| 1 | /* |
| 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
| 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 5 | * |
| 6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * (c) M. L. Kersten, P. Boncz, S. Manegold, N. Nes, K.S. Mullender |
| 11 | * Common BAT Operations |
| 12 | * We factor out all possible overhead by inlining code. This |
| 13 | * includes the macros BUNhead and BUNtail, which do a test to see |
| 14 | * whether the atom resides in the buns or in a variable storage |
| 15 | * heap. |
| 16 | */ |
| 17 | #include "monetdb_config.h" |
| 18 | #include "gdk.h" |
| 19 | #include "gdk_private.h" |
| 20 | |
| 21 | gdk_return |
| 22 | unshare_string_heap(BAT *b) |
| 23 | { |
| 24 | assert(b->batCacheid > 0); |
| 25 | if (b->ttype == TYPE_str && |
| 26 | b->tvheap->parentid != b->batCacheid) { |
| 27 | Heap *h = GDKzalloc(sizeof(Heap)); |
| 28 | if (h == NULL) |
| 29 | return GDK_FAIL; |
| 30 | h->parentid = b->batCacheid; |
| 31 | h->farmid = BBPselectfarm(b->batRole, TYPE_str, varheap); |
| 32 | strconcat_len(h->filename, sizeof(h->filename), |
| 33 | BBP_physical(b->batCacheid), ".theap" , NULL); |
| 34 | if (HEAPcopy(h, b->tvheap) != GDK_SUCCEED) { |
| 35 | HEAPfree(h, true); |
| 36 | GDKfree(h); |
| 37 | return GDK_FAIL; |
| 38 | } |
| 39 | BBPunshare(b->tvheap->parentid); |
| 40 | b->tvheap = h; |
| 41 | } |
| 42 | return GDK_SUCCEED; |
| 43 | } |
| 44 | |
| 45 | /* We try to be clever when appending one string bat to another. |
| 46 | * First of all, we try to actually share the string heap so that we |
| 47 | * don't need an extra copy, and if that can't be done, we see whether |
| 48 | * it makes sense to just quickly copy the whole string heap instead |
| 49 | * of inserting individual strings. See the comments in the code for |
| 50 | * more information. */ |
| 51 | static gdk_return |
| 52 | insert_string_bat(BAT *b, BAT *n, BAT *s, bool force) |
| 53 | { |
| 54 | BATiter ni; /* iterator */ |
| 55 | size_t toff = ~(size_t) 0; /* tail offset */ |
| 56 | BUN p, r; /* loop variables */ |
| 57 | const void *tp; /* tail value pointer */ |
| 58 | unsigned char tbv; /* tail value-as-bte */ |
| 59 | unsigned short tsv; /* tail value-as-sht */ |
| 60 | #if SIZEOF_VAR_T == 8 |
| 61 | unsigned int tiv; /* tail value-as-int */ |
| 62 | #endif |
| 63 | var_t v; /* value */ |
| 64 | size_t off; /* offset within n's string heap */ |
| 65 | struct canditer ci; |
| 66 | BUN cnt; |
| 67 | |
| 68 | assert(b->ttype == TYPE_str); |
| 69 | /* only transient bats can use some other bat's string heap */ |
| 70 | assert(b->batRole == TRANSIENT || b->tvheap->parentid == b->batCacheid); |
| 71 | if (n->batCount == 0 || (s && s->batCount == 0)) |
| 72 | return GDK_SUCCEED; |
| 73 | ni = bat_iterator(n); |
| 74 | tp = NULL; |
| 75 | cnt = canditer_init(&ci, n, s); |
| 76 | if (cnt == 0) |
| 77 | return GDK_SUCCEED; |
| 78 | if ((!GDK_ELIMDOUBLES(b->tvheap) || b->batCount == 0) && |
| 79 | !GDK_ELIMDOUBLES(n->tvheap) && |
| 80 | b->tvheap->hashash == n->tvheap->hashash) { |
| 81 | if (b->batRole == TRANSIENT || b->tvheap == n->tvheap) { |
| 82 | /* If b is in the transient farm (i.e. b will |
| 83 | * never become persistent), we try some |
| 84 | * clever tricks to avoid copying: |
| 85 | * - if b is empty, we just let it share the |
| 86 | * string heap with n; |
| 87 | * - otherwise, if b's string heap and n's |
| 88 | * string heap are the same (i.e. shared), |
| 89 | * we leave it that way (this includes the |
| 90 | * case that b is persistent and n shares |
| 91 | * its string heap with b); |
| 92 | * - otherwise, if b shares its string heap |
| 93 | * with some other bat, we materialize it |
| 94 | * and we will have to copy strings. |
| 95 | */ |
| 96 | bat bid = b->batCacheid; |
| 97 | |
| 98 | /* if candidates are not dense, there is no |
| 99 | * wholesale copying of n's offset heap, but |
| 100 | * we may still be able to share the string |
| 101 | * heap */ |
| 102 | if (b->batCount == 0 && |
| 103 | b->tvheap != n->tvheap && |
| 104 | ci.tpe == cand_dense) { |
| 105 | if (b->tvheap->parentid != bid) { |
| 106 | BBPunshare(b->tvheap->parentid); |
| 107 | } else { |
| 108 | HEAPfree(b->tvheap, true); |
| 109 | GDKfree(b->tvheap); |
| 110 | } |
| 111 | BBPshare(n->tvheap->parentid); |
| 112 | b->tvheap = n->tvheap; |
| 113 | b->batDirtydesc = true; |
| 114 | toff = 0; |
| 115 | } else if (b->tvheap->parentid == n->tvheap->parentid && |
| 116 | ci.tpe == cand_dense) { |
| 117 | toff = 0; |
| 118 | } else if (b->tvheap->parentid != bid && |
| 119 | unshare_string_heap(b) != GDK_SUCCEED) { |
| 120 | return GDK_FAIL; |
| 121 | } |
| 122 | } |
| 123 | if (toff == ~(size_t) 0 && cnt > 1024) { |
| 124 | /* If b and n aren't sharing their string |
| 125 | * heaps, we try to determine whether to copy |
| 126 | * n's whole string heap to the end of b's, or |
| 127 | * whether we will insert each string from n |
| 128 | * individually. We do this by testing a |
| 129 | * sample of n's strings and extrapolating |
| 130 | * from that sample whether n uses a |
| 131 | * significant part of its string heap for its |
| 132 | * strings (i.e. whether there are many unused |
| 133 | * strings in n's string heap). If n doesn't |
| 134 | * have many strings in the first place, we |
| 135 | * skip this and just insert them all |
| 136 | * individually. We also check whether a |
| 137 | * significant number of n's strings happen to |
| 138 | * have the same offset in b. In the latter |
| 139 | * case we also want to insert strings |
| 140 | * individually, but reusing the string in b's |
| 141 | * string heap. */ |
| 142 | int match = 0, i; |
| 143 | size_t len = b->tvheap->hashash ? 1024 * EXTRALEN : 0; |
| 144 | for (i = 0; i < 1024; i++) { |
| 145 | p = (BUN) (((double) rand() / RAND_MAX) * (cnt - 1)); |
| 146 | p = canditer_idx(&ci, p) - n->hseqbase; |
| 147 | off = BUNtvaroff(ni, p); |
| 148 | if (off < b->tvheap->free && |
| 149 | strcmp(b->tvheap->base + off, n->tvheap->base + off) == 0 && |
| 150 | (!b->tvheap->hashash || |
| 151 | ((BUN *) (b->tvheap->base + off))[-1] == (n->tvheap->hashash ? ((BUN *) (n->tvheap->base + off))[-1] : strHash(n->tvheap->base + off)))) |
| 152 | match++; |
| 153 | len += (strlen(n->tvheap->base + off) + 8) & ~7; |
| 154 | } |
| 155 | if (match < 768 && (size_t) (BATcount(n) * (double) len / 1024) >= n->tvheap->free / 2) { |
| 156 | /* append string heaps */ |
| 157 | toff = b->batCount == 0 ? 0 : b->tvheap->free; |
| 158 | /* make sure we get alignment right */ |
| 159 | toff = (toff + GDK_VARALIGN - 1) & ~(GDK_VARALIGN - 1); |
| 160 | /* if in "force" mode, the heap may be |
| 161 | * shared when memory mapped */ |
| 162 | if (HEAPextend(b->tvheap, toff + n->tvheap->size, force) != GDK_SUCCEED) { |
| 163 | toff = ~(size_t) 0; |
| 164 | goto bunins_failed; |
| 165 | } |
| 166 | memcpy(b->tvheap->base + toff, n->tvheap->base, n->tvheap->free); |
| 167 | b->tvheap->free = toff + n->tvheap->free; |
| 168 | if (toff > 0) { |
| 169 | /* flush double-elimination |
| 170 | * hash table */ |
| 171 | memset(b->tvheap->base, 0, |
| 172 | GDK_STRHASHSIZE); |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | if (toff != ~(size_t) 0) { |
| 177 | /* we only have to copy the offsets from n to |
| 178 | * b, possibly with an offset (if toff != 0), |
| 179 | * so set up some variables and set up b's |
| 180 | * tail so that it looks like it's a fixed |
| 181 | * size column. Of course, we must make sure |
| 182 | * first that the width of b's offset heap can |
| 183 | * accommodate all values. */ |
| 184 | if (b->twidth < SIZEOF_VAR_T && |
| 185 | ((size_t) 1 << 8 * b->twidth) <= (b->twidth <= 2 ? b->tvheap->size - GDK_VAROFFSET : b->tvheap->size)) { |
| 186 | /* offsets aren't going to fit, so |
| 187 | * widen offset heap */ |
| 188 | if (GDKupgradevarheap(b, (var_t) b->tvheap->size, false, force) != GDK_SUCCEED) { |
| 189 | toff = ~(size_t) 0; |
| 190 | goto bunins_failed; |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | } else if (unshare_string_heap(b) != GDK_SUCCEED) |
| 195 | return GDK_FAIL; |
| 196 | if (toff == 0 && n->twidth == b->twidth && ci.tpe == cand_dense) { |
| 197 | /* we don't need to do any translation of offset |
| 198 | * values, so we can use fast memcpy */ |
| 199 | memcpy(Tloc(b, BUNlast(b)), Tloc(n, ci.seq - n->hseqbase), cnt << n->tshift); |
| 200 | BATsetcount(b, BATcount(b) + cnt); |
| 201 | } else if (toff != ~(size_t) 0) { |
| 202 | /* we don't need to insert any actual strings since we |
| 203 | * have already made sure that they are all in b's |
| 204 | * string heap at known locations (namely the offset |
| 205 | * in n added to toff), so insert offsets from n after |
| 206 | * adding toff into b */ |
| 207 | /* note the use of the "restrict" qualifier here: all |
| 208 | * four pointers below point to the same value, but |
| 209 | * only one of them will actually be used, hence we |
| 210 | * still obey the rule for restrict-qualified |
| 211 | * pointers */ |
| 212 | const unsigned char *restrict tbp = (const unsigned char *) Tloc(n, 0); |
| 213 | const unsigned short *restrict tsp = (const unsigned short *) Tloc(n, 0); |
| 214 | #if SIZEOF_VAR_T == 8 |
| 215 | const unsigned int *restrict tip = (const unsigned int *) Tloc(n, 0); |
| 216 | #endif |
| 217 | const var_t *restrict tvp = (const var_t *) Tloc(n, 0); |
| 218 | |
| 219 | switch (b->twidth) { |
| 220 | case 1: |
| 221 | b->ttype = TYPE_bte; |
| 222 | tp = &tbv; |
| 223 | break; |
| 224 | case 2: |
| 225 | b->ttype = TYPE_sht; |
| 226 | tp = &tsv; |
| 227 | break; |
| 228 | #if SIZEOF_VAR_T == 8 |
| 229 | case 4: |
