6 persistent BAT_WRITE STORE_PRIV STORE_MMAP del X.new=>4+ del X.new;=>2+ |
| 1778 | * 7 persistent BAT_WRITE STORE_PRIV STORE_PRIV =>5 =>3 |
| 1779 | * |
| 1780 | * exception states: |
| 1781 | * a transient BAT_READ STORE_PRIV STORE_MMAP =>b =>c |
| 1782 | * b transient BAT_WRITE STORE_PRIV STORE_MMAP =>a =>6 |
| 1783 | * c persistent BAT_READ STORE_PRIV STORE_MMAP =>6 =>a |
| 1784 | * |
| 1785 | * (+) indicates that we must ensure that the heap gets saved in its new mode |
| 1786 | * |
| 1787 | * Note that we now allow a heap with save-regime STORE_PRIV that was |
| 1788 | * actually mapped STORE_MMAP. In effect, the potential corruption of |
| 1789 | * the X file is compensated by writing out full X.new files that take |
| 1790 | * precedence. When transitioning out of this state towards one with |
| 1791 | * both storage regime and OS as STORE_MMAP we need to move the X.new |
| 1792 | * files into the backup directory. Then msync the X file and (on |
| 1793 | * success) remove the X.new; see backup_new(). |
| 1794 | * |
| 1795 | * Exception states are only reachable if the commit fails and those |
| 1796 | * new persistent bats have already been processed (but never become |
| 1797 | * part of a committed state). In that case a transition 2=>6 may end |
| 1798 | * up 2=>b. Exception states a and c are reachable from b. |
| 1799 | * |
| 1800 | * Errors in HEAPchangeaccess() can be handled atomically inside the |
| 1801 | * routine. The work on changing mmap modes HEAPcommitpersistence() |
| 1802 | * is done during the BBPsync() for all bats that are newly persistent |
| 1803 | * (BBPNEW). After the TMcommit(), it is done for those bats that are |
| 1804 | * no longer persistent after the commit (BBPDELETED), only if it |
| 1805 | * succeeds. Such transient bats cannot be processed before the |
| 1806 | * commit, because the commit may fail and then the more unsafe |
| 1807 | * transient mmap modes would be present on a persistent bat. |
| 1808 | * |
| 1809 | * See dirty_bat() in BBPsync() -- gdk_bbp.c and epilogue() in |
| 1810 | * gdk_tm.c. |
| 1811 | * |
| 1812 | * Including the exception states, we have 11 of the 16 |
| 1813 | * combinations. As for the 5 avoided states, all four |
| 1814 | * (persistence,access) states with (STORE_MMAP,STORE_PRIV) are |
| 1815 | * omitted (this would amount to an msync() save regime on a |
| 1816 | * copy-on-write heap -- which does not work). The remaining avoided |
| 1817 | * state is the patently unsafe |
| 1818 | * (persistent,BAT_WRITE,STORE_MMAP,STORE_MMAP). |
| 1819 | * |
| 1820 | * Note that after a server restart exception states are gone, as on |
| 1821 | * BAT loads the saved descriptor is inspected again (which will |
| 1822 | * reproduce the state at the last succeeded commit). |
| 1823 | * |
| 1824 | * To avoid exception states, a TMsubcommit protocol would need to be |
| 1825 | * used which is too heavy for BATsetaccess(). |
| 1826 | * |
| 1827 | * Note that this code is not about making heaps mmap-ed in the first |
| 1828 | * place. It is just about determining which flavor of mmap should be |
| 1829 | * used. The MAL user is oblivious of such details. |
| 1830 | */ |
| 1831 | |
| 1832 | /* rather than deleting X.new, we comply with the commit protocol and |
| 1833 | * move it to backup storage */ |
| 1834 | static gdk_return |
| 1835 | backup_new(Heap *hp, int lockbat) |
| 1836 | { |
| 1837 | int batret, bakret, xx, ret = 0; |
| 1838 | char *batpath, *bakpath; |
| 1839 | struct stat st; |
| 1840 | |
