| 1 | /* |
| 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
| 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 5 | * |
| 6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
| 7 | */ |
| 8 | |
| 9 | #include "monetdb_config.h" |
| 10 | #include "gdk.h" |
| 11 | #include "gdk_private.h" |
| 12 | #include "gdk_calc_private.h" |
| 13 | |
| 14 | /* BATfirstn select the smallest n elements from the input bat b (if |
| 15 | * asc(ending) is set, else the largest n elements). Conceptually, b |
| 16 | * is sorted in ascending or descending order (depending on the asc |
| 17 | * argument) and then the OIDs of the first n elements are returned. |
| 18 | * If there are NILs in the BAT, their relative ordering is set by |
| 19 | * using the nilslast argument: if set, NILs come last (largest value |
| 20 | * when ascending, smallest value when descending), so if there are |
| 21 | * enough non-NIL values, no NILs will be returned. If unset (false), |
| 22 | * NILs come first and will be returned. |
| 23 | * |
| 24 | * In addition to the input BAT b, there can be a standard candidate |
| 25 | * list s. If s is specified (non-NULL), only elements in b that are |
| 26 | * referred to in s are considered. |
| 27 | * |
| 28 | * If the third input bat g is non-NULL, then s must also be non-NULL |
| 29 | * and must be aligned with g. G then specifies groups to which the |
| 30 | * elements referred to in s belong. Conceptually, the group values |
| 31 | * are sorted in ascending order together with the elements in b that |
| 32 | * are referred to in s (in ascending or descending order depending on |
| 33 | * asc), and the first n elements are then returned. |
| 34 | * |
| 35 | * If the output argument gids is NULL, only n elements are returned. |
| 36 | * If the output argument gids is non-NULL, more than n elements may |
| 37 | * be returned. If there are duplicate values (if g is given, the |
| 38 | * group value counts in determining duplication), all duplicates are |
| 39 | * returned. |
| 40 | * |
| 41 | * If distinct is set, the result contains n complete groups of values |
| 42 | * instead of just n values (or slightly more than n if gids is set |
| 43 | * since then the "last" group is returned completely). |
| 44 | * |
| 45 | * Note that BATfirstn can be called in cascading fashion to calculate |
| 46 | * the first n values of a table of multiple columns: |
| 47 | * BATfirstn(&s1, &g1, b1, NULL, NULL, n, asc, nilslast, distinct); |
| 48 | * BATfirstn(&s2, &g2, b2, s1, g1, n, asc, nilslast, distinct); |
| 49 | * BATfirstn(&s3, NULL, b3, s2, g2, n, asc, nilslast, distinct); |
| 50 | * If the input BATs b1, b2, b3 are large enough, s3 will contain the |
| 51 | * OIDs of the smallest (largest) n elements in the table consisting |
| 52 | * of the columns b1, b2, b3 when ordered in ascending order with b1 |
| 53 | * the major key. |
| 54 | */ |
| 55 | |
| 56 | /* We use a binary heap for the implementation of the simplest form of |
| 57 | * first-N. During processing, the oids list forms a heap with the |
| 58 | * root at position 0 and the children of a node at position i at |
| 59 | * positions 2*i+1 and 2*i+2. The parent node is always |
| 60 | * smaller/larger (depending on the value of asc) than its children |
| 61 | * (recursively). The heapify macro creates the heap from the input |
| 62 | * in-place. We start off with a heap containing the first N elements |
| 63 | * of the input, and then go over the rest of the input, replacing the |
| 64 | * root of the heap with a new value if appropriate (if the new value |
| 65 | * is among the first-N seen so far). The siftdown macro then |
| 66 | * restores the heap property. */ |
| 67 | #define siftdown(OPER, START, SWAP) \ |
| 68 | do { \ |
| 69 | pos = (START); \ |
| 70 | childpos = (pos << 1) + 1; \ |
| 71 | while (childpos < n) { \ |
| 72 | /* find most extreme child */ \ |
| 73 | if (childpos + 1 < n && \ |
| 74 | !(OPER(childpos + 1, childpos))) \ |
| 75 | childpos++; \ |
| 76 | /* compare parent with most extreme child */ \ |
| 77 | if (!OPER(pos, childpos)) { \ |
| 78 | /* already correctly ordered */ \ |
| 79 | break; \ |
| 80 | } \ |
| 81 | /* exchange parent with child and sift child */ \ |
| 82 | /* further */ \ |
| 83 | SWAP(pos, childpos); \ |
| 84 | pos = childpos; \ |
| 85 | childpos = (pos << 1) + 1; \ |
| 86 | } \ |
| 87 | } while (0) |
| 88 | |
| 89 | #define heapify(OPER, SWAP) \ |
| 90 | do { \ |
| 91 | for (i = n / 2; i > 0; i--) \ |
| 92 | siftdown(OPER, i - 1, SWAP); \ |
| 93 | } while (0) |
| 94 | |
| 95 | /* we inherit LT and GT from gdk_calc_private.h */ |
| 96 | |
| 97 | #define nLTbte(a, b) (!is_bte_nil(b) && (is_bte_nil(a) || (a) < (b))) |
| 98 | #define nLTsht(a, b) (!is_sht_nil(b) && (is_sht_nil(a) || (a) < (b))) |
| 99 | #define nLTint(a, b) (!is_int_nil(b) && (is_int_nil(a) || (a) < (b))) |
| 100 | #define nLTlng(a, b) (!is_lng_nil(b) && (is_lng_nil(a) || (a) < (b))) |
| 101 | #define nLThge(a, b) (!is_hge_nil(b) && (is_hge_nil(a) || (a) < (b))) |
| 102 | |
| 103 | #define nGTbte(a, b) (!is_bte_nil(b) && (is_bte_nil(a) || (a) > (b))) |
| 104 | #define nGTsht(a, b) (!is_sht_nil(b) && (is_sht_nil(a) || (a) > (b))) |
| 105 | #define nGTint(a, b) (!is_int_nil(b) && (is_int_nil(a) || (a) > (b))) |
| 106 | #define nGTlng(a, b) (!is_lng_nil(b) && (is_lng_nil(a) || (a) > (b))) |
| 107 | #define nGThge(a, b) (!is_hge_nil(b) && (is_hge_nil(a) || (a) > (b))) |
| 108 | |
| 109 | #define LTany(p1, p2) (cmp(BUNtail(bi, oids[p1] - b->hseqbase), \ |
