| 1 | /* |
| 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
| 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 5 | * |
| 6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * @f gdk_heap |
| 11 | * @a Peter Boncz, Wilko Quak |
| 12 | * @+ Atom Heaps |
| 13 | * Heaps are the basic mass storage structure of Monet. A heap is a |
| 14 | * handle to a large, possibly huge, contiguous area of main memory, |
| 15 | * that can be allocated in various ways (discriminated by the |
| 16 | * heap->storage field): |
| 17 | * |
| 18 | * @table @code |
| 19 | * @item STORE_MEM: malloc-ed memory |
| 20 | * small (or rather: not huge) heaps are allocated with GDKmalloc. |
| 21 | * Notice that GDKmalloc may redirect big requests to anonymous |
| 22 | * virtual memory to prevent @emph{memory fragmentation} in the malloc |
| 23 | * library (see gdk_utils.c). |
| 24 | * |
| 25 | * @item STORE_MMAP: read-only mapped region |
| 26 | * this is a file on disk that is mapped into virtual memory. This is |
| 27 | * normally done MAP_SHARED, so we can use msync() to commit dirty |
| 28 | * data using the OS virtual memory management. |
| 29 | * |
| 30 | * @item STORE_PRIV: read-write mapped region |
| 31 | * in order to preserve ACID properties, we use a different memory |
| 32 | * mapping on virtual memory that is writable. This is because in case |
| 33 | * of a crash on a dirty STORE_MMAP heap, the OS may have written some |
| 34 | * of the dirty pages to disk and other not (but it is impossible to |
| 35 | * determine which). The OS MAP_PRIVATE mode does not modify the file |
| 36 | * on which is being mapped, rather creates substitute pages |
| 37 | * dynamically taken from the swap file when modifications occur. This |
| 38 | * is the only way to make writing to mmap()-ed regions safe. To save |
| 39 | * changes, we created a new file X.new; as some OS-es do not allow to |
| 40 | * write into a file that has a mmap open on it (e.g. Windows). Such |
| 41 | * X.new files take preference over X files when opening them. |
| 42 | * @end table |
| 43 | * Read also the discussion in BATsetaccess (gdk_bat.c). |
| 44 | */ |
| 45 | #include "monetdb_config.h" |
| 46 | #include "gdk.h" |
| 47 | #include "gdk_private.h" |
| 48 | |
| 49 | static void * |
| 50 | HEAPcreatefile(int farmid, size_t *maxsz, const char *fn) |
| 51 | { |
| 52 | void *base = NULL; |
| 53 | char *path = NULL; |
| 54 | int fd; |
| 55 | |
| 56 | if (farmid != NOFARM) { |
| 57 | /* call GDKfilepath once here instead of twice inside |
| 58 | * the calls to GDKfdlocate and GDKload */ |
| 59 | if ((path = GDKfilepath(farmid, BATDIR, fn, NULL)) == NULL) |
| 60 | return NULL; |
| 61 | fn = path; |
| 62 | } |
| 63 | /* round up to mulitple of GDK_mmap_pagesize */ |
| 64 | fd = GDKfdlocate(NOFARM, fn, "wb" , NULL); |
| 65 | if (fd >= 0) { |
| 66 | close(fd); |
| 67 | base = GDKload(NOFARM, fn, NULL, *maxsz, maxsz, STORE_MMAP); |
| 68 | } |
| 69 | GDKfree(path); |
| 70 | return base; |
| 71 | } |
| 72 | |
| 73 | static gdk_return HEAPload_intern(Heap *h, const char *nme, const char *ext, const char *suffix, bool trunc); |
| 74 | static gdk_return HEAPsave_intern(Heap *h, const char *nme, const char *ext, const char *suffix); |
| 75 | |
| 76 | static char * |
| 77 | decompose_filename(str nme) |
| 78 | { |
| 79 | char *ext; |
| 80 | |
| 81 | ext = strchr(nme, '.'); /* extract base and ext from heap file name */ |
| 82 | if (ext) { |
| 83 | *ext++ = 0; |
| 84 | } |
| 85 | return ext; |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * @- HEAPalloc |
| 90 | * |
| 91 | * Normally, we use GDKmalloc for creating a new heap. Huge heaps, |
| 92 | * though, come from memory mapped files that we create with a large |
| 93 | * seek. This is fast, and leads to files-with-holes on Unixes (on |
| 94 | * Windows, it actually always performs I/O which is not nice). |
| 95 | */ |
| 96 | gdk_return |
| 97 | HEAPalloc(Heap *h, size_t nitems, size_t itemsize) |
| 98 | { |
| 99 | h->base = NULL; |
| 100 | h->size = 1; |
| 101 | h->copied = false; |
| 102 | if (itemsize) |
| 103 | h->size = MAX(1, nitems) * itemsize; |
| 104 | h->free = 0; |
| 105 | h->cleanhash = false; |
| 106 | |
| 107 | /* check for overflow */ |
| 108 | if (itemsize && nitems > (h->size / itemsize)) { |
| 109 | GDKerror("HEAPalloc: allocating more than heap can accomodate\n" ); |
| 110 | return GDK_FAIL; |
| 111 | } |
| 112 | if (GDKinmemory() || |
| 113 | (GDKmem_cursize() + h->size < GDK_mem_maxsize && |
| 114 | h->size < (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient))) { |
| 115 | h->storage = STORE_MEM; |
| 116 | h->base = GDKmalloc(h->size); |
| 117 | HEAPDEBUG fprintf(stderr, "#HEAPalloc %zu %p\n" , h->size, h->base); |
| 118 | } |
| 119 | if (!GDKinmemory() && h->base == NULL) { |
| 120 | char *nme; |
| 121 | |
| 122 | nme = GDKfilepath(h->farmid, BATDIR, h->filename, NULL); |
| 123 | if (nme == NULL) |
| 124 | return GDK_FAIL; |
| 125 | h->storage = STORE_MMAP; |
| 126 | h->base = HEAPcreatefile(NOFARM, &h->size, nme); |
| 127 | GDKfree(nme); |
| 128 | } |
| 129 | if (h->base == NULL) { |
| 130 | GDKerror("HEAPalloc: Insufficient space for HEAP of %zu bytes." , h->size); |
| 131 | return GDK_FAIL; |
| 132 | } |
| 133 | h->newstorage = h->storage; |
| 134 | return GDK_SUCCEED; |
| 135 | } |
| 136 | |
| 137 | /* Extend the allocated space of the heap H to be at least SIZE bytes. |
| 138 | * If the heap grows beyond a threshold and a filename is known, the |
| 139 | * heap is converted from allocated memory to a memory-mapped file. |
| 140 | * When switching from allocated to memory mapped, if MAYSHARE is set, |
| 141 | * the heap does not have to be copy-on-write. |
