1 | /* |
2 | * This Source Code Form is subject to the terms of the Mozilla Public |
3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
5 | * |
6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
7 | */ |
8 | |
9 | /* |
10 | * @f gdk_heap |
11 | * @a Peter Boncz, Wilko Quak |
12 | * @+ Atom Heaps |
13 | * Heaps are the basic mass storage structure of Monet. A heap is a |
14 | * handle to a large, possibly huge, contiguous area of main memory, |
15 | * that can be allocated in various ways (discriminated by the |
16 | * heap->storage field): |
17 | * |
18 | * @table @code |
19 | * @item STORE_MEM: malloc-ed memory |
20 | * small (or rather: not huge) heaps are allocated with GDKmalloc. |
21 | * Notice that GDKmalloc may redirect big requests to anonymous |
22 | * virtual memory to prevent @emph{memory fragmentation} in the malloc |
23 | * library (see gdk_utils.c). |
24 | * |
25 | * @item STORE_MMAP: read-only mapped region |
26 | * this is a file on disk that is mapped into virtual memory. This is |
27 | * normally done MAP_SHARED, so we can use msync() to commit dirty |
28 | * data using the OS virtual memory management. |
29 | * |
30 | * @item STORE_PRIV: read-write mapped region |
31 | * in order to preserve ACID properties, we use a different memory |
32 | * mapping on virtual memory that is writable. This is because in case |
33 | * of a crash on a dirty STORE_MMAP heap, the OS may have written some |
34 | * of the dirty pages to disk and other not (but it is impossible to |
35 | * determine which). The OS MAP_PRIVATE mode does not modify the file |
36 | * on which is being mapped, rather creates substitute pages |
37 | * dynamically taken from the swap file when modifications occur. This |
38 | * is the only way to make writing to mmap()-ed regions safe. To save |
39 | * changes, we created a new file X.new; as some OS-es do not allow to |
40 | * write into a file that has a mmap open on it (e.g. Windows). Such |
41 | * X.new files take preference over X files when opening them. |
42 | * @end table |
43 | * Read also the discussion in BATsetaccess (gdk_bat.c). |
44 | */ |
45 | #include "monetdb_config.h" |
46 | #include "gdk.h" |
47 | #include "gdk_private.h" |
48 | |
49 | static void * |
50 | HEAPcreatefile(int farmid, size_t *maxsz, const char *fn) |
51 | { |
52 | void *base = NULL; |
53 | char *path = NULL; |
54 | int fd; |
55 | |
56 | if (farmid != NOFARM) { |
57 | /* call GDKfilepath once here instead of twice inside |
58 | * the calls to GDKfdlocate and GDKload */ |
59 | if ((path = GDKfilepath(farmid, BATDIR, fn, NULL)) == NULL) |
60 | return NULL; |
61 | fn = path; |
62 | } |
63 | /* round up to mulitple of GDK_mmap_pagesize */ |
64 | fd = GDKfdlocate(NOFARM, fn, "wb" , NULL); |
65 | if (fd >= 0) { |
66 | close(fd); |
67 | base = GDKload(NOFARM, fn, NULL, *maxsz, maxsz, STORE_MMAP); |
68 | } |
69 | GDKfree(path); |
70 | return base; |
71 | } |
72 | |
73 | static gdk_return HEAPload_intern(Heap *h, const char *nme, const char *ext, const char *suffix, bool trunc); |
74 | static gdk_return HEAPsave_intern(Heap *h, const char *nme, const char *ext, const char *suffix); |
75 | |
76 | static char * |
77 | decompose_filename(str nme) |
78 | { |
79 | char *ext; |
80 | |
81 | ext = strchr(nme, '.'); /* extract base and ext from heap file name */ |
82 | if (ext) { |
83 | *ext++ = 0; |
84 | } |
85 | return ext; |
86 | } |
87 | |
88 | /* |
89 | * @- HEAPalloc |
90 | * |
91 | * Normally, we use GDKmalloc for creating a new heap. Huge heaps, |
92 | * though, come from memory mapped files that we create with a large |
93 | * seek. This is fast, and leads to files-with-holes on Unixes (on |
94 | * Windows, it actually always performs I/O which is not nice). |
95 | */ |
96 | gdk_return |
97 | HEAPalloc(Heap *h, size_t nitems, size_t itemsize) |
98 | { |
99 | h->base = NULL; |
100 | h->size = 1; |
101 | h->copied = false; |
102 | if (itemsize) |
103 | h->size = MAX(1, nitems) * itemsize; |
104 | h->free = 0; |
105 | h->cleanhash = false; |
106 | |
107 | /* check for overflow */ |
108 | if (itemsize && nitems > (h->size / itemsize)) { |
109 | GDKerror("HEAPalloc: allocating more than heap can accomodate\n" ); |
110 | return GDK_FAIL; |
111 | } |
112 | if (GDKinmemory() || |
113 | (GDKmem_cursize() + h->size < GDK_mem_maxsize && |
114 | h->size < (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient))) { |
115 | h->storage = STORE_MEM; |
116 | h->base = GDKmalloc(h->size); |
117 | HEAPDEBUG fprintf(stderr, "#HEAPalloc %zu %p\n" , h->size, h->base); |
118 | } |
119 | if (!GDKinmemory() && h->base == NULL) { |
120 | char *nme; |
121 | |
122 | nme = GDKfilepath(h->farmid, BATDIR, h->filename, NULL); |
123 | if (nme == NULL) |
124 | return GDK_FAIL; |
125 | h->storage = STORE_MMAP; |
126 | h->base = HEAPcreatefile(NOFARM, &h->size, nme); |
127 | GDKfree(nme); |
128 | } |
129 | if (h->base == NULL) { |
130 | GDKerror("HEAPalloc: Insufficient space for HEAP of %zu bytes." , h->size); |
131 | return GDK_FAIL; |
132 | } |
133 | h->newstorage = h->storage; |
134 | return GDK_SUCCEED; |
135 | } |
136 | |
137 | /* Extend the allocated space of the heap H to be at least SIZE bytes. |
138 | * If the heap grows beyond a threshold and a filename is known, the |
139 | * heap is converted from allocated memory to a memory-mapped file. |