| 1841 | /* file actions here interact with the global commits */ |
| 1842 | for (xx = 0; xx <= lockbat; xx++) |
| 1843 | MT_lock_set(&GDKtrimLock(xx)); |
| 1844 | |
| 1845 | /* check for an existing X.new in BATDIR, BAKDIR and SUBDIR */ |
| 1846 | batpath = GDKfilepath(hp->farmid, BATDIR, hp->filename, ".new" ); |
| 1847 | bakpath = GDKfilepath(hp->farmid, BAKDIR, hp->filename, ".new" ); |
| 1848 | batret = stat(batpath, &st); |
| 1849 | bakret = stat(bakpath, &st); |
| 1850 | |
| 1851 | if (batret == 0 && bakret) { |
| 1852 | /* no backup yet, so move the existing X.new there out |
| 1853 | * of the way */ |
| 1854 | if ((ret = rename(batpath, bakpath)) < 0) |
| 1855 | GDKsyserror("backup_new: rename %s to %s failed\n" , |
| 1856 | batpath, bakpath); |
| 1857 | IODEBUG fprintf(stderr, "#rename(%s,%s) = %d\n" , batpath, bakpath, ret); |
| 1858 | } else if (batret == 0) { |
| 1859 | /* there is a backup already; just remove the X.new */ |
| 1860 | if ((ret = remove(batpath)) != 0) |
| 1861 | GDKsyserror("backup_new: remove %s failed\n" , batpath); |
| 1862 | IODEBUG fprintf(stderr, "#remove(%s) = %d\n" , batpath, ret); |
| 1863 | } |
| 1864 | GDKfree(batpath); |
| 1865 | GDKfree(bakpath); |
| 1866 | for (xx = lockbat; xx >= 0; xx--) |
| 1867 | MT_lock_unset(&GDKtrimLock(xx)); |
| 1868 | return ret ? GDK_FAIL : GDK_SUCCEED; |
| 1869 | } |
| 1870 | |
| 1871 | #define ACCESSMODE(wr,rd) ((wr)?BAT_WRITE:(rd)?BAT_READ:-1) |
| 1872 | |
| 1873 | /* transition heap from readonly to writable */ |
| 1874 | static storage_t |
| 1875 | HEAPchangeaccess(Heap *hp, int dstmode, bool existing) |
| 1876 | { |
| 1877 | if (hp->base == NULL || hp->newstorage == STORE_MEM || !existing || dstmode == -1) |
| 1878 | return hp->newstorage; /* 0<=>2,1<=>3,a<=>b */ |
| 1879 | |
| 1880 | if (dstmode == BAT_WRITE) { |
| 1881 | if (hp->storage != STORE_PRIV) |
| 1882 | hp->dirty = true; /* exception c does not make it dirty */ |
| 1883 | return STORE_PRIV; /* 4=>6,5=>7,c=>6 persistent BAT_WRITE needs STORE_PRIV */ |
| 1884 | } |
| 1885 | if (hp->storage == STORE_MMAP) { /* 6=>4 */ |
| 1886 | hp->dirty = true; |
| 1887 | return backup_new(hp, BBP_THREADMASK) != GDK_SUCCEED ? STORE_INVALID : STORE_MMAP; /* only called for existing bats */ |
| 1888 | } |
| 1889 | return hp->storage; /* 7=>5 */ |
| 1890 | } |
| 1891 | |
| 1892 | /* heap changes persistence mode (at commit point) */ |
| 1893 | static storage_t |
| 1894 | HEAPcommitpersistence(Heap *hp, bool writable, bool existing) |
| 1895 | { |
| 1896 | if (existing) { /* existing, ie will become transient */ |
| 1897 | if (hp->storage == STORE_MMAP && hp->newstorage == STORE_PRIV && writable) { /* 6=>2 */ |
| 1898 | hp->dirty = true; |
| 1899 | return backup_new(hp, -1) != GDK_SUCCEED ? STORE_INVALID : STORE_MMAP; /* only called for existing bats */ |
| 1900 | } |
| 1901 | return hp->newstorage; /* 4=>0,5=>1,7=>3,c=>a no change */ |
| 1902 | } |
| 1903 | /* !existing, ie will become persistent */ |
| 1904 | if (hp->newstorage == STORE_MEM) |
| 1905 | return hp->newstorage; |
| 1906 | if (hp->newstorage == STORE_MMAP && !writable) |
| 1907 | return STORE_MMAP; /* 0=>4 STORE_MMAP */ |
| 1908 | |
| 1909 | if (hp->newstorage == STORE_MMAP) |
| 1910 | hp->dirty = true; /* 2=>6 */ |
| 1911 | return STORE_PRIV; /* 1=>5,2=>6,3=>7,a=>c,b=>6 states */ |
| 1912 | } |
| 1913 | |
| 1914 | |
| 1915 | #define ATOMappendpriv(t, h) (ATOMstorage(t) != TYPE_str || GDK_ELIMDOUBLES(h)) |
| 1916 | |
| 1917 | /* change the heap modes at a commit */ |
| 1918 | gdk_return |