| 230 | b->ttype = TYPE_int; |
| 231 | tp = &tiv; |
| 232 | break; |
| 233 | case 8: |
| 234 | b->ttype = TYPE_lng; |
| 235 | tp = &v; |
| 236 | break; |
| 237 | #else |
| 238 | case 4: |
| 239 | b->ttype = TYPE_int; |
| 240 | tp = &v; |
| 241 | break; |
| 242 | #endif |
| 243 | default: |
| 244 | assert(0); |
| 245 | } |
| 246 | b->tvarsized = false; |
| 247 | while (cnt > 0) { |
| 248 | cnt--; |
| 249 | p = canditer_next(&ci) - n->hseqbase; |
| 250 | switch (n->twidth) { |
| 251 | case 1: |
| 252 | v = (var_t) tbp[p] + GDK_VAROFFSET; |
| 253 | break; |
| 254 | case 2: |
| 255 | v = (var_t) tsp[p] + GDK_VAROFFSET; |
| 256 | break; |
| 257 | #if SIZEOF_VAR_T == 8 |
| 258 | case 4: |
| 259 | v = (var_t) tip[p]; |
| 260 | break; |
| 261 | #endif |
| 262 | default: |
| 263 | v = tvp[p]; |
| 264 | break; |
| 265 | } |
| 266 | v = (var_t) ((size_t) v + toff); |
| 267 | assert(v >= GDK_VAROFFSET); |
| 268 | assert((size_t) v < b->tvheap->free); |
| 269 | if (BUNlast(b) >= BATcapacity(b)) { |
| 270 | if (BATcount(b) == BUN_MAX) { |
| 271 | GDKerror("bunfastapp: too many elements to accomodate (" BUNFMT ")\n" , BUN_MAX); |
| 272 | goto bunins_failed; |
| 273 | } |
| 274 | if (BATextend(b, BATgrows(b)) != GDK_SUCCEED) |
| 275 | goto bunins_failed; |
| 276 | } |
| 277 | switch (b->twidth) { |
| 278 | case 1: |
| 279 | assert(v - GDK_VAROFFSET < ((var_t) 1 << 8)); |
| 280 | ((uint8_t *) b->theap.base)[b->batCount++] = (uint8_t) (v - GDK_VAROFFSET); |
| 281 | b->theap.free += 1; |
| 282 | break; |
| 283 | case 2: |
| 284 | assert(v - GDK_VAROFFSET < ((var_t) 1 << 16)); |
| 285 | ((uint16_t *) b->theap.base)[b->batCount++] = (uint16_t) (v - GDK_VAROFFSET); |
| 286 | b->theap.free += 2; |
| 287 | break; |
| 288 | #if SIZEOF_VAR_T == 8 |
| 289 | case 4: |
| 290 | assert(v < ((var_t) 1 << 32)); |
| 291 | ((uint32_t *) b->theap.base)[b->batCount++] = (uint32_t) v; |
| 292 | b->theap.free += 4; |
| 293 | break; |
| 294 | #endif |
| 295 | default: |
| 296 | ((var_t *) b->theap.base)[b->batCount++] = v; |
| 297 | b->theap.free += sizeof(var_t); |
| 298 | break; |
| 299 | } |
| 300 | b->theap.dirty = true; |
| 301 | } |
| 302 | b->tvarsized = true; |
| 303 | b->ttype = TYPE_str; |
| 304 | } else if (b->tvheap->free < n->tvheap->free / 2 || |
| 305 | GDK_ELIMDOUBLES(b->tvheap)) { |
| 306 | /* if b's string heap is much smaller than n's string |
| 307 | * heap, don't bother checking whether n's string |
| 308 | * values occur in b's string heap; also, if b is |
| 309 | * (still) fully double eliminated, we must continue |
| 310 | * to use the double elimination mechanism */ |
| 311 | r = BUNlast(b); |
| 312 | oid hseq = n->hseqbase; |
| 313 | while (cnt > 0) { |
| 314 | cnt--; |
| 315 | p = canditer_next(&ci) - hseq; |
| 316 | tp = BUNtvar(ni, p); |
| 317 | bunfastappVAR(b, tp); |
| 318 | HASHins(b, r, tp); |
| 319 | r++; |
| 320 | } |
| 321 | } else { |
| 322 | /* Insert values from n individually into b; however, |
| 323 | * we check whether there is a string in b's string |
| 324 | * heap at the same offset as the string is in n's |
| 325 | * string heap (in case b's string heap is a copy of |
| 326 | * n's). If this is the case, we just copy the |
| 327 | * offset, otherwise we insert normally. */ |
| 328 | r = BUNlast(b); |
| 329 | while (cnt > 0) { |
| 330 | cnt--; |
| 331 | p = canditer_next(&ci) - n->hseqbase; |
| 332 | off = BUNtvaroff(ni, p); /* the offset */ |
| 333 | tp = n->tvheap->base + off; /* the string */ |
| 334 | if (off < b->tvheap->free && |
| 335 | strcmp(b->tvheap->base + off, tp) == 0 && |
| 336 | (!b->tvheap->hashash || |
| 337 | ((BUN *) (b->tvheap->base + off))[-1] == (n->tvheap->hashash ? ((BUN *) tp)[-1] : strHash(tp)))) { |
| 338 | /* we found the string at the same |
| 339 | * offset in b's string heap as it was |
| 340 | * in n's string heap, so we don't |
| 341 | * have to insert a new string into b: |
| 342 | * we can just copy the offset */ |
| 343 | v = (var_t) off; |
| 344 | if (b->twidth < SIZEOF_VAR_T && |
| 345 | ((size_t) 1 << 8 * b->twidth) <= (b->twidth <= 2 ? v - GDK_VAROFFSET : v)) { |
| 346 | /* offset isn't going to fit, |
| 347 | * so widen offset heap */ |
| 348 | if (GDKupgradevarheap(b, v, false, force) != GDK_SUCCEED) { |
| 349 | goto bunins_failed; |
| 350 | } |
| 351 | } |
| 352 | switch (b->twidth) { |
| 353 | case 1: |
| 354 | assert(v - GDK_VAROFFSET < ((var_t) 1 << 8)); |
| 355 | *(unsigned char *)Tloc(b, BUNlast(b)) = (unsigned char) (v - GDK_VAROFFSET); |
| 356 | b->theap.free += 1; |
| 357 | break; |
| 358 | case 2: |
| 359 | assert(v - GDK_VAROFFSET < ((var_t) 1 << 16)); |
| 360 | *(unsigned short *)Tloc(b, BUNlast(b)) = (unsigned short) (v - GDK_VAROFFSET); |
| 361 | b->theap.free += 2; |
| 362 | break; |
| 363 | #if SIZEOF_VAR_T == 8 |
| 364 | case 4: |
| 365 | assert(v < ((var_t) 1 << 32)); |
| 366 | *(unsigned int *)Tloc(b, BUNlast(b)) = (unsigned int) v; |
| 367 | b->theap.free += 4; |
| 368 | break; |
| 369 | #endif |
| 370 | default: |
| 371 | *(var_t *)Tloc(b, BUNlast(b)) = v; |
| 372 | b->theap.free += SIZEOF_VAR_T; |
| 373 | break; |
| 374 | } |
| 375 | b->batCount++; |
| 376 | } else { |
| 377 | bunfastappVAR(b, tp); |
| 378 | } |
| 379 | HASHins(b, r, tp); |
| 380 | r++; |
| 381 | } |
| 382 | } |
| 383 | b->theap.dirty = true; |
| 384 | return GDK_SUCCEED; |
| 385 | bunins_failed: |
| 386 | b->tvarsized = true; |
| 387 | b->ttype = TYPE_str; |
| 388 | return GDK_FAIL; |
| 389 | } |
| 390 | |
| 391 | static gdk_return |
| 392 | append_varsized_bat(BAT *b, BAT *n, BAT *s) |
| 393 | { |
| 394 | BATiter ni; |
| 395 | struct canditer ci; |
| 396 | BUN cnt, r; |
| 397 | oid hseq = n->hseqbase; |
| 398 | |
| 399 | /* only transient bats can use some other bat's vheap */ |
| 400 | assert(b->batRole == TRANSIENT || b->tvheap->parentid == b->batCacheid); |
| 401 | /* make sure the bats use var_t */ |
| 402 | assert(b->twidth == n->twidth); |
| 403 | assert(b->twidth == SIZEOF_VAR_T); |
| 404 | if (n->batCount == 0 || (s && s->batCount == 0)) |
| 405 | return GDK_SUCCEED; |
| 406 | cnt = canditer_init(&ci, n, s); |
| 407 | if (cnt == 0) |
| 408 | return GDK_SUCCEED; |
| 409 | if (BATcount(b) == 0 && |
| 410 | b->batRole == TRANSIENT && |
| 411 | n->batRestricted == BAT_READ && |
| 412 | b->tvheap != n->tvheap) { |
| 413 | /* if b is still empty, in the transient farm, and n |
| 414 | * is read-only, we replace b's vheap with a reference |
| 415 | * to n's */ |
| 416 | if (b->tvheap->parentid != b->batCacheid) { |
| 417 | BBPunshare(b->tvheap->parentid); |
| 418 | } else { |
| 419 | HEAPfree(b->tvheap, true); |
| 420 | GDKfree(b->tvheap); |
| 421 | } |
| 422 | BBPshare(n->tvheap->parentid); |
| 423 | b->tvheap = n->tvheap; |
| 424 | b->batDirtydesc = true; |
| 425 | } |
| 426 | if (b->tvheap == n->tvheap) { |
| 427 | /* if b and n use the same vheap, we only need to copy |
| 428 | * the offsets from n to b */ |
| 429 | HASHdestroy(b); /* not maintaining, so destroy it */ |
| 430 | if (ci.tpe == cand_dense) { |
| 431 | /* fast memcpy since we copy a consecutive |
| 432 | * chunk of memory */ |
| 433 | memcpy(Tloc(b, BUNlast(b)), |
| 434 | Tloc(n, ci.seq - hseq), |
| 435 | cnt << b->tshift); |
| 436 | } else { |
| 437 | var_t *restrict dst = (var_t *) Tloc(b, BUNlast(b)); |
| 438 | const var_t *restrict src = (const var_t *) Tloc(n, 0); |
| 439 | while (cnt > 0) { |
| 440 | cnt--; |
| 441 | *dst++ = src[canditer_next(&ci) - hseq]; |
| 442 | } |
| 443 | } |
| 444 | b->theap.dirty = true; |
| 445 | BATsetcount(b, BATcount(b) + ci.ncand); |
| 446 | return GDK_SUCCEED; |
| 447 | } |
| 448 | /* b and n do not share their vheap, so we need to copy data */ |
| 449 | if (b->tvheap->parentid != b->batCacheid) { |
| 450 | /* if b shares its vheap with some other bat, unshare it */ |
| 451 | Heap *h = GDKzalloc(sizeof(Heap)); |
| 452 | if (h == NULL) |
| 453 | return GDK_FAIL; |
| 454 | h->parentid = b->batCacheid; |
| 455 | h->farmid = BBPselectfarm(b->batRole, b->ttype, varheap); |
| 456 | strconcat_len(h->filename, sizeof(h->filename), |
| 457 | BBP_physical(b->batCacheid), ".theap" , NULL); |
| 458 | if (HEAPcopy(h, b->tvheap) != GDK_SUCCEED) { |
| 459 | HEAPfree(h, true); |
| 460 | GDKfree(h); |
| 461 | return GDK_FAIL; |
| 462 | } |
| 463 | BBPunshare(b->tvheap->parentid); |
| 464 | b->tvheap = h; |
| 465 | } |
| 466 | /* copy data from n to b */ |
| 467 | ni = bat_iterator(n); |
| 468 | r = BUNlast(b); |
| 469 | while (cnt > 0) { |
| 470 | cnt--; |
| 471 | BUN p = canditer_next(&ci) - hseq; |
| 472 | const void *t = BUNtvar(ni, p); |
| 473 | bunfastapp_nocheckVAR(b, r, t, Tsize(b)); |
| 474 | HASHins(b, r, t); |
| 475 | r++; |
| 476 | } |
| 477 | b->theap.dirty = true; |
| 478 | return GDK_SUCCEED; |
| 479 | |
| 480 | bunins_failed: |
| 481 | if (b->tunique) |
| 482 | BBPunfix(s->batCacheid); |
| 483 | return GDK_FAIL; |
| 484 | } |
| 485 | |
| 486 | /* Append the contents of BAT n (subject to the optional candidate |
| 487 | * list s) to BAT b. If b is empty, b will get the seqbase of s if it |
| 488 | * was passed in, and else the seqbase of n. */ |
| 489 | gdk_return |
| 490 | BATappend(BAT *b, BAT *n, BAT *s, bool force) |
| 491 | { |
| 492 | struct canditer ci; |
| 493 | BUN cnt; |
| 494 | BUN r; |
| 495 | PROPrec *prop, *nprop; |
| 496 | oid hseq = n->hseqbase; |
| 497 | |
| 498 | if (b == NULL || n == NULL || (cnt = BATcount(n)) == 0) { |
| 499 | return GDK_SUCCEED; |
| 500 | } |
| 501 | assert(b->batCacheid > 0); |
| 502 | assert(b->theap.parentid == 0); |
| 503 | |
| 504 | ALIGNapp(b, "BATappend" , force, GDK_FAIL); |
| 505 | |
| 506 | if (ATOMstorage(ATOMtype(b->ttype)) != ATOMstorage(ATOMtype(n->ttype))) { |