140 | * When switching from allocated to memory mapped, if MAYSHARE is set, |
141 | * the heap does not have to be copy-on-write. |
142 | * |
143 | * The function returns 0 on success, -1 on failure. |
144 | * |
145 | * When extending a memory-mapped heap, we use the function MT_mremap |
146 | * (which see). When extending an allocated heap, we use GDKrealloc. |
147 | * If that fails, we switch to memory mapped, even when the size is |
148 | * below the threshold. |
149 | * |
150 | * When converting from allocated to memory mapped, we try several |
151 | * strategies. First we try to create the memory map, and if that |
152 | * works, copy the data and free the old memory. If this fails, we |
153 | * first write the data to disk, free the memory, and then try to |
154 | * memory map the saved data. */ |
155 | gdk_return |
156 | HEAPextend(Heap *h, size_t size, bool mayshare) |
157 | { |
158 | char nme[sizeof(h->filename)], *ext; |
159 | const char *failure = "None" ; |
160 | |
161 | if (GDKinmemory()) { |
162 | strcpy_len(nme, ":inmemory" , sizeof(nme)); |
163 | ext = "ext" ; |
164 | } else { |
165 | strcpy_len(nme, h->filename, sizeof(nme)); |
166 | ext = decompose_filename(nme); |
167 | } |
168 | if (size <= h->size) |
169 | return GDK_SUCCEED; /* nothing to do */ |
170 | |
171 | failure = "size > h->size" ; |
172 | |
173 | if (h->storage != STORE_MEM) { |
174 | char *p; |
175 | char *path; |
176 | |
177 | HEAPDEBUG fprintf(stderr, "#HEAPextend: extending %s mmapped heap (%s)\n" , h->storage == STORE_MMAP ? "shared" : "privately" , h->filename); |
178 | /* extend memory mapped file */ |
179 | if ((path = GDKfilepath(h->farmid, BATDIR, nme, ext)) == NULL) { |
180 | return GDK_FAIL; |
181 | } |
182 | size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
183 | if (size == 0) |
184 | size = GDK_mmap_pagesize; |
185 | |
186 | p = GDKmremap(path, |
187 | h->storage == STORE_PRIV ? |
188 | MMAP_COPY | MMAP_READ | MMAP_WRITE : |
189 | MMAP_READ | MMAP_WRITE, |
190 | h->base, h->size, &size); |
191 | GDKfree(path); |
192 | if (p) { |
193 | h->size = size; |
194 | h->base = p; |
195 | return GDK_SUCCEED; /* success */ |
196 | } |
197 | failure = "GDKmremap() failed" ; |
198 | } else { |
199 | /* extend a malloced heap, possibly switching over to |
200 | * file-mapped storage */ |
201 | Heap bak = *h; |
202 | bool exceeds_swap = size + GDKmem_cursize() >= GDK_mem_maxsize; |
203 | bool must_mmap = !GDKinmemory() && (exceeds_swap || h->newstorage != STORE_MEM || size >= (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient)); |
204 | |
205 | h->size = size; |
206 | |
207 | /* try GDKrealloc if the heap size stays within |
208 | * reasonable limits */ |
209 | if (!must_mmap) { |
210 | h->newstorage = h->storage = STORE_MEM; |
211 | h->base = GDKrealloc(h->base, size); |
212 | HEAPDEBUG fprintf(stderr, "#HEAPextend: extending malloced heap %zu %zu %p %p\n" , size, h->size, bak.base, h->base); |
213 | h->size = size; |
214 | if (h->base) |
215 | return GDK_SUCCEED; /* success */ |
216 | /* bak.base is still valid and may get restored */ |
217 | failure = "h->storage == STORE_MEM && !must_map && !h->base" ; |
218 | } |
219 | |
220 | if (!GDKinmemory()) { |
221 | /* too big: convert it to a disk-based temporary heap */ |
222 | bool existing = false; |
223 | |
224 | assert(h->storage == STORE_MEM); |
225 | assert(ext != NULL); |
226 | /* if the heap file already exists, we want to switch |
227 | * to STORE_PRIV (copy-on-write memory mapped files), |
228 | * but if the heap file doesn't exist yet, the BAT is |
229 | * new and we can use STORE_MMAP */ |
230 | int fd = GDKfdlocate(h->farmid, nme, "rb" , ext); |
231 | if (fd >= 0) { |
232 | existing = true; |
233 | close(fd); |
234 | } else { |
235 | /* no pre-existing heap file, so create a new |
236 | * one */ |
237 | h->base = HEAPcreatefile(h->farmid, &h->size, h->filename); |
238 | if (h->base) { |
239 | h->newstorage = h->storage = STORE_MMAP; |
240 | memcpy(h->base, bak.base, bak.free); |
241 | HEAPfree(&bak, false); |
242 | return GDK_SUCCEED; |
243 | } |
244 | GDKclrerr(); |
245 | } |
246 | fd = GDKfdlocate(h->farmid, nme, "wb" , ext); |
247 | if (fd >= 0) { |
248 | close(fd); |
249 | h->storage = h->newstorage == STORE_MMAP && existing && !mayshare ? STORE_PRIV : h->newstorage; |
250 | /* make sure we really MMAP */ |
251 | if (must_mmap && h->newstorage == STORE_MEM) |
252 | h->storage = STORE_MMAP; |
253 | h->newstorage = h->storage; |
254 | |
255 | h->base = NULL; |
256 | HEAPDEBUG fprintf(stderr, "#HEAPextend: converting malloced to %s mmapped heap\n" , h->newstorage == STORE_MMAP ? "shared" : "privately" ); |
257 | /* try to allocate a memory-mapped based |
258 | * heap */ |
259 | if (HEAPload(h, nme, ext, false) == GDK_SUCCEED) { |
260 | /* copy data to heap and free old |
261 | * memory */ |
262 | memcpy(h->base, bak.base, bak.free); |
263 | HEAPfree(&bak, false); |
264 | return GDK_SUCCEED; |
265 | } |
266 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPload() != GDK_SUCCEED" ; |
267 | /* couldn't allocate, now first save data to |
268 | * file */ |
269 | if (HEAPsave_intern(&bak, nme, ext, ".tmp" ) != GDK_SUCCEED) { |
270 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPsave_intern() != GDK_SUCCEED" ; |
271 | goto failed; |
272 | } |
273 | /* then free memory */ |
274 | HEAPfree(&bak, false); |
275 | /* and load heap back in via memory-mapped |