| 142 | * |
| 143 | * The function returns 0 on success, -1 on failure. |
| 144 | * |
| 145 | * When extending a memory-mapped heap, we use the function MT_mremap |
| 146 | * (which see). When extending an allocated heap, we use GDKrealloc. |
| 147 | * If that fails, we switch to memory mapped, even when the size is |
| 148 | * below the threshold. |
| 149 | * |
| 150 | * When converting from allocated to memory mapped, we try several |
| 151 | * strategies. First we try to create the memory map, and if that |
| 152 | * works, copy the data and free the old memory. If this fails, we |
| 153 | * first write the data to disk, free the memory, and then try to |
| 154 | * memory map the saved data. */ |
| 155 | gdk_return |
| 156 | HEAPextend(Heap *h, size_t size, bool mayshare) |
| 157 | { |
| 158 | char nme[sizeof(h->filename)], *ext; |
| 159 | const char *failure = "None" ; |
| 160 | |
| 161 | if (GDKinmemory()) { |
| 162 | strcpy_len(nme, ":inmemory" , sizeof(nme)); |
| 163 | ext = "ext" ; |
| 164 | } else { |
| 165 | strcpy_len(nme, h->filename, sizeof(nme)); |
| 166 | ext = decompose_filename(nme); |
| 167 | } |
| 168 | if (size <= h->size) |
| 169 | return GDK_SUCCEED; /* nothing to do */ |
| 170 | |
| 171 | failure = "size > h->size" ; |
| 172 | |
| 173 | if (h->storage != STORE_MEM) { |
| 174 | char *p; |
| 175 | char *path; |
| 176 | |
| 177 | HEAPDEBUG fprintf(stderr, "#HEAPextend: extending %s mmapped heap (%s)\n" , h->storage == STORE_MMAP ? "shared" : "privately" , h->filename); |
| 178 | /* extend memory mapped file */ |
| 179 | if ((path = GDKfilepath(h->farmid, BATDIR, nme, ext)) == NULL) { |
| 180 | return GDK_FAIL; |
| 181 | } |
| 182 | size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
| 183 | if (size == 0) |
| 184 | size = GDK_mmap_pagesize; |
| 185 | |
| 186 | p = GDKmremap(path, |
| 187 | h->storage == STORE_PRIV ? |
| 188 | MMAP_COPY | MMAP_READ | MMAP_WRITE : |
| 189 | MMAP_READ | MMAP_WRITE, |
| 190 | h->base, h->size, &size); |
| 191 | GDKfree(path); |
| 192 | if (p) { |
| 193 | h->size = size; |
| 194 | h->base = p; |
| 195 | return GDK_SUCCEED; /* success */ |
| 196 | } |
| 197 | failure = "GDKmremap() failed" ; |
| 198 | } else { |
| 199 | /* extend a malloced heap, possibly switching over to |
| 200 | * file-mapped storage */ |
| 201 | Heap bak = *h; |
| 202 | bool exceeds_swap = size + GDKmem_cursize() >= GDK_mem_maxsize; |
| 203 | bool must_mmap = !GDKinmemory() && (exceeds_swap || h->newstorage != STORE_MEM || size >= (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient)); |
| 204 | |
| 205 | h->size = size; |
| 206 | |
| 207 | /* try GDKrealloc if the heap size stays within |
| 208 | * reasonable limits */ |
| 209 | if (!must_mmap) { |
| 210 | h->newstorage = h->storage = STORE_MEM; |
| 211 | h->base = GDKrealloc(h->base, size); |
| 212 | HEAPDEBUG fprintf(stderr, "#HEAPextend: extending malloced heap %zu %zu %p %p\n" , size, h->size, bak.base, h->base); |
| 213 | h->size = size; |
| 214 | if (h->base) |
| 215 | return GDK_SUCCEED; /* success */ |
| 216 | /* bak.base is still valid and may get restored */ |
| 217 | failure = "h->storage == STORE_MEM && !must_map && !h->base" ; |
| 218 | } |
| 219 | |
| 220 | if (!GDKinmemory()) { |
| 221 | /* too big: convert it to a disk-based temporary heap */ |
| 222 | bool existing = false; |
| 223 | |
| 224 | assert(h->storage == STORE_MEM); |
| 225 | assert(ext != NULL); |
| 226 | /* if the heap file already exists, we want to switch |
| 227 | * to STORE_PRIV (copy-on-write memory mapped files), |
| 228 | * but if the heap file doesn't exist yet, the BAT is |
| 229 | * new and we can use STORE_MMAP */ |
| 230 | int fd = GDKfdlocate(h->farmid, nme, "rb" , ext); |
| 231 | if (fd >= 0) { |
| 232 | existing = true; |
| 233 | close(fd); |
| 234 | } else { |
| 235 | /* no pre-existing heap file, so create a new |
| 236 | * one */ |
| 237 | h->base = HEAPcreatefile(h->farmid, &h->size, h->filename); |
| 238 | if (h->base) { |
| 239 | h->newstorage = h->storage = STORE_MMAP; |
| 240 | memcpy(h->base, bak.base, bak.free); |
| 241 | HEAPfree(&bak, false); |
| 242 | return GDK_SUCCEED; |
| 243 | } |
| 244 | GDKclrerr(); |
| 245 | } |
| 246 | fd = GDKfdlocate(h->farmid, nme, "wb" , ext); |
| 247 | if (fd >= 0) { |
| 248 | close(fd); |
| 249 | h->storage = h->newstorage == STORE_MMAP && existing && !mayshare ? STORE_PRIV : h->newstorage; |
| 250 | /* make sure we really MMAP */ |
| 251 | if (must_mmap && h->newstorage == STORE_MEM) |
| 252 | h->storage = STORE_MMAP; |
| 253 | h->newstorage = h->storage; |
| 254 | |
| 255 | h->base = NULL; |
| 256 | HEAPDEBUG fprintf(stderr, "#HEAPextend: converting malloced to %s mmapped heap\n" , h->newstorage == STORE_MMAP ? "shared" : "privately" ); |
| 257 | /* try to allocate a memory-mapped based |
| 258 | * heap */ |
| 259 | if (HEAPload(h, nme, ext, false) == GDK_SUCCEED) { |
| 260 | /* copy data to heap and free old |
| 261 | * memory */ |
| 262 | memcpy(h->base, bak.base, bak.free); |
| 263 | HEAPfree(&bak, false); |
| 264 | return GDK_SUCCEED; |
| 265 | } |
| 266 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPload() != GDK_SUCCEED" ; |
| 267 | /* couldn't allocate, now first save data to |
| 268 | * file */ |
| 269 | if (HEAPsave_intern(&bak, nme, ext, ".tmp" ) != GDK_SUCCEED) { |
| 270 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPsave_intern() != GDK_SUCCEED" ; |
| 271 | goto failed; |
| 272 | } |
| 273 | /* then free memory */ |
| 274 | HEAPfree(&bak, false); |
| 275 | /* and load heap back in via memory-mapped |
| 276 | * file */ |
| 277 | if (HEAPload_intern(h, nme, ext, ".tmp" , false) == GDK_SUCCEED) { |
| 278 | /* success! */ |