| 507 | GDKerror("Incompatible operands.\n" ); |
| 508 | return GDK_FAIL; |
| 509 | } |
| 510 | CHECKDEBUG { |
| 511 | if (BATttype(b) != BATttype(n) && |
| 512 | ATOMtype(b->ttype) != ATOMtype(n->ttype)) { |
| 513 | fprintf(stderr,"#Interpreting %s as %s.\n" , |
| 514 | ATOMname(BATttype(n)), ATOMname(BATttype(b))); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | if (b->tunique) { |
| 519 | /* if b has the unique bit set, only insert values |
| 520 | * from n that don't already occur in b, and make sure |
| 521 | * we don't insert any duplicates either; we do this |
| 522 | * by calculating a subset of n that complies with |
| 523 | * this */ |
| 524 | BAT *d; |
| 525 | |
| 526 | d = BATdiff(n, b, s, NULL, true, false, BUN_NONE); |
| 527 | if (d == NULL) |
| 528 | return GDK_FAIL; |
| 529 | s = BATunique(n, d); |
| 530 | BBPunfix(d->batCacheid); |
| 531 | if (s == NULL) |
| 532 | return GDK_FAIL; |
| 533 | if (BATcount(s) == 0) { |
| 534 | /* no new values in subset of n */ |
| 535 | BBPunfix(s->batCacheid); |
| 536 | return GDK_SUCCEED; |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | cnt = canditer_init(&ci, n, s); |
| 541 | if (cnt == 0) { |
| 542 | assert(!b->tunique); |
| 543 | return GDK_SUCCEED; |
| 544 | } |
| 545 | |
| 546 | if (BUNlast(b) + cnt > BUN_MAX) { |
| 547 | if (b->tunique) |
| 548 | BBPunfix(s->batCacheid); |
| 549 | GDKerror("BATappend: combined BATs too large\n" ); |
| 550 | return GDK_FAIL; |
| 551 | } |
| 552 | |
| 553 | if (b->hseqbase + BATcount(b) + cnt >= GDK_oid_max) { |
| 554 | if (b->tunique) |
| 555 | BBPunfix(s->batCacheid); |
| 556 | GDKerror("BATappend: overflow of head value\n" ); |
| 557 | return GDK_FAIL; |
| 558 | } |
| 559 | |
| 560 | b->batDirtydesc = true; |
| 561 | |
| 562 | IMPSdestroy(b); /* imprints do not support updates yet */ |
| 563 | OIDXdestroy(b); |
| 564 | if ((prop = BATgetprop(b, GDK_MAX_VALUE)) != NULL) { |
| 565 | if ((nprop = BATgetprop(n, GDK_MAX_VALUE)) != NULL) { |
| 566 | if (ATOMcmp(b->ttype, VALptr(&prop->v), VALptr(&nprop->v)) < 0) { |
| 567 | if (s == NULL) |
| 568 | BATsetprop(b, GDK_MAX_VALUE, b->ttype, VALptr(&nprop->v)); |
| 569 | else |
| 570 | BATrmprop(b, GDK_MAX_VALUE); |
| 571 | } |
| 572 | } else { |
| 573 | BATrmprop(b, GDK_MAX_VALUE); |
| 574 | } |
| 575 | } |
| 576 | if ((prop = BATgetprop(b, GDK_MIN_VALUE)) != NULL) { |
| 577 | if ((nprop = BATgetprop(n, GDK_MIN_VALUE)) != NULL) { |
| 578 | if (ATOMcmp(b->ttype, VALptr(&prop->v), VALptr(&nprop->v)) > 0) { |
| 579 | if (s == NULL) |
| 580 | BATsetprop(b, GDK_MIN_VALUE, b->ttype, VALptr(&nprop->v)); |
| 581 | else |
| 582 | BATrmprop(b, GDK_MIN_VALUE); |
| 583 | } |
| 584 | } else { |
| 585 | BATrmprop(b, GDK_MIN_VALUE); |
| 586 | } |
| 587 | } |
| 588 | #if 0 /* enable if we have more properties than just min/max */ |
| 589 | do { |
| 590 | for (prop = b->tprops; prop; prop = prop->next) |
| 591 | if (prop->id != GDK_MAX_VALUE && |
| 592 | prop->id != GDK_MIN_VALUE && |
| 593 | prop->id != GDK_HASH_MASK) { |
| 594 | BATrmprop(b, prop->id); |
| 595 | break; |
| 596 | } |
| 597 | } while (prop); |
| 598 | #endif |
| 599 | if (b->thash == (Hash *) 1 || BATcount(b) == 0 || |
| 600 | (b->thash && ((size_t *) b->thash->heap.base)[0] & (1 << 24))) { |
| 601 | /* don't bother first loading the hash to then change |
| 602 | * it, or updating the hash if we replace the heap, |
| 603 | * also, we cannot maintain persistent hashes */ |
| 604 | HASHdestroy(b); |
| 605 | } |
| 606 | |
| 607 | if (b->ttype == TYPE_void) { |
| 608 | /* b does not have storage, keep it that way if we can */ |
| 609 | HASHdestroy(b); /* we're not maintaining the hash here */ |
| 610 | if (BATtdense(n) && ci.tpe == cand_dense && |
| 611 | (BATcount(b) == 0 || |
| 612 | (BATtdense(b) && |
| 613 | b->tseqbase + BATcount(b) == n->tseqbase + ci.seq - hseq))) { |
| 614 | /* n is also dense and consecutive with b */ |
| 615 | if (BATcount(b) == 0) |
| 616 | BATtseqbase(b, n->tseqbase + ci.seq - hseq); |
| 617 | BATsetcount(b, BATcount(b) + cnt); |
| 618 | if (b->tunique) |
| 619 | BBPunfix(s->batCacheid); |
| 620 | return GDK_SUCCEED; |
| 621 | } |
| 622 | if ((BATcount(b) == 0 || is_oid_nil(b->tseqbase)) && |
| 623 | n->ttype == TYPE_void && is_oid_nil(n->tseqbase)) { |
| 624 | /* both b and n are void/nil */ |
| 625 | BATtseqbase(b, oid_nil); |
| 626 | BATsetcount(b, BATcount(b) + cnt); |
| 627 | if (b->tunique) |
| 628 | BBPunfix(s->batCacheid); |
| 629 | return GDK_SUCCEED; |
| 630 | } |
| 631 | /* we need to materialize b; allocate enough capacity */ |
| 632 | b->batCapacity = BATcount(b) + cnt; |
| 633 | if (BATmaterialize(b) != GDK_SUCCEED) |
| 634 | goto bunins_failed; |
| 635 | } else if (cnt > BATcapacity(b) - BATcount(b)) { |
| 636 | /* if needed space exceeds a normal growth extend just |
| 637 | * with what's needed */ |
| 638 | BUN ncap = BATcount(b) + cnt; |
| 639 | BUN grows = BATgrows(b); |
| 640 | |
| 641 | if (ncap > grows) |
| 642 | grows = ncap; |
| 643 | if (BATextend(b, grows) != GDK_SUCCEED) |
| 644 | goto bunins_failed; |
| 645 | } |
| 646 | |
| 647 | /* if growing too much, remove the hash, else we maintain it */ |
| 648 | MT_lock_set(&b->batIdxLock); |
| 649 | if (b->thash == (Hash *) 1 || |
| 650 | (b->thash != NULL && |
| 651 | (2 * b->thash->mask) < (BATcount(b) + cnt))) { |
| 652 | MT_lock_unset(&b->batIdxLock); |
| 653 | HASHdestroy(b); |
| 654 | } else { |
| 655 | MT_lock_unset(&b->batIdxLock); |
| 656 | } |
| 657 | |
| 658 | r = BUNlast(b); |
| 659 | |
| 660 | if (BATcount(b) == 0) { |
| 661 | b->tsorted = n->tsorted; |
| 662 | b->trevsorted = n->trevsorted; |
| 663 | b->tseqbase = oid_nil; |
| 664 | b->tnonil = n->tnonil; |
| 665 | b->tnil = n->tnil && cnt == BATcount(n); |
| 666 | b->tseqbase = oid_nil; |
| 667 | if (ci.tpe == cand_dense) { |
| 668 | b->tnosorted = ci.seq - hseq <= n->tnosorted && n->tnosorted < ci.seq + cnt - hseq ? n->tnosorted + hseq - ci.seq : 0; |
| 669 | b->tnorevsorted = ci.seq - hseq <= n->tnorevsorted && n->tnorevsorted < ci.seq + cnt - hseq ? n->tnorevsorted + hseq - ci.seq : 0; |
| 670 | if (BATtdense(n)) { |
| 671 | b->tseqbase = n->tseqbase + ci.seq - hseq; |
| 672 | } |
| 673 | } else { |
| 674 | b->tnosorted = 0; |
| 675 | b->tnorevsorted = 0; |
| 676 | } |
| 677 | /* if tunique, uniqueness is guaranteed above */ |
| 678 | b->tkey = n->tkey | b->tunique; |
| 679 | if (!b->tunique && cnt == BATcount(n)) { |
| 680 | b->tnokey[0] = n->tnokey[0]; |
| 681 | b->tnokey[1] = n->tnokey[1]; |
| 682 | } else { |
| 683 | b->tnokey[0] = b->tnokey[1] = 0; |
| 684 | } |
| 685 | } else { |
| 686 | BUN last = r - 1; |
| 687 | BATiter ni = bat_iterator(n); |
| 688 | BATiter bi = bat_iterator(b); |
| 689 | int xx = ATOMcmp(b->ttype, |
| 690 | BUNtail(ni, ci.seq - hseq), |
| 691 | BUNtail(bi, last)); |
| 692 | if (BATtordered(b) && (!BATtordered(n) || xx < 0)) { |
| 693 | b->tsorted = false; |
| 694 | b->tnosorted = 0; |
| 695 | b->tseqbase = oid_nil; |
| 696 | } |
| 697 | if (BATtrevordered(b) && |
| 698 | (!BATtrevordered(n) || xx > 0)) { |
| 699 | b->trevsorted = false; |
| 700 | b->tnorevsorted = 0; |
| 701 | } |
| 702 | if (!b->tunique && /* uniqueness is guaranteed above */ |
| 703 | b->tkey && |
| 704 | (!(BATtordered(b) || BATtrevordered(b)) || |
| 705 | !n->tkey || xx == 0)) { |
| 706 | BATkey(b, false); |
| 707 | } |
| 708 | if (b->ttype != TYPE_void && b->tsorted && BATtdense(b) && |
| 709 | (!BATtdense(n) || |
| 710 | ci.tpe != cand_dense || |
| 711 | 1 + *(oid *) BUNtloc(bi, last) != BUNtoid(n, ci.seq - hseq))) { |
| 712 | b->tseqbase = oid_nil; |
| 713 | } |
| 714 | b->tnonil &= n->tnonil; |
| 715 | b->tnil |= n->tnil && cnt == BATcount(n); |
| 716 | } |
| 717 | if (b->ttype == TYPE_str) { |
| 718 | if (insert_string_bat(b, n, s, force) != GDK_SUCCEED) { |
| 719 | if (b->tunique) |
| 720 | BBPunfix(s->batCacheid); |
| 721 | return GDK_FAIL; |
| 722 | } |
| 723 | } else if (ATOMvarsized(b->ttype)) { |
| 724 | if (append_varsized_bat(b, n, s) != GDK_SUCCEED) { |
| 725 | if (b->tunique) |
| 726 | BBPunfix(s->batCacheid); |
| 727 | return GDK_FAIL; |
| 728 | } |
| 729 | } else { |
| 730 | if (BATatoms[b->ttype].atomFix == NULL && |
| 731 | b->ttype != TYPE_void && |
| 732 | n->ttype != TYPE_void && |
| 733 | ci.tpe == cand_dense) { |
| 734 | /* use fast memcpy if we can, but then we |
| 735 | * can't maintain the hash */ |
| 736 | HASHdestroy(b); |
| 737 | memcpy(Tloc(b, BUNlast(b)), |
| 738 | Tloc(n, ci.seq - hseq), |
| 739 | cnt * Tsize(n)); |
| 740 | BATsetcount(b, BATcount(b) + cnt); |
| 741 | } else { |
| 742 | BATiter ni = bat_iterator(n); |
| 743 | |
| 744 | while (cnt > 0) { |
| 745 | cnt--; |
| 746 | BUN p = canditer_next(&ci) - hseq; |
| 747 | const void *t = BUNtail(ni, p); |
| 748 | bunfastapp_nocheck(b, r, t, Tsize(b)); |
| 749 | HASHins(b, r, t); |
| 750 | r++; |
| 751 | } |
| 752 | } |
| 753 | b->theap.dirty = true; |
| 754 | } |
| 755 | if (b->tunique) |
| 756 | BBPunfix(s->batCacheid); |
| 757 | return GDK_SUCCEED; |
| 758 | bunins_failed: |
| 759 | if (b->tunique) |
| 760 | BBPunfix(s->batCacheid); |
| 761 | return GDK_FAIL; |
| 762 | } |
| 763 | |
| 764 | gdk_return |
| 765 | BATdel(BAT *b, BAT *d) |
| 766 | { |
| 767 | int (*unfix) (const void *) = BATatoms[b->ttype].atomUnfix; |
| 768 | void (*atmdel) (Heap *, var_t *) = BATatoms[b->ttype].atomDel; |
| 769 | BATiter bi = bat_iterator(b); |
| 770 | |
| 771 | assert(ATOMtype(d->ttype) == TYPE_oid); |
| 772 | assert(d->tsorted); |
| 773 | assert(d->tkey); |
| 774 | if (BATcount(d) == 0) |
| 775 | return GDK_SUCCEED; |
| 776 | if (BATtdense(d)) { |
| 777 | oid o = d->tseqbase; |
| 778 | BUN c = BATcount(d); |