276 | * file */ |
277 | if (HEAPload_intern(h, nme, ext, ".tmp" , false) == GDK_SUCCEED) { |
278 | /* success! */ |
279 | GDKclrerr(); /* don't leak errors from e.g. HEAPload */ |
280 | return GDK_SUCCEED; |
281 | } |
282 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPload_intern() != GDK_SUCCEED" ; |
283 | /* we failed */ |
284 | } else { |
285 | failure = "h->storage == STORE_MEM && can_map && fd < 0" ; |
286 | } |
287 | } |
288 | failed: |
289 | *h = bak; |
290 | } |
291 | GDKerror("HEAPextend: failed to extend to %zu for %s%s%s: %s\n" , |
292 | size, nme, ext ? "." : "" , ext ? ext : "" , failure); |
293 | return GDK_FAIL; |
294 | } |
295 | |
296 | gdk_return |
297 | HEAPshrink(Heap *h, size_t size) |
298 | { |
299 | char *p = NULL; |
300 | |
301 | assert(size >= h->free); |
302 | assert(size <= h->size); |
303 | if (h->storage == STORE_MEM) { |
304 | p = GDKrealloc(h->base, size); |
305 | HEAPDEBUG fprintf(stderr, "#HEAPshrink: shrinking malloced " |
306 | "heap %zu %zu %p " |
307 | "%p\n" , h->size, size, |
308 | h->base, p); |
309 | } else { |
310 | char *path; |
311 | |
312 | /* shrink memory mapped file */ |
313 | /* round up to multiple of GDK_mmap_pagesize with |
314 | * minimum of one */ |
315 | size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
316 | if (size == 0) |
317 | size = GDK_mmap_pagesize; |
318 | if (size >= h->size) { |
319 | /* don't grow */ |
320 | return GDK_SUCCEED; |
321 | } |
322 | if(!(path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL))) |
323 | return GDK_FAIL; |
324 | p = GDKmremap(path, |
325 | h->storage == STORE_PRIV ? |
326 | MMAP_COPY | MMAP_READ | MMAP_WRITE : |
327 | MMAP_READ | MMAP_WRITE, |
328 | h->base, h->size, &size); |
329 | GDKfree(path); |
330 | HEAPDEBUG fprintf(stderr, "#HEAPshrink: shrinking %s mmapped " |
331 | "heap (%s) %zu %zu %p " |
332 | "%p\n" , |
333 | h->storage == STORE_MMAP ? "shared" : "privately" , |
334 | h->filename, h->size, size, |
335 | h->base, p); |
336 | } |
337 | if (p) { |
338 | h->size = size; |
339 | h->base = p; |
340 | return GDK_SUCCEED; |
341 | } |
342 | return GDK_FAIL; |
343 | } |
344 | |
345 | /* returns 1 if the file exists */ |
346 | static int |
347 | file_exists(int farmid, const char *dir, const char *name, const char *ext) |
348 | { |
349 | char *path; |
350 | struct stat st; |
351 | int ret; |
352 | |
353 | path = GDKfilepath(farmid, dir, name, ext); |
354 | ret = stat(path, &st); |
355 | IODEBUG fprintf(stderr, "#stat(%s) = %d\n" , path, ret); |
356 | GDKfree(path); |
357 | return (ret == 0); |
358 | } |
359 | |
360 | gdk_return |
361 | GDKupgradevarheap(BAT *b, var_t v, bool copyall, bool mayshare) |
362 | { |
363 | uint8_t shift = b->tshift; |
364 | uint16_t width = b->twidth; |
365 | unsigned char *pc; |
366 | unsigned short *ps; |
367 | unsigned int *pi; |
368 | #if SIZEOF_VAR_T == 8 |
369 | var_t *pv; |
370 | #endif |
371 | size_t i, n; |
372 | size_t savefree; |
373 | const char *filename; |
374 | bat bid = b->batCacheid; |
375 | |
376 | assert(b->theap.parentid == 0); |
377 | assert(width != 0); |
378 | assert(v >= GDK_VAROFFSET); |
379 | assert(width < SIZEOF_VAR_T && (width <= 2 ? v - GDK_VAROFFSET : v) >= ((var_t) 1 << (8 * width))); |
380 | while (width < SIZEOF_VAR_T && (width <= 2 ? v - GDK_VAROFFSET : v) >= ((var_t) 1 << (8 * width))) { |
381 | width <<= 1; |
382 | shift++; |
383 | } |
384 | assert(b->twidth < width); |
385 | assert(b->tshift < shift); |
386 | |
387 | /* if copyall is set, we need to convert the whole heap, since |
388 | * we may be in the middle of an insert loop that adjusts the |
389 | * free value at the end; otherwise only copy the area |
390 | * indicated by the "free" pointer */ |
391 | n = (copyall ? b->theap.size : b->theap.free) >> b->tshift; |
392 | |
393 | /* Create a backup copy before widening. |
394 | * |
395 | * If the file is memory-mapped, this solves a problem that we |
396 | * don't control what's in the actual file until the next |
397 | * commit happens, so a crash might otherwise leave the file |
398 | * (and the database) in an inconsistent state. If, on the |
399 | * other hand, the heap is allocated, it may happen that later |
400 | * on the heap is extended and converted into a memory-mapped |
401 | * file. Then the same problem arises. |
402 | * |
403 | * also see do_backup in gdk_bbp.c */ |
404 | filename = strrchr(b->theap.filename, DIR_SEP); |
405 | if (filename == NULL) |
406 | filename = b->theap.filename; |
407 | else |
408 | filename++; |
409 | if ((BBP_status(bid) & (BBPEXISTING|BBPDELETED)) && |
410 | !file_exists(b->theap.farmid, BAKDIR, filename, NULL) && |
411 | (b->theap.storage != STORE_MEM || |
412 | GDKmove(b->theap.farmid, BATDIR, b->theap.filename, NULL, |
413 | BAKDIR, filename, NULL) != GDK_SUCCEED)) { |
414 | int fd; |
415 | ssize_t ret = 0; |
416 | size_t size = n << b->tshift; |
417 | const char *base = b->theap.base; |
418 | |
419 | /* first save heap in file with extra .tmp extension */ |
420 | if ((fd = GDKfdlocate(b->theap.farmid, b->theap.filename, "wb" , "tmp" )) < 0) |
421 | return GDK_FAIL; |
422 | while (size > 0) { |
423 | ret = write(fd, base, (unsigned) MIN(1 << 30, size)); |
424 | if (ret < 0) |
425 | size = 0; |
426 | size -= ret; |
427 | base += ret; |
428 | } |
429 | if (ret < 0 || |
430 | (!(GDKdebug & NOSYNCMASK) |
431 | #if defined(NATIVE_WIN32) |