| 110 | BUNtail(bi, oids[p2] - b->hseqbase)) < 0) |
| 111 | #define GTany(p1, p2) (cmp(BUNtail(bi, oids[p1] - b->hseqbase), \ |
| 112 | BUNtail(bi, oids[p2] - b->hseqbase)) > 0) |
| 113 | |
| 114 | #define nLTany(p1, p2) (cmp(BUNtail(bi, oids[p1] - b->hseqbase), nil) != 0 \ |
| 115 | && (cmp(BUNtail(bi, oids[p2] - b->hseqbase), nil) == 0 \ |
| 116 | || cmp(BUNtail(bi, oids[p1] - b->hseqbase), \ |
| 117 | BUNtail(bi, oids[p2] - b->hseqbase)) < 0)) |
| 118 | #define nGTany(p1, p2) (cmp(BUNtail(bi, oids[p2] - b->hseqbase), nil) != 0 \ |
| 119 | && (cmp(BUNtail(bi, oids[p1] - b->hseqbase), nil) == 0 \ |
| 120 | || cmp(BUNtail(bi, oids[p1] - b->hseqbase), \ |
| 121 | BUNtail(bi, oids[p2] - b->hseqbase)) > 0)) |
| 122 | |
| 123 | #define LTflt(a, b) (!is_flt_nil(b) && (is_flt_nil(a) || (a) < (b))) |
| 124 | #define LTdbl(a, b) (!is_dbl_nil(b) && (is_dbl_nil(a) || (a) < (b))) |
| 125 | #define GTflt(a, b) (!is_flt_nil(a) && (is_flt_nil(b) || (a) > (b))) |
| 126 | #define GTdbl(a, b) (!is_dbl_nil(a) && (is_dbl_nil(b) || (a) > (b))) |
| 127 | |
| 128 | #define nLTflt(a, b) (!is_flt_nil(a) && (is_flt_nil(b) || (a) < (b))) |
| 129 | #define nLTdbl(a, b) (!is_dbl_nil(a) && (is_dbl_nil(b) || (a) < (b))) |
| 130 | #define nGTflt(a, b) (!is_flt_nil(b) && (is_flt_nil(a) || (a) > (b))) |
| 131 | #define nGTdbl(a, b) (!is_dbl_nil(b) && (is_dbl_nil(a) || (a) > (b))) |
| 132 | |
| 133 | #define LTfltfix(p1, p2) LTflt(vals[oids[p1] - b->hseqbase], \ |
| 134 | vals[oids[p2] - b->hseqbase]) |
| 135 | #define GTfltfix(p1, p2) GTflt(vals[oids[p1] - b->hseqbase], \ |
| 136 | vals[oids[p2] - b->hseqbase]) |
| 137 | #define LTdblfix(p1, p2) LTdbl(vals[oids[p1] - b->hseqbase], \ |
| 138 | vals[oids[p2] - b->hseqbase]) |
| 139 | #define GTdblfix(p1, p2) GTdbl(vals[oids[p1] - b->hseqbase], \ |
| 140 | vals[oids[p2] - b->hseqbase]) |
| 141 | #define LTfix(p1, p2) LT(vals[oids[p1] - b->hseqbase], \ |
| 142 | vals[oids[p2] - b->hseqbase]) |
| 143 | #define GTfix(p1, p2) GT(vals[oids[p1] - b->hseqbase], \ |
| 144 | vals[oids[p2] - b->hseqbase]) |
| 145 | |
| 146 | #define nLTfltfix(p1, p2) nLTflt(vals[oids[p1] - b->hseqbase], \ |
| 147 | vals[oids[p2] - b->hseqbase]) |
| 148 | #define nGTfltfix(p1, p2) nGTflt(vals[oids[p1] - b->hseqbase], \ |
| 149 | vals[oids[p2] - b->hseqbase]) |
| 150 | #define nLTdblfix(p1, p2) nLTdbl(vals[oids[p1] - b->hseqbase], \ |
| 151 | vals[oids[p2] - b->hseqbase]) |
| 152 | #define nGTdblfix(p1, p2) nGTdbl(vals[oids[p1] - b->hseqbase], \ |
| 153 | vals[oids[p2] - b->hseqbase]) |
| 154 | #define nLTbtefix(p1, p2) nLTbte(vals[oids[p1] - b->hseqbase], \ |
| 155 | vals[oids[p2] - b->hseqbase]) |
| 156 | #define nGTbtefix(p1, p2) nGTbte(vals[oids[p1] - b->hseqbase], \ |
| 157 | vals[oids[p2] - b->hseqbase]) |
| 158 | #define nLTshtfix(p1, p2) nLTsht(vals[oids[p1] - b->hseqbase], \ |
| 159 | vals[oids[p2] - b->hseqbase]) |
| 160 | #define nGTshtfix(p1, p2) nGTsht(vals[oids[p1] - b->hseqbase], \ |
| 161 | vals[oids[p2] - b->hseqbase]) |
| 162 | #define nLTintfix(p1, p2) nLTint(vals[oids[p1] - b->hseqbase], \ |
| 163 | vals[oids[p2] - b->hseqbase]) |
| 164 | #define nGTintfix(p1, p2) nGTint(vals[oids[p1] - b->hseqbase], \ |
| 165 | vals[oids[p2] - b->hseqbase]) |
| 166 | #define nLTlngfix(p1, p2) nLTlng(vals[oids[p1] - b->hseqbase], \ |
| 167 | vals[oids[p2] - b->hseqbase]) |
| 168 | #define nGTlngfix(p1, p2) nGTlng(vals[oids[p1] - b->hseqbase], \ |
| 169 | vals[oids[p2] - b->hseqbase]) |
| 170 | #define nLThgefix(p1, p2) nLThge(vals[oids[p1] - b->hseqbase], \ |
| 171 | vals[oids[p2] - b->hseqbase]) |
| 172 | #define nGThgefix(p1, p2) nGThge(vals[oids[p1] - b->hseqbase], \ |
| 173 | vals[oids[p2] - b->hseqbase]) |
| 174 | |
| 175 | #define SWAP1(p1, p2) \ |
| 176 | do { \ |
| 177 | item = oids[p1]; \ |
| 178 | oids[p1] = oids[p2]; \ |
| 179 | oids[p2] = item; \ |
| 180 | } while (0) |
| 181 | |
| 182 | #define shuffle_unique(TYPE, OP) \ |
| 183 | do { \ |
| 184 | const TYPE *restrict vals = (const TYPE *) Tloc(b, 0); \ |
| 185 | heapify(OP##fix, SWAP1); \ |
| 186 | while (cnt > 0) { \ |
| 187 | cnt--; \ |
| 188 | i = canditer_next(&ci); \ |
| 189 | if (OP(vals[i - b->hseqbase], \ |
| 190 | vals[oids[0] - b->hseqbase])) { \ |
| 191 | oids[0] = i; \ |
| 192 | siftdown(OP##fix, 0, SWAP1); \ |
| 193 | } \ |
| 194 | } \ |
| 195 | } while (0) |
| 196 | |
| 197 | /* This version of BATfirstn returns a list of N oids (where N is the |
| 198 | * smallest among BATcount(b), BATcount(s), and n). The oids returned |
| 199 | * refer to the N smallest/largest (depending on asc) tail values of b |
| 200 | * (taking the optional candidate list s into account). If there are |
| 201 | * multiple equal values to take us past N, we return a subset of those. |
| 202 | * |
| 203 | * If lastp is non-NULL, it is filled in with the oid of the "last" |
| 204 | * value, i.e. the value of which there may be multiple occurrences |
| 205 | * that are not all included in the first N. |
| 206 | */ |
| 207 | static BAT * |
| 208 | BATfirstn_unique(BAT *b, BAT *s, BUN n, bool asc, bool nilslast, oid *lastp) |
| 209 | { |
| 210 | BAT *bn; |
| 211 | BATiter bi = bat_iterator(b); |
| 212 | oid *restrict oids; |
| 213 | BUN i, cnt; |
| 214 | struct canditer ci; |
| 215 | int tpe = b->ttype; |
| 216 | int (*cmp)(const void *, const void *); |
| 217 | const void *nil; |
| 218 | /* variables used in heapify/siftdown macros */ |
| 219 | oid item; |
| 220 | BUN pos, childpos; |
| 221 | |