| 779 | |
| 780 | if (o + c <= b->hseqbase) |
| 781 | return GDK_SUCCEED; |
| 782 | if (o < b->hseqbase) { |
| 783 | c -= b->hseqbase - o; |
| 784 | o = b->hseqbase; |
| 785 | } |
| 786 | if (o - b->hseqbase < b->batInserted) { |
| 787 | GDKerror("BATdelete: cannot delete committed values\n" ); |
| 788 | return GDK_FAIL; |
| 789 | } |
| 790 | if (o + c > b->hseqbase + BATcount(b)) |
| 791 | c = b->hseqbase + BATcount(b) - o; |
| 792 | if (c == 0) |
| 793 | return GDK_SUCCEED; |
| 794 | if (unfix || atmdel) { |
| 795 | BUN p = o - b->hseqbase; |
| 796 | BUN q = p + c; |
| 797 | while (p < q) { |
| 798 | if (unfix) |
| 799 | (*unfix)(BUNtail(bi, p)); |
| 800 | if (atmdel) |
| 801 | (*atmdel)(b->tvheap, (var_t *) BUNtloc(bi, p)); |
| 802 | p++; |
| 803 | } |
| 804 | } |
| 805 | if (BATtdense(b) && BATmaterialize(b) != GDK_SUCCEED) |
| 806 | return GDK_FAIL; |
| 807 | if (o + c < b->hseqbase + BATcount(b)) { |
| 808 | memmove(Tloc(b, o - b->hseqbase), |
| 809 | Tloc(b, o + c - b->hseqbase), |
| 810 | Tsize(b) * (BATcount(b) - (o + c - b->hseqbase))); |
| 811 | } |
| 812 | b->batCount -= c; |
| 813 | } else { |
| 814 | const oid *o = (const oid *) Tloc(d, 0); |
| 815 | const oid *s; |
| 816 | BUN c = BATcount(d); |
| 817 | BUN nd = 0; |
| 818 | char *p; |
| 819 | |
| 820 | if (o[c - 1] <= b->hseqbase) |
| 821 | return GDK_SUCCEED; |
| 822 | while (*o < b->hseqbase) { |
| 823 | o++; |
| 824 | c--; |
| 825 | } |
| 826 | if (*o - b->hseqbase < b->batInserted) { |
| 827 | GDKerror("BATdelete: cannot delete committed values\n" ); |
| 828 | return GDK_FAIL; |
| 829 | } |
| 830 | if (BATtdense(b) && BATmaterialize(b) != GDK_SUCCEED) |
| 831 | return GDK_FAIL; |
| 832 | s = o; |
| 833 | p = Tloc(b, *o - b->hseqbase); |
| 834 | while (c > 0 && *o < b->hseqbase + BATcount(b)) { |
| 835 | size_t n; |
| 836 | if (unfix) |
| 837 | (*unfix)(BUNtail(bi, *o - b->hseqbase)); |
| 838 | if (atmdel) |
| 839 | (*atmdel)(b->tvheap, (var_t *) BUNtloc(bi, *o - b->hseqbase)); |
| 840 | o++; |
| 841 | c--; |
| 842 | nd++; |
| 843 | if (c == 0 || *o - b->hseqbase >= BATcount(b)) |
| 844 | n = b->hseqbase + BATcount(b) - o[-1] - 1; |
| 845 | else if ((oid) (o - s) < *o - *s) |
| 846 | n = o[0] - o[-1] - 1; |
| 847 | else |
| 848 | n = 0; |
| 849 | if (n > 0) { |
| 850 | n *= Tsize(b); |
| 851 | memmove(p, |
| 852 | Tloc(b, o[-1] + 1 - b->hseqbase), |
| 853 | n); |
| 854 | p += n; |
| 855 | s = o; |
| 856 | } |
| 857 | } |
| 858 | b->batCount -= nd; |
| 859 | } |
| 860 | if (b->batCount <= 1) { |
| 861 | /* some trivial properties */ |
| 862 | b->tkey = true; |
| 863 | b->tsorted = b->trevsorted = true; |
| 864 | if (b->batCount == 0) { |
| 865 | b->tnil = false; |
| 866 | b->tnonil = true; |
| 867 | } |
| 868 | } |
| 869 | /* not sure about these anymore */ |
| 870 | b->tnosorted = b->tnorevsorted = 0; |
| 871 | b->tnokey[0] = b->tnokey[1] = 0; |
| 872 | PROPdestroy(b); |
| 873 | |
| 874 | return GDK_SUCCEED; |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * The last in this series is a BATreplace, which replaces all the |
| 879 | * buns mentioned. |
| 880 | */ |
| 881 | gdk_return |
| 882 | BATreplace(BAT *b, BAT *p, BAT *n, bool force) |
| 883 | { |
| 884 | if (b == NULL || p == NULL || n == NULL || BATcount(n) == 0) { |
| 885 | return GDK_SUCCEED; |
| 886 | } |
| 887 | if (void_replace_bat(b, p, n, force) != GDK_SUCCEED) |
| 888 | return GDK_FAIL; |
| 889 | return GDK_SUCCEED; |
| 890 | } |
| 891 | |
| 892 | |
| 893 | /* |
| 894 | * BAT Selections |
| 895 | * The BAT selectors are among the most heavily used operators. |
| 896 | * Their efficient implementation is therefore mandatory. |
| 897 | * |
| 898 | * BAT slice |
| 899 | * This function returns a horizontal slice from a BAT. It optimizes |
| 900 | * execution by avoiding to copy when the BAT is memory mapped (in |
| 901 | * this case, an independent submap is created) or else when it is |
| 902 | * read-only, then a VIEW bat is created as a result. |
| 903 | * |
| 904 | * If a new copy has to be created, this function takes care to |
| 905 | * preserve void-columns (in this case, the seqbase has to be |
| 906 | * recomputed in the result). |
| 907 | * |
| 908 | * NOTE new semantics, the selected range is excluding the high value. |
| 909 | */ |
| 910 | BAT * |
| 911 | BATslice(BAT *b, BUN l, BUN h) |
| 912 | { |
| 913 | BUN low = l; |
| 914 | BAT *bn; |
| 915 | BATiter bni, bi = bat_iterator(b); |
| 916 | oid foid; /* first oid value if oid column */ |
| 917 | |
| 918 | BATcheck(b, "BATslice" , NULL); |
| 919 | if (h > BATcount(b)) |
| 920 | h = BATcount(b); |
| 921 | if (h < l) |
| 922 | h = l; |
| 923 | |
| 924 | if (l > BUN_MAX || h > BUN_MAX) { |
| 925 | GDKerror("BATslice: boundary out of range\n" ); |
| 926 | return NULL; |
| 927 | } |
| 928 | |
| 929 | if (b->ttype == TYPE_void && b->tvheap != NULL) { |
| 930 | /* slicing a candidate list with exceptions */ |
| 931 | struct canditer ci; |
| 932 | canditer_init(&ci, NULL, b); |
| 933 | return canditer_slice(&ci, l, h); |
| 934 | } |
| 935 | /* If the source BAT is readonly, then we can obtain a VIEW |
| 936 | * that just reuses the memory of the source. */ |
| 937 | if (b->batRestricted == BAT_READ && |
| 938 | (!VIEWtparent(b) || |
| 939 | BBP_cache(VIEWtparent(b))->batRestricted == BAT_READ)) { |
| 940 | bn = VIEWcreate(b->hseqbase + low, b); |
| 941 | if (bn == NULL) |
| 942 | return NULL; |
| 943 | VIEWbounds(b, bn, l, h); |
| 944 | } else { |
| 945 | /* create a new BAT and put everything into it */ |
| 946 | BUN p = l; |
| 947 | BUN q = h; |
| 948 | |
| 949 | bn = COLnew((oid) (b->hseqbase + low), BATtdense(b) ? TYPE_void : b->ttype, h - l, TRANSIENT); |
| 950 | if (bn == NULL) |
| 951 | return NULL; |
| 952 | |
| 953 | if (bn->ttype == TYPE_void || |
| 954 | (!bn->tvarsized && |
| 955 | BATatoms[bn->ttype].atomPut == NULL && |
| 956 | BATatoms[bn->ttype].atomFix == NULL)) { |
| 957 | if (bn->ttype) { |
| 958 | memcpy(Tloc(bn, 0), Tloc(b, p), |
| 959 | (q - p) * Tsize(bn)); |
| 960 | bn->theap.dirty = true; |
| 961 | } |
| 962 | BATsetcount(bn, h - l); |
| 963 | } else { |
| 964 | for (; p < q; p++) { |
| 965 | bunfastapp(bn, BUNtail(bi, p)); |
| 966 | } |
| 967 | } |
| 968 | bn->theap.dirty = true; |
| 969 | bn->tsorted = b->tsorted; |
| 970 | bn->trevsorted = b->trevsorted; |
| 971 | bn->tkey = b->tkey; |
| 972 | bn->tnonil = b->tnonil; |
| 973 | if (b->tnosorted > l && b->tnosorted < h) |
| 974 | bn->tnosorted = b->tnosorted - l; |
| 975 | else |
| 976 | bn->tnosorted = 0; |
| 977 | if (b->tnorevsorted > l && b->tnorevsorted < h) |
| 978 | bn->tnorevsorted = b->tnorevsorted - l; |
| 979 | else |
| 980 | bn->tnorevsorted = 0; |
| 981 | if (b->tnokey[0] >= l && b->tnokey[0] < h && |
| 982 | b->tnokey[1] >= l && b->tnokey[1] < h && |
| 983 | b->tnokey[0] != b->tnokey[1]) { |
| 984 | bn->tnokey[0] = b->tnokey[0] - l; |
| 985 | bn->tnokey[1] = b->tnokey[1] - l; |
| 986 | } else { |
| 987 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 988 | } |
| 989 | } |
| 990 | bn->tnonil = b->tnonil || bn->batCount == 0; |
| 991 | bn->tnil = false; /* we just don't know */ |
| 992 | bn->tnosorted = 0; |
| 993 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 994 | bni = bat_iterator(bn); |
| 995 | if (BATtdense(b)) { |
| 996 | BATtseqbase(bn, (oid) (b->tseqbase + low)); |
| 997 | } else if (bn->ttype == TYPE_oid) { |
| 998 | if (BATcount(bn) == 0) { |
| 999 | BATtseqbase(bn, 0); |
| 1000 | } else if (!is_oid_nil((foid = *(oid *) BUNtloc(bni, 0))) && |
| 1001 | (BATcount(bn) == 1 || |
| 1002 | (bn->tkey && |
| 1003 | bn->tsorted && |
| 1004 | foid + BATcount(bn) - 1 == *(oid *) BUNtloc(bni, BUNlast(bn) - 1)))) { |
| 1005 | BATtseqbase(bn, foid); |
| 1006 | } |
| 1007 | } |
| 1008 | if (bn->batCount <= 1) { |
| 1009 | bn->tsorted = ATOMlinear(b->ttype); |
| 1010 | bn->trevsorted = ATOMlinear(b->ttype); |
| 1011 | BATkey(bn, true); |
| 1012 | } else { |
| 1013 | bn->tsorted = b->tsorted; |
| 1014 | bn->trevsorted = b->trevsorted; |
| 1015 | BATkey(bn, BATtkey(b)); |
| 1016 | } |
| 1017 | ALGODEBUG fprintf(stderr, |
| 1018 | "#BATslice(" ALGOBATFMT "," BUNFMT "," BUNFMT ")" |
| 1019 | "=" ALGOBATFMT "\n" , |
| 1020 | ALGOBATPAR(b), l, h, ALGOBATPAR(bn)); |
| 1021 | return bn; |
| 1022 | bunins_failed: |
| 1023 | BBPreclaim(bn); |
| 1024 | return NULL; |
| 1025 | } |
| 1026 | |
| 1027 | /* Return whether the BAT has all unique values or not. It we don't |
| 1028 | * know, invest in a proper check and record the results in the bat |
| 1029 | * descriptor. */ |
| 1030 | bool |
| 1031 | BATkeyed(BAT *b) |
| 1032 | { |
| 1033 | lng t0 = GDKusec(); |
| 1034 | BATiter bi = bat_iterator(b); |
| 1035 | int (*cmpf)(const void *, const void *) = ATOMcompare(b->ttype); |
| 1036 | BUN p, q, hb; |
| 1037 | Hash *hs = NULL; |
| 1038 | |
| 1039 | if (b->ttype == TYPE_void) |
| 1040 | return BATtdense(b) || BATcount(b) <= 1; |
| 1041 | if (BATcount(b) <= 1) |
| 1042 | return true; |
| 1043 | if (b->twidth < SIZEOF_BUN && |
| 1044 | BATcount(b) > (BUN) 1 << (8 * b->twidth)) { |
| 1045 | /* more rows than possible bit combinations in the atom */ |
| 1046 | assert(!b->tkey); |
| 1047 | return false; |
| 1048 | } |
| 1049 | |
| 1050 | b->batDirtydesc = true; |
| 1051 | if (!b->tkey && b->tnokey[0] == 0 && b->tnokey[1] == 0) { |
| 1052 | if (b->tsorted || b->trevsorted) { |
| 1053 | const void *prev = BUNtail(bi, 0); |
| 1054 | const void *cur; |
| 1055 | for (q = BUNlast(b), p = 1; p < q; p++) { |
| 1056 | cur = BUNtail(bi, p); |
| 1057 | if ((*cmpf)(prev, cur) == 0) { |
| 1058 | b->tnokey[0] = p - 1; |
| 1059 | b->tnokey[1] = p; |