432 | && _commit(fd) < 0 |
433 | #elif defined(HAVE_FDATASYNC) |
434 | && fdatasync(fd) < 0 |
435 | #elif defined(HAVE_FSYNC) |
436 | && fsync(fd) < 0 |
437 | #endif |
438 | ) || |
439 | close(fd) < 0) { |
440 | /* something went wrong: abandon ship */ |
441 | GDKsyserror("GDKupgradevarheap: syncing heap to disk failed\n" ); |
442 | close(fd); |
443 | GDKunlink(b->theap.farmid, BATDIR, b->theap.filename, "tmp" ); |
444 | return GDK_FAIL; |
445 | } |
446 | /* move tmp file to backup directory (without .tmp |
447 | * extension) */ |
448 | if (GDKmove(b->theap.farmid, BATDIR, b->theap.filename, "tmp" , BAKDIR, filename, NULL) != GDK_SUCCEED) { |
449 | /* backup failed */ |
450 | GDKunlink(b->theap.farmid, BATDIR, b->theap.filename, "tmp" ); |
451 | return GDK_FAIL; |
452 | } |
453 | } |
454 | |
455 | savefree = b->theap.free; |
456 | if (copyall) |
457 | b->theap.free = b->theap.size; |
458 | if (HEAPextend(&b->theap, (b->theap.size >> b->tshift) << shift, mayshare) != GDK_SUCCEED) |
459 | return GDK_FAIL; |
460 | if (copyall) |
461 | b->theap.free = savefree; |
462 | /* note, cast binds more closely than addition */ |
463 | pc = (unsigned char *) b->theap.base + n; |
464 | ps = (unsigned short *) b->theap.base + n; |
465 | pi = (unsigned int *) b->theap.base + n; |
466 | #if SIZEOF_VAR_T == 8 |
467 | pv = (var_t *) b->theap.base + n; |
468 | #endif |
469 | |
470 | /* convert from back to front so that we can do it in-place */ |
471 | switch (width) { |
472 | case 2: |
473 | #ifndef NDEBUG |
474 | memset(ps, 0, b->theap.base + b->theap.size - (char *) ps); |
475 | #endif |
476 | switch (b->twidth) { |
477 | case 1: |
478 | for (i = 0; i < n; i++) |
479 | *--ps = *--pc; |
480 | break; |
481 | } |
482 | break; |
483 | case 4: |
484 | #ifndef NDEBUG |
485 | memset(pi, 0, b->theap.base + b->theap.size - (char *) pi); |
486 | #endif |
487 | switch (b->twidth) { |
488 | case 1: |
489 | for (i = 0; i < n; i++) |
490 | *--pi = *--pc + GDK_VAROFFSET; |
491 | break; |
492 | case 2: |
493 | for (i = 0; i < n; i++) |
494 | *--pi = *--ps + GDK_VAROFFSET; |
495 | break; |
496 | } |
497 | break; |
498 | #if SIZEOF_VAR_T == 8 |
499 | case 8: |
500 | #ifndef NDEBUG |
501 | memset(pv, 0, b->theap.base + b->theap.size - (char *) pv); |
502 | #endif |
503 | switch (b->twidth) { |
504 | case 1: |
505 | for (i = 0; i < n; i++) |
506 | *--pv = *--pc + GDK_VAROFFSET; |
507 | break; |
508 | case 2: |
509 | for (i = 0; i < n; i++) |
510 | *--pv = *--ps + GDK_VAROFFSET; |
511 | break; |
512 | case 4: |
513 | for (i = 0; i < n; i++) |
514 | *--pv = *--pi; |
515 | break; |
516 | } |
517 | break; |
518 | #endif |
519 | } |
520 | b->theap.free <<= shift - b->tshift; |
521 | b->tshift = shift; |
522 | b->twidth = width; |
523 | return GDK_SUCCEED; |
524 | } |
525 | |
526 | /* |
527 | * @- HEAPcopy |
528 | * simple: alloc and copy. Notice that we suppose a preallocated |
529 | * dst->filename (or NULL), which might be used in HEAPalloc(). |
530 | */ |
531 | gdk_return |
532 | HEAPcopy(Heap *dst, Heap *src) |
533 | { |
534 | if (HEAPalloc(dst, src->size, 1) == GDK_SUCCEED) { |
535 | dst->free = src->free; |
536 | memcpy(dst->base, src->base, src->free); |
537 | dst->hashash = src->hashash; |
538 | dst->cleanhash = src->cleanhash; |
539 | dst->dirty = true; |
540 | return GDK_SUCCEED; |
541 | } |
542 | return GDK_FAIL; |
543 | } |
544 | |
545 | /* Free the memory associated with the heap H. |
546 | * Unlinks (removes) the associated file if the rmheap flag is set. */ |
547 | void |
548 | HEAPfree(Heap *h, bool rmheap) |
549 | { |
550 | if (h->base) { |
551 | if (h->storage == STORE_MEM) { /* plain memory */ |
552 | HEAPDEBUG fprintf(stderr, "#HEAPfree %zu" |
553 | " %p\n" , |
554 | h->size, h->base); |
555 | GDKfree(h->base); |
556 | } else if (h->storage == STORE_CMEM) { |
557 | //heap is stored in regular C memory rather than GDK memory,so we call free() |
558 | free(h->base); |
559 | } else { /* mapped file, or STORE_PRIV */ |
560 | gdk_return ret = GDKmunmap(h->base, h->size); |
561 | |
562 | if (ret != GDK_SUCCEED) { |
563 | GDKsyserror("HEAPfree: %s was not mapped\n" , |
564 | h->filename); |
565 | assert(0); |
566 | } |
567 | HEAPDEBUG fprintf(stderr, "#munmap(base=%p, " |
568 | "size=%zu) = %d\n" , |
569 | (void *)h->base, |
570 | h->size, (int) ret); |
571 | } |
572 | } |
573 | h->base = NULL; |
574 | #ifdef HAVE_FORK |
575 | if (h->storage == STORE_MMAPABS) { |
576 | /* heap is stored in a mmap() file, but h->filename |
577 | * is the absolute path */ |
578 | if (remove(h->filename) != 0 && errno != ENOENT) { |
579 | perror(h->filename); |
580 | } |
581 | } else |
582 | #endif |
583 | if (rmheap) { |
584 | char *path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL); |
585 | if (path && remove(path) != 0 && errno != ENOENT) |
586 | perror(path); |
587 | GDKfree(path); |
588 | path = GDKfilepath(h->farmid, BATDIR, h->filename, "new" ); |
589 | if (path && remove(path) != 0 && errno != ENOENT) |
590 | perror(path); |
591 | GDKfree(path); |
592 | } |
593 | } |
594 | |
595 | /* |
596 | * @- HEAPload |
597 | * |
598 | * If we find file X.new, we move it over X (if present) and open it. |
599 | */ |
600 | static gdk_return |
601 | HEAPload_intern(Heap *h, const char *nme, const char *ext, const char *suffix, bool trunc) |
602 | { |
603 | size_t minsize; |
604 | int ret = 0; |