| 279 | GDKclrerr(); /* don't leak errors from e.g. HEAPload */ |
| 280 | return GDK_SUCCEED; |
| 281 | } |
| 282 | failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPload_intern() != GDK_SUCCEED" ; |
| 283 | /* we failed */ |
| 284 | } else { |
| 285 | failure = "h->storage == STORE_MEM && can_map && fd < 0" ; |
| 286 | } |
| 287 | } |
| 288 | failed: |
| 289 | *h = bak; |
| 290 | } |
| 291 | GDKerror("HEAPextend: failed to extend to %zu for %s%s%s: %s\n" , |
| 292 | size, nme, ext ? "." : "" , ext ? ext : "" , failure); |
| 293 | return GDK_FAIL; |
| 294 | } |
| 295 | |
| 296 | gdk_return |
| 297 | HEAPshrink(Heap *h, size_t size) |
| 298 | { |
| 299 | char *p = NULL; |
| 300 | |
| 301 | assert(size >= h->free); |
| 302 | assert(size <= h->size); |
| 303 | if (h->storage == STORE_MEM) { |
| 304 | p = GDKrealloc(h->base, size); |
| 305 | HEAPDEBUG fprintf(stderr, "#HEAPshrink: shrinking malloced " |
| 306 | "heap %zu %zu %p " |
| 307 | "%p\n" , h->size, size, |
| 308 | h->base, p); |
| 309 | } else { |
| 310 | char *path; |
| 311 | |
| 312 | /* shrink memory mapped file */ |
| 313 | /* round up to multiple of GDK_mmap_pagesize with |
| 314 | * minimum of one */ |
| 315 | size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
| 316 | if (size == 0) |
| 317 | size = GDK_mmap_pagesize; |
| 318 | if (size >= h->size) { |
| 319 | /* don't grow */ |
| 320 | return GDK_SUCCEED; |
| 321 | } |
| 322 | if(!(path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL))) |
| 323 | return GDK_FAIL; |
| 324 | p = GDKmremap(path, |
| 325 | h->storage == STORE_PRIV ? |
| 326 | MMAP_COPY | MMAP_READ | MMAP_WRITE : |
| 327 | MMAP_READ | MMAP_WRITE, |
| 328 | h->base, h->size, &size); |
| 329 | GDKfree(path); |
| 330 | HEAPDEBUG fprintf(stderr, "#HEAPshrink: shrinking %s mmapped " |
| 331 | "heap (%s) %zu %zu %p " |
| 332 | "%p\n" , |
| 333 | h->storage == STORE_MMAP ? "shared" : "privately" , |
| 334 | h->filename, h->size, size, |
| 335 | h->base, p); |
| 336 | } |
| 337 | if (p) { |
| 338 | h->size = size; |
| 339 | h->base = p; |
| 340 | return GDK_SUCCEED; |
| 341 | } |
| 342 | return GDK_FAIL; |
| 343 | } |
| 344 | |
| 345 | /* returns 1 if the file exists */ |
| 346 | static int |
| 347 | file_exists(int farmid, const char *dir, const char *name, const char *ext) |
| 348 | { |
| 349 | char *path; |
| 350 | struct stat st; |
| 351 | int ret; |
| 352 | |
| 353 | path = GDKfilepath(farmid, dir, name, ext); |
| 354 | ret = stat(path, &st); |
| 355 | IODEBUG fprintf(stderr, "#stat(%s) = %d\n" , path, ret); |
| 356 | GDKfree(path); |
| 357 | return (ret == 0); |
| 358 | } |
| 359 | |
| 360 | gdk_return |
| 361 | GDKupgradevarheap(BAT *b, var_t v, bool copyall, bool mayshare) |
| 362 | { |
| 363 | uint8_t shift = b->tshift; |
| 364 | uint16_t width = b->twidth; |
| 365 | unsigned char *pc; |
| 366 | unsigned short *ps; |
| 367 | unsigned int *pi; |
| 368 | #if SIZEOF_VAR_T == 8 |
| 369 | var_t *pv; |
| 370 | #endif |
| 371 | size_t i, n; |
| 372 | size_t savefree; |
| 373 | const char *filename; |
| 374 | bat bid = b->batCacheid; |
| 375 | |
| 376 | assert(b->theap.parentid == 0); |
| 377 | assert(width != 0); |
| 378 | assert(v >= GDK_VAROFFSET); |
| 379 | assert(width < SIZEOF_VAR_T && (width <= 2 ? v - GDK_VAROFFSET : v) >= ((var_t) 1 << (8 * width))); |
| 380 | while (width < SIZEOF_VAR_T && (width <= 2 ? v - GDK_VAROFFSET : v) >= ((var_t) 1 << (8 * width))) { |
| 381 | width <<= 1; |
| 382 | shift++; |
| 383 | } |
| 384 | assert(b->twidth < width); |
| 385 | assert(b->tshift < shift); |
| 386 | |
| 387 | /* if copyall is set, we need to convert the whole heap, since |
| 388 | * we may be in the middle of an insert loop that adjusts the |
| 389 | * free value at the end; otherwise only copy the area |
| 390 | * indicated by the "free" pointer */ |
| 391 | n = (copyall ? b->theap.size : b->theap.free) >> b->tshift; |
| 392 | |
| 393 | /* Create a backup copy before widening. |
| 394 | * |
| 395 | * If the file is memory-mapped, this solves a problem that we |
| 396 | * don't control what's in the actual file until the next |
| 397 | * commit happens, so a crash might otherwise leave the file |
| 398 | * (and the database) in an inconsistent state. If, on the |
| 399 | * other hand, the heap is allocated, it may happen that later |
| 400 | * on the heap is extended and converted into a memory-mapped |
| 401 | * file. Then the same problem arises. |
| 402 | * |
| 403 | * also see do_backup in gdk_bbp.c */ |
| 404 | filename = strrchr(b->theap.filename, DIR_SEP); |
| 405 | if (filename == NULL) |
| 406 | filename = b->theap.filename; |
| 407 | else |
| 408 | filename++; |
| 409 | if ((BBP_status(bid) & (BBPEXISTING|BBPDELETED)) && |
| 410 | !file_exists(b->theap.farmid, BAKDIR, filename, NULL) && |
| 411 | (b->theap.storage != STORE_MEM || |
| 412 | GDKmove(b->theap.farmid, BATDIR, b->theap.filename, NULL, |
| 413 | BAKDIR, filename, NULL) != GDK_SUCCEED)) { |
| 414 | int fd; |
| 415 | ssize_t ret = 0; |
| 416 | size_t size = n << b->tshift; |
| 417 | const char *base = b->theap.base; |
| 418 | |
| 419 | /* first save heap in file with extra .tmp extension */ |
| 420 | if ((fd = GDKfdlocate(b->theap.farmid, b->theap.filename, "wb" , "tmp" )) < 0) |
| 421 | return GDK_FAIL; |
| 422 | while (size > 0) { |
| 423 | ret = write(fd, base, (unsigned) MIN(1 << 30, size)); |
| 424 | if (ret < 0) |
| 425 | size = 0; |
| 426 | size -= ret; |
| 427 | base += ret; |
| 428 | } |
| 429 | if (ret < 0 || |
| 430 | (!(GDKdebug & NOSYNCMASK) |
| 431 | #if defined(NATIVE_WIN32) |
| 432 | && _commit(fd) < 0 |
| 433 | #elif defined(HAVE_FDATASYNC) |
| 434 | && fdatasync(fd) < 0 |
| 435 | #elif defined(HAVE_FSYNC) |