| 1919 | BATcheckmodes(BAT *b, bool existing) |
| 1920 | { |
| 1921 | bool wr = (b->batRestricted == BAT_WRITE); |
| 1922 | storage_t m1 = STORE_MEM, m3 = STORE_MEM; |
| 1923 | bool dirty = false; |
| 1924 | |
| 1925 | BATcheck(b, "BATcheckmodes" , GDK_FAIL); |
| 1926 | |
| 1927 | if (b->ttype) { |
| 1928 | m1 = HEAPcommitpersistence(&b->theap, wr, existing); |
| 1929 | dirty |= (b->theap.newstorage != m1); |
| 1930 | } |
| 1931 | |
| 1932 | if (b->tvheap) { |
| 1933 | bool ta = (b->batRestricted == BAT_APPEND) && ATOMappendpriv(b->ttype, b->tvheap); |
| 1934 | m3 = HEAPcommitpersistence(b->tvheap, wr || ta, existing); |
| 1935 | dirty |= (b->tvheap->newstorage != m3); |
| 1936 | } |
| 1937 | if (m1 == STORE_INVALID || m3 == STORE_INVALID) |
| 1938 | return GDK_FAIL; |
| 1939 | |
| 1940 | if (dirty) { |
| 1941 | b->batDirtydesc = true; |
| 1942 | b->theap.newstorage = m1; |
| 1943 | if (b->tvheap) |
| 1944 | b->tvheap->newstorage = m3; |
| 1945 | } |
| 1946 | return GDK_SUCCEED; |
| 1947 | } |
| 1948 | |
| 1949 | gdk_return |
| 1950 | BATsetaccess(BAT *b, restrict_t newmode) |
| 1951 | { |
| 1952 | restrict_t bakmode; |
| 1953 | bool bakdirty; |
| 1954 | |
| 1955 | BATcheck(b, "BATsetaccess" , GDK_FAIL); |
| 1956 | if (isVIEW(b) && newmode != BAT_READ) { |
| 1957 | if (VIEWreset(b) != GDK_SUCCEED) |
| 1958 | return GDK_FAIL; |
| 1959 | } |
| 1960 | bakmode = (restrict_t) b->batRestricted; |
| 1961 | bakdirty = b->batDirtydesc; |
| 1962 | if (bakmode != newmode || (b->batSharecnt && newmode != BAT_READ)) { |
| 1963 | bool existing = (BBP_status(b->batCacheid) & BBPEXISTING) != 0; |
| 1964 | bool wr = (newmode == BAT_WRITE); |
| 1965 | bool rd = (bakmode == BAT_WRITE); |
| 1966 | storage_t m1, m3 = STORE_MEM; |
| 1967 | storage_t b1, b3 = STORE_MEM; |
| 1968 | |
| 1969 | if (b->batSharecnt && newmode != BAT_READ) { |
| 1970 | BATDEBUG fprintf(stderr, "#BATsetaccess: %s has %d views; try creating a copy\n" , BATgetId(b), b->batSharecnt); |
| 1971 | GDKerror("BATsetaccess: %s has %d views\n" , |
| 1972 | BATgetId(b), b->batSharecnt); |
| 1973 | return GDK_FAIL; |
| 1974 | } |
| 1975 | |
| 1976 | b1 = b->theap.newstorage; |
| 1977 | m1 = HEAPchangeaccess(&b->theap, ACCESSMODE(wr, rd), existing); |
| 1978 | if (b->tvheap) { |
| 1979 | bool ta = (newmode == BAT_APPEND && ATOMappendpriv(b->ttype, b->tvheap)); |
| 1980 | b3 = b->tvheap->newstorage; |
| 1981 | m3 = HEAPchangeaccess(b->tvheap, ACCESSMODE(wr && ta, rd && ta), existing); |
| 1982 | } |
| 1983 | if (m1 == STORE_INVALID || m3 == STORE_INVALID) |
| 1984 | return GDK_FAIL; |
| 1985 | |
| 1986 | /* set new access mode and mmap modes */ |
| 1987 | b->batRestricted = (unsigned int) newmode; |
| 1988 | b->batDirtydesc = true; |
| 1989 | b->theap.newstorage = m1; |
| 1990 | if (b->tvheap) |
| 1991 | b->tvheap->newstorage = m3; |
| 1992 | |
| 1993 | if (existing && BBPsave(b) != GDK_SUCCEED) { |
| 1994 | /* roll back all changes */ |
| 1995 | b->batRestricted = (unsigned int) bakmode; |
| 1996 | b->batDirtydesc = bakdirty; |
| 1997 | b->theap.newstorage = b1; |
| 1998 | if (b->tvheap) |
| 1999 | b->tvheap->newstorage = b3; |
| 2000 | return GDK_FAIL; |
| 2001 | } |
| 2002 | } |
| 2003 | return GDK_SUCCEED; |
| 2004 | } |
| 2005 | |
| 2006 | restrict_t |
| 2007 | BATgetaccess(BAT *b) |
| 2008 | { |
| 2009 | BATcheck(b, "BATgetaccess" , BAT_WRITE /* 0 */); |
| 2010 | assert(b->batRestricted != 3); /* only valid restrict_t values */ |