605 | char *srcpath, *dstpath, *tmp; |
606 | int t0; |
607 | |
608 | h->storage = h->newstorage = h->size < GDK_mmap_minsize_persistent ? STORE_MEM : STORE_MMAP; |
609 | |
610 | minsize = (h->size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
611 | if (h->storage != STORE_MEM && minsize != h->size) |
612 | h->size = minsize; |
613 | |
614 | /* when a bat is made read-only, we can truncate any unused |
615 | * space at the end of the heap */ |
616 | if (trunc) { |
617 | /* round up mmap heap sizes to GDK_mmap_pagesize |
618 | * segments, also add some slack */ |
619 | size_t truncsize = ((size_t) (h->free * 1.05) + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
620 | int fd; |
621 | |
622 | if (truncsize == 0) |
623 | truncsize = GDK_mmap_pagesize; /* minimum of one page */ |
624 | if (truncsize < h->size && |
625 | (fd = GDKfdlocate(h->farmid, nme, "mrb+" , ext)) >= 0) { |
626 | ret = ftruncate(fd, truncsize); |
627 | HEAPDEBUG fprintf(stderr, |
628 | "#ftruncate(file=%s.%s, size=%zu" |
629 | ") = %d\n" , nme, ext, truncsize, ret); |
630 | close(fd); |
631 | if (ret == 0) { |
632 | h->size = truncsize; |
633 | } |
634 | } |
635 | } |
636 | |
637 | HEAPDEBUG fprintf(stderr, "#HEAPload(%s.%s,storage=%d,free=%zu" |
638 | ",size=%zu)\n" , nme, ext, |
639 | (int) h->storage, h->free, h->size); |
640 | |
641 | /* On some OSs (WIN32,Solaris), it is prohibited to write to a |
642 | * file that is open in MAP_PRIVATE (FILE_MAP_COPY) solution: |
643 | * we write to a file named .ext.new. This file, if present, |
644 | * takes precedence. */ |
645 | srcpath = GDKfilepath(h->farmid, BATDIR, nme, ext); |
646 | dstpath = GDKfilepath(h->farmid, BATDIR, nme, ext); |
647 | if (srcpath == NULL || |
648 | dstpath == NULL || |
649 | (tmp = GDKrealloc(srcpath, strlen(srcpath) + strlen(suffix) + 1)) == NULL) { |
650 | GDKfree(srcpath); |
651 | GDKfree(dstpath); |
652 | return GDK_FAIL; |
653 | } |
654 | srcpath = tmp; |
655 | strcat(srcpath, suffix); |
656 | |
657 | t0 = GDKms(); |
658 | ret = rename(srcpath, dstpath); |
659 | HEAPDEBUG fprintf(stderr, "#rename %s %s = %d %s (%dms)\n" , |
660 | srcpath, dstpath, ret, ret < 0 ? strerror(errno) : "" , |
661 | GDKms() - t0); |
662 | GDKfree(srcpath); |
663 | GDKfree(dstpath); |
664 | |
665 | h->base = GDKload(h->farmid, nme, ext, h->free, &h->size, h->newstorage); |
666 | if (h->base == NULL) |
667 | return GDK_FAIL; /* file could not be read satisfactorily */ |
668 | |
669 | return GDK_SUCCEED; |
670 | } |
671 | |
672 | gdk_return |
673 | HEAPload(Heap *h, const char *nme, const char *ext, bool trunc) |
674 | { |
675 | return HEAPload_intern(h, nme, ext, ".new" , trunc); |
676 | } |
677 | |
678 | /* |
679 | * @- HEAPsave |
680 | * |
681 | * Saving STORE_MEM will do a write(fd, buf, size) in GDKsave |
682 | * (explicit IO). |
683 | * |
684 | * Saving a STORE_PRIV heap X means that we must actually write to |
685 | * X.new, thus we convert the mode passed to GDKsave to STORE_MEM. |
686 | * |
687 | * Saving STORE_MMAP will do a msync(buf, MSSYNC) in GDKsave (implicit |
688 | * IO). |
689 | * |
690 | * After GDKsave returns successfully (>=0), we assume the heaps are |
691 | * safe on stable storage. |
692 | */ |
693 | static gdk_return |
694 | HEAPsave_intern(Heap *h, const char *nme, const char *ext, const char *suffix) |
695 | { |
696 | storage_t store = h->newstorage; |
697 | long_str extension; |
698 | |
699 | if (h->base == NULL) { |
700 | GDKerror("HEAPsave_intern: no heap to save\n" ); |
701 | return GDK_FAIL; |
702 | } |
703 | if (h->storage != STORE_MEM && store == STORE_PRIV) { |
704 | /* anonymous or private VM is saved as if it were malloced */ |
705 | store = STORE_MEM; |
706 | assert(strlen(ext) + strlen(suffix) < sizeof(extension)); |
707 | strconcat_len(extension, sizeof(extension), ext, suffix, NULL); |
708 | ext = extension; |
709 | } else if (store != STORE_MEM) { |
710 | store = h->storage; |
711 | } |
712 | HEAPDEBUG { |
713 | fprintf(stderr, "#HEAPsave(%s.%s,storage=%d,free=%zu,size=%zu)\n" , nme, ext, (int) h->newstorage, h->free, h->size); |
714 | } |
715 | return GDKsave(h->farmid, nme, ext, h->base, h->free, store, true); |
716 | } |
717 | |
718 | gdk_return |
719 | HEAPsave(Heap *h, const char *nme, const char *ext) |
720 | { |
721 | return HEAPsave_intern(h, nme, ext, ".new" ); |
722 | } |
723 | |
724 | /* |
725 | * @- HEAPdelete |
726 | * Delete any saved heap file. For memory mapped files, also try to |
727 | * remove any remaining X.new |
728 | */ |
729 | gdk_return |
730 | HEAPdelete(Heap *h, const char *o, const char *ext) |
731 | { |
732 | char ext2[64]; |
733 | |
734 | if (h->size <= 0) { |
735 | assert(h->base == 0); |
736 | return GDK_SUCCEED; |
737 | } |
738 | if (h->base) |
739 | HEAPfree(h, false); /* we will do the unlinking */ |
740 | if (h->copied) { |
741 | return GDK_SUCCEED; |
742 | } |
743 | assert(strlen(ext) + strlen(".new" ) < sizeof(ext2)); |
744 | strconcat_len(ext2, sizeof(ext2), ext, ".new" , NULL); |
745 | return (GDKunlink(h->farmid, BATDIR, o, ext) == GDK_SUCCEED) | (GDKunlink(h->farmid, BATDIR, o, ext2) == GDK_SUCCEED) ? GDK_SUCCEED : GDK_FAIL; |
746 | } |
747 | |
748 | int |
749 | HEAPwarm(Heap *h) |
750 | { |
751 | int bogus_result = 0; |
752 | |
753 | if (h->storage != STORE_MEM) { |
754 | /* touch the heap sequentially */ |
755 | int *cur = (int *) h->base; |