| 436 | && fsync(fd) < 0 |
| 437 | #endif |
| 438 | ) || |
| 439 | close(fd) < 0) { |
| 440 | /* something went wrong: abandon ship */ |
| 441 | GDKsyserror("GDKupgradevarheap: syncing heap to disk failed\n" ); |
| 442 | close(fd); |
| 443 | GDKunlink(b->theap.farmid, BATDIR, b->theap.filename, "tmp" ); |
| 444 | return GDK_FAIL; |
| 445 | } |
| 446 | /* move tmp file to backup directory (without .tmp |
| 447 | * extension) */ |
| 448 | if (GDKmove(b->theap.farmid, BATDIR, b->theap.filename, "tmp" , BAKDIR, filename, NULL) != GDK_SUCCEED) { |
| 449 | /* backup failed */ |
| 450 | GDKunlink(b->theap.farmid, BATDIR, b->theap.filename, "tmp" ); |
| 451 | return GDK_FAIL; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | savefree = b->theap.free; |
| 456 | if (copyall) |
| 457 | b->theap.free = b->theap.size; |
| 458 | if (HEAPextend(&b->theap, (b->theap.size >> b->tshift) << shift, mayshare) != GDK_SUCCEED) |
| 459 | return GDK_FAIL; |
| 460 | if (copyall) |
| 461 | b->theap.free = savefree; |
| 462 | /* note, cast binds more closely than addition */ |
| 463 | pc = (unsigned char *) b->theap.base + n; |
| 464 | ps = (unsigned short *) b->theap.base + n; |
| 465 | pi = (unsigned int *) b->theap.base + n; |
| 466 | #if SIZEOF_VAR_T == 8 |
| 467 | pv = (var_t *) b->theap.base + n; |
| 468 | #endif |
| 469 | |
| 470 | /* convert from back to front so that we can do it in-place */ |
| 471 | switch (width) { |
| 472 | case 2: |
| 473 | #ifndef NDEBUG |
| 474 | memset(ps, 0, b->theap.base + b->theap.size - (char *) ps); |
| 475 | #endif |
| 476 | switch (b->twidth) { |
| 477 | case 1: |
| 478 | for (i = 0; i < n; i++) |
| 479 | *--ps = *--pc; |
| 480 | break; |
| 481 | } |
| 482 | break; |
| 483 | case 4: |
| 484 | #ifndef NDEBUG |
| 485 | memset(pi, 0, b->theap.base + b->theap.size - (char *) pi); |
| 486 | #endif |
| 487 | switch (b->twidth) { |
| 488 | case 1: |
| 489 | for (i = 0; i < n; i++) |
| 490 | *--pi = *--pc + GDK_VAROFFSET; |
| 491 | break; |
| 492 | case 2: |
| 493 | for (i = 0; i < n; i++) |
| 494 | *--pi = *--ps + GDK_VAROFFSET; |
| 495 | break; |
| 496 | } |
| 497 | break; |
| 498 | #if SIZEOF_VAR_T == 8 |
| 499 | case 8: |
| 500 | #ifndef NDEBUG |
| 501 | memset(pv, 0, b->theap.base + b->theap.size - (char *) pv); |
| 502 | #endif |
| 503 | switch (b->twidth) { |
| 504 | case 1: |
| 505 | for (i = 0; i < n; i++) |
| 506 | *--pv = *--pc + GDK_VAROFFSET; |
| 507 | break; |
| 508 | case 2: |
| 509 | for (i = 0; i < n; i++) |
| 510 | *--pv = *--ps + GDK_VAROFFSET; |
| 511 | break; |
| 512 | case 4: |
| 513 | for (i = 0; i < n; i++) |
| 514 | *--pv = *--pi; |
| 515 | break; |
| 516 | } |
| 517 | break; |
| 518 | #endif |
| 519 | } |
| 520 | b->theap.free <<= shift - b->tshift; |
| 521 | b->tshift = shift; |
| 522 | b->twidth = width; |
| 523 | return GDK_SUCCEED; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * @- HEAPcopy |
| 528 | * simple: alloc and copy. Notice that we suppose a preallocated |
| 529 | * dst->filename (or NULL), which might be used in HEAPalloc(). |
| 530 | */ |
| 531 | gdk_return |
| 532 | HEAPcopy(Heap *dst, Heap *src) |
| 533 | { |
| 534 | if (HEAPalloc(dst, src->size, 1) == GDK_SUCCEED) { |
| 535 | dst->free = src->free; |
| 536 | memcpy(dst->base, src->base, src->free); |
| 537 | dst->hashash = src->hashash; |
| 538 | dst->cleanhash = src->cleanhash; |
| 539 | dst->dirty = true; |
| 540 | return GDK_SUCCEED; |
| 541 | } |
| 542 | return GDK_FAIL; |
| 543 | } |
| 544 | |
| 545 | /* Free the memory associated with the heap H. |
| 546 | * Unlinks (removes) the associated file if the rmheap flag is set. */ |
| 547 | void |
| 548 | HEAPfree(Heap *h, bool rmheap) |
| 549 | { |
| 550 | if (h->base) { |
| 551 | if (h->storage == STORE_MEM) { /* plain memory */ |
| 552 | HEAPDEBUG fprintf(stderr, "#HEAPfree %zu" |
| 553 | " %p\n" , |
| 554 | h->size, h->base); |
| 555 | GDKfree(h->base); |
| 556 | } else if (h->storage == STORE_CMEM) { |
| 557 | //heap is stored in regular C memory rather than GDK memory,so we call free() |
| 558 | free(h->base); |
| 559 | } else { /* mapped file, or STORE_PRIV */ |
| 560 | gdk_return ret = GDKmunmap(h->base, h->size); |
| 561 | |
| 562 | if (ret != GDK_SUCCEED) { |
| 563 | GDKsyserror("HEAPfree: %s was not mapped\n" , |
| 564 | h->filename); |
| 565 | assert(0); |
| 566 | } |
| 567 | HEAPDEBUG fprintf(stderr, "#munmap(base=%p, " |
| 568 | "size=%zu) = %d\n" , |
| 569 | (void *)h->base, |
| 570 | h->size, (int) ret); |
| 571 | } |
| 572 | } |
| 573 | h->base = NULL; |
| 574 | #ifdef HAVE_FORK |
| 575 | if (h->storage == STORE_MMAPABS) { |
| 576 | /* heap is stored in a mmap() file, but h->filename |
| 577 | * is the absolute path */ |
| 578 | if (remove(h->filename) != 0 && errno != ENOENT) { |
| 579 | perror(h->filename); |
| 580 | } |
| 581 | } else |
| 582 | #endif |
| 583 | if (rmheap) { |
| 584 | char *path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL); |
| 585 | if (path && remove(path) != 0 && errno != ENOENT) |
| 586 | perror(path); |
| 587 | GDKfree(path); |
| 588 | path = GDKfilepath(h->farmid, BATDIR, h->filename, "new" ); |
| 589 | if (path && remove(path) != 0 && errno != ENOENT) |
| 590 | perror(path); |
| 591 | GDKfree(path); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * @- HEAPload |
| 597 | * |
| 598 | * If we find file X.new, we move it over X (if present) and open it. |
| 599 | */ |
| 600 | static gdk_return |
| 601 | HEAPload_intern(Heap *h, const char *nme, const char *ext, const char *suffix, bool trunc) |
| 602 | { |
| 603 | size_t minsize; |
| 604 | int ret = 0; |
| 605 | char *srcpath, *dstpath, *tmp; |
| 606 | int t0; |
| 607 | |