| 222 | cnt = canditer_init(&ci, b, s); |
| 223 | |
| 224 | if (n >= cnt) { |
| 225 | /* trivial: return all candidates */ |
| 226 | if (lastp) |
| 227 | *lastp = 0; |
| 228 | return canditer_slice(&ci, 0, cnt); |
| 229 | } |
| 230 | |
| 231 | if (BATtvoid(b)) { |
| 232 | /* nilslast doesn't make a difference: either all are |
| 233 | * nil, or none are */ |
| 234 | if (asc || is_oid_nil(b->tseqbase)) { |
| 235 | /* return the first part of the candidate list |
| 236 | * or of the BAT itself */ |
| 237 | bn = canditer_slice(&ci, 0, n); |
| 238 | if (bn && lastp) |
| 239 | *lastp = BUNtoid(bn, n - 1); |
| 240 | return bn; |
| 241 | } |
| 242 | /* return the last part of the candidate list or of |
| 243 | * the BAT itself */ |
| 244 | bn = canditer_slice(&ci, cnt - n, cnt); |
| 245 | if (bn && lastp) |
| 246 | *lastp = BUNtoid(bn, 0); |
| 247 | return bn; |
| 248 | } |
| 249 | /* note, we want to do both calls */ |
| 250 | if (BATordered(b) | BATordered_rev(b)) { |
| 251 | /* trivial: b is sorted so we just need to return the |
| 252 | * initial or final part of it (or of the candidate |
| 253 | * list); however, if nilslast == asc, then the nil |
| 254 | * values (if any) are in the wrong place, so we need |
| 255 | * to do a little more work */ |
| 256 | |
| 257 | /* after we create the to-be-returned BAT, we set pos |
| 258 | * to the BUN in the new BAT whose value we should |
| 259 | * return through *lastp */ |
| 260 | if (nilslast == asc && !b->tnonil) { |
| 261 | pos = SORTfndlast(b, ATOMnilptr(tpe)); |
| 262 | pos = canditer_search(&ci, b->hseqbase + pos, true); |
| 263 | /* 0 <= pos <= cnt |
| 264 | * 0 < n < cnt |
| 265 | */ |
| 266 | if (b->tsorted) { |
| 267 | /* [0..pos) -- nil |
| 268 | * [pos..cnt) -- non-nil <<< |
| 269 | */ |
| 270 | if (asc) { /* i.e. nilslast */ |
| 271 | /* prefer non-nil and |
| 272 | * smallest */ |
| 273 | if (cnt - pos < n) { |
| 274 | bn = canditer_slice(&ci, cnt - n, cnt); |
| 275 | pos = 0; |
| 276 | } else { |
| 277 | bn = canditer_slice(&ci, pos, pos + n); |
| 278 | pos = n - 1; |
| 279 | } |
| 280 | } else { /* i.e. !asc, !nilslast */ |
| 281 | /* prefer nil and largest */ |
| 282 | if (pos < n) { |
| 283 | bn = canditer_slice2(&ci, 0, pos, cnt - (n - pos), cnt); |
| 284 | /* pos = pos; */ |
| 285 | } else { |
| 286 | bn = canditer_slice(&ci, 0, n); |
| 287 | pos = 0; |
| 288 | } |
| 289 | } |
| 290 | } else { /* i.e. trevsorted */ |
| 291 | /* [0..pos) -- non-nil >>> |
| 292 | * [pos..cnt) -- nil |
| 293 | */ |
| 294 | if (asc) { /* i.e. nilslast */ |
| 295 | /* prefer non-nil and |
| 296 | * smallest */ |
| 297 | if (pos < n) { |
| 298 | bn = canditer_slice(&ci, 0, n); |
| 299 | /* pos = pos; */ |
| 300 | } else { |
| 301 | bn = canditer_slice(&ci, pos - n, pos); |
| 302 | pos = 0; |
| 303 | } |
| 304 | } else { /* i.e. !asc, !nilslast */ |
| 305 | /* prefer nil and largest */ |
| 306 | if (cnt - pos < n) { |
| 307 | bn = canditer_slice2(&ci, 0, n - (cnt - pos), pos, cnt); |
| 308 | pos = n - (cnt - pos) - 1; |
| 309 | } else { |
| 310 | bn = canditer_slice(&ci, pos, pos + n); |
| 311 | pos = 0; |
| 312 | } |
| 313 | } |
| 314 | } |
| 315 | } else { |
| 316 | /* either there are no nils, or they are in |
| 317 | * the appropriate position already, so we can |
| 318 | * just slice */ |
| 319 | if (asc ? b->tsorted : b->trevsorted) { |
| 320 | /* return copy of first part of |
| 321 | * candidate list */ |
| 322 | bn = canditer_slice(&ci, 0, n); |
| 323 | pos = n - 1; |
| 324 | } else { |
| 325 | /* return copy of last part of |
| 326 | * candidate list */ |
| 327 | bn = canditer_slice(&ci, cnt - n, cnt); |
| 328 | pos = 0; |
| 329 | } |
| 330 | } |
| 331 | if (bn && lastp) |
| 332 | *lastp = BUNtoid(bn, pos); |
| 333 | return bn; |
| 334 | } |
| 335 | |
| 336 | bn = COLnew(0, TYPE_oid, n, TRANSIENT); |
| 337 | if (bn == NULL) |
| 338 | return NULL; |
| 339 | BATsetcount(bn, n); |
| 340 | oids = (oid *) Tloc(bn, 0); |
| 341 | cmp = ATOMcompare(tpe); |
| 342 | nil = ATOMnilptr(tpe); |
| 343 | /* if base type has same comparison function as type itself, we |
| 344 | * can use the base type */ |
| 345 | tpe = ATOMbasetype(tpe); /* takes care of oid */ |
| 346 | /* if the input happens to be almost sorted in ascending order |
| 347 | * (likely a common use case), it is more efficient to start |
| 348 | * off with the first n elements when doing a firstn-ascending |
| 349 | * and to start off with the last n elements when doing a |
| 350 | * firstn-descending so that most values that we look at after |
| 351 | * this will be skipped. */ |
| 352 | if (asc) { |
| 353 | for (i = 0; i < n; i++) |
| 354 | oids[i] = canditer_next(&ci); |
| 355 | } else { |
| 356 | item = canditer_idx(&ci, cnt - n); |
| 357 | ci.next = cnt - n; |
| 358 | ci.add = item - ci.seq - (cnt - n); |
| 359 | for (i = n; i > 0; i--) |
| 360 | oids[i - 1] = canditer_next(&ci); |
| 361 | canditer_reset(&ci); |
| 362 | } |
| 363 | cnt -= n; |
| 364 | |
| 365 | if (asc) { |
| 366 | if (nilslast && !b->tnonil) { |
| 367 | switch (tpe) { |
| 368 | case TYPE_bte: |
| 369 | shuffle_unique(bte, nLTbte); |
| 370 | break; |
| 371 | case TYPE_sht: |
| 372 | shuffle_unique(sht, nLTsht); |
| 373 | break; |
| 374 | case TYPE_int: |
| 375 | shuffle_unique(int, nLTint); |
| 376 | break; |
| 377 | case TYPE_lng: |
| 378 | shuffle_unique(lng, nLTlng); |
| 379 | break; |
| 380 | #ifdef HAVE_HGE |
| 381 | case TYPE_hge: |
| 382 | shuffle_unique(hge, nLThge); |
| 383 | break; |
| 384 | #endif |