756 | int *lim = (int *) (h->base + h->free) - 4096; |
757 | |
758 | for (; cur < lim; cur += 4096) /* try to schedule 4 parallel memory accesses */ |
759 | bogus_result |= cur[0] | cur[1024] | cur[2048] | cur[3072]; |
760 | } |
761 | return bogus_result; |
762 | } |
763 | |
764 | |
765 | /* Return the (virtual) size of the heap. */ |
766 | size_t |
767 | HEAPvmsize(Heap *h) |
768 | { |
769 | if (h && h->base && h->free) |
770 | return h->size; |
771 | return 0; |
772 | } |
773 | |
774 | /* Return the allocated size of the heap, i.e. if the heap is memory |
775 | * mapped and not copy-on-write (privately mapped), return 0. */ |
776 | size_t |
777 | HEAPmemsize(Heap *h) |
778 | { |
779 | if (h && h->base && h->free && h->storage != STORE_MMAP) |
780 | return h->size; |
781 | return 0; |
782 | } |
783 | |
784 | |
785 | /* |
786 | * @+ Standard Heap Library |
787 | * This library contains some routines which implement a @emph{ |
788 | * malloc} and @emph{ free} function on the Monet @emph{Heap} |
789 | * structure. They are useful when implementing a new @emph{ |
790 | * variable-size} atomic data type, or for implementing new search |
791 | * accelerators. All functions start with the prefix @emph{HEAP_}. T |
792 | * |
793 | * Due to non-careful design, the HEADER field was found to be |
794 | * 32/64-bit dependent. As we do not (yet) want to change the BAT |
795 | * image on disk, This is now fixed by switching on-the-fly between |
796 | * two representations. We ensure that the 64-bit memory |
797 | * representation is just as long as the 32-bits version (20 bytes) so |
798 | * the rest of the heap never needs to shift. The function |
799 | * HEAP_checkformat converts at load time dynamically between the |
800 | * layout found on disk and the memory format. Recognition of the |
801 | * header mode is done by looking at the first two ints: alignment |
802 | * must be 4 or 8, and head can never be 4 or eight. |
803 | * |
804 | * TODO: user HEADER64 for both 32 and 64 bits (requires BAT format |
805 | * change) |
806 | */ |
807 | /* #define DEBUG */ |
808 | /* #define TRACE */ |
809 | |
810 | #define HEAPVERSION 20030408 |
811 | |
812 | typedef struct { |
813 | size_t ; /* index to first free block */ |
814 | int ; /* alignment of objects on heap */ |
815 | size_t ; /* first block in heap */ |
816 | int ; |
817 | int (*)(const void *); /* ADT function to ask length */ |
818 | } ; |
819 | |
820 | typedef struct { |
821 | int version; |
822 | int alignment; |
823 | size_t head; |
824 | size_t firstblock; |
825 | int (*sizefcn)(const void *); |
826 | } ; |
827 | |
828 | #if SIZEOF_SIZE_T==8 |
829 | typedef HEADER64 ; |
830 | typedef HEADER32 ; |
831 | #else |
832 | typedef HEADER32 HEADER; |
833 | typedef HEADER64 HEADER_OTHER; |
834 | #endif |
835 | typedef struct hfblock { |
836 | size_t size; /* Size of this block in freelist */ |
837 | size_t next; /* index of next block */ |
838 | } CHUNK; |
839 | |
840 | #define roundup_8(x) (((x)+7)&~7) |
841 | #define roundup_4(x) (((x)+3)&~3) |
842 | #define blocksize(h,p) ((p)->size) |
843 | |
844 | static inline size_t |
845 | roundup_num(size_t number, int alignment) |
846 | { |
847 | size_t rval; |
848 | |
849 | rval = number + (size_t) alignment - 1; |
850 | rval -= (rval % (size_t) alignment); |
851 | return rval; |
852 | } |
853 | |
854 | #define HEAP_index(HEAP,INDEX,TYPE) ((TYPE *)((char *) (HEAP)->base + (INDEX))) |
855 | |
856 | #ifdef TRACE |
857 | static void |
858 | HEAP_printstatus(Heap *heap) |
859 | { |
860 | HEADER *hheader = HEAP_index(heap, 0, HEADER); |
861 | size_t block, cur_free = hheader->head; |
862 | CHUNK *blockp; |
863 | |
864 | fprintf(stderr, |
865 | "#HEAP has head %zu and alignment %d and size %zu\n" , |
866 | hheader->head, hheader->alignment, heap->free); |
867 | |
868 | /* Walk the blocklist */ |
869 | block = hheader->firstblock; |
870 | |
871 | while (block < heap->free) { |
872 | blockp = HEAP_index(heap, block, CHUNK); |
873 | |
874 | if (block == cur_free) { |
875 | fprintf(stderr, |
876 | "# free block at %p has size %zu and next %zu\n" , |
877 | (void *)block, |
878 | blockp->size, blockp->next); |
879 | |
880 | cur_free = blockp->next; |
881 | block += blockp->size; |
882 | } else { |
883 | size_t size = blocksize(hheader, blockp); |
884 | |
885 | fprintf(stderr, |
886 | "# block at %zu with size %zu\n" , |
887 | block, size); |
888 | block += size; |
889 | } |
890 | } |
891 | } |
892 | #endif /* TRACE */ |
893 | |
894 | static void |
895 | HEAP_empty(Heap *heap, size_t nprivate, int alignment) |
896 | { |
897 | /* Find position of header block. */ |
898 | HEADER * = HEAP_index(heap, 0, HEADER); |
899 | |
900 | /* Calculate position of first and only free block. */ |
901 | size_t head = roundup_num((size_t) (roundup_8(sizeof(HEADER)) + roundup_8(nprivate)), alignment); |
902 | CHUNK *headp = HEAP_index(heap, head, CHUNK); |
903 | |
904 | assert(roundup_8(sizeof(HEADER)) + roundup_8(nprivate) <= VAR_MAX); |
905 | |
906 | /* Fill header block. */ |
907 | hheader->head = head; |
908 | hheader->sizefcn = NULL; |
909 | hheader->alignment = alignment; |
910 | hheader->firstblock = head; |
911 | hheader->version = HEAPVERSION; |
912 | |
913 | /* Fill first free block. */ |
914 | assert(heap->size - head <= VAR_MAX); |
915 | headp->size = (size_t) (heap->size - head); |
916 | headp->next = 0; |
917 | #ifdef TRACE |