| 608 | h->storage = h->newstorage = h->size < GDK_mmap_minsize_persistent ? STORE_MEM : STORE_MMAP; |
| 609 | |
| 610 | minsize = (h->size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
| 611 | if (h->storage != STORE_MEM && minsize != h->size) |
| 612 | h->size = minsize; |
| 613 | |
| 614 | /* when a bat is made read-only, we can truncate any unused |
| 615 | * space at the end of the heap */ |
| 616 | if (trunc) { |
| 617 | /* round up mmap heap sizes to GDK_mmap_pagesize |
| 618 | * segments, also add some slack */ |
| 619 | size_t truncsize = ((size_t) (h->free * 1.05) + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1); |
| 620 | int fd; |
| 621 | |
| 622 | if (truncsize == 0) |
| 623 | truncsize = GDK_mmap_pagesize; /* minimum of one page */ |
| 624 | if (truncsize < h->size && |
| 625 | (fd = GDKfdlocate(h->farmid, nme, "mrb+" , ext)) >= 0) { |
| 626 | ret = ftruncate(fd, truncsize); |
| 627 | HEAPDEBUG fprintf(stderr, |
| 628 | "#ftruncate(file=%s.%s, size=%zu" |
| 629 | ") = %d\n" , nme, ext, truncsize, ret); |
| 630 | close(fd); |
| 631 | if (ret == 0) { |
| 632 | h->size = truncsize; |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | HEAPDEBUG fprintf(stderr, "#HEAPload(%s.%s,storage=%d,free=%zu" |
| 638 | ",size=%zu)\n" , nme, ext, |
| 639 | (int) h->storage, h->free, h->size); |
| 640 | |
| 641 | /* On some OSs (WIN32,Solaris), it is prohibited to write to a |
| 642 | * file that is open in MAP_PRIVATE (FILE_MAP_COPY) solution: |
| 643 | * we write to a file named .ext.new. This file, if present, |
| 644 | * takes precedence. */ |
| 645 | srcpath = GDKfilepath(h->farmid, BATDIR, nme, ext); |
| 646 | dstpath = GDKfilepath(h->farmid, BATDIR, nme, ext); |
| 647 | if (srcpath == NULL || |
| 648 | dstpath == NULL || |
| 649 | (tmp = GDKrealloc(srcpath, strlen(srcpath) + strlen(suffix) + 1)) == NULL) { |
| 650 | GDKfree(srcpath); |
| 651 | GDKfree(dstpath); |
| 652 | return GDK_FAIL; |
| 653 | } |
| 654 | srcpath = tmp; |
| 655 | strcat(srcpath, suffix); |
| 656 | |
| 657 | t0 = GDKms(); |
| 658 | ret = rename(srcpath, dstpath); |
| 659 | HEAPDEBUG fprintf(stderr, "#rename %s %s = %d %s (%dms)\n" , |
| 660 | srcpath, dstpath, ret, ret < 0 ? strerror(errno) : "" , |
| 661 | GDKms() - t0); |
| 662 | GDKfree(srcpath); |
| 663 | GDKfree(dstpath); |
| 664 | |
| 665 | h->base = GDKload(h->farmid, nme, ext, h->free, &h->size, h->newstorage); |
| 666 | if (h->base == NULL) |
| 667 | return GDK_FAIL; /* file could not be read satisfactorily */ |
| 668 | |
| 669 | return GDK_SUCCEED; |
| 670 | } |
| 671 | |
| 672 | gdk_return |
| 673 | HEAPload(Heap *h, const char *nme, const char *ext, bool trunc) |
| 674 | { |
| 675 | return HEAPload_intern(h, nme, ext, ".new" , trunc); |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * @- HEAPsave |
| 680 | * |
| 681 | * Saving STORE_MEM will do a write(fd, buf, size) in GDKsave |
| 682 | * (explicit IO). |
| 683 | * |
| 684 | * Saving a STORE_PRIV heap X means that we must actually write to |
| 685 | * X.new, thus we convert the mode passed to GDKsave to STORE_MEM. |
| 686 | * |
| 687 | * Saving STORE_MMAP will do a msync(buf, MSSYNC) in GDKsave (implicit |
| 688 | * IO). |
| 689 | * |
| 690 | * After GDKsave returns successfully (>=0), we assume the heaps are |
| 691 | * safe on stable storage. |
| 692 | */ |
| 693 | static gdk_return |
| 694 | HEAPsave_intern(Heap *h, const char *nme, const char *ext, const char *suffix) |
| 695 | { |
| 696 | storage_t store = h->newstorage; |
| 697 | long_str extension; |
| 698 | |
| 699 | if (h->base == NULL) { |
| 700 | GDKerror("HEAPsave_intern: no heap to save\n" ); |
| 701 | return GDK_FAIL; |
| 702 | } |
| 703 | if (h->storage != STORE_MEM && store == STORE_PRIV) { |
| 704 | /* anonymous or private VM is saved as if it were malloced */ |
| 705 | store = STORE_MEM; |
| 706 | assert(strlen(ext) + strlen(suffix) < sizeof(extension)); |
| 707 | strconcat_len(extension, sizeof(extension), ext, suffix, NULL); |
| 708 | ext = extension; |
| 709 | } else if (store != STORE_MEM) { |
| 710 | store = h->storage; |
| 711 | } |
| 712 | HEAPDEBUG { |
| 713 | fprintf(stderr, "#HEAPsave(%s.%s,storage=%d,free=%zu,size=%zu)\n" , nme, ext, (int) h->newstorage, h->free, h->size); |
| 714 | } |
| 715 | return GDKsave(h->farmid, nme, ext, h->base, h->free, store, true); |
| 716 | } |
| 717 | |
| 718 | gdk_return |
| 719 | HEAPsave(Heap *h, const char *nme, const char *ext) |
| 720 | { |
| 721 | return HEAPsave_intern(h, nme, ext, ".new" ); |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * @- HEAPdelete |
| 726 | * Delete any saved heap file. For memory mapped files, also try to |
| 727 | * remove any remaining X.new |
| 728 | */ |
| 729 | gdk_return |
| 730 | HEAPdelete(Heap *h, const char *o, const char *ext) |
| 731 | { |
| 732 | char ext2[64]; |
| 733 | |
| 734 | if (h->size <= 0) { |
| 735 | assert(h->base == 0); |
| 736 | return GDK_SUCCEED; |
| 737 | } |
| 738 | if (h->base) |
| 739 | HEAPfree(h, false); /* we will do the unlinking */ |
| 740 | if (h->copied) { |
| 741 | return GDK_SUCCEED; |
| 742 | } |
| 743 | assert(strlen(ext) + strlen(".new" ) < sizeof(ext2)); |
| 744 | strconcat_len(ext2, sizeof(ext2), ext, ".new" , NULL); |
| 745 | return (GDKunlink(h->farmid, BATDIR, o, ext) == GDK_SUCCEED) | (GDKunlink(h->farmid, BATDIR, o, ext2) == GDK_SUCCEED) ? GDK_SUCCEED : GDK_FAIL; |
| 746 | } |
| 747 | |
| 748 | int |
| 749 | HEAPwarm(Heap *h) |
| 750 | { |
| 751 | int bogus_result = 0; |
| 752 | |
| 753 | if (h->storage != STORE_MEM) { |
| 754 | /* touch the heap sequentially */ |
| 755 | int *cur = (int *) h->base; |
| 756 | int *lim = (int *) (h->base + h->free) - 4096; |
| 757 | |