| 385 | case TYPE_flt: |
| 386 | shuffle_unique(flt, nLTflt); |
| 387 | break; |
| 388 | case TYPE_dbl: |
| 389 | shuffle_unique(dbl, nLTdbl); |
| 390 | break; |
| 391 | default: |
| 392 | heapify(nLTany, SWAP1); |
| 393 | while (cnt > 0) { |
| 394 | cnt--; |
| 395 | i = canditer_next(&ci); |
| 396 | if (cmp(BUNtail(bi, i - b->hseqbase), nil) != 0 |
| 397 | && (cmp(BUNtail(bi, oids[0] - b->hseqbase), nil) == 0 |
| 398 | || cmp(BUNtail(bi, i - b->hseqbase), |
| 399 | BUNtail(bi, oids[0] - b->hseqbase)) < 0)) { |
| 400 | oids[0] = i; |
| 401 | siftdown(nLTany, 0, SWAP1); |
| 402 | } |
| 403 | } |
| 404 | break; |
| 405 | } |
| 406 | } else { |
| 407 | switch (tpe) { |
| 408 | case TYPE_bte: |
| 409 | shuffle_unique(bte, LT); |
| 410 | break; |
| 411 | case TYPE_sht: |
| 412 | shuffle_unique(sht, LT); |
| 413 | break; |
| 414 | case TYPE_int: |
| 415 | shuffle_unique(int, LT); |
| 416 | break; |
| 417 | case TYPE_lng: |
| 418 | shuffle_unique(lng, LT); |
| 419 | break; |
| 420 | #ifdef HAVE_HGE |
| 421 | case TYPE_hge: |
| 422 | shuffle_unique(hge, LT); |
| 423 | break; |
| 424 | #endif |
| 425 | case TYPE_flt: |
| 426 | shuffle_unique(flt, LTflt); |
| 427 | break; |
| 428 | case TYPE_dbl: |
| 429 | shuffle_unique(dbl, LTdbl); |
| 430 | break; |
| 431 | default: |
| 432 | heapify(LTany, SWAP1); |
| 433 | while (cnt > 0) { |
| 434 | cnt--; |
| 435 | i = canditer_next(&ci); |
| 436 | if (cmp(BUNtail(bi, i - b->hseqbase), |
| 437 | BUNtail(bi, oids[0] - b->hseqbase)) < 0) { |
| 438 | oids[0] = i; |
| 439 | siftdown(LTany, 0, SWAP1); |
| 440 | } |
| 441 | } |
| 442 | break; |
| 443 | } |
| 444 | } |
| 445 | } else { |
| 446 | if (nilslast || b->tnonil) { |
| 447 | switch (tpe) { |
| 448 | case TYPE_bte: |
| 449 | shuffle_unique(bte, GT); |
| 450 | break; |
| 451 | case TYPE_sht: |
| 452 | shuffle_unique(sht, GT); |
| 453 | break; |
| 454 | case TYPE_int: |
| 455 | shuffle_unique(int, GT); |
| 456 | break; |
| 457 | case TYPE_lng: |
| 458 | shuffle_unique(lng, GT); |
| 459 | break; |
| 460 | #ifdef HAVE_HGE |
| 461 | case TYPE_hge: |
| 462 | shuffle_unique(hge, GT); |
| 463 | break; |
| 464 | #endif |
| 465 | case TYPE_flt: |
| 466 | shuffle_unique(flt, GTflt); |
| 467 | break; |
| 468 | case TYPE_dbl: |
| 469 | shuffle_unique(dbl, GTdbl); |
| 470 | break; |
| 471 | default: |
| 472 | heapify(GTany, SWAP1); |
| 473 | while (cnt > 0) { |
| 474 | cnt--; |
| 475 | i = canditer_next(&ci); |
| 476 | if (cmp(BUNtail(bi, i - b->hseqbase), |
| 477 | BUNtail(bi, oids[0] - b->hseqbase)) > 0) { |
| 478 | oids[0] = i; |
| 479 | siftdown(GTany, 0, SWAP1); |
| 480 | } |
| 481 | } |
| 482 | break; |
| 483 | } |
| 484 | } else { |
| 485 | switch (tpe) { |
| 486 | case TYPE_bte: |
| 487 | shuffle_unique(bte, nGTbte); |
| 488 | break; |
| 489 | case TYPE_sht: |
| 490 | shuffle_unique(sht, nGTsht); |
| 491 | break; |
| 492 | case TYPE_int: |
| 493 | shuffle_unique(int, nGTint); |
| 494 | break; |
| 495 | case TYPE_lng: |
| 496 | shuffle_unique(lng, nGTlng); |
| 497 | break; |
| 498 | #ifdef HAVE_HGE |
| 499 | case TYPE_hge: |
| 500 | shuffle_unique(hge, nGThge); |
| 501 | break; |
| 502 | #endif |
| 503 | case TYPE_flt: |
| 504 | shuffle_unique(flt, nGTflt); |
| 505 | break; |
| 506 | case TYPE_dbl: |
| 507 | shuffle_unique(dbl, nGTdbl); |
| 508 | break; |
| 509 | default: |
| 510 | heapify(nGTany, SWAP1); |
| 511 | while (cnt > 0) { |
| 512 | cnt--; |
| 513 | i = canditer_next(&ci); |
| 514 | if (cmp(BUNtail(bi, oids[0] - b->hseqbase), nil) != 0 |
| 515 | && (cmp(BUNtail(bi, i - b->hseqbase), nil) == 0 |
| 516 | || cmp(BUNtail(bi, i - b->hseqbase), |
| 517 | BUNtail(bi, oids[0] - b->hseqbase)) > 0)) { |
| 518 | oids[0] = i; |
| 519 | siftdown(nGTany, 0, SWAP1); |
| 520 | } |
| 521 | } |
| 522 | break; |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | if (lastp) |
| 527 | *lastp = oids[0]; /* store id of largest value */ |
| 528 | /* output must be sorted since it's a candidate list */ |
| 529 | GDKqsort(oids, NULL, NULL, (size_t) n, sizeof(oid), 0, TYPE_oid, false, false); |
| 530 | bn->tsorted = true; |
| 531 | bn->trevsorted = n <= 1; |
| 532 | bn->tkey = true; |
| 533 | bn->tseqbase = n <= 1 ? oids[0] : oid_nil; |
| 534 | bn->tnil = false; |
| 535 | bn->tnonil = true; |
| 536 | return virtualize(bn); |
| 537 | } |
| 538 | |
| 539 | #define LTfixgrp(p1, p2) \ |
| 540 | (goids[p1] < goids[p2] || \ |
| 541 | (goids[p1] == goids[p2] && \ |
| 542 | LTfix(p1, p2))) |
| 543 | #define nLTbtefixgrp(p1, p2) \ |
| 544 | (goids[p1] < goids[p2] || \ |
| 545 | (goids[p1] == goids[p2] && \ |
| 546 | nLTbtefix(p1, p2))) |
| 547 | #define nLTshtfixgrp(p1, p2) \ |
| 548 | (goids[p1] < goids[p2] || \ |
| 549 | (goids[p1] == goids[p2] && \ |
| 550 | nLTshtfix(p1, p2))) |
| 551 | #define nLTintfixgrp(p1, p2) \ |
| 552 | (goids[p1] < goids[p2] || \ |
| 553 | (goids[p1] == goids[p2] && \ |
| 554 | nLTintfix(p1, p2))) |
| 555 | #define nLTlngfixgrp(p1, p2) \ |
| 556 | (goids[p1] < goids[p2] || \ |
| 557 | (goids[p1] == goids[p2] && \ |
| 558 | nLTlngfix(p1, p2))) |
| 559 | #define nLThgefixgrp(p1, p2) \ |
| 560 | (goids[p1] < goids[p2] || \ |
| 561 | (goids[p1] == goids[p2] && \ |
| 562 | nLThgefix(p1, p2))) |
| 563 | #define LTfltfixgrp(p1, p2) \ |
| 564 | (goids[p1] < goids[p2] || \ |
| 565 | (goids[p1] == goids[p2] && \ |
| 566 | LTfltfix(p1, p2))) |
| 567 | #define LTdblfixgrp(p1, p2) \ |
| 568 | (goids[p1] < goids[p2] || \ |
| 569 | (goids[p1] == goids[p2] && \ |
| 570 | LTdblfix(p1, p2))) |
| 571 | #define nLTfltfixgrp(p1, p2) \ |