| 2011 | return (restrict_t) b->batRestricted; |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * @- change BAT persistency (persistent,session,transient) |
| 2016 | * In the past, we prevented BATS with certain types from being saved at all: |
| 2017 | * - BATs of BATs, as having recursive bats creates cascading |
| 2018 | * complexities in commits/aborts. |
| 2019 | * - any atom with refcounts, as the BBP has no overview of such |
| 2020 | * user-defined refcounts. |
| 2021 | * - pointer types, as the values they point to are bound to be transient. |
| 2022 | * |
| 2023 | * However, nowadays we do allow such saves, as the BBP swapping |
| 2024 | * mechanism was altered to be able to save transient bats temporarily |
| 2025 | * to disk in order to make room. Thus, we must be able to save any |
| 2026 | * transient BAT to disk. |
| 2027 | * |
| 2028 | * What we don't allow is to make such bats persistent. |
| 2029 | * |
| 2030 | * Although the persistent state does influence the allowed mmap |
| 2031 | * modes, this only goes for the *real* committed persistent |
| 2032 | * state. Making the bat persistent with BATmode does not matter for |
| 2033 | * the heap modes until the commit point is reached. So we do not need |
| 2034 | * to do anything with heap modes yet at this point. |
| 2035 | */ |
| 2036 | #define check_type(tp) \ |
| 2037 | do { \ |
| 2038 | if (ATOMisdescendant((tp), TYPE_ptr) || \ |
| 2039 | BATatoms[tp].atomUnfix || \ |
| 2040 | BATatoms[tp].atomFix) { \ |
| 2041 | GDKerror("BATmode: %s type implies that %s[%s] " \ |
| 2042 | "cannot be made persistent.\n", \ |
| 2043 | ATOMname(tp), BATgetId(b), \ |
| 2044 | ATOMname(b->ttype)); \ |
| 2045 | return GDK_FAIL; \ |
| 2046 | } \ |
| 2047 | } while (0) |
| 2048 | |
| 2049 | gdk_return |
| 2050 | BATmode(BAT *b, bool transient) |
| 2051 | { |
| 2052 | BATcheck(b, "BATmode" , GDK_FAIL); |
| 2053 | |
| 2054 | /* can only make a bat PERSISTENT if its role is already |
| 2055 | * PERSISTENT */ |
| 2056 | assert(transient || b->batRole == PERSISTENT); |
| 2057 | |
| 2058 | if (b->batRole == TRANSIENT && !transient) { |
| 2059 | GDKerror("cannot change mode of BAT in TRANSIENT farm.\n" ); |
| 2060 | return GDK_FAIL; |
| 2061 | } |
| 2062 | |
| 2063 | if (transient != b->batTransient) { |
| 2064 | bat bid = b->batCacheid; |
| 2065 | |
| 2066 | if (!transient) { |
| 2067 | check_type(b->ttype); |
| 2068 | } |
| 2069 | |
| 2070 | if (!transient && isVIEW(b)) { |
| 2071 | if (VIEWreset(b) != GDK_SUCCEED) { |
| 2072 | return GDK_FAIL; |
| 2073 | } |
| 2074 | } |
| 2075 | /* persistent BATs get a logical reference */ |
| 2076 | if (!transient) { |
| 2077 | BBPretain(bid); |
| 2078 | } else if (!b->batTransient) { |
| 2079 | BBPrelease(bid); |
| 2080 | } |
| 2081 | MT_lock_set(&GDKswapLock(bid)); |
| 2082 | if (!transient) { |
| 2083 | if (!(BBP_status(bid) & BBPDELETED)) |
| 2084 | BBP_status_on(bid, BBPNEW, "BATmode" ); |
| 2085 | else |
| 2086 | BBP_status_on(bid, BBPEXISTING, "BATmode" ); |
| 2087 | BBP_status_off(bid, BBPDELETED, "BATmode" ); |
| 2088 | } else if (!b->batTransient) { |
| 2089 | if (!(BBP_status(bid) & BBPNEW)) |
| 2090 | BBP_status_on(bid, BBPDELETED, "BATmode" ); |
| 2091 | BBP_status_off(bid, BBPPERSISTENT, "BATmode" ); |
| 2092 | } |
| 2093 | /* session bats or persistent bats that did not |
| 2094 | * witness a commit yet may have been saved */ |
| 2095 | if (b->batCopiedtodisk) { |
| 2096 | if (!transient) { |
| 2097 | BBP_status_off(bid, BBPTMP, "BATmode" ); |
| 2098 | } else { |
| 2099 | /* TMcommit must remove it to |
| 2100 | * guarantee free space */ |