| 758 | for (; cur < lim; cur += 4096) /* try to schedule 4 parallel memory accesses */ |
| 759 | bogus_result |= cur[0] | cur[1024] | cur[2048] | cur[3072]; |
| 760 | } |
| 761 | return bogus_result; |
| 762 | } |
| 763 | |
| 764 | |
| 765 | /* Return the (virtual) size of the heap. */ |
| 766 | size_t |
| 767 | HEAPvmsize(Heap *h) |
| 768 | { |
| 769 | if (h && h->base && h->free) |
| 770 | return h->size; |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | /* Return the allocated size of the heap, i.e. if the heap is memory |
| 775 | * mapped and not copy-on-write (privately mapped), return 0. */ |
| 776 | size_t |
| 777 | HEAPmemsize(Heap *h) |
| 778 | { |
| 779 | if (h && h->base && h->free && h->storage != STORE_MMAP) |
| 780 | return h->size; |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | |
| 785 | /* |
| 786 | * @+ Standard Heap Library |
| 787 | * This library contains some routines which implement a @emph{ |
| 788 | * malloc} and @emph{ free} function on the Monet @emph{Heap} |
| 789 | * structure. They are useful when implementing a new @emph{ |
| 790 | * variable-size} atomic data type, or for implementing new search |
| 791 | * accelerators. All functions start with the prefix @emph{HEAP_}. T |
| 792 | * |
| 793 | * Due to non-careful design, the HEADER field was found to be |
| 794 | * 32/64-bit dependent. As we do not (yet) want to change the BAT |
| 795 | * image on disk, This is now fixed by switching on-the-fly between |
| 796 | * two representations. We ensure that the 64-bit memory |
| 797 | * representation is just as long as the 32-bits version (20 bytes) so |
| 798 | * the rest of the heap never needs to shift. The function |
| 799 | * HEAP_checkformat converts at load time dynamically between the |
| 800 | * layout found on disk and the memory format. Recognition of the |
| 801 | * header mode is done by looking at the first two ints: alignment |
| 802 | * must be 4 or 8, and head can never be 4 or eight. |
| 803 | * |
| 804 | * TODO: user HEADER64 for both 32 and 64 bits (requires BAT format |
| 805 | * change) |
| 806 | */ |
| 807 | /* #define DEBUG */ |
| 808 | /* #define TRACE */ |
| 809 | |
| 810 | #define HEAPVERSION 20030408 |
| 811 | |
| 812 | typedef struct { |
| 813 | size_t ; /* index to first free block */ |
| 814 | int ; /* alignment of objects on heap */ |
| 815 | size_t ; /* first block in heap */ |
| 816 | int ; |
| 817 | int (*)(const void *); /* ADT function to ask length */ |
| 818 | } ; |
| 819 | |
| 820 | typedef struct { |
| 821 | int version; |
| 822 | int alignment; |
| 823 | size_t head; |
| 824 | size_t firstblock; |
| 825 | int (*sizefcn)(const void *); |
| 826 | } ; |
| 827 | |
| 828 | #if SIZEOF_SIZE_T==8 |
| 829 | typedef HEADER64 ; |
| 830 | typedef HEADER32 ; |
| 831 | #else |
| 832 | typedef HEADER32 HEADER; |
| 833 | typedef HEADER64 HEADER_OTHER; |
| 834 | #endif |
| 835 | typedef struct hfblock { |
| 836 | size_t size; /* Size of this block in freelist */ |
| 837 | size_t next; /* index of next block */ |
| 838 | } CHUNK; |
| 839 | |
| 840 | #define roundup_8(x) (((x)+7)&~7) |
| 841 | #define roundup_4(x) (((x)+3)&~3) |
| 842 | #define blocksize(h,p) ((p)->size) |
| 843 | |
| 844 | static inline size_t |
| 845 | roundup_num(size_t number, int alignment) |
| 846 | { |
| 847 | size_t rval; |
| 848 | |
| 849 | rval = number + (size_t) alignment - 1; |
| 850 | rval -= (rval % (size_t) alignment); |
| 851 | return rval; |
| 852 | } |
| 853 | |
| 854 | #define HEAP_index(HEAP,INDEX,TYPE) ((TYPE *)((char *) (HEAP)->base + (INDEX))) |
| 855 | |
| 856 | #ifdef TRACE |
| 857 | static void |
| 858 | HEAP_printstatus(Heap *heap) |
| 859 | { |
| 860 | HEADER *hheader = HEAP_index(heap, 0, HEADER); |
| 861 | size_t block, cur_free = hheader->head; |
| 862 | CHUNK *blockp; |
| 863 | |
| 864 | fprintf(stderr, |
| 865 | "#HEAP has head %zu and alignment %d and size %zu\n" , |
| 866 | hheader->head, hheader->alignment, heap->free); |
| 867 | |
| 868 | /* Walk the blocklist */ |
| 869 | block = hheader->firstblock; |
| 870 | |
| 871 | while (block < heap->free) { |
| 872 | blockp = HEAP_index(heap, block, CHUNK); |
| 873 | |
| 874 | if (block == cur_free) { |
| 875 | fprintf(stderr, |
| 876 | "# free block at %p has size %zu and next %zu\n" , |
| 877 | (void *)block, |
| 878 | blockp->size, blockp->next); |
| 879 | |
| 880 | cur_free = blockp->next; |
| 881 | block += blockp->size; |
| 882 | } else { |
| 883 | size_t size = blocksize(hheader, blockp); |
| 884 | |
| 885 | fprintf(stderr, |
| 886 | "# block at %zu with size %zu\n" , |
| 887 | block, size); |
| 888 | block += size; |
| 889 | } |
| 890 | } |
| 891 | } |
| 892 | #endif /* TRACE */ |
| 893 | |
| 894 | static void |
| 895 | HEAP_empty(Heap *heap, size_t nprivate, int alignment) |
| 896 | { |
| 897 | /* Find position of header block. */ |
| 898 | HEADER * = HEAP_index(heap, 0, HEADER); |
| 899 | |
| 900 | /* Calculate position of first and only free block. */ |
| 901 | size_t head = roundup_num((size_t) (roundup_8(sizeof(HEADER)) + roundup_8(nprivate)), alignment); |
| 902 | CHUNK *headp = HEAP_index(heap, head, CHUNK); |
| 903 | |
| 904 | assert(roundup_8(sizeof(HEADER)) + roundup_8(nprivate) <= VAR_MAX); |
| 905 | |
| 906 | /* Fill header block. */ |
| 907 | hheader->head = head; |
| 908 | hheader->sizefcn = NULL; |
| 909 | hheader->alignment = alignment; |
| 910 | hheader->firstblock = head; |
| 911 | hheader->version = HEAPVERSION; |
| 912 | |
| 913 | /* Fill first free block. */ |
| 914 | assert(heap->size - head <= VAR_MAX); |
| 915 | headp->size = (size_t) (heap->size - head); |
| 916 | headp->next = 0; |
| 917 | #ifdef TRACE |
| 918 | fprintf(stderr, "#We created the following heap\n" ); |