| 572 | (goids[p1] < goids[p2] || \ |
| 573 | (goids[p1] == goids[p2] && \ |
| 574 | nLTfltfix(p1, p2))) |
| 575 | #define nLTdblfixgrp(p1, p2) \ |
| 576 | (goids[p1] < goids[p2] || \ |
| 577 | (goids[p1] == goids[p2] && \ |
| 578 | nLTdblfix(p1, p2))) |
| 579 | #define GTfixgrp(p1, p2) \ |
| 580 | (goids[p1] < goids[p2] || \ |
| 581 | (goids[p1] == goids[p2] && \ |
| 582 | GTfix(p1, p2))) |
| 583 | #define nGTbtefixgrp(p1, p2) \ |
| 584 | (goids[p1] < goids[p2] || \ |
| 585 | (goids[p1] == goids[p2] && \ |
| 586 | nGTbtefix(p1, p2))) |
| 587 | #define nGTshtfixgrp(p1, p2) \ |
| 588 | (goids[p1] < goids[p2] || \ |
| 589 | (goids[p1] == goids[p2] && \ |
| 590 | nGTshtfix(p1, p2))) |
| 591 | #define nGTintfixgrp(p1, p2) \ |
| 592 | (goids[p1] < goids[p2] || \ |
| 593 | (goids[p1] == goids[p2] && \ |
| 594 | nGTintfix(p1, p2))) |
| 595 | #define nGTlngfixgrp(p1, p2) \ |
| 596 | (goids[p1] < goids[p2] || \ |
| 597 | (goids[p1] == goids[p2] && \ |
| 598 | nGTlngfix(p1, p2))) |
| 599 | #define nGThgefixgrp(p1, p2) \ |
| 600 | (goids[p1] < goids[p2] || \ |
| 601 | (goids[p1] == goids[p2] && \ |
| 602 | nGThgefix(p1, p2))) |
| 603 | #define GTfltfixgrp(p1, p2) \ |
| 604 | (goids[p1] < goids[p2] || \ |
| 605 | (goids[p1] == goids[p2] && \ |
| 606 | GTfltfix(p1, p2))) |
| 607 | #define GTdblfixgrp(p1, p2) \ |
| 608 | (goids[p1] < goids[p2] || \ |
| 609 | (goids[p1] == goids[p2] && \ |
| 610 | GTdblfix(p1, p2))) |
| 611 | #define nGTfltfixgrp(p1, p2) \ |
| 612 | (goids[p1] < goids[p2] || \ |
| 613 | (goids[p1] == goids[p2] && \ |
| 614 | nGTfltfix(p1, p2))) |
| 615 | #define nGTdblfixgrp(p1, p2) \ |
| 616 | (goids[p1] < goids[p2] || \ |
| 617 | (goids[p1] == goids[p2] && \ |
| 618 | nGTdblfix(p1, p2))) |
| 619 | #define LTvoidgrp(p1, p2) \ |
| 620 | (goids[p1] < goids[p2] || \ |
| 621 | (goids[p1] == goids[p2] && oids[p1] < oids[p2])) |
| 622 | #define GTvoidgrp(p1, p2) \ |
| 623 | (goids[p1] < goids[p2] || \ |
| 624 | (goids[p1] == goids[p2] && oids[p1] > oids[p2])) |
| 625 | #define LTanygrp(p1, p2) \ |
| 626 | (goids[p1] < goids[p2] || \ |
| 627 | (goids[p1] == goids[p2] && \ |
| 628 | LTany(p1, p2))) |
| 629 | #define GTanygrp(p1, p2) \ |
| 630 | (goids[p1] < goids[p2] || \ |
| 631 | (goids[p1] == goids[p2] && \ |
| 632 | GTany(p1, p2))) |
| 633 | #define nLTanygrp(p1, p2) \ |
| 634 | (goids[p1] < goids[p2] || \ |
| 635 | (goids[p1] == goids[p2] && \ |
| 636 | nLTany(p1, p2))) |
| 637 | #define nGTanygrp(p1, p2) \ |
| 638 | (goids[p1] < goids[p2] || \ |
| 639 | (goids[p1] == goids[p2] && \ |
| 640 | nGTany(p1, p2))) |
| 641 | #define SWAP2(p1, p2) \ |
| 642 | do { \ |
| 643 | item = oids[p1]; \ |
| 644 | oids[p1] = oids[p2]; \ |
| 645 | oids[p2] = item; \ |
| 646 | item = goids[p1]; \ |
| 647 | goids[p1] = goids[p2]; \ |
| 648 | goids[p2] = item; \ |
| 649 | } while (0) |
| 650 | |
| 651 | #define shuffle_unique_with_groups(TYPE, OP) \ |
| 652 | do { \ |
| 653 | const TYPE *restrict vals = (const TYPE *) Tloc(b, 0); \ |
| 654 | heapify(OP##fixgrp, SWAP2); \ |
| 655 | while (cnt > 0) { \ |
| 656 | cnt--; \ |
| 657 | i = canditer_next(&ci); \ |
| 658 | if (gv[j] < goids[0] || \ |
| 659 | (gv[j] == goids[0] && \ |
| 660 | OP(vals[i - b->hseqbase], \ |
| 661 | vals[oids[0] - b->hseqbase]))) { \ |
| 662 | oids[0] = i; \ |
| 663 | goids[0] = gv[j]; \ |
| 664 | siftdown(OP##fixgrp, 0, SWAP2); \ |
| 665 | } \ |
| 666 | j++; \ |
| 667 | } \ |
| 668 | } while (0) |
| 669 | |
| 670 | /* This version of BATfirstn is like the one above, except that it |
| 671 | * also looks at groups. The values of the group IDs are important: |
| 672 | * we return only the smallest N (i.e., not dependent on asc which |
| 673 | * refers only to the values in the BAT b). |
| 674 | * |
| 675 | * If lastp is non-NULL, it is filled in with the oid of the "last" |
| 676 | * value, i.e. the value of which there may be multiple occurrences |
| 677 | * that are not all included in the first N. If lastgp is non-NULL, |
| 678 | * it is filled with the group ID (not the oid of the group ID) for |
| 679 | * that same value. |
| 680 | */ |
| 681 | static BAT * |
| 682 | BATfirstn_unique_with_groups(BAT *b, BAT *s, BAT *g, BUN n, bool asc, bool nilslast, oid *lastp, oid *lastgp) |
| 683 | { |
| 684 | BAT *bn; |
| 685 | BATiter bi = bat_iterator(b); |
| 686 | oid *restrict oids, *restrict goids; |
| 687 | const oid *restrict gv; |
| 688 | BUN i, j, cnt; |
| 689 | struct canditer ci; |
| 690 | int tpe = b->ttype; |
| 691 | int (*cmp)(const void *, const void *); |
| 692 | const void *nil; |
| 693 | /* variables used in heapify/siftdown macros */ |
| 694 | oid item; |
| 695 | BUN pos, childpos; |
| 696 | |
| 697 | cnt = canditer_init(&ci, b, s); |
| 698 | |
| 699 | if (n > cnt) |
| 700 | n = cnt; |
| 701 | |
| 702 | if (n == 0) { |
| 703 | /* candidate list might refer only to values outside |
| 704 | * of the bat and hence be effectively empty */ |
| 705 | if (lastp) |
| 706 | *lastp = 0; |
| 707 | if (lastgp) |
| 708 | *lastgp = 0; |
| 709 | return BATdense(0, 0, 0); |
| 710 | } |
| 711 | |
| 712 | if (BATtdense(g)) { |
| 713 | /* trivial: g determines ordering, return reference to |
| 714 | * initial part of b (or slice of s) */ |
| 715 | if (lastgp) |
| 716 | *lastgp = g->tseqbase + n - 1; |
| 717 | bn = canditer_slice(&ci, 0, n); |
| 718 | if (bn && lastp) |
| 719 | *lastp = BUNtoid(bn, n - 1); |
| 720 | return bn; |
| 721 | } |
| 722 | |
| 723 | bn = COLnew(0, TYPE_oid, n, TRANSIENT); |
| 724 | if (bn == NULL) |