918 | fprintf(stderr, "#We created the following heap\n" ); |
919 | HEAP_printstatus(heap); |
920 | #endif |
921 | } |
922 | |
923 | void |
924 | HEAP_initialize(Heap *heap, size_t nbytes, size_t nprivate, int alignment) |
925 | { |
926 | /* For now we know about two alignments. */ |
927 | if (alignment != 8) { |
928 | alignment = 4; |
929 | } |
930 | if ((size_t) alignment < sizeof(size_t)) |
931 | alignment = (int) sizeof(size_t); |
932 | |
933 | /* Calculate number of bytes needed for heap + structures. */ |
934 | { |
935 | size_t total = 100 + nbytes + nprivate + sizeof(HEADER) + sizeof(CHUNK); |
936 | |
937 | total = roundup_8(total); |
938 | if (HEAPalloc(heap, total, 1) != GDK_SUCCEED) |
939 | return; |
940 | heap->free = heap->size; |
941 | } |
942 | |
943 | /* initialize heap as empty */ |
944 | HEAP_empty(heap, nprivate, alignment); |
945 | } |
946 | |
947 | |
948 | var_t |
949 | HEAP_malloc(Heap *heap, size_t nbytes) |
950 | { |
951 | size_t block, trail, ttrail; |
952 | CHUNK *blockp; |
953 | CHUNK *trailp; |
954 | HEADER * = HEAP_index(heap, 0, HEADER); |
955 | |
956 | #ifdef TRACE |
957 | fprintf(stderr, "#Enter malloc with %zu bytes\n" , nbytes); |
958 | #endif |
959 | |
960 | /* add space for size field */ |
961 | nbytes += hheader->alignment; |
962 | nbytes = roundup_8(nbytes); |
963 | if (nbytes < sizeof(CHUNK)) |
964 | nbytes = (size_t) sizeof(CHUNK); |
965 | |
966 | /* block -- points to block with acceptable size (if available). |
967 | * trail -- points to predecessor of block. |
968 | * ttrail -- points to predecessor of trail. |
969 | */ |
970 | ttrail = 0; |
971 | trail = 0; |
972 | for (block = hheader->head; block != 0; block = blockp->next) { |
973 | blockp = HEAP_index(heap, block, CHUNK); |
974 | |
975 | #ifdef TRACE |
976 | fprintf(stderr, "#block %zu is %zu bytes\n" , block, blockp->size); |
977 | #endif |
978 | assert(trail == 0 || block > trail); |
979 | if (trail != 0 && block <= trail) { |
980 | GDKerror("HEAP_malloc: Free list is not orderered\n" ); |
981 | return 0; |
982 | } |
983 | |
984 | if (blockp->size >= nbytes) |
985 | break; |
986 | ttrail = trail; |
987 | trail = block; |
988 | } |
989 | |
990 | /* If no block of acceptable size is found we try to enlarge |
991 | * the heap. */ |
992 | if (block == 0) { |
993 | size_t newsize; |
994 | |
995 | assert(heap->free + MAX(heap->free, nbytes) <= VAR_MAX); |
996 | newsize = MIN(heap->free, (size_t) 1 << 20); |
997 | newsize = (size_t) roundup_8(heap->free + MAX(newsize, nbytes)); |
998 | assert(heap->free <= VAR_MAX); |
999 | block = (size_t) heap->free; /* current end-of-heap */ |
1000 | |
1001 | #ifdef TRACE |
1002 | fprintf(stderr, "#No block found\n" ); |
1003 | #endif |
1004 | |
1005 | /* Increase the size of the heap. */ |
1006 | HEAPDEBUG fprintf(stderr, "#HEAPextend in HEAP_malloc %s %zu %zu\n" , heap->filename, heap->size, newsize); |
1007 | if (HEAPextend(heap, newsize, false) != GDK_SUCCEED) |
1008 | return 0; |
1009 | heap->free = newsize; |
1010 | hheader = HEAP_index(heap, 0, HEADER); |
1011 | |
1012 | blockp = HEAP_index(heap, block, CHUNK); |
1013 | trailp = HEAP_index(heap, trail, CHUNK); |
1014 | |
1015 | #ifdef TRACE |
1016 | fprintf(stderr, "#New block made at pos %zu with size %zu\n" , block, heap->size - block); |
1017 | #endif |
1018 | |
1019 | blockp->next = 0; |
1020 | assert(heap->free - block <= VAR_MAX); |
1021 | blockp->size = (size_t) (heap->free - block); /* determine size of allocated block */ |
1022 | |
1023 | /* Try to join the last block in the freelist and the |
1024 | * newly allocated memory */ |
1025 | if ((trail != 0) && (trail + trailp->size == block)) { |
1026 | #ifdef TRACE |
1027 | fprintf(stderr, "#Glue newly generated block to adjacent last\n" ); |
1028 | #endif |
1029 | |
1030 | trailp->size += blockp->size; |
1031 | trailp->next = blockp->next; |
1032 | |
1033 | block = trail; |
1034 | trail = ttrail; |
1035 | } |
1036 | } |
1037 | |
1038 | /* Now we have found a block which is big enough in block. |
1039 | * The predecessor of this block is in trail. */ |
1040 | blockp = HEAP_index(heap, block, CHUNK); |
1041 | |
1042 | /* If selected block is bigger than block needed split block |
1043 | * in two. |
1044 | * TUNE: use different amount than 2*sizeof(CHUNK) */ |
1045 | if (blockp->size >= nbytes + 2 * sizeof(CHUNK)) { |
1046 | size_t newblock = block + nbytes; |
1047 | CHUNK *newblockp = HEAP_index(heap, newblock, CHUNK); |
1048 | |
1049 | newblockp->size = blockp->size - nbytes; |
1050 | newblockp->next = blockp->next; |
1051 | |
1052 | blockp->next = newblock; |
1053 | blockp->size = nbytes; |
1054 | } |
1055 | |
1056 | /* Delete block from freelist */ |
1057 | if (trail == 0) { |
1058 | hheader->head = blockp->next; |
1059 | } else { |
1060 | trailp = HEAP_index(heap, trail, CHUNK); |
1061 | |
1062 | trailp->next = blockp->next; |
1063 | } |
1064 | |
1065 | block += hheader->alignment; |
1066 | return (var_t) block; |
1067 | } |
1068 | |
1069 | void |
1070 | HEAP_free(Heap *heap, var_t mem) |
1071 | { |
1072 | HEADER * = HEAP_index(heap, 0, HEADER); |
1073 | CHUNK *beforep; |
1074 | CHUNK *blockp; |
1075 | CHUNK *afterp; |
1076 | size_t after, before, block = mem; |
1077 | |
1078 | assert(hheader->alignment == 8 || hheader->alignment == 4); |
1079 | if (hheader->alignment != 8 && hheader->alignment != 4) { |