| 919 | HEAP_printstatus(heap); |
| 920 | #endif |
| 921 | } |
| 922 | |
| 923 | void |
| 924 | HEAP_initialize(Heap *heap, size_t nbytes, size_t nprivate, int alignment) |
| 925 | { |
| 926 | /* For now we know about two alignments. */ |
| 927 | if (alignment != 8) { |
| 928 | alignment = 4; |
| 929 | } |
| 930 | if ((size_t) alignment < sizeof(size_t)) |
| 931 | alignment = (int) sizeof(size_t); |
| 932 | |
| 933 | /* Calculate number of bytes needed for heap + structures. */ |
| 934 | { |
| 935 | size_t total = 100 + nbytes + nprivate + sizeof(HEADER) + sizeof(CHUNK); |
| 936 | |
| 937 | total = roundup_8(total); |
| 938 | if (HEAPalloc(heap, total, 1) != GDK_SUCCEED) |
| 939 | return; |
| 940 | heap->free = heap->size; |
| 941 | } |
| 942 | |
| 943 | /* initialize heap as empty */ |
| 944 | HEAP_empty(heap, nprivate, alignment); |
| 945 | } |
| 946 | |
| 947 | |
| 948 | var_t |
| 949 | HEAP_malloc(Heap *heap, size_t nbytes) |
| 950 | { |
| 951 | size_t block, trail, ttrail; |
| 952 | CHUNK *blockp; |
| 953 | CHUNK *trailp; |
| 954 | HEADER * = HEAP_index(heap, 0, HEADER); |
| 955 | |
| 956 | #ifdef TRACE |
| 957 | fprintf(stderr, "#Enter malloc with %zu bytes\n" , nbytes); |
| 958 | #endif |
| 959 | |
| 960 | /* add space for size field */ |
| 961 | nbytes += hheader->alignment; |
| 962 | nbytes = roundup_8(nbytes); |
| 963 | if (nbytes < sizeof(CHUNK)) |
| 964 | nbytes = (size_t) sizeof(CHUNK); |
| 965 | |
| 966 | /* block -- points to block with acceptable size (if available). |
| 967 | * trail -- points to predecessor of block. |
| 968 | * ttrail -- points to predecessor of trail. |
| 969 | */ |
| 970 | ttrail = 0; |
| 971 | trail = 0; |
| 972 | for (block = hheader->head; block != 0; block = blockp->next) { |
| 973 | blockp = HEAP_index(heap, block, CHUNK); |
| 974 | |
| 975 | #ifdef TRACE |
| 976 | fprintf(stderr, "#block %zu is %zu bytes\n" , block, blockp->size); |
| 977 | #endif |
| 978 | assert(trail == 0 || block > trail); |
| 979 | if (trail != 0 && block <= trail) { |
| 980 | GDKerror("HEAP_malloc: Free list is not orderered\n" ); |
| 981 | return 0; |
| 982 | } |
| 983 | |
| 984 | if (blockp->size >= nbytes) |
| 985 | break; |
| 986 | ttrail = trail; |
| 987 | trail = block; |
| 988 | } |
| 989 | |
| 990 | /* If no block of acceptable size is found we try to enlarge |
| 991 | * the heap. */ |
| 992 | if (block == 0) { |
| 993 | size_t newsize; |
| 994 | |
| 995 | assert(heap->free + MAX(heap->free, nbytes) <= VAR_MAX); |
| 996 | newsize = MIN(heap->free, (size_t) 1 << 20); |
| 997 | newsize = (size_t) roundup_8(heap->free + MAX(newsize, nbytes)); |
| 998 | assert(heap->free <= VAR_MAX); |
| 999 | block = (size_t) heap->free; /* current end-of-heap */ |
| 1000 | |
| 1001 | #ifdef TRACE |
| 1002 | fprintf(stderr, "#No block found\n" ); |
| 1003 | #endif |
| 1004 | |
| 1005 | /* Increase the size of the heap. */ |
| 1006 | HEAPDEBUG fprintf(stderr, "#HEAPextend in HEAP_malloc %s %zu %zu\n" , heap->filename, heap->size, newsize); |
| 1007 | if (HEAPextend(heap, newsize, false) != GDK_SUCCEED) |
| 1008 | return 0; |
| 1009 | heap->free = newsize; |
| 1010 | hheader = HEAP_index(heap, 0, HEADER); |
| 1011 | |
| 1012 | blockp = HEAP_index(heap, block, CHUNK); |
| 1013 | trailp = HEAP_index(heap, trail, CHUNK); |
| 1014 | |
| 1015 | #ifdef TRACE |
| 1016 | fprintf(stderr, "#New block made at pos %zu with size %zu\n" , block, heap->size - block); |
| 1017 | #endif |
| 1018 | |
| 1019 | blockp->next = 0; |
| 1020 | assert(heap->free - block <= VAR_MAX); |
| 1021 | blockp->size = (size_t) (heap->free - block); /* determine size of allocated block */ |
| 1022 | |
| 1023 | /* Try to join the last block in the freelist and the |
| 1024 | * newly allocated memory */ |
| 1025 | if ((trail != 0) && (trail + trailp->size == block)) { |
| 1026 | #ifdef TRACE |
| 1027 | fprintf(stderr, "#Glue newly generated block to adjacent last\n" ); |
| 1028 | #endif |
| 1029 | |
| 1030 | trailp->size += blockp->size; |
| 1031 | trailp->next = blockp->next; |
| 1032 | |
| 1033 | block = trail; |
| 1034 | trail = ttrail; |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | /* Now we have found a block which is big enough in block. |
| 1039 | * The predecessor of this block is in trail. */ |
| 1040 | blockp = HEAP_index(heap, block, CHUNK); |
| 1041 | |
| 1042 | /* If selected block is bigger than block needed split block |
| 1043 | * in two. |
| 1044 | * TUNE: use different amount than 2*sizeof(CHUNK) */ |
| 1045 | if (blockp->size >= nbytes + 2 * sizeof(CHUNK)) { |
| 1046 | size_t newblock = block + nbytes; |
| 1047 | CHUNK *newblockp = HEAP_index(heap, newblock, CHUNK); |
| 1048 | |
| 1049 | newblockp->size = blockp->size - nbytes; |
| 1050 | newblockp->next = blockp->next; |
| 1051 | |
| 1052 | blockp->next = newblock; |
| 1053 | blockp->size = nbytes; |
| 1054 | } |
| 1055 | |
| 1056 | /* Delete block from freelist */ |
| 1057 | if (trail == 0) { |
| 1058 | hheader->head = blockp->next; |
| 1059 | } else { |
| 1060 | trailp = HEAP_index(heap, trail, CHUNK); |
| 1061 | |
| 1062 | trailp->next = blockp->next; |
| 1063 | } |
| 1064 | |
| 1065 | block += hheader->alignment; |
| 1066 | return (var_t) block; |
| 1067 | } |
| 1068 | |
| 1069 | void |
| 1070 | HEAP_free(Heap *heap, var_t mem) |
| 1071 | { |
| 1072 | HEADER * = HEAP_index(heap, 0, HEADER); |
| 1073 | CHUNK *beforep; |
| 1074 | CHUNK *blockp; |
| 1075 | CHUNK *afterp; |
| 1076 | size_t after, before, block = mem; |
| 1077 | |
| 1078 | assert(hheader->alignment == 8 || hheader->alignment == 4); |
| 1079 | if (hheader->alignment != 8 && hheader->alignment != 4) { |
| 1080 | GDKerror("HEAP_free: Heap structure corrupt\n" ); |