| 725 | return NULL; |
| 726 | BATsetcount(bn, n); |
| 727 | oids = (oid *) Tloc(bn, 0); |
| 728 | gv = (const oid *) Tloc(g, 0); |
| 729 | goids = GDKmalloc(n * sizeof(oid)); |
| 730 | if (goids == NULL) { |
| 731 | BBPreclaim(bn); |
| 732 | return NULL; |
| 733 | } |
| 734 | |
| 735 | cmp = ATOMcompare(tpe); |
| 736 | nil = ATOMnilptr(tpe); |
| 737 | /* if base type has same comparison function as type itself, we |
| 738 | * can use the base type */ |
| 739 | tpe = ATOMbasetype(tpe); /* takes care of oid */ |
| 740 | j = 0; |
| 741 | for (i = 0; i < n; i++) { |
| 742 | oids[i] = canditer_next(&ci); |
| 743 | goids[i] = gv[j++]; |
| 744 | } |
| 745 | cnt -= n; |
| 746 | |
| 747 | if (BATtvoid(b)) { |
| 748 | /* nilslast doesn't make a difference (all nil, or no nil) */ |
| 749 | if (asc) { |
| 750 | heapify(LTvoidgrp, SWAP2); |
| 751 | while (cnt > 0) { |
| 752 | cnt--; |
| 753 | i = canditer_next(&ci); |
| 754 | if (gv[j] < goids[0] |
| 755 | /* || (gv[j] == goids[0] |
| 756 | && i < oids[0]) -- always false */) { |
| 757 | oids[0] = i; |
| 758 | goids[0] = gv[j]; |
| 759 | siftdown(LTvoidgrp, 0, SWAP2); |
| 760 | } |
| 761 | j++; |
| 762 | } |
| 763 | } else { |
| 764 | heapify(GTvoidgrp, SWAP2); |
| 765 | while (cnt > 0) { |
| 766 | cnt--; |
| 767 | i = canditer_next(&ci); |
| 768 | if (gv[j] < goids[0] |
| 769 | || (gv[j] == goids[0] |
| 770 | /* && i > oids[0] -- always true */)) { |
| 771 | oids[0] = i; |
| 772 | goids[0] = gv[j]; |
| 773 | siftdown(GTvoidgrp, 0, SWAP2); |
| 774 | } |
| 775 | j++; |
| 776 | } |
| 777 | } |
| 778 | } else if (asc) { |
| 779 | if (nilslast && !b->tnonil) { |
| 780 | switch (tpe) { |
| 781 | case TYPE_bte: |
| 782 | shuffle_unique_with_groups(bte, nLTbte); |
| 783 | break; |
| 784 | case TYPE_sht: |
| 785 | shuffle_unique_with_groups(sht, nLTsht); |
| 786 | break; |
| 787 | case TYPE_int: |
| 788 | shuffle_unique_with_groups(int, nLTint); |
| 789 | break; |
| 790 | case TYPE_lng: |
| 791 | shuffle_unique_with_groups(lng, nLTlng); |
| 792 | break; |
| 793 | #ifdef HAVE_HGE |
| 794 | case TYPE_hge: |
| 795 | shuffle_unique_with_groups(hge, nLThge); |
| 796 | break; |
| 797 | #endif |
| 798 | case TYPE_flt: |
| 799 | shuffle_unique_with_groups(flt, nLTflt); |
| 800 | break; |
| 801 | case TYPE_dbl: |
| 802 | shuffle_unique_with_groups(dbl, nLTdbl); |
| 803 | break; |
| 804 | default: |
| 805 | heapify(nLTanygrp, SWAP2); |
| 806 | while (cnt > 0) { |
| 807 | cnt--; |
| 808 | i = canditer_next(&ci); |
| 809 | if (gv[j] < goids[0] |
| 810 | || (gv[j] == goids[0] |
| 811 | && cmp(BUNtail(bi, i - b->hseqbase), nil) != 0 |
| 812 | && (cmp(BUNtail(bi, oids[0] - b->hseqbase), nil) == 0 |
| 813 | || cmp(BUNtail(bi, i - b->hseqbase), |
| 814 | BUNtail(bi, oids[0] - b->hseqbase)) < 0))) { |
| 815 | oids[0] = i; |
| 816 | goids[0] = gv[j]; |
| 817 | siftdown(nLTanygrp, 0, SWAP2); |
| 818 | } |
| 819 | j++; |
| 820 | } |
| 821 | break; |
| 822 | } |
| 823 | } else { |
| 824 | switch (tpe) { |
| 825 | case TYPE_bte: |
| 826 | shuffle_unique_with_groups(bte, LT); |
| 827 | break; |
| 828 | case TYPE_sht: |
| 829 | shuffle_unique_with_groups(sht, LT); |
| 830 | break; |
| 831 | case TYPE_int: |
| 832 | shuffle_unique_with_groups(int, LT); |
| 833 | break; |
| 834 | case TYPE_lng: |
| 835 | shuffle_unique_with_groups(lng, LT); |
| 836 | break; |
| 837 | #ifdef HAVE_HGE |
| 838 | case TYPE_hge: |
| 839 | shuffle_unique_with_groups(hge, LT); |
| 840 | break; |
| 841 | #endif |
| 842 | case TYPE_flt: |
| 843 | shuffle_unique_with_groups(flt, LTflt); |
| 844 | break; |
| 845 | case TYPE_dbl: |
| 846 | shuffle_unique_with_groups(dbl, LTdbl); |
| 847 | break; |
| 848 | default: |
| 849 | heapify(LTanygrp, SWAP2); |
| 850 | while (cnt > 0) { |
| 851 | cnt--; |
| 852 | i = canditer_next(&ci); |
| 853 | if (gv[j] < goids[0] || |
| 854 | (gv[j] == goids[0] && |
| 855 | cmp(BUNtail(bi, i - b->hseqbase), |
| 856 | BUNtail(bi, oids[0] - b->hseqbase)) < 0)) { |
| 857 | oids[0] = i; |
| 858 | goids[0] = gv[j]; |
| 859 | siftdown(LTanygrp, 0, SWAP2); |
| 860 | } |
| 861 | j++; |
| 862 | } |
| 863 | break; |
| 864 | } |
| 865 | } |
| 866 | } else if (nilslast || b->tnonil) { |
| 867 | switch (tpe) { |
| 868 | case TYPE_bte: |
| 869 | shuffle_unique_with_groups(bte, GT); |
| 870 | break; |
| 871 | case TYPE_sht: |
| 872 | shuffle_unique_with_groups(sht, GT); |
| 873 | break; |
| 874 | case TYPE_int: |
| 875 | shuffle_unique_with_groups(int, GT); |
| 876 | break; |
| 877 | case TYPE_lng: |
| 878 | shuffle_unique_with_groups(lng, GT); |
| 879 | break; |
| 880 | #ifdef HAVE_HGE |
| 881 | case TYPE_hge: |
| 882 | shuffle_unique_with_groups(hge, GT); |
| 883 | break; |
| 884 | #endif |
| 885 | case TYPE_flt: |
| 886 | shuffle_unique_with_groups(flt, GTflt); |
| 887 | break; |
| 888 | case TYPE_dbl: |
| 889 | shuffle_unique_with_groups(dbl, GTdbl); |
| 890 | break; |
| 891 | default: |
| 892 | heapify(GTanygrp, SWAP2); |
| 893 | while (cnt > 0) { |
| 894 | cnt--; |
| 895 | i = canditer_next(&ci); |
| 896 | if (gv[j] < goids[0] || |
| 897 | (gv[j] == goids[0] && |
| 898 | cmp(BUNtail(bi, i - b->hseqbase), |
| 899 | BUNtail(bi, oids[0] - b->hseqbase)) > 0)) { |
| 900 | oids[0] = i; |
| 901 | goids[0] = gv[j]; |
| 902 | siftdown(GTanygrp, 0, SWAP2); |
| 903 | } |
| 904 | j++; |
| 905 | } |
| 906 | break; |
| 907 | } |
| 908 | } else { |
| 909 | switch (tpe) { |
| 910 | case TYPE_bte: |
| 911 | shuffle_unique_with_groups(bte, nGTbte); |
| 912 | break; |
| 913 | case TYPE_sht: |