1080 | GDKerror("HEAP_free: Heap structure corrupt\n" ); |
1081 | return; |
1082 | } |
1083 | |
1084 | block -= hheader->alignment; |
1085 | blockp = HEAP_index(heap, block, CHUNK); |
1086 | |
1087 | /* block -- block which we want to free |
1088 | * before -- first free block before block |
1089 | * after -- first free block after block |
1090 | */ |
1091 | |
1092 | before = 0; |
1093 | for (after = hheader->head; after != 0; after = HEAP_index(heap, after, CHUNK)->next) { |
1094 | if (after > block) |
1095 | break; |
1096 | before = after; |
1097 | } |
1098 | |
1099 | beforep = HEAP_index(heap, before, CHUNK); |
1100 | afterp = HEAP_index(heap, after, CHUNK); |
1101 | |
1102 | /* If it is not the last free block. */ |
1103 | if (after != 0) { |
1104 | /* |
1105 | * If this block and the block after are consecutive. |
1106 | */ |
1107 | if (block + blockp->size == after) { |
1108 | /* |
1109 | * We unite them. |
1110 | */ |
1111 | blockp->size += afterp->size; |
1112 | blockp->next = afterp->next; |
1113 | } else |
1114 | blockp->next = after; |
1115 | } else { |
1116 | /* |
1117 | * It is the last block in the freelist. |
1118 | */ |
1119 | blockp->next = 0; |
1120 | } |
1121 | |
1122 | /* |
1123 | * If it is not the first block in the list. |
1124 | */ |
1125 | if (before != 0) { |
1126 | /* |
1127 | * If the before block and this block are consecutive. |
1128 | */ |
1129 | if (before + beforep->size == block) { |
1130 | /* |
1131 | * We unite them. |
1132 | */ |
1133 | beforep->size += blockp->size; |
1134 | beforep->next = blockp->next; |
1135 | } else |
1136 | beforep->next = block; |
1137 | } else { |
1138 | /* |
1139 | * Add block at head of free list. |
1140 | */ |
1141 | hheader->head = block; |
1142 | } |
1143 | } |
1144 | |
1145 | void |
1146 | HEAP_recover(Heap *h, const var_t *offsets, BUN noffsets) |
1147 | { |
1148 | HEADER *; |
1149 | CHUNK *blockp; |
1150 | size_t dirty = 0; |
1151 | var_t maxoff = 0; |
1152 | BUN i; |
1153 | |
1154 | if (!h->cleanhash) |
1155 | return; |
1156 | hheader = HEAP_index(h, 0, HEADER); |
1157 | assert(h->free >= sizeof(HEADER)); |
1158 | assert(hheader->version == HEAPVERSION); |
1159 | assert(h->size >= hheader->firstblock); |
1160 | for (i = 0; i < noffsets; i++) |
1161 | if (offsets[i] > maxoff) |
1162 | maxoff = offsets[i]; |
1163 | assert(maxoff < h->free); |
1164 | if (maxoff == 0) { |
1165 | if (hheader->head != hheader->firstblock) { |
1166 | hheader->head = hheader->firstblock; |
1167 | dirty = sizeof(HEADER); |
1168 | } |
1169 | blockp = HEAP_index(h, hheader->firstblock, CHUNK); |
1170 | if (blockp->next != 0 || |
1171 | blockp->size != h->size - hheader->head) { |
1172 | blockp->size = (size_t) (h->size - hheader->head); |
1173 | blockp->next = 0; |
1174 | dirty = hheader->firstblock + sizeof(CHUNK); |
1175 | } |
1176 | } else { |
1177 | size_t block = maxoff - hheader->alignment; |
1178 | size_t end = block + *HEAP_index(h, block, size_t); |
1179 | size_t trail; |
1180 | |
1181 | assert(end <= h->free); |
1182 | if (end + sizeof(CHUNK) <= h->free) { |
1183 | blockp = HEAP_index(h, end, CHUNK); |
1184 | if (hheader->head <= end && |
1185 | blockp->next == 0 && |
1186 | blockp->size == h->free - end) |
1187 | return; |
1188 | } else if (hheader->head == 0) { |
1189 | /* no free space after last allocated block |
1190 | * and no free list */ |
1191 | return; |
1192 | } |
1193 | block = hheader->head; |
1194 | trail = 0; |
1195 | while (block < maxoff && block != 0) { |
1196 | blockp = HEAP_index(h, block, CHUNK); |
1197 | trail = block; |
1198 | block = blockp->next; |
1199 | } |
1200 | if (trail == 0) { |
1201 | /* no free list */ |
1202 | if (end + sizeof(CHUNK) > h->free) { |
1203 | /* no free space after last allocated |
1204 | * block */ |
1205 | if (hheader->head != 0) { |
1206 | hheader->head = 0; |
1207 | dirty = sizeof(HEADER); |
1208 | } |
1209 | } else { |
1210 | /* there is free space after last |
1211 | * allocated block */ |
1212 | if (hheader->head != end) { |
1213 | hheader->head = end; |
1214 | dirty = sizeof(HEADER); |
1215 | } |
1216 | blockp = HEAP_index(h, end, CHUNK); |
1217 | if (blockp->next != 0 || |
1218 | blockp->size != h->free - end) { |
1219 | blockp->next = 0; |
1220 | blockp->size = h->free - end; |
1221 | dirty = end + sizeof(CHUNK); |
1222 | } |
1223 | } |
1224 | } else { |
1225 | /* there is a free list */ |
1226 | blockp = HEAP_index(h, trail, CHUNK); |
1227 | if (end + sizeof(CHUNK) > h->free) { |
1228 | /* no free space after last allocated |
1229 | * block */ |
1230 | if (blockp->next != 0) { |
1231 | blockp->next = 0; |
1232 | dirty = trail + sizeof(CHUNK); |
1233 | } |
1234 | } else { |
1235 | /* there is free space after last |
1236 | * allocated block */ |
1237 | if (blockp->next != end) { |
1238 | blockp->next = end; |
1239 | dirty = trail + sizeof(CHUNK); |
1240 | } |
1241 | blockp = HEAP_index(h, end, CHUNK); |
1242 | if (blockp->next != 0 || |
1243 | blockp->size != h->free - end) { |
1244 | blockp->next = 0; |
1245 | blockp->size = h->free - end; |
1246 | dirty = end + sizeof(CHUNK); |
1247 | } |
1248 | } |
1249 | } |
1250 | } |
1251 | h->cleanhash = false; |
1252 | if (dirty) { |
1253 | if (h->storage == STORE_MMAP) { |
1254 | if (!(GDKdebug & NOSYNCMASK)) |
1255 | (void) MT_msync(h->base, dirty); |
1256 | } else |
1257 | h->dirty = true; |
1258 | } |
1259 | } |
1260 | |