| 1060 | ALGODEBUG fprintf(stderr, "#BATkeyed: fixed nokey(" BUNFMT "," BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , p - 1, p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1061 | goto doreturn; |
| 1062 | } |
| 1063 | prev = cur; |
| 1064 | } |
| 1065 | /* we completed the scan: no duplicates */ |
| 1066 | b->tkey = true; |
| 1067 | } else if (BATcheckhash(b) || |
| 1068 | (!b->batTransient && |
| 1069 | BAThash(b) == GDK_SUCCEED) || |
| 1070 | (VIEWtparent(b) != 0 && |
| 1071 | BATcheckhash(BBPdescriptor(VIEWtparent(b))))) { |
| 1072 | /* we already have a hash table on b, or b is |
| 1073 | * persistent and we could create a hash |
| 1074 | * table, or b is a view on a bat that already |
| 1075 | * has a hash table */ |
| 1076 | BUN lo = 0; |
| 1077 | |
| 1078 | hs = b->thash; |
| 1079 | if (hs == NULL && VIEWtparent(b) != 0) { |
| 1080 | BAT *b2 = BBPdescriptor(VIEWtparent(b)); |
| 1081 | lo = (BUN) ((b->theap.base - b2->theap.base) >> b->tshift); |
| 1082 | hs = b2->thash; |
| 1083 | } |
| 1084 | for (q = BUNlast(b), p = 0; p < q; p++) { |
| 1085 | const void *v = BUNtail(bi, p); |
| 1086 | for (hb = HASHgetlink(hs, p + lo); |
| 1087 | hb != HASHnil(hs) && hb >= lo; |
| 1088 | hb = HASHgetlink(hs, hb)) { |
| 1089 | assert(hb < p + lo); |
| 1090 | if ((*cmpf)(v, BUNtail(bi, hb - lo)) == 0) { |
| 1091 | b->tnokey[0] = hb - lo; |
| 1092 | b->tnokey[1] = p; |
| 1093 | ALGODEBUG fprintf(stderr, "#BATkeyed: fixed nokey(" BUNFMT "," BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , hb - lo, p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1094 | goto doreturn; |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | /* we completed the scan: no duplicates */ |
| 1099 | b->tkey = true; |
| 1100 | } else { |
| 1101 | const char *nme; |
| 1102 | BUN prb; |
| 1103 | BUN mask; |
| 1104 | int len; |
| 1105 | |
| 1106 | GDKclrerr(); /* not interested in BAThash errors */ |
| 1107 | nme = BBP_physical(b->batCacheid); |
| 1108 | if (ATOMbasetype(b->ttype) == TYPE_bte) { |
| 1109 | mask = (BUN) 1 << 8; |
| 1110 | cmpf = NULL; /* no compare needed, "hash" is perfect */ |
| 1111 | } else if (ATOMbasetype(b->ttype) == TYPE_sht) { |
| 1112 | mask = (BUN) 1 << 16; |
| 1113 | cmpf = NULL; /* no compare needed, "hash" is perfect */ |
| 1114 | } else { |
| 1115 | mask = HASHmask(b->batCount); |
| 1116 | if (mask < ((BUN) 1 << 16)) |
| 1117 | mask = (BUN) 1 << 16; |
| 1118 | } |
| 1119 | if ((hs = GDKzalloc(sizeof(Hash))) == NULL) |
| 1120 | goto doreturn; |
| 1121 | len = snprintf(hs->heap.filename, sizeof(hs->heap.filename), "%s.hash%d" , nme, THRgettid()); |
| 1122 | if (len == -1 || len >= (int) sizeof(hs->heap.filename) || |
| 1123 | HASHnew(hs, b->ttype, BUNlast(b), mask, BUN_NONE) != GDK_SUCCEED) { |
| 1124 | GDKfree(hs); |
| 1125 | /* err on the side of caution: not keyed */ |
| 1126 | goto doreturn; |
| 1127 | } |
| 1128 | for (q = BUNlast(b), p = 0; p < q; p++) { |
| 1129 | const void *v = BUNtail(bi, p); |
| 1130 | prb = HASHprobe(hs, v); |
| 1131 | for (hb = HASHget(hs, prb); |
| 1132 | hb != HASHnil(hs); |
| 1133 | hb = HASHgetlink(hs, hb)) { |
| 1134 | if (cmpf == NULL || |
| 1135 | (*cmpf)(v, BUNtail(bi, hb)) == 0) { |
| 1136 | b->tnokey[0] = hb; |
| 1137 | b->tnokey[1] = p; |
| 1138 | ALGODEBUG fprintf(stderr, "#BATkeyed: fixed nokey(" BUNFMT "," BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , hb, p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1139 | goto doreturn_free; |
| 1140 | } |
| 1141 | } |
| 1142 | /* enter into hash table */ |
| 1143 | HASHputlink(hs, p, HASHget(hs, prb)); |
| 1144 | HASHput(hs, prb, p); |
| 1145 | } |
| 1146 | doreturn_free: |
| 1147 | HEAPfree(&hs->heap, true); |
| 1148 | GDKfree(hs); |
| 1149 | if (p == q) { |
| 1150 | /* we completed the complete scan: no |
| 1151 | * duplicates */ |
| 1152 | b->tkey = true; |
| 1153 | } |
| 1154 | } |
| 1155 | } |
| 1156 | doreturn: |
| 1157 | return b->tkey; |
| 1158 | } |
| 1159 | |
| 1160 | /* Return whether the BAT is ordered or not. If we don't know, invest |
| 1161 | * in a scan and record the results in the bat descriptor. If during |
| 1162 | * the scan we happen to find evidence that the BAT is not reverse |
| 1163 | * sorted, we record the location. */ |
| 1164 | bool |
| 1165 | BATordered(BAT *b) |
| 1166 | { |
| 1167 | lng t0 = 0; |
| 1168 | |
| 1169 | ALGODEBUG t0 = GDKusec(); |
| 1170 | |
| 1171 | if (b->ttype == TYPE_void) |
| 1172 | return true; |
| 1173 | /* In order that multiple threads don't scan the same BAT at |
| 1174 | * the same time (happens a lot with mitosis/mergetable), we |
| 1175 | * use a lock. We reuse the hash lock for this, not because |
| 1176 | * this scanning interferes with hashes, but because it's |
| 1177 | * there, and not so likely to be used at the same time. */ |
| 1178 | MT_lock_set(&b->batIdxLock); |
| 1179 | if (!b->tsorted && b->tnosorted == 0) { |
| 1180 | BATiter bi = bat_iterator(b); |
| 1181 | int (*cmpf)(const void *, const void *) = ATOMcompare(b->ttype); |
| 1182 | BUN p, q; |
| 1183 | b->batDirtydesc = true; |
| 1184 | switch (ATOMbasetype(b->ttype)) { |
| 1185 | case TYPE_int: { |
| 1186 | const int *iptr = (const int *) Tloc(b, 0); |
| 1187 | for (q = BUNlast(b), p = 1; p < q; p++) { |
| 1188 | if (iptr[p - 1] > iptr[p]) { |
| 1189 | b->tnosorted = p; |
| 1190 | ALGODEBUG fprintf(stderr, "#BATordered: fixed nosorted(" BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1191 | goto doreturn; |
| 1192 | } else if (!b->trevsorted && |
| 1193 | b->tnorevsorted == 0 && |
| 1194 | iptr[p - 1] < iptr[p]) { |
| 1195 | b->tnorevsorted = p; |
| 1196 | ALGODEBUG fprintf(stderr, "#BATordered: fixed norevsorted(" BUNFMT ") for %s#" BUNFMT "\n" , p, BATgetId(b), BATcount(b)); |
| 1197 | } |
| 1198 | } |
| 1199 | break; |
| 1200 | } |
| 1201 | case TYPE_lng: { |
| 1202 | const lng *lptr = (const lng *) Tloc(b, 0); |
| 1203 | for (q = BUNlast(b), p = 1; p < q; p++) { |
| 1204 | if (lptr[p - 1] > lptr[p]) { |
| 1205 | b->tnosorted = p; |
| 1206 | ALGODEBUG fprintf(stderr, "#BATordered: fixed nosorted(" BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1207 | goto doreturn; |
| 1208 | } else if (!b->trevsorted && |
| 1209 | b->tnorevsorted == 0 && |
| 1210 | lptr[p - 1] < lptr[p]) { |
| 1211 | b->tnorevsorted = p; |
| 1212 | ALGODEBUG fprintf(stderr, "#BATordered: fixed norevsorted(" BUNFMT ") for %s#" BUNFMT "\n" , p, BATgetId(b), BATcount(b)); |
| 1213 | } |
| 1214 | } |
| 1215 | break; |
| 1216 | } |
| 1217 | default: |
| 1218 | for (q = BUNlast(b), p = 1; p < q; p++) { |
| 1219 | int c; |
| 1220 | if ((c = cmpf(BUNtail(bi, p - 1), BUNtail(bi, p))) > 0) { |
| 1221 | b->tnosorted = p; |
| 1222 | ALGODEBUG fprintf(stderr, "#BATordered: fixed nosorted(" BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1223 | goto doreturn; |
| 1224 | } else if (!b->trevsorted && |
| 1225 | b->tnorevsorted == 0 && |
| 1226 | c < 0) { |
| 1227 | b->tnorevsorted = p; |
| 1228 | ALGODEBUG fprintf(stderr, "#BATordered: fixed norevsorted(" BUNFMT ") for %s#" BUNFMT "\n" , p, BATgetId(b), BATcount(b)); |
| 1229 | } |
| 1230 | } |
| 1231 | break; |
| 1232 | } |
| 1233 | /* we only get here if we completed the scan; note |
| 1234 | * that if we didn't record evidence about *reverse* |
| 1235 | * sortedness, we know that the BAT is also reverse |
| 1236 | * sorted */ |
| 1237 | b->tsorted = true; |
| 1238 | ALGODEBUG fprintf(stderr, "#BATordered: fixed sorted for %s#" BUNFMT " (" LLFMT " usec)\n" , BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1239 | if (!b->trevsorted && b->tnorevsorted == 0) { |
| 1240 | b->trevsorted = true; |
| 1241 | ALGODEBUG fprintf(stderr, "#BATordered: fixed revsorted for %s#" BUNFMT "\n" , BATgetId(b), BATcount(b)); |
| 1242 | } |
| 1243 | } |
| 1244 | doreturn: |
| 1245 | MT_lock_unset(&b->batIdxLock); |
| 1246 | return b->tsorted; |
| 1247 | } |
| 1248 | |
| 1249 | /* Return whether the BAT is reverse ordered or not. If we don't |
| 1250 | * know, invest in a scan and record the results in the bat |
| 1251 | * descriptor. */ |
| 1252 | bool |
| 1253 | BATordered_rev(BAT *b) |
| 1254 | { |
| 1255 | lng t0 = 0; |
| 1256 | |
| 1257 | ALGODEBUG t0 = GDKusec(); |
| 1258 | |
| 1259 | if (b == NULL) |
| 1260 | return false; |
| 1261 | if (BATcount(b) <= 1) |
| 1262 | return true; |
| 1263 | if (b->ttype == TYPE_void) |
| 1264 | return is_oid_nil(b->tseqbase); |
| 1265 | if (BATtdense(b)) |
| 1266 | return false; |
| 1267 | MT_lock_set(&b->batIdxLock); |
| 1268 | if (!b->trevsorted && b->tnorevsorted == 0) { |
| 1269 | BATiter bi = bat_iterator(b); |
| 1270 | int (*cmpf)(const void *, const void *) = ATOMcompare(b->ttype); |
| 1271 | BUN p, q; |
| 1272 | b->batDirtydesc = true; |
| 1273 | for (q = BUNlast(b), p = 1; p < q; p++) { |
| 1274 | if (cmpf(BUNtail(bi, p - 1), BUNtail(bi, p)) < 0) { |
| 1275 | b->tnorevsorted = p; |
| 1276 | ALGODEBUG fprintf(stderr, "#BATordered_rev: fixed norevsorted(" BUNFMT ") for %s#" BUNFMT " (" LLFMT " usec)\n" , p, BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1277 | goto doreturn; |
| 1278 | } |
| 1279 | } |
| 1280 | b->trevsorted = true; |
| 1281 | ALGODEBUG fprintf(stderr, "#BATordered_rev: fixed revsorted for %s#" BUNFMT " (" LLFMT " usec)\n" , BATgetId(b), BATcount(b), GDKusec() - t0); |
| 1282 | } |
| 1283 | doreturn: |
| 1284 | MT_lock_unset(&b->batIdxLock); |
| 1285 | return b->trevsorted; |
| 1286 | } |
| 1287 | |
| 1288 | /* figure out which sort function is to be called |
| 1289 | * stable sort can produce an error (not enough memory available), |
| 1290 | * "quick" sort does not produce errors */ |
| 1291 | static gdk_return |
| 1292 | do_sort(void *restrict h, void *restrict t, const void *restrict base, |