| 2101 | BBP_status_on(bid, BBPTMP, "BATmode" ); |
| 2102 | } |
| 2103 | } |
| 2104 | b->batTransient = transient; |
| 2105 | MT_lock_unset(&GDKswapLock(bid)); |
| 2106 | } |
| 2107 | return GDK_SUCCEED; |
| 2108 | } |
| 2109 | |
| 2110 | /* BATassertProps checks whether properties are set correctly. Under |
| 2111 | * no circumstances will it change any properties. Note that the |
| 2112 | * "nil" property is not actually used anywhere, but it is checked. */ |
| 2113 | |
| 2114 | #ifdef NDEBUG |
| 2115 | /* assertions are disabled, turn failing tests into a message */ |
| 2116 | #undef assert |
| 2117 | #define assert(test) ((void) ((test) || fprintf(stderr, "!WARNING: %s:%d: assertion `%s' failed\n", __FILE__, __LINE__, #test))) |
| 2118 | #endif |
| 2119 | |
| 2120 | /* Assert that properties are set correctly. |
| 2121 | * |
| 2122 | * A BAT can have a bunch of properties set. Mostly, the property |
| 2123 | * bits are set if we *know* the property holds, and not set if we |
| 2124 | * don't know whether the property holds (or if we know it doesn't |
| 2125 | * hold). All properties are per column. |
| 2126 | * |
| 2127 | * The properties currently maintained are: |
| 2128 | * |
| 2129 | * seqbase Only valid for TYPE_oid and TYPE_void columns: each |
| 2130 | * value in the column is exactly one more than the |
| 2131 | * previous value, starting at position 0 with the value |
| 2132 | * stored in this property. |
| 2133 | * This implies sorted, key, nonil (which therefore need |
| 2134 | * to be set). |
| 2135 | * nil There is at least one NIL value in the column. |
| 2136 | * nonil There are no NIL values in the column. |
| 2137 | * key All values in the column are distinct. |
| 2138 | * sorted The column is sorted (ascending). If also revsorted, |
| 2139 | * then all values are equal. |
| 2140 | * revsorted The column is reversely sorted (descending). If |
| 2141 | * also sorted, then all values are equal. |
| 2142 | * nosorted BUN position which proofs not sorted (given position |
| 2143 | * and one before are not ordered correctly). |
| 2144 | * norevsorted BUN position which proofs not revsorted (given position |
| 2145 | * and one before are not ordered correctly). |
| 2146 | * nokey Pair of BUN positions that proof not all values are |
| 2147 | * distinct (i.e. values at given locations are equal). |
| 2148 | * |
| 2149 | * In addition there is a property "unique" that, when set, indicates |
| 2150 | * that values must be kept unique (and hence that the "key" property |
| 2151 | * must be set). This property is only used when changing (adding, |
| 2152 | * replacing) values. |
| 2153 | * |
| 2154 | * Note that the functions BATtseqbase and BATkey also set more |
| 2155 | * properties than you might suspect. When setting properties on a |
| 2156 | * newly created and filled BAT, you may want to first make sure the |
| 2157 | * batCount is set correctly (e.g. by calling BATsetcount), then use |
| 2158 | * BATtseqbase and BATkey, and finally set the other properties. |
| 2159 | */ |
| 2160 | |
| 2161 | void |
| 2162 | BATassertProps(BAT *b) |
| 2163 | { |
| 2164 | unsigned bbpstatus; |
| 2165 | BATiter bi = bat_iterator(b); |
| 2166 | BUN p, q; |
| 2167 | int (*cmpf)(const void *, const void *); |
| 2168 | int cmp; |
| 2169 | const void *prev = NULL, *valp, *nilp; |
| 2170 | |
| 2171 | /* general BAT sanity */ |
| 2172 | assert(b != NULL); |
| 2173 | assert(b->batCacheid > 0); |
| 2174 | assert(b->batCount >= b->batInserted); |
| 2175 | |