| 914 | shuffle_unique_with_groups(sht, nGTsht); |
| 915 | break; |
| 916 | case TYPE_int: |
| 917 | shuffle_unique_with_groups(int, nGTint); |
| 918 | break; |
| 919 | case TYPE_lng: |
| 920 | shuffle_unique_with_groups(lng, nGTlng); |
| 921 | break; |
| 922 | #ifdef HAVE_HGE |
| 923 | case TYPE_hge: |
| 924 | shuffle_unique_with_groups(hge, nGThge); |
| 925 | break; |
| 926 | #endif |
| 927 | case TYPE_flt: |
| 928 | shuffle_unique_with_groups(flt, nGTflt); |
| 929 | break; |
| 930 | case TYPE_dbl: |
| 931 | shuffle_unique_with_groups(dbl, nGTdbl); |
| 932 | break; |
| 933 | default: |
| 934 | heapify(nGTanygrp, SWAP2); |
| 935 | while (cnt > 0) { |
| 936 | cnt--; |
| 937 | i = canditer_next(&ci); |
| 938 | if (gv[j] < goids[0] |
| 939 | || (gv[j] == goids[0] |
| 940 | && cmp(BUNtail(bi, oids[0] - b->hseqbase), nil) != 0 |
| 941 | && (cmp(BUNtail(bi, i - b->hseqbase), nil) == 0 |
| 942 | || cmp(BUNtail(bi, i - b->hseqbase), |
| 943 | BUNtail(bi, oids[0] - b->hseqbase)) > 0))) { |
| 944 | oids[0] = i; |
| 945 | goids[0] = gv[j]; |
| 946 | siftdown(nGTanygrp, 0, SWAP2); |
| 947 | } |
| 948 | j++; |
| 949 | } |
| 950 | break; |
| 951 | } |
| 952 | } |
| 953 | if (lastp) |
| 954 | *lastp = oids[0]; |
| 955 | if (lastgp) |
| 956 | *lastgp = goids[0]; |
| 957 | GDKfree(goids); |
| 958 | /* output must be sorted since it's a candidate list */ |
| 959 | GDKqsort(oids, NULL, NULL, (size_t) n, sizeof(oid), 0, TYPE_oid, false, false); |
| 960 | bn->tsorted = true; |
| 961 | bn->trevsorted = n <= 1; |
| 962 | bn->tkey = true; |
| 963 | bn->tseqbase = n <= 1 ? oids[0] : oid_nil; |
| 964 | bn->tnil = false; |
| 965 | bn->tnonil = true; |
| 966 | return bn; |
| 967 | } |
| 968 | |
| 969 | static gdk_return |
| 970 | BATfirstn_grouped(BAT **topn, BAT **gids, BAT *b, BAT *s, BUN n, bool asc, bool nilslast, bool distinct) |
| 971 | { |
| 972 | BAT *bn, *gn, *su = NULL; |
| 973 | oid last; |
| 974 | gdk_return rc; |
| 975 | |
| 976 | if (distinct && !b->tkey) { |
| 977 | su = s; |
| 978 | s = BATunique(b, s); |
| 979 | if (s == NULL) |
| 980 | return GDK_FAIL; |
| 981 | } |
| 982 | bn = BATfirstn_unique(b, s, n, asc, nilslast, &last); |
| 983 | if (bn == NULL) |
| 984 | return GDK_FAIL; |
| 985 | if (BATcount(bn) == 0) { |
| 986 | if (gids) { |
| 987 | gn = BATdense(0, 0, 0); |
| 988 | if (gn == NULL) { |
| 989 | BBPunfix(bn->batCacheid); |
| 990 | return GDK_FAIL; |
| 991 | } |
| 992 | *gids = gn; |
| 993 | } |
| 994 | *topn = bn; |
| 995 | return GDK_SUCCEED; |
| 996 | } |
| 997 | if (!b->tkey) { |
| 998 | if (distinct) { |
| 999 | BAT *bn1; |
| 1000 | |
| 1001 | bn1 = bn; |
| 1002 | BBPunfix(s->batCacheid); |
| 1003 | bn = BATintersect(b, b, su, bn1, true, BUN_NONE); |
| 1004 | BBPunfix(bn1->batCacheid); |
| 1005 | if (bn == NULL) |
| 1006 | return GDK_FAIL; |
| 1007 | } else { |
| 1008 | BATiter bi = bat_iterator(b); |
| 1009 | BAT *bn1, *bn2; |
| 1010 | |
| 1011 | bn1 = bn; |
| 1012 | bn2 = BATselect(b, s, BUNtail(bi, last - b->hseqbase), NULL, true, false, false); |
| 1013 | if (bn2 == NULL) { |
| 1014 | BBPunfix(bn1->batCacheid); |
| 1015 | return GDK_FAIL; |
| 1016 | } |
| 1017 | bn = BATmergecand(bn1, bn2); |
| 1018 | BBPunfix(bn1->batCacheid); |
| 1019 | BBPunfix(bn2->batCacheid); |
| 1020 | if (bn == NULL) |
| 1021 | return GDK_FAIL; |
| 1022 | } |
| 1023 | } |
| 1024 | if (gids) { |
| 1025 | BAT *bn1, *bn2, *bn3, *bn4; |
| 1026 | bn1 = BATproject(bn, b); |
| 1027 | if (bn1 == NULL) { |
| 1028 | BBPunfix(bn->batCacheid); |
| 1029 | return GDK_FAIL; |
| 1030 | } |
| 1031 | rc = BATsort(NULL, &bn2, &bn3, bn1, NULL, NULL, !asc, !asc, false); |
| 1032 | BBPunfix(bn1->batCacheid); |
| 1033 | if (rc != GDK_SUCCEED) { |
| 1034 | BBPunfix(bn->batCacheid); |
| 1035 | return GDK_FAIL; |
| 1036 | } |
| 1037 | rc = BATsort(NULL, &bn4, NULL, bn2, NULL, NULL, false, false, false); |
| 1038 | BBPunfix(bn2->batCacheid); |
| 1039 | if (rc != GDK_SUCCEED) { |
| 1040 | BBPunfix(bn->batCacheid); |
| 1041 | BBPunfix(bn3->batCacheid); |
| 1042 | return GDK_FAIL; |
| 1043 | } |
| 1044 | gn = BATproject(bn4, bn3); |
| 1045 | BBPunfix(bn3->batCacheid); |
| 1046 | BBPunfix(bn4->batCacheid); |
| 1047 | if (gn == NULL) { |
| 1048 | BBPunfix(bn->batCacheid); |
| 1049 | return GDK_FAIL; |
| 1050 | } |
| 1051 | *gids = gn; |
| 1052 | assert(BATcount(gn) == BATcount(bn)); |
| 1053 | } |
| 1054 | *topn = bn; |
| 1055 | return GDK_SUCCEED; |
| 1056 | } |
| 1057 | |
| 1058 | static gdk_return |
| 1059 | BATfirstn_grouped_with_groups(BAT **topn, BAT **gids, BAT *b, BAT *s, BAT *g, BUN n, bool asc, bool nilslast, bool distinct) |
| 1060 | { |
| 1061 | BAT *bn, *gn; |
| 1062 | oid last, lastg; |
| 1063 | gdk_return rc; |
| 1064 | |
| 1065 | if (distinct) { |
| 1066 | BAT *bn1, *bn2, *bn3, *bn4, *bn5, *bn6, *bn7, *bn8; |
| 1067 | if (BATgroup(&bn1, &bn2, NULL, b, s, g, NULL, NULL) != GDK_SUCCEED) |
| 1068 | return GDK_FAIL; |
| 1069 | bn3 = BATproject(bn2, b); |
| 1070 | if (bn3 == NULL) { |
| 1071 | BBPunfix(bn1->batCacheid); |
| 1072 | BBPunfix(bn2->batCacheid); |
| 1073 | return GDK_FAIL; |
| 1074 | } |
| 1075 | bn4 = BATintersect(s, bn2, NULL, NULL, false, BUN_NONE); |
| 1076 | BBPunfix(bn2->batCacheid); |
| 1077 | if (bn4 == NULL) { |
| 1078 | BBPunfix(bn1->batCacheid); |
| 1079 | return GDK_FAIL; |
| 1080 | } |
| 1081 | bn5 = BATproject(bn4, g); |
| 1082 | BBPunfix(bn4->batCacheid); |
| 1083 | if (bn5 == NULL) { |
| 1084 | BBPunfix(bn1->batCacheid); |
| 1085 | return GDK_FAIL; |
| 1086 | } |