| 1293 | size_t n, int hs, int ts, int tpe, bool reverse, bool nilslast, |
| 1294 | bool stable) |
| 1295 | { |
| 1296 | if (n <= 1) /* trivially sorted */ |
| 1297 | return GDK_SUCCEED; |
| 1298 | if (stable) { |
| 1299 | if (reverse) |
| 1300 | return GDKssort_rev(h, t, base, n, hs, ts, tpe); |
| 1301 | else |
| 1302 | return GDKssort(h, t, base, n, hs, ts, tpe); |
| 1303 | } else { |
| 1304 | GDKqsort(h, t, base, n, hs, ts, tpe, reverse, nilslast); |
| 1305 | } |
| 1306 | return GDK_SUCCEED; |
| 1307 | } |
| 1308 | |
| 1309 | /* Sort the bat b according to both o and g. The stable and reverse |
| 1310 | * parameters indicate whether the sort should be stable or descending |
| 1311 | * respectively. The parameter b is required, o and g are optional |
| 1312 | * (i.e., they may be NULL). |
| 1313 | * |
| 1314 | * A sorted copy is returned through the sorted parameter, the new |
| 1315 | * ordering is returned through the order parameter, group information |
| 1316 | * is returned through the groups parameter. All three output |
| 1317 | * parameters may be NULL. If they're all NULL, this function does |
| 1318 | * nothing. |
| 1319 | * |
| 1320 | * If o is specified, it is used to first rearrange b according to the |
| 1321 | * order specified in o, after which b is sorted taking g into |
| 1322 | * account. |
| 1323 | * |
| 1324 | * If g is specified, it indicates groups which should be individually |
| 1325 | * ordered. Each row of consecutive equal values in g indicates a |
| 1326 | * group which is sorted according to stable and reverse. g is used |
| 1327 | * after the order in b was rearranged according to o. |
| 1328 | * |
| 1329 | * The outputs order and groups can be used in subsequent calls to |
| 1330 | * this function. This can be used if multiple BATs need to be sorted |
| 1331 | * together. The BATs should then be sorted in order of significance, |
| 1332 | * and each following call should use the original unordered BAT plus |
| 1333 | * the order and groups bat from the previous call. In this case, the |
| 1334 | * sorted BATs are not of much use, so the sorted output parameter |
| 1335 | * does not need to be specified. |
| 1336 | * Apart from error checking and maintaining reference counts, sorting |
| 1337 | * three columns (col1, col2, col3) could look like this with the |
| 1338 | * sorted results in (col1s, col2s, col3s): |
| 1339 | * BATsort(&col1s, &ord1, &grp1, col1, NULL, NULL, false, false, false); |
| 1340 | * BATsort(&col2s, &ord2, &grp2, col2, ord1, grp1, false, false, false); |
| 1341 | * BATsort(&col3s, NULL, NULL, col3, ord2, grp2, false, false, false); |
| 1342 | * Note that the "reverse" parameter can be different for each call. |
| 1343 | */ |
| 1344 | gdk_return |
| 1345 | BATsort(BAT **sorted, BAT **order, BAT **groups, |
| 1346 | BAT *b, BAT *o, BAT *g, bool reverse, bool nilslast, bool stable) |
| 1347 | { |
| 1348 | BAT *bn = NULL, *on = NULL, *gn = NULL, *pb = NULL; |
| 1349 | oid *restrict grps, *restrict ords, prev; |
| 1350 | BUN p, q, r; |
| 1351 | lng t0 = 0; |
| 1352 | bool mkorderidx, orderidxlock = false; |
| 1353 | |
| 1354 | ALGODEBUG t0 = GDKusec(); |
| 1355 | |
| 1356 | /* we haven't implemented NILs as largest value for stable |
| 1357 | * sort, so NILs come first for ascending and last for |
| 1358 | * descending */ |
| 1359 | assert(!stable || reverse == nilslast); |
| 1360 | |
| 1361 | if (b == NULL) { |
| 1362 | GDKerror("BATsort: b must exist\n" ); |
| 1363 | return GDK_FAIL; |
| 1364 | } |
| 1365 | if (stable && reverse != nilslast) { |
| 1366 | GDKerror("BATsort: stable sort cannot have " |
| 1367 | "reverse != nilslast\n" ); |
| 1368 | return GDK_FAIL; |
| 1369 | } |
| 1370 | if (!ATOMlinear(b->ttype)) { |
| 1371 | GDKerror("BATsort: type %s cannot be sorted\n" , |
| 1372 | ATOMname(b->ttype)); |
| 1373 | return GDK_FAIL; |
| 1374 | } |
| 1375 | if (b->ttype == TYPE_void) { |
| 1376 | if (!b->tsorted) { |
| 1377 | b->tsorted = true; |
| 1378 | b->batDirtydesc = true; |
| 1379 | } |
| 1380 | if (b->trevsorted != is_oid_nil(b->tseqbase) || b->batCount <= 1) { |
| 1381 | b->trevsorted = !b->trevsorted; |
| 1382 | b->batDirtydesc = true; |
| 1383 | } |
| 1384 | if (b->tkey != !is_oid_nil(b->tseqbase)) { |
| 1385 | b->tkey = !b->tkey; |
| 1386 | b->batDirtydesc = true; |
| 1387 | } |
| 1388 | } else if (b->batCount <= 1) { |
| 1389 | if (!b->tsorted || !b->trevsorted) { |
| 1390 | b->tsorted = b->trevsorted = true; |
| 1391 | b->batDirtydesc = true; |
| 1392 | } |
| 1393 | } |
| 1394 | if (o != NULL && |
| 1395 | (ATOMtype(o->ttype) != TYPE_oid || /* oid tail */ |
| 1396 | BATcount(o) != BATcount(b) || /* same size as b */ |
| 1397 | (o->ttype == TYPE_void && /* no nil tail */ |
| 1398 | BATcount(o) != 0 && |
| 1399 | is_oid_nil(o->tseqbase)))) { |
| 1400 | GDKerror("BATsort: o must have type oid and same size as b\n" ); |
| 1401 | return GDK_FAIL; |
| 1402 | } |
| 1403 | if (g != NULL && |
| 1404 | (ATOMtype(g->ttype) != TYPE_oid || /* oid tail */ |
| 1405 | !g->tsorted || /* sorted */ |
| 1406 | BATcount(o) != BATcount(b) || /* same size as b */ |
| 1407 | (g->ttype == TYPE_void && /* no nil tail */ |
| 1408 | BATcount(g) != 0 && |
| 1409 | is_oid_nil(g->tseqbase)))) { |
| 1410 | GDKerror("BATsort: g must have type oid, sorted on the tail, " |
| 1411 | "and same size as b\n" ); |
| 1412 | return GDK_FAIL; |
| 1413 | } |
| 1414 | if (sorted == NULL && order == NULL) { |
| 1415 | /* no place to put result, so we're done quickly */ |
| 1416 | GDKerror("BATsort: no place to put the result.\n" ); |
| 1417 | return GDK_FAIL; |
| 1418 | } |
| 1419 | if (g == NULL && !stable) { |
| 1420 | /* pre-ordering doesn't make sense if we're not |
| 1421 | * subsorting and the sort is not stable */ |
| 1422 | o = NULL; |
| 1423 | } |
| 1424 | if (b->tnonil) { |
| 1425 | /* if there are no nils, placement of nils doesn't |
| 1426 | * matter, so set nilslast such that ordered bits can |
| 1427 | * be used */ |
| 1428 | nilslast = reverse; |
| 1429 | } |
| 1430 | if (BATcount(b) <= 1 || |
| 1431 | (reverse == nilslast && |
| 1432 | (reverse ? BATtrevordered(b) : BATtordered(b)) && |
| 1433 | o == NULL && g == NULL && |
| 1434 | (groups == NULL || BATtkey(b) || |
| 1435 | (reverse ? BATtordered(b) : BATtrevordered(b))))) { |
| 1436 | /* trivially (sub)sorted, and either we don't need to |
| 1437 | * return group information, or we can trivially |
| 1438 | * deduce the groups */ |
| 1439 | if (sorted) { |
| 1440 | bn = COLcopy(b, b->ttype, false, TRANSIENT); |
| 1441 | if (bn == NULL) |
| 1442 | goto error; |
| 1443 | *sorted = bn; |
| 1444 | } |
| 1445 | if (order) { |
| 1446 | on = BATdense(b->hseqbase, b->hseqbase, BATcount(b)); |
| 1447 | if (on == NULL) |
| 1448 | goto error; |
| 1449 | *order = on; |
| 1450 | } |
| 1451 | if (groups) { |
| 1452 | if (BATtkey(b)) { |
| 1453 | /* singleton groups */ |
| 1454 | gn = BATdense(0, 0, BATcount(b)); |
| 1455 | if (gn == NULL) |
| 1456 | goto error; |
| 1457 | } else { |
| 1458 | /* single group */ |
| 1459 | const oid *o = 0; |
| 1460 | assert(BATcount(b) == 1 || |
| 1461 | (BATtordered(b) && BATtrevordered(b))); |
| 1462 | gn = BATconstant(0, TYPE_oid, &o, BATcount(b), TRANSIENT); |
| 1463 | if (gn == NULL) |
| 1464 | goto error; |
| 1465 | } |
| 1466 | *groups = gn; |
| 1467 | } |
| 1468 | ALGODEBUG fprintf(stderr, "#BATsort(b=" ALGOBATFMT ",o=" |
| 1469 | ALGOOPTBATFMT ",g=" ALGOOPTBATFMT |
| 1470 | ",reverse=%d,nilslast=%d,stable=%d) = (" |
| 1471 | ALGOOPTBATFMT "," ALGOOPTBATFMT "," |
| 1472 | ALGOOPTBATFMT ") -- trivial (" LLFMT |
| 1473 | " usec)\n" , |
| 1474 | ALGOBATPAR(b), ALGOOPTBATPAR(o), |
| 1475 | ALGOOPTBATPAR(g), reverse, nilslast, stable, |
| 1476 | ALGOOPTBATPAR(bn), ALGOOPTBATPAR(gn), |
| 1477 | ALGOOPTBATPAR(on), GDKusec() - t0); |
| 1478 | return GDK_SUCCEED; |
| 1479 | } |
| 1480 | if (VIEWtparent(b)) { |
| 1481 | pb = BBPdescriptor(VIEWtparent(b)); |
| 1482 | if (b->theap.base != pb->theap.base || |
| 1483 | BATcount(b) != BATcount(pb) || |
| 1484 | b->hseqbase != pb->hseqbase || |
| 1485 | BATatoms[b->ttype].atomCmp != BATatoms[pb->ttype].atomCmp) |
| 1486 | pb = NULL; |
| 1487 | } else { |
| 1488 | pb = b; |
| 1489 | } |
| 1490 | /* when we will create an order index if it doesn't already exist */ |
| 1491 | mkorderidx = (g == NULL && !reverse && !nilslast && pb != NULL && (order || !pb->batTransient)); |
| 1492 | if (g == NULL && !reverse && !nilslast && |
| 1493 | pb != NULL && !BATcheckorderidx(pb)) { |
| 1494 | MT_lock_set(&pb->batIdxLock); |
| 1495 | if (pb->torderidx == NULL) { |
| 1496 | /* no index created while waiting for lock */ |
| 1497 | if (mkorderidx) /* keep lock when going to create */ |
| 1498 | orderidxlock = true; |
| 1499 | } else { |
| 1500 | /* no need to create an index: it already exists */ |
| 1501 | mkorderidx = false; |
| 1502 | } |
| 1503 | if (!orderidxlock) |
| 1504 | MT_lock_unset(&pb->batIdxLock); |
| 1505 | } else { |
| 1506 | mkorderidx = false; |
| 1507 | } |
| 1508 | if (g == NULL && o == NULL && !reverse && !nilslast && |
| 1509 | pb != NULL && pb->torderidx != NULL && |
| 1510 | /* if we want a stable sort, the order index must be |
| 1511 | * stable, if we don't want stable, we don't care */ |
| 1512 | (!stable || ((oid *) pb->torderidx->base)[2])) { |
| 1513 | /* there is an order index that we can use */ |
| 1514 | on = COLnew(pb->hseqbase, TYPE_oid, BATcount(pb), TRANSIENT); |
| 1515 | if (on == NULL) |
| 1516 | goto error; |
| 1517 | memcpy(Tloc(on, 0), (oid *) pb->torderidx->base + ORDERIDXOFF, BATcount(pb) * sizeof(oid)); |
| 1518 | BATsetcount(on, BATcount(b)); |