| 2176 | /* headless */ |
| 2177 | assert(b->hseqbase <= GDK_oid_max); /* non-nil seqbase */ |
| 2178 | assert(b->hseqbase + BATcount(b) <= GDK_oid_max); |
| 2179 | |
| 2180 | bbpstatus = BBP_status(b->batCacheid); |
| 2181 | /* only at most one of BBPDELETED, BBPEXISTING, BBPNEW may be set */ |
| 2182 | assert(((bbpstatus & BBPDELETED) != 0) + |
| 2183 | ((bbpstatus & BBPEXISTING) != 0) + |
| 2184 | ((bbpstatus & BBPNEW) != 0) <= 1); |
| 2185 | |
| 2186 | assert(b != NULL); |
| 2187 | assert(b->ttype >= TYPE_void); |
| 2188 | assert(b->ttype < GDKatomcnt); |
| 2189 | assert(b->ttype != TYPE_bat); |
| 2190 | assert(!b->tunique || b->tkey); /* if unique, then key */ |
| 2191 | assert(isVIEW(b) || |
| 2192 | b->ttype == TYPE_void || |
| 2193 | BBPfarms[b->theap.farmid].roles & (1 << b->batRole)); |
| 2194 | assert(isVIEW(b) || |
| 2195 | b->tvheap == NULL || |
| 2196 | (BBPfarms[b->tvheap->farmid].roles & (1 << b->batRole))); |
| 2197 | |
| 2198 | cmpf = ATOMcompare(b->ttype); |
| 2199 | nilp = ATOMnilptr(b->ttype); |
| 2200 | |
| 2201 | assert(b->theap.free >= tailsize(b, BUNlast(b))); |
| 2202 | if (b->ttype != TYPE_void) { |
| 2203 | assert(b->batCount <= b->batCapacity); |
| 2204 | assert(b->theap.size >= b->theap.free); |
| 2205 | assert(b->theap.size >> b->tshift >= b->batCapacity); |
| 2206 | } |
| 2207 | |
| 2208 | /* void and str imply varsized */ |
| 2209 | if (b->ttype == TYPE_void || |
| 2210 | ATOMstorage(b->ttype) == TYPE_str) |
| 2211 | assert(b->tvarsized); |
| 2212 | /* other "known" types are not varsized */ |
| 2213 | if (ATOMstorage(b->ttype) > TYPE_void && |
| 2214 | ATOMstorage(b->ttype) < TYPE_str) |
| 2215 | assert(!b->tvarsized); |
| 2216 | /* shift and width have a particular relationship */ |
| 2217 | if (ATOMstorage(b->ttype) == TYPE_str) |
| 2218 | assert(b->twidth >= 1 && b->twidth <= ATOMsize(b->ttype)); |
| 2219 | else |
| 2220 | assert(b->twidth == ATOMsize(b->ttype)); |
| 2221 | assert(b->tseqbase <= oid_nil); |
| 2222 | /* only oid/void columns can be dense */ |
| 2223 | assert(is_oid_nil(b->tseqbase) || b->ttype == TYPE_oid || b->ttype == TYPE_void); |
| 2224 | /* a column cannot both have and not have NILs */ |
| 2225 | assert(!b->tnil || !b->tnonil); |
| 2226 | if (b->ttype == TYPE_void) { |
| 2227 | assert(b->tshift == 0); |
| 2228 | assert(b->twidth == 0); |
| 2229 | assert(b->tsorted); |
| 2230 | if (is_oid_nil(b->tseqbase)) { |
| 2231 | assert(b->tvheap == NULL); |
| 2232 | assert(BATcount(b) == 0 || !b->tnonil); |
| 2233 | assert(BATcount(b) <= 1 || !b->tkey); |
| 2234 | assert(b->trevsorted); |
| 2235 | } else { |
| 2236 | if (b->tvheap != NULL) { |
| 2237 | /* candidate list with exceptions */ |
| 2238 | assert(b->batRole == TRANSIENT); |
| 2239 | assert(b->tvheap->free <= b->tvheap->size); |
| 2240 | assert(b->tvheap->free % SIZEOF_OID == 0); |
| 2241 | if (b->tvheap->free > 0) { |
| 2242 | const oid *oids = (const oid *) b->tvheap->base; |
| 2243 | q = b->tvheap->free / SIZEOF_OID; |
| 2244 | assert(oids != NULL); |
| 2245 | assert(b->tseqbase + BATcount(b) + q <= GDK_oid_max); |
| 2246 | /* exceptions within range */ |
| 2247 | assert(oids[0] >= b->tseqbase); |
| 2248 | assert(oids[q - 1] < b->tseqbase + BATcount(b) + q); |
| 2249 | /* exceptions sorted */ |
| 2250 | for (p = 1; p < q; p++) |
| 2251 | assert(oids[p - 1] < oids[p]); |
| 2252 | } |
| 2253 | } |
| 2254 | assert(b->tseqbase + b->batCount <= GDK_oid_max); |
| 2255 | assert(BATcount(b) == 0 || !b->tnil); |
| 2256 | assert(BATcount(b) <= 1 || !b->trevsorted); |