| 1081 | return; |
| 1082 | } |
| 1083 | |
| 1084 | block -= hheader->alignment; |
| 1085 | blockp = HEAP_index(heap, block, CHUNK); |
| 1086 | |
| 1087 | /* block -- block which we want to free |
| 1088 | * before -- first free block before block |
| 1089 | * after -- first free block after block |
| 1090 | */ |
| 1091 | |
| 1092 | before = 0; |
| 1093 | for (after = hheader->head; after != 0; after = HEAP_index(heap, after, CHUNK)->next) { |
| 1094 | if (after > block) |
| 1095 | break; |
| 1096 | before = after; |
| 1097 | } |
| 1098 | |
| 1099 | beforep = HEAP_index(heap, before, CHUNK); |
| 1100 | afterp = HEAP_index(heap, after, CHUNK); |
| 1101 | |
| 1102 | /* If it is not the last free block. */ |
| 1103 | if (after != 0) { |
| 1104 | /* |
| 1105 | * If this block and the block after are consecutive. |
| 1106 | */ |
| 1107 | if (block + blockp->size == after) { |
| 1108 | /* |
| 1109 | * We unite them. |
| 1110 | */ |
| 1111 | blockp->size += afterp->size; |
| 1112 | blockp->next = afterp->next; |
| 1113 | } else |
| 1114 | blockp->next = after; |
| 1115 | } else { |
| 1116 | /* |
| 1117 | * It is the last block in the freelist. |
| 1118 | */ |
| 1119 | blockp->next = 0; |
| 1120 | } |
| 1121 | |
| 1122 | /* |
| 1123 | * If it is not the first block in the list. |
| 1124 | */ |
| 1125 | if (before != 0) { |
| 1126 | /* |
| 1127 | * If the before block and this block are consecutive. |
| 1128 | */ |
| 1129 | if (before + beforep->size == block) { |
| 1130 | /* |
| 1131 | * We unite them. |
| 1132 | */ |
| 1133 | beforep->size += blockp->size; |
| 1134 | beforep->next = blockp->next; |
| 1135 | } else |
| 1136 | beforep->next = block; |
| 1137 | } else { |
| 1138 | /* |
| 1139 | * Add block at head of free list. |
| 1140 | */ |
| 1141 | hheader->head = block; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | void |
| 1146 | HEAP_recover(Heap *h, const var_t *offsets, BUN noffsets) |
| 1147 | { |
| 1148 | HEADER *; |
| 1149 | CHUNK *blockp; |
| 1150 | size_t dirty = 0; |
| 1151 | var_t maxoff = 0; |
| 1152 | BUN i; |
| 1153 | |
| 1154 | if (!h->cleanhash) |
| 1155 | return; |
| 1156 | hheader = HEAP_index(h, 0, HEADER); |
| 1157 | assert(h->free >= sizeof(HEADER)); |
| 1158 | assert(hheader->version == HEAPVERSION); |
| 1159 | assert(h->size >= hheader->firstblock); |
| 1160 | for (i = 0; i < noffsets; i++) |
| 1161 | if (offsets[i] > maxoff) |
| 1162 | maxoff = offsets[i]; |
| 1163 | assert(maxoff < h->free); |
| 1164 | if (maxoff == 0) { |
| 1165 | if (hheader->head != hheader->firstblock) { |
| 1166 | hheader->head = hheader->firstblock; |
| 1167 | dirty = sizeof(HEADER); |
| 1168 | } |
| 1169 | blockp = HEAP_index(h, hheader->firstblock, CHUNK); |
| 1170 | if (blockp->next != 0 || |
| 1171 | blockp->size != h->size - hheader->head) { |
| 1172 | blockp->size = (size_t) (h->size - hheader->head); |
| 1173 | blockp->next = 0; |
| 1174 | dirty = hheader->firstblock + sizeof(CHUNK); |
| 1175 | } |
| 1176 | } else { |
| 1177 | size_t block = maxoff - hheader->alignment; |
| 1178 | size_t end = block + *HEAP_index(h, block, size_t); |
| 1179 | size_t trail; |
| 1180 | |
| 1181 | assert(end <= h->free); |
| 1182 | if (end + sizeof(CHUNK) <= h->free) { |
| 1183 | blockp = HEAP_index(h, end, CHUNK); |
| 1184 | if (hheader->head <= end && |
| 1185 | blockp->next == 0 && |
| 1186 | blockp->size == h->free - end) |
| 1187 | return; |
| 1188 | } else if (hheader->head == 0) { |
| 1189 | /* no free space after last allocated block |
| 1190 | * and no free list */ |
| 1191 | return; |
| 1192 | } |
| 1193 | block = hheader->head; |
| 1194 | trail = 0; |
| 1195 | while (block < maxoff && block != 0) { |
| 1196 | blockp = HEAP_index(h, block, CHUNK); |
| 1197 | trail = block; |
| 1198 | block = blockp->next; |
| 1199 | } |
| 1200 | if (trail == 0) { |
| 1201 | /* no free list */ |
| 1202 | if (end + sizeof(CHUNK) > h->free) { |
| 1203 | /* no free space after last allocated |
| 1204 | * block */ |
| 1205 | if (hheader->head != 0) { |
| 1206 | hheader->head = 0; |
| 1207 | dirty = sizeof(HEADER); |
| 1208 | } |
| 1209 | } else { |
| 1210 | /* there is free space after last |
| 1211 | * allocated block */ |
| 1212 | if (hheader->head != end) { |
| 1213 | hheader->head = end; |
| 1214 | dirty = sizeof(HEADER); |
| 1215 | } |
| 1216 | blockp = HEAP_index(h, end, CHUNK); |
| 1217 | if (blockp->next != 0 || |
| 1218 | blockp->size != h->free - end) { |
| 1219 | blockp->next = 0; |
| 1220 | blockp->size = h->free - end; |
| 1221 | dirty = end + sizeof(CHUNK); |
| 1222 | } |
| 1223 | } |
| 1224 | } else { |
| 1225 | /* there is a free list */ |
| 1226 | blockp = HEAP_index(h, trail, CHUNK); |
| 1227 | if (end + sizeof(CHUNK) > h->free) { |
| 1228 | /* no free space after last allocated |
| 1229 | * block */ |
| 1230 | if (blockp->next != 0) { |
| 1231 | blockp->next = 0; |
| 1232 | dirty = trail + sizeof(CHUNK); |
| 1233 | } |
| 1234 | } else { |
| 1235 | /* there is free space after last |
| 1236 | * allocated block */ |
| 1237 | if (blockp->next != end) { |
| 1238 | blockp->next = end; |
| 1239 | dirty = trail + sizeof(CHUNK); |
| 1240 | } |
| 1241 | blockp = HEAP_index(h, end, CHUNK); |
| 1242 | if (blockp->next != 0 || |
| 1243 | blockp->size != h->free - end) { |
| 1244 | blockp->next = 0; |
| 1245 | blockp->size = h->free - end; |
| 1246 | dirty = end + sizeof(CHUNK); |
| 1247 | } |
| 1248 | } |
| 1249 | } |
| 1250 | } |
| 1251 | h->cleanhash = false; |
| 1252 | if (dirty) { |
| 1253 | if (h->storage == STORE_MMAP) { |
| 1254 | if (!(GDKdebug & NOSYNCMASK)) |
| 1255 | (void) MT_msync(h->base, dirty); |
| 1256 | } else |
| 1257 | h->dirty = true; |
| 1258 | } |
| 1259 | } |
| 1260 | |