| 1519 | on->tkey = true; |
| 1520 | on->tnil = false; |
| 1521 | on->tnonil = true; |
| 1522 | on->tsorted = on->trevsorted = false; |
| 1523 | on->tseqbase = oid_nil; |
| 1524 | if (sorted || groups) { |
| 1525 | bn = BATproject(on, b); |
| 1526 | if (bn == NULL) |
| 1527 | goto error; |
| 1528 | bn->tsorted = true; |
| 1529 | if (groups) { |
| 1530 | if (BATgroup_internal(groups, NULL, NULL, bn, NULL, g, NULL, NULL, true) != GDK_SUCCEED) |
| 1531 | goto error; |
| 1532 | if (sorted && |
| 1533 | (*groups)->tkey && |
| 1534 | g == NULL) { |
| 1535 | /* if new groups bat is key |
| 1536 | * and since there is no input |
| 1537 | * groups bat, we know the |
| 1538 | * result bat is key */ |
| 1539 | bn->tkey = true; |
| 1540 | } |
| 1541 | } |
| 1542 | if (sorted) |
| 1543 | *sorted = bn; |
| 1544 | else { |
| 1545 | BBPunfix(bn->batCacheid); |
| 1546 | bn = NULL; |
| 1547 | } |
| 1548 | } |
| 1549 | if (order) |
| 1550 | *order = on; |
| 1551 | else { |
| 1552 | BBPunfix(on->batCacheid); |
| 1553 | on = NULL; |
| 1554 | } |
| 1555 | ALGODEBUG fprintf(stderr, "#BATsort(b=" ALGOBATFMT ",o=" |
| 1556 | ALGOOPTBATFMT ",g=" ALGOOPTBATFMT |
| 1557 | ",reverse=%d,nilslast=%d,stable=%d) = (" |
| 1558 | ALGOOPTBATFMT "," ALGOOPTBATFMT "," |
| 1559 | ALGOOPTBATFMT ") -- orderidx (" LLFMT |
| 1560 | " usec)\n" , |
| 1561 | ALGOBATPAR(b), ALGOOPTBATPAR(o), |
| 1562 | ALGOOPTBATPAR(g), reverse, nilslast, stable, |
| 1563 | ALGOOPTBATPAR(bn), ALGOOPTBATPAR(gn), |
| 1564 | ALGOOPTBATPAR(on), GDKusec() - t0); |
| 1565 | return GDK_SUCCEED; |
| 1566 | } |
| 1567 | if (o) { |
| 1568 | bn = BATproject(o, b); |
| 1569 | if (bn == NULL) |
| 1570 | goto error; |
| 1571 | if (bn->ttype == TYPE_void || isVIEW(bn)) { |
| 1572 | BAT *b2 = COLcopy(bn, ATOMtype(bn->ttype), true, TRANSIENT); |
| 1573 | BBPunfix(bn->batCacheid); |
| 1574 | bn = b2; |
| 1575 | } |
| 1576 | pb = NULL; |
| 1577 | } else { |
| 1578 | bn = COLcopy(b, b->ttype, true, TRANSIENT); |
| 1579 | } |
| 1580 | if (bn == NULL) |
| 1581 | goto error; |
| 1582 | if (order) { |
| 1583 | /* prepare order bat */ |
| 1584 | if (o) { |
| 1585 | /* make copy of input so that we can refine it; |
| 1586 | * copy can be read-only if we take the shortcut |
| 1587 | * below in the case g is "key" */ |
| 1588 | on = COLcopy(o, TYPE_oid, |
| 1589 | g == NULL || |
| 1590 | !(g->tkey || g->ttype == TYPE_void), |
| 1591 | TRANSIENT); |
| 1592 | if (on == NULL) |
| 1593 | goto error; |
| 1594 | BAThseqbase(on, b->hseqbase); |
| 1595 | } else { |
| 1596 | /* create new order */ |
| 1597 | on = COLnew(b->hseqbase, TYPE_oid, BATcount(bn), TRANSIENT); |
| 1598 | if (on == NULL) |
| 1599 | goto error; |
| 1600 | ords = (oid *) Tloc(on, 0); |
| 1601 | for (p = 0, q = BATcount(bn); p < q; p++) |
| 1602 | ords[p] = p + b->hseqbase; |
| 1603 | BATsetcount(on, BATcount(bn)); |
| 1604 | on->tkey = true; |
| 1605 | on->tnil = false; |
| 1606 | on->tnonil = true; |
| 1607 | } |
| 1608 | /* COLcopy above can create TYPE_void */ |
| 1609 | if (on->ttype != TYPE_void) { |
| 1610 | on->tsorted = on->trevsorted = false; /* it won't be sorted */ |
| 1611 | on->tseqbase = oid_nil; /* and hence not dense */ |
| 1612 | on->tnosorted = on->tnorevsorted = 0; |
| 1613 | } |
| 1614 | *order = on; |
| 1615 | ords = (oid *) Tloc(on, 0); |
| 1616 | } else { |
| 1617 | ords = NULL; |
| 1618 | } |
| 1619 | if (g) { |
| 1620 | if (g->tkey || g->ttype == TYPE_void) { |
| 1621 | /* if g is "key", all groups are size 1, so no |
| 1622 | * subsorting needed */ |
| 1623 | if (sorted) { |
| 1624 | *sorted = bn; |
| 1625 | } else { |
| 1626 | BBPunfix(bn->batCacheid); |
| 1627 | bn = NULL; |
| 1628 | } |
| 1629 | if (order) { |
| 1630 | *order = on; |
| 1631 | if (o) { |
| 1632 | /* we can inherit sortedness |
| 1633 | * after all */ |
| 1634 | on->tsorted = o->tsorted; |
| 1635 | on->trevsorted = o->trevsorted; |
| 1636 | if (o->tnosorted) |
| 1637 | on->tnosorted = o->tnosorted; |
| 1638 | if (o->tnorevsorted) |
| 1639 | on->tnorevsorted = o->tnorevsorted; |
| 1640 | } else { |
| 1641 | /* we didn't rearrange, so |
| 1642 | * still sorted */ |
| 1643 | on->tsorted = true; |
| 1644 | on->trevsorted = false; |
| 1645 | } |
| 1646 | if (BATcount(on) <= 1) { |
| 1647 | on->tsorted = true; |
| 1648 | on->trevsorted = true; |
| 1649 | } |
| 1650 | } |
| 1651 | if (groups) { |
| 1652 | gn = COLcopy(g, g->ttype, false, TRANSIENT); |
| 1653 | if (gn == NULL) |
| 1654 | goto error; |
| 1655 | *groups = gn; |
| 1656 | } |
| 1657 | ALGODEBUG fprintf(stderr, "#BATsort(b=" ALGOBATFMT |
| 1658 | ",o=" ALGOOPTBATFMT ",g=" ALGOBATFMT |
| 1659 | ",reverse=%d,nilslast=%d,stable=%d" |
| 1660 | ") = (" ALGOOPTBATFMT "," |
| 1661 | ALGOOPTBATFMT "," ALGOOPTBATFMT |
| 1662 | ") -- key group (" LLFMT " usec)\n" , |
| 1663 | ALGOBATPAR(b), ALGOOPTBATPAR(o), |
| 1664 | ALGOBATPAR(g), reverse, nilslast, |
| 1665 | stable, ALGOOPTBATPAR(bn), |
| 1666 | ALGOOPTBATPAR(gn), ALGOOPTBATPAR(on), |
| 1667 | GDKusec() - t0); |
| 1668 | return GDK_SUCCEED; |
| 1669 | } |
| 1670 | assert(g->ttype == TYPE_oid); |
| 1671 | grps = (oid *) Tloc(g, 0); |
| 1672 | prev = grps[0]; |
| 1673 | if (BATmaterialize(bn) != GDK_SUCCEED) |
| 1674 | goto error; |
| 1675 | for (r = 0, p = 1, q = BATcount(g); p < q; p++) { |
| 1676 | if (grps[p] != prev) { |
| 1677 | /* sub sort [r,p) */ |
| 1678 | if (do_sort(Tloc(bn, r), |
| 1679 | ords ? ords + r : NULL, |
| 1680 | bn->tvheap ? bn->tvheap->base : NULL, |
| 1681 | p - r, Tsize(bn), ords ? sizeof(oid) : 0, |
| 1682 | bn->ttype, reverse, nilslast, stable) != GDK_SUCCEED) |
| 1683 | goto error; |
| 1684 | r = p; |
| 1685 | prev = grps[p]; |
| 1686 | } |
| 1687 | } |
| 1688 | /* sub sort [r,q) */ |
| 1689 | if (do_sort(Tloc(bn, r), |
| 1690 | ords ? ords + r : NULL, |
| 1691 | bn->tvheap ? bn->tvheap->base : NULL, |
| 1692 | p - r, Tsize(bn), ords ? sizeof(oid) : 0, |
| 1693 | bn->ttype, reverse, nilslast, stable) != GDK_SUCCEED) |
| 1694 | goto error; |
| 1695 | /* if single group (r==0) the result is (rev)sorted, |
| 1696 | * otherwise (maybe) not */ |
| 1697 | bn->tsorted = r == 0 && !reverse && !nilslast; |
| 1698 | bn->trevsorted = r == 0 && reverse && nilslast; |
| 1699 | } else { |
| 1700 | Heap *m = NULL; |
| 1701 | /* only invest in creating an order index if the BAT |
| 1702 | * is persistent */ |
| 1703 | if (mkorderidx) { |
| 1704 | assert(orderidxlock); |
| 1705 | if ((m = createOIDXheap(pb, stable)) != NULL && |
| 1706 | ords == NULL) { |
| 1707 | ords = (oid *) m->base + ORDERIDXOFF; |
| 1708 | if (o && o->ttype != TYPE_void) |
| 1709 | memcpy(ords, Tloc(o, 0), BATcount(o) * sizeof(oid)); |
| 1710 | else if (o) |
| 1711 | for (p = 0, q = BATcount(o); p < q; p++) |
| 1712 | ords[p] = p + o->tseqbase; |
| 1713 | else |
| 1714 | for (p = 0, q = BATcount(b); p < q; p++) |
| 1715 | ords[p] = p + b->hseqbase; |
| 1716 | } |
| 1717 | } |
| 1718 | if ((reverse != nilslast || |
| 1719 | (reverse ? !bn->trevsorted : !bn->tsorted)) && |
| 1720 | (BATmaterialize(bn) != GDK_SUCCEED || |
| 1721 | do_sort(Tloc(bn, 0), |
| 1722 | ords, |
| 1723 | bn->tvheap ? bn->tvheap->base : NULL, |
| 1724 | BATcount(bn), Tsize(bn), ords ? sizeof(oid) : 0, |
| 1725 | bn->ttype, reverse, nilslast, stable) != GDK_SUCCEED)) { |
| 1726 | if (m != NULL) { |
| 1727 | HEAPfree(m, true); |
| 1728 | GDKfree(m); |
| 1729 | } |
| 1730 | if (orderidxlock) |
| 1731 | MT_lock_unset(&pb->batIdxLock); |
| 1732 | goto error; |
| 1733 | } |
| 1734 | bn->tsorted = !reverse && !nilslast; |
| 1735 | bn->trevsorted = reverse && nilslast; |
| 1736 | if (m != NULL) { |
| 1737 | assert(orderidxlock); |
| 1738 | if (pb->torderidx == NULL) { |
| 1739 | pb->batDirtydesc = true; |
| 1740 | if (ords != (oid *) m->base + ORDERIDXOFF) { |
| 1741 | memcpy((oid *) m->base + ORDERIDXOFF, |
| 1742 | ords, |
| 1743 | BATcount(pb) * sizeof(oid)); |
| 1744 | } |
| 1745 | pb->torderidx = m; |
| 1746 | persistOIDX(pb); |
| 1747 | } else { |
| 1748 | HEAPfree(m, true); |
| 1749 | GDKfree(m); |
| 1750 | } |
| 1751 | } |
| 1752 | } |
| 1753 | if (orderidxlock) |
| 1754 | MT_lock_unset(&pb->batIdxLock); |
| 1755 | bn->theap.dirty = true; |
| 1756 | bn->tnosorted = 0; |
| 1757 | bn->tnorevsorted = 0; |
| 1758 | bn->tnokey[0] = bn->tnokey[1] = 0; |
| 1759 | if (groups) { |
| 1760 | if (BATgroup_internal(groups, NULL, NULL, bn, NULL, g, NULL, NULL, true) != GDK_SUCCEED) |
| 1761 | goto error; |
| 1762 | if ((*groups)->tkey && |
| 1763 | (g == NULL || (g->tsorted && g->trevsorted))) { |
| 1764 | /* if new groups bat is key and the input |
| 1765 | * group bat has a single value (both sorted |
| 1766 | * and revsorted), we know the result bat is |
| 1767 | * key */ |
| 1768 | bn->tkey = true; |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | if (sorted) |
| 1773 | *sorted = bn; |
| 1774 | else { |
| 1775 | BBPunfix(bn->batCacheid); |
| 1776 | bn = NULL; |
| 1777 | } |
| 1778 | |
| 1779 | ALGODEBUG fprintf(stderr, "#BATsort(b=" ALGOBATFMT ",o=" ALGOOPTBATFMT |
| 1780 | ",g=" ALGOOPTBATFMT ",reverse=%d,nilslast=%d," |
| 1781 | "stable=%d) = (" ALGOOPTBATFMT "," ALGOOPTBATFMT "," |
| 1782 | ALGOOPTBATFMT ") -- %ssort (" LLFMT " usec)\n" , |
| 1783 | ALGOBATPAR(b), ALGOOPTBATPAR(o), ALGOOPTBATPAR(g), |
| 1784 | reverse, nilslast, stable, ALGOOPTBATPAR(bn), |
| 1785 | ALGOOPTBATPAR(gn), ALGOOPTBATPAR(on), |
| 1786 | g ? "grouped " : "" , GDKusec() - t0); |
| 1787 | return GDK_SUCCEED; |
| 1788 | |
| 1789 | error: |
| 1790 | if (bn) |
| 1791 | BBPunfix(bn->batCacheid); |
| 1792 | BBPreclaim(on); |
| 1793 | if (sorted) |
| 1794 | *sorted = NULL; |
| 1795 | if (order) |
| 1796 | *order = NULL; |
| 1797 | if (groups) |