| 2257 | assert(b->tkey); |
| 2258 | assert(b->tnonil); |
| 2259 | } |
| 2260 | return; |
| 2261 | } |
| 2262 | if (BATtdense(b)) { |
| 2263 | assert(b->tseqbase + b->batCount <= GDK_oid_max); |
| 2264 | assert(b->ttype == TYPE_oid); |
| 2265 | assert(b->tsorted); |
| 2266 | assert(b->tkey); |
| 2267 | assert(b->tnonil); |
| 2268 | if ((q = b->batCount) != 0) { |
| 2269 | const oid *o = (const oid *) Tloc(b, 0); |
| 2270 | assert(*o == b->tseqbase); |
| 2271 | for (p = 1; p < q; p++) |
| 2272 | assert(o[p - 1] + 1 == o[p]); |
| 2273 | } |
| 2274 | return; |
| 2275 | } |
| 2276 | assert(1 << b->tshift == b->twidth); |
| 2277 | /* only linear atoms can be sorted */ |
| 2278 | assert(!b->tsorted || ATOMlinear(b->ttype)); |
| 2279 | assert(!b->trevsorted || ATOMlinear(b->ttype)); |
| 2280 | if (ATOMlinear(b->ttype)) { |
| 2281 | assert(b->tnosorted == 0 || |
| 2282 | (b->tnosorted > 0 && |
| 2283 | b->tnosorted < b->batCount)); |
| 2284 | assert(!b->tsorted || b->tnosorted == 0); |
| 2285 | if (!b->tsorted && |
| 2286 | b->tnosorted > 0 && |
| 2287 | b->tnosorted < b->batCount) |
| 2288 | assert(cmpf(BUNtail(bi, b->tnosorted - 1), |
| 2289 | BUNtail(bi, b->tnosorted)) > 0); |
| 2290 | assert(b->tnorevsorted == 0 || |
| 2291 | (b->tnorevsorted > 0 && |
| 2292 | b->tnorevsorted < b->batCount)); |
| 2293 | assert(!b->trevsorted || b->tnorevsorted == 0); |
| 2294 | if (!b->trevsorted && |
| 2295 | b->tnorevsorted > 0 && |
| 2296 | b->tnorevsorted < b->batCount) |
| 2297 | assert(cmpf(BUNtail(bi, b->tnorevsorted - 1), |
| 2298 | BUNtail(bi, b->tnorevsorted)) < 0); |
| 2299 | } |
| 2300 | /* if tkey property set, both tnokey values must be 0 */ |
| 2301 | assert(!b->tkey || (b->tnokey[0] == 0 && b->tnokey[1] == 0)); |
| 2302 | if (!b->tkey && (b->tnokey[0] != 0 || b->tnokey[1] != 0)) { |
| 2303 | /* if tkey not set and tnokey indicates a proof of |
| 2304 | * non-key-ness, make sure the tnokey values are in |
| 2305 | * range and indeed provide a proof */ |
| 2306 | assert(b->tnokey[0] != b->tnokey[1]); |
| 2307 | assert(b->tnokey[0] < b->batCount); |
| 2308 | assert(b->tnokey[1] < b->batCount); |
| 2309 | assert(cmpf(BUNtail(bi, b->tnokey[0]), |
| 2310 | BUNtail(bi, b->tnokey[1])) == 0); |
| 2311 | } |
| 2312 | /* var heaps must have sane sizes */ |
| 2313 | assert(b->tvheap == NULL || b->tvheap->free <= b->tvheap->size); |
| 2314 | |
| 2315 | if (!b->tkey && !b->tsorted && !b->trevsorted && |
| 2316 | !b->tnonil && !b->tnil) { |
| 2317 | /* nothing more to prove */ |
| 2318 | return; |
| 2319 | } |
| 2320 | |
| 2321 | PROPDEBUG { /* only do a scan if property checking is requested */ |
| 2322 | PROPrec *prop; |
| 2323 | const void *maxval = NULL; |
| 2324 | const void *minval = NULL; |
| 2325 | bool seenmax = false, seenmin = false; |
| 2326 | bool seennil = false; |
| 2327 | |
| 2328 | if ((prop = BATgetprop(b, GDK_MAX_VALUE)) != NULL) |
| 2329 | maxval = VALptr(&prop->v); |
| 2330 | if ((prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL) |
| 2331 | minval = VALptr(&prop->v); |
| 2332 | if (b->tsorted || b->trevsorted || !b->tkey) { |
| 2333 | /* if sorted (either way), or we don't have to |
| 2334 | * prove uniqueness, we can do a simple |
| 2335 | * scan */ |
| 2336 | /* only call compare function if we have to */ |
| 2337 | bool cmpprv = b->tsorted | b->trevsorted | b->tkey; |
| 2338 | bool cmpnil = b->tnonil | b->tnil; |
| 2339 | |
| 2340 | BATloop(b, p, q) { |
| 2341 | valp = BUNtail(bi, p); |
| 2342 | bool isnil = cmpf(valp, nilp) == 0; |
| 2343 | if (maxval && !isnil) { |