| 1087 | bn6 = BATfirstn_unique_with_groups(bn3, NULL, bn5, n, asc, nilslast, NULL, NULL); |
| 1088 | BBPunfix(bn3->batCacheid); |
| 1089 | BBPunfix(bn5->batCacheid); |
| 1090 | if (bn6 == NULL) { |
| 1091 | BBPunfix(bn1->batCacheid); |
| 1092 | return GDK_FAIL; |
| 1093 | } |
| 1094 | rc = BATleftjoin(&bn8, &bn7, bn1, bn6, NULL, NULL, false, BUN_NONE); |
| 1095 | BBPunfix(bn6->batCacheid); |
| 1096 | if (rc != GDK_SUCCEED) |
| 1097 | return GDK_FAIL; |
| 1098 | BBPunfix(bn7->batCacheid); |
| 1099 | bn = BATproject(bn8, s); |
| 1100 | BBPunfix(bn8->batCacheid); |
| 1101 | if (bn == NULL) |
| 1102 | return GDK_FAIL; |
| 1103 | } else { |
| 1104 | bn = BATfirstn_unique_with_groups(b, s, g, n, asc, nilslast, &last, &lastg); |
| 1105 | if (bn == NULL) |
| 1106 | return GDK_FAIL; |
| 1107 | } |
| 1108 | if (BATcount(bn) == 0) { |
| 1109 | if (gids) { |
| 1110 | gn = BATdense(0, 0, 0); |
| 1111 | if (gn == NULL) { |
| 1112 | BBPunfix(bn->batCacheid); |
| 1113 | return GDK_FAIL; |
| 1114 | } |
| 1115 | *gids = gn; |
| 1116 | } |
| 1117 | *topn = bn; |
| 1118 | return GDK_SUCCEED; |
| 1119 | } |
| 1120 | if (!distinct && !b->tkey) { |
| 1121 | BAT *bn1, *bn2, *bn3, *bn4; |
| 1122 | BATiter bi = bat_iterator(b); |
| 1123 | |
| 1124 | bn1 = bn; |
| 1125 | bn2 = BATselect(g, NULL, &lastg, NULL, true, false, false); |
| 1126 | if (bn2 == NULL) { |
| 1127 | BBPunfix(bn1->batCacheid); |
| 1128 | return GDK_FAIL; |
| 1129 | } |
| 1130 | bn3 = BATproject(bn2, s); |
| 1131 | BBPunfix(bn2->batCacheid); |
| 1132 | if (bn3 == NULL) { |
| 1133 | BBPunfix(bn1->batCacheid); |
| 1134 | return GDK_FAIL; |
| 1135 | } |
| 1136 | bn4 = BATselect(b, bn3, BUNtail(bi, last - b->hseqbase), NULL, true, false, false); |
| 1137 | BBPunfix(bn3->batCacheid); |
| 1138 | if (bn4 == NULL) { |
| 1139 | BBPunfix(bn1->batCacheid); |
| 1140 | return GDK_FAIL; |
| 1141 | } |
| 1142 | bn = BATmergecand(bn1, bn4); |
| 1143 | BBPunfix(bn1->batCacheid); |
| 1144 | BBPunfix(bn4->batCacheid); |
| 1145 | if (bn == NULL) |
| 1146 | return GDK_FAIL; |
| 1147 | } |
| 1148 | if (gids) { |
| 1149 | BAT *bn1, *bn2, *bn3, *bn4, *bn5, *bn6, *bn7, *bn8; |
| 1150 | |
| 1151 | if ((bn1 = BATintersect(s, bn, NULL, NULL, false, BUN_NONE)) == NULL) { |
| 1152 | BBPunfix(bn->batCacheid); |
| 1153 | return GDK_FAIL; |
| 1154 | } |
| 1155 | bn2 = BATproject(bn1, g); |
| 1156 | BBPunfix(bn1->batCacheid); |
| 1157 | if (bn2 == NULL) { |
| 1158 | BBPunfix(bn->batCacheid); |
| 1159 | return GDK_FAIL; |
| 1160 | } |
| 1161 | bn3 = BATproject(bn, b); |
| 1162 | if (bn3 == NULL) { |
| 1163 | BBPunfix(bn2->batCacheid); |
| 1164 | return GDK_FAIL; |
| 1165 | } |
| 1166 | rc = BATsort(NULL, &bn4, &bn5, bn2, NULL, NULL, false, false, false); |
| 1167 | BBPunfix(bn2->batCacheid); |
| 1168 | if (rc != GDK_SUCCEED) { |
| 1169 | BBPunfix(bn->batCacheid); |
| 1170 | BBPunfix(bn3->batCacheid); |
| 1171 | return GDK_FAIL; |
| 1172 | } |
| 1173 | rc = BATsort(NULL, &bn6, &bn7, bn3, bn4, bn5, !asc, !asc, false); |
| 1174 | BBPunfix(bn3->batCacheid); |
| 1175 | BBPunfix(bn4->batCacheid); |
| 1176 | BBPunfix(bn5->batCacheid); |
| 1177 | if (rc != GDK_SUCCEED) { |
| 1178 | BBPunfix(bn->batCacheid); |
| 1179 | return GDK_FAIL; |
| 1180 | } |
| 1181 | rc = BATsort(NULL, &bn8, NULL, bn6, NULL, NULL, false, false, false); |
| 1182 | BBPunfix(bn6->batCacheid); |
| 1183 | if (rc != GDK_SUCCEED) { |
| 1184 | BBPunfix(bn->batCacheid); |
| 1185 | BBPunfix(bn7->batCacheid); |
| 1186 | return GDK_FAIL; |
| 1187 | } |
| 1188 | gn = BATproject(bn8, bn7); |
| 1189 | BBPunfix(bn7->batCacheid); |
| 1190 | BBPunfix(bn8->batCacheid); |
| 1191 | if (gn == NULL) { |
| 1192 | BBPunfix(bn->batCacheid); |
| 1193 | return GDK_FAIL; |
| 1194 | } |
| 1195 | *gids = gn; |
| 1196 | assert(BATcount(gn) == BATcount(bn)); |
| 1197 | } |
| 1198 | *topn = bn; |
| 1199 | return GDK_SUCCEED; |
| 1200 | } |
| 1201 | |
| 1202 | gdk_return |
| 1203 | BATfirstn(BAT **topn, BAT **gids, BAT *b, BAT *s, BAT *g, BUN n, bool asc, bool nilslast, bool distinct) |
| 1204 | { |
| 1205 | assert(topn != NULL); |
| 1206 | if (b == NULL) { |
| 1207 | *topn = NULL; |
| 1208 | return GDK_SUCCEED; |
| 1209 | } |
| 1210 | |
| 1211 | /* if g specified, then so must s */ |
| 1212 | assert(g == NULL || s != NULL); |
| 1213 | /* g and s must be aligned (same size, same hseqbase) */ |
| 1214 | assert(g == NULL || BATcount(s) == BATcount(g)); |
| 1215 | assert(g == NULL || BATcount(g) == 0 || s->hseqbase == g->hseqbase); |
| 1216 | |
| 1217 | if (n == 0 || BATcount(b) == 0 || (s != NULL && BATcount(s) == 0)) { |
| 1218 | /* trivial: empty result */ |
| 1219 | *topn = BATdense(0, 0, 0); |
| 1220 | if (*topn == NULL) |
| 1221 | return GDK_FAIL; |
| 1222 | if (gids) { |
| 1223 | *gids = BATdense(0, 0, 0); |
| 1224 | if (*gids == NULL) { |
| 1225 | BBPreclaim(*topn); |
| 1226 | return GDK_FAIL; |
| 1227 | } |
| 1228 | } |
| 1229 | return GDK_SUCCEED; |
| 1230 | } |
| 1231 | |
| 1232 | if (g == NULL) { |
| 1233 | if (gids == NULL && !distinct) { |
| 1234 | *topn = BATfirstn_unique(b, s, n, asc, nilslast, NULL); |
| 1235 | return *topn ? GDK_SUCCEED : GDK_FAIL; |
| 1236 | } |
| 1237 | return BATfirstn_grouped(topn, gids, b, s, n, asc, nilslast, distinct); |
| 1238 | } |
| 1239 | if (gids == NULL && !distinct) { |
| 1240 | *topn = BATfirstn_unique_with_groups(b, s, g, n, asc, nilslast, NULL, NULL); |
| 1241 | return *topn ? GDK_SUCCEED : GDK_FAIL; |
| 1242 | } |
| 1243 | return BATfirstn_grouped_with_groups(topn, gids, b, s, g, n, asc, nilslast, distinct); |
| 1244 | } |
| 1245 | |