| 1798 | *groups = NULL; |
| 1799 | return GDK_FAIL; |
| 1800 | } |
| 1801 | |
| 1802 | /* return a new BAT of length n with seqbase hseq, and the constant v |
| 1803 | * in the tail */ |
| 1804 | BAT * |
| 1805 | BATconstant(oid hseq, int tailtype, const void *v, BUN n, role_t role) |
| 1806 | { |
| 1807 | BAT *bn; |
| 1808 | void *restrict p; |
| 1809 | BUN i; |
| 1810 | lng t0 = 0; |
| 1811 | |
| 1812 | ALGODEBUG t0 = GDKusec(); |
| 1813 | |
| 1814 | if (v == NULL) |
| 1815 | return NULL; |
| 1816 | bn = COLnew(hseq, tailtype, n, role); |
| 1817 | if (bn != NULL && n > 0) { |
| 1818 | p = Tloc(bn, 0); |
| 1819 | switch (ATOMstorage(tailtype)) { |
| 1820 | case TYPE_void: |
| 1821 | v = &oid_nil; |
| 1822 | BATtseqbase(bn, oid_nil); |
| 1823 | break; |
| 1824 | case TYPE_bte: |
| 1825 | for (i = 0; i < n; i++) |
| 1826 | ((bte *) p)[i] = *(bte *) v; |
| 1827 | break; |
| 1828 | case TYPE_sht: |
| 1829 | for (i = 0; i < n; i++) |
| 1830 | ((sht *) p)[i] = *(sht *) v; |
| 1831 | break; |
| 1832 | case TYPE_int: |
| 1833 | case TYPE_flt: |
| 1834 | assert(sizeof(int) == sizeof(flt)); |
| 1835 | for (i = 0; i < n; i++) |
| 1836 | ((int *) p)[i] = *(int *) v; |
| 1837 | break; |
| 1838 | case TYPE_lng: |
| 1839 | case TYPE_dbl: |
| 1840 | assert(sizeof(lng) == sizeof(dbl)); |
| 1841 | for (i = 0; i < n; i++) |
| 1842 | ((lng *) p)[i] = *(lng *) v; |
| 1843 | break; |
| 1844 | #ifdef HAVE_HGE |
| 1845 | case TYPE_hge: |
| 1846 | for (i = 0; i < n; i++) |
| 1847 | ((hge *) p)[i] = *(hge *) v; |
| 1848 | break; |
| 1849 | #endif |
| 1850 | default: |
| 1851 | for (i = 0, n += i; i < n; i++) |
| 1852 | tfastins_nocheck(bn, i, v, Tsize(bn)); |
| 1853 | break; |
| 1854 | } |
| 1855 | bn->theap.dirty = true; |
| 1856 | bn->tnil = n >= 1 && (*ATOMcompare(tailtype))(v, ATOMnilptr(tailtype)) == 0; |
| 1857 | BATsetcount(bn, n); |
| 1858 | bn->tsorted = true; |
| 1859 | bn->trevsorted = true; |
| 1860 | bn->tnonil = !bn->tnil; |
| 1861 | bn->tkey = BATcount(bn) <= 1; |
| 1862 | } |
| 1863 | ALGODEBUG fprintf(stderr, "#%s: %s()=" ALGOOPTBATFMT |
| 1864 | " (" LLFMT "usec)\n" , |
| 1865 | MT_thread_getname(), __func__, |
| 1866 | ALGOOPTBATPAR(bn), GDKusec() - t0); |
| 1867 | return bn; |
| 1868 | |
| 1869 | bunins_failed: |
| 1870 | BBPreclaim(bn); |
| 1871 | return NULL; |
| 1872 | } |
| 1873 | |
| 1874 | /* |
| 1875 | * BAT Aggregates |
| 1876 | * |
| 1877 | * We retain the size() and card() aggregate results in the column |
| 1878 | * descriptor. We would like to have such functionality in an |
| 1879 | * extensible way for many aggregates, for DD (1) we do not want to |
| 1880 | * change the binary BAT format on disk and (2) aggr and size are the |
| 1881 | * most relevant aggregates. |
| 1882 | * |
| 1883 | * It is all hacked into the aggr[3] records; three adjacent integers |
| 1884 | * that were left over in the column record. We refer to these as if |
| 1885 | * it where an int aggr[3] array. The below routines set and retrieve |
| 1886 | * the aggregate values from the tail of the BAT, as many |
| 1887 | * aggregate-manipulating BAT functions work on tail. |
| 1888 | * |
| 1889 | * The rules are as follows: aggr[0] contains the alignment ID of the |
| 1890 | * column (if set i.e. nonzero). Hence, if this value is nonzero and |
| 1891 | * equal to b->talign, the precomputed aggregate values in |
| 1892 | * aggr[GDK_AGGR_SIZE] and aggr[GDK_AGGR_CARD] hold. However, only one |
| 1893 | * of them may be set at the time. This is encoded by the value |
| 1894 | * int_nil, which cannot occur in these two aggregates. |
| 1895 | * |
| 1896 | * This was now extended to record the property whether we know there |
| 1897 | * is a nil value present by mis-using the highest bits of both |
| 1898 | * GDK_AGGR_SIZE and GDK_AGGR_CARD. |
| 1899 | */ |
| 1900 | |
| 1901 | void |
| 1902 | PROPdestroy(BAT *b) |
| 1903 | { |
| 1904 | PROPrec *p = b->tprops; |
| 1905 | PROPrec *n; |
| 1906 | |
| 1907 | b->tprops = NULL; |
| 1908 | while (p) { |
| 1909 | n = p->next; |
| 1910 | VALclear(&p->v); |
| 1911 | GDKfree(p); |
| 1912 | p = n; |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | PROPrec * |
| 1917 | BATgetprop_nolock(BAT *b, enum prop_t idx) |
| 1918 | { |
| 1919 | PROPrec *p; |
| 1920 | |
| 1921 | p = b->tprops; |
| 1922 | while (p && p->id != idx) |
| 1923 | p = p->next; |
| 1924 | return p; |
| 1925 | } |
| 1926 | |
| 1927 | static void |
| 1928 | BATrmprop_nolock(BAT *b, enum prop_t idx) |
| 1929 | { |
| 1930 | PROPrec *prop = b->tprops, *prev = NULL; |
| 1931 | |
| 1932 | while (prop) { |
| 1933 | if (prop->id == idx) { |
| 1934 | if (prev) |
| 1935 | prev->next = prop->next; |
| 1936 | else |
| 1937 | b->tprops = prop->next; |
| 1938 | VALclear(&prop->v); |
| 1939 | GDKfree(prop); |
| 1940 | return; |
| 1941 | } |
| 1942 | prev = prop; |
| 1943 | prop = prop->next; |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | void |
| 1948 | BATsetprop_nolock(BAT *b, enum prop_t idx, int type, const void *v) |
| 1949 | { |
| 1950 | PROPrec *p; |
| 1951 | |
| 1952 | p = b->tprops; |
| 1953 | while (p && p->id != idx) |
| 1954 | p = p->next; |
| 1955 | if (p == NULL) { |
| 1956 | if ((p = GDKmalloc(sizeof(PROPrec))) == NULL) { |
| 1957 | /* properties are hints, so if we can't create |
| 1958 | * one we ignore the error */ |
| 1959 | GDKclrerr(); |
| 1960 | return; |
| 1961 | } |
| 1962 | p->id = idx; |
| 1963 | p->next = b->tprops; |
| 1964 | p->v.vtype = 0; |
| 1965 | b->tprops = p; |
| 1966 | } else { |
| 1967 | VALclear(&p->v); |
| 1968 | } |
| 1969 | if (VALinit(&p->v, type, v) == NULL) { |
| 1970 | /* failed to initialize, so remove property */ |
| 1971 | BATrmprop_nolock(b, idx); |
| 1972 | GDKclrerr(); |
| 1973 | } |
| 1974 | b->batDirtydesc = true; |
| 1975 | } |
| 1976 | |
| 1977 | PROPrec * |
| 1978 | BATgetprop(BAT *b, enum prop_t idx) |
| 1979 | { |
| 1980 | PROPrec *p; |
| 1981 | |
| 1982 | MT_lock_set(&b->batIdxLock); |
| 1983 | p = BATgetprop_nolock(b, idx); |
| 1984 | MT_lock_unset(&b->batIdxLock); |
| 1985 | return p; |
| 1986 | } |
| 1987 | |
| 1988 | void |
| 1989 | BATsetprop(BAT *b, enum prop_t idx, int type, const void *v) |
| 1990 | { |
| 1991 | MT_lock_set(&b->batIdxLock); |
| 1992 | BATsetprop_nolock(b, idx, type, v); |
| 1993 | MT_lock_unset(&b->batIdxLock); |
| 1994 | } |
| 1995 | |
| 1996 | void |
| 1997 | BATrmprop(BAT *b, enum prop_t idx) |
| 1998 | { |
| 1999 | MT_lock_set(&b->batIdxLock); |
| 2000 | BATrmprop_nolock(b, idx); |
| 2001 | MT_lock_unset(&b->batIdxLock); |
| 2002 | } |
| 2003 | |
| 2004 | |
| 2005 | /* |
| 2006 | * The BATcount_no_nil function counts all BUN in a BAT that have a |
| 2007 | * non-nil tail value. |
| 2008 | */ |
| 2009 | BUN |
| 2010 | BATcount_no_nil(BAT *b) |
| 2011 | { |
| 2012 | BUN cnt = 0; |
| 2013 | BUN i, n; |
| 2014 | const void *restrict p, *restrict nil; |
| 2015 | const char *restrict base; |
| 2016 | int t; |
| 2017 | int (*cmp)(const void *, const void *); |
| 2018 | |
| 2019 | BATcheck(b, "BATcnt" , 0); |
| 2020 | n = BATcount(b); |
| 2021 | if (b->tnonil) |
| 2022 | return n; |
| 2023 | p = Tloc(b, 0); |
| 2024 | t = ATOMbasetype(b->ttype); |
| 2025 | switch (t) { |
| 2026 | case TYPE_void: |
| 2027 | cnt = n * BATtdense(b); |
| 2028 | break; |
| 2029 | case TYPE_bte: |
| 2030 | for (i = 0; i < n; i++) |
| 2031 | cnt += !is_bte_nil(((const bte *) p)[i]); |
| 2032 | break; |
| 2033 | case TYPE_sht: |
| 2034 | for (i = 0; i < n; i++) |
| 2035 | cnt += !is_sht_nil(((const sht *) p)[i]); |
| 2036 | break; |
| 2037 | case TYPE_int: |
| 2038 | for (i = 0; i < n; i++) |
| 2039 | cnt += !is_int_nil(((const int *) p)[i]); |
| 2040 | break; |
| 2041 | case TYPE_lng: |
| 2042 | for (i = 0; i < n; i++) |
| 2043 | cnt += !is_lng_nil(((const lng *) p)[i]); |
| 2044 | break; |
| 2045 | #ifdef HAVE_HGE |
| 2046 | case TYPE_hge: |
| 2047 | for (i = 0; i < n; i++) |
| 2048 | cnt += !is_hge_nil(((const hge *) p)[i]); |
| 2049 | break; |
| 2050 | #endif |
| 2051 | case TYPE_flt: |
| 2052 | for (i = 0; i < n; i++) |
| 2053 | cnt += !is_flt_nil(((const flt *) p)[i]); |
| 2054 | break; |
| 2055 | case TYPE_dbl: |
| 2056 | for (i = 0; i < n; i++) |
| 2057 | cnt += !is_dbl_nil(((const dbl *) p)[i]); |
| 2058 | break; |
| 2059 | case TYPE_str: |
| 2060 | base = b->tvheap->base; |
| 2061 | switch (b->twidth) { |
| 2062 | case 1: |
| 2063 | for (i = 0; i < n; i++) |
| 2064 | cnt += base[(var_t) ((const unsigned char *) p)[i] + GDK_VAROFFSET] != '\200'; |
| 2065 | break; |
| 2066 | case 2: |
| 2067 | for (i = 0; i < n; i++) |
| 2068 | cnt += base[(var_t) ((const unsigned short *) p)[i] + GDK_VAROFFSET] != '\200'; |
| 2069 | break; |
| 2070 | #if SIZEOF_VAR_T != SIZEOF_INT |
| 2071 | case 4: |
| 2072 | for (i = 0; i < n; i++) |
| 2073 | cnt += base[(var_t) ((const unsigned int *) p)[i]] != '\200'; |
| 2074 | break; |
| 2075 | #endif |
| 2076 | default: |
| 2077 | for (i = 0; i < n; i++) |
| 2078 | cnt += base[((const var_t *) p)[i]] != '\200'; |
| 2079 | break; |
| 2080 | } |
| 2081 | break; |
| 2082 | default: |
| 2083 | nil = ATOMnilptr(t); |
| 2084 | cmp = ATOMcompare(t); |
| 2085 | if (b->tvarsized) { |
| 2086 | base = b->tvheap->base; |
| 2087 | for (i = 0; i < n; i++) |
| 2088 | cnt += (*cmp)(nil, base + ((const var_t *) p)[i]) != 0; |
| 2089 | } else { |
| 2090 | for (i = 0, n += i; i < n; i++) |
| 2091 | cnt += (*cmp)(Tloc(b, i), nil) != 0; |
| 2092 | } |
| 2093 | break; |
| 2094 | } |
| 2095 | if (cnt == BATcount(b)) { |
| 2096 | /* we learned something */ |
| 2097 | b->tnonil = true; |
| 2098 | assert(!b->tnil); |
| 2099 | b->tnil = false; |
| 2100 | } |
| 2101 | return cnt; |
| 2102 | } |
| 2103 | |