| 2344 | cmp = cmpf(maxval, valp); |
| 2345 | assert(cmp >= 0); |
| 2346 | seenmax |= cmp == 0; |
| 2347 | } |
| 2348 | if (minval && !isnil) { |
| 2349 | cmp = cmpf(minval, valp); |
| 2350 | assert(cmp <= 0); |
| 2351 | seenmin |= cmp == 0; |
| 2352 | } |
| 2353 | if (prev && cmpprv) { |
| 2354 | cmp = cmpf(prev, valp); |
| 2355 | assert(!b->tsorted || cmp <= 0); |
| 2356 | assert(!b->trevsorted || cmp >= 0); |
| 2357 | assert(!b->tkey || cmp != 0); |
| 2358 | } |
| 2359 | if (cmpnil) { |
| 2360 | assert(!b->tnonil || !isnil); |
| 2361 | if (isnil) { |
| 2362 | /* we found a nil: |
| 2363 | * we're done checking |
| 2364 | * for them */ |
| 2365 | seennil = true; |
| 2366 | cmpnil = 0; |
| 2367 | if (!cmpprv && maxval == NULL && minval == NULL) { |
| 2368 | /* we were |
| 2369 | * only |
| 2370 | * checking |
| 2371 | * for nils, |
| 2372 | * so nothing |
| 2373 | * more to |
| 2374 | * do */ |
| 2375 | break; |
| 2376 | } |
| 2377 | } |
| 2378 | } |
| 2379 | prev = valp; |
| 2380 | } |
| 2381 | } else { /* b->tkey && !b->tsorted && !b->trevsorted */ |
| 2382 | /* we need to check for uniqueness the hard |
| 2383 | * way (i.e. using a hash table) */ |
| 2384 | const char *nme = BBP_physical(b->batCacheid); |
| 2385 | Hash *hs = NULL; |
| 2386 | BUN mask; |
| 2387 | int len; |
| 2388 | |
| 2389 | if ((hs = GDKzalloc(sizeof(Hash))) == NULL) { |
| 2390 | fprintf(stderr, |
| 2391 | "#BATassertProps: cannot allocate " |
| 2392 | "hash table\n" ); |
| 2393 | goto abort_check; |
| 2394 | } |
| 2395 | len = snprintf(hs->heap.filename, sizeof(hs->heap.filename), "%s.hash%d" , nme, THRgettid()); |
| 2396 | if (len == -1 || len > (int) sizeof(hs->heap.filename)) { |
| 2397 | GDKfree(hs); |
| 2398 | fprintf(stderr, |
| 2399 | "#BATassertProps: heap filename " |
| 2400 | "is too large\n" ); |
| 2401 | goto abort_check; |
| 2402 | } |
| 2403 | if (ATOMsize(b->ttype) == 1) |
| 2404 | mask = (BUN) 1 << 8; |
| 2405 | else if (ATOMsize(b->ttype) == 2) |
| 2406 | mask = (BUN) 1 << 16; |
| 2407 | else |
| 2408 | mask = HASHmask(b->batCount); |
| 2409 | if ((hs->heap.farmid = BBPselectfarm(TRANSIENT, b->ttype, |
| 2410 | hashheap)) < 0 || |
| 2411 | HASHnew(hs, b->ttype, BUNlast(b), |
| 2412 | mask, BUN_NONE) != GDK_SUCCEED) { |
| 2413 | GDKfree(hs); |
| 2414 | fprintf(stderr, |
| 2415 | "#BATassertProps: cannot allocate " |
| 2416 | "hash table\n" ); |
| 2417 | goto abort_check; |
| 2418 | } |
| 2419 | BATloop(b, p, q) { |
| 2420 | BUN hb; |
| 2421 | BUN prb; |
| 2422 | valp = BUNtail(bi, p); |
| 2423 | bool isnil = cmpf(valp, nilp) == 0; |
| 2424 | if (maxval && !isnil) { |
| 2425 | cmp = cmpf(maxval, valp); |
| 2426 | assert(cmp >= 0); |
| 2427 | seenmax |= cmp == 0; |
| 2428 | } |
| 2429 | if (minval && !isnil) { |
| 2430 | cmp = cmpf(minval, valp); |
| 2431 | assert(cmp <= 0); |
| 2432 | seenmin |= cmp == 0; |
| 2433 | } |
| 2434 | prb = HASHprobe(hs, valp); |
| 2435 | for (hb = HASHget(hs,prb); |
| 2436 | hb != HASHnil(hs); |
| 2437 | hb = HASHgetlink(hs,hb)) |
| 2438 | if (cmpf(valp, BUNtail(bi, hb)) == 0) |
| 2439 | assert(!b->tkey); |
| 2440 | HASHputlink(hs,p, HASHget(hs,prb)); |
| 2441 | HASHput(hs,prb,p); |
| 2442 | assert(!b->tnonil || !isnil); |
| 2443 | seennil |= isnil; |
| 2444 | } |
| 2445 | HEAPfree(&hs->heap, true); |
| 2446 | GDKfree(hs); |
| 2447 | } |
| 2448 | abort_check: |
| 2449 | assert(maxval == NULL || seenmax); |
| 2450 | assert(minval == NULL || seenmin); |
| 2451 | assert(!b->tnil || seennil); |
| 2452 | } |
| 2453 | } |
| 2454 | |