| 1 | #include "fitz-imp.h" |
| 2 | |
| 3 | #include <string.h> |
| 4 | #include <stdarg.h> |
| 5 | |
| 6 | fz_buffer * |
| 7 | fz_new_buffer(fz_context *ctx, size_t size) |
| 8 | { |
| 9 | fz_buffer *b; |
| 10 | |
| 11 | size = size > 1 ? size : 16; |
| 12 | |
| 13 | b = fz_malloc_struct(ctx, fz_buffer); |
| 14 | b->refs = 1; |
| 15 | fz_try(ctx) |
| 16 | { |
| 17 | b->data = fz_malloc(ctx, size); |
| 18 | } |
| 19 | fz_catch(ctx) |
| 20 | { |
| 21 | fz_free(ctx, b); |
| 22 | fz_rethrow(ctx); |
| 23 | } |
| 24 | b->cap = size; |
| 25 | b->len = 0; |
| 26 | b->unused_bits = 0; |
| 27 | |
| 28 | return b; |
| 29 | } |
| 30 | |
| 31 | /* |
| 32 | Create a new buffer with existing data. |
| 33 | |
| 34 | data: Pointer to existing data. |
| 35 | size: Size of existing data. |
| 36 | |
| 37 | Takes ownership of data. Does not make a copy. Calls fz_free on the |
| 38 | data when the buffer is deallocated. Do not use 'data' after passing |
| 39 | to this function. |
| 40 | |
| 41 | Returns pointer to new buffer. Throws exception on allocation |
| 42 | failure. |
| 43 | */ |
| 44 | fz_buffer * |
| 45 | fz_new_buffer_from_data(fz_context *ctx, unsigned char *data, size_t size) |
| 46 | { |
| 47 | fz_buffer *b = NULL; |
| 48 | |
| 49 | fz_try(ctx) |
| 50 | { |
| 51 | b = fz_malloc_struct(ctx, fz_buffer); |
| 52 | b->refs = 1; |
| 53 | b->data = data; |
| 54 | b->cap = size; |
| 55 | b->len = size; |
| 56 | b->unused_bits = 0; |
| 57 | } |
| 58 | fz_catch(ctx) |
| 59 | { |
| 60 | fz_free(ctx, data); |
| 61 | fz_rethrow(ctx); |
| 62 | } |
| 63 | |
| 64 | return b; |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | Like fz_new_buffer, but does not take ownership. |
| 69 | */ |
| 70 | fz_buffer * |
| 71 | fz_new_buffer_from_shared_data(fz_context *ctx, const unsigned char *data, size_t size) |
| 72 | { |
| 73 | fz_buffer *b; |
| 74 | |
| 75 | b = fz_malloc_struct(ctx, fz_buffer); |
| 76 | b->refs = 1; |
| 77 | b->data = (unsigned char *)data; /* cast away const */ |
| 78 | b->cap = size; |
| 79 | b->len = size; |
| 80 | b->unused_bits = 0; |
| 81 | b->shared = 1; |
| 82 | |
| 83 | return b; |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | Create a new buffer containing a copy of the passed data. |
| 88 | */ |
| 89 | fz_buffer * |
| 90 | fz_new_buffer_from_copied_data(fz_context *ctx, const unsigned char *data, size_t size) |
| 91 | { |
| 92 | fz_buffer *b = fz_new_buffer(ctx, size); |
| 93 | b->len = size; |
| 94 | memcpy(b->data, data, size); |
| 95 | return b; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | Create a new buffer with data decoded from a base64 input string. |
| 100 | */ |
| 101 | fz_buffer * |
| 102 | fz_new_buffer_from_base64(fz_context *ctx, const char *data, size_t size) |
| 103 | { |
| 104 | fz_buffer *buf = fz_new_buffer(ctx, size); |
| 105 | const char *end = data + (size > 0 ? size : strlen(data)); |
| 106 | const char *s = data; |
| 107 | fz_try(ctx) |
| 108 | { |
| 109 | while (s < end) |
| 110 | { |
| 111 | int c = *s++; |
| 112 | if (c >= 'A' && c <= 'Z') |
| 113 | fz_append_bits(ctx, buf, c - 'A', 6); |
| 114 | else if (c >= 'a' && c <= 'z') |
| 115 | fz_append_bits(ctx, buf, c - 'a' + 26, 6); |
| 116 | else if (c >= '0' && c <= '9') |
| 117 | fz_append_bits(ctx, buf, c - '0' + 52, 6); |
| 118 | else if (c == '+') |
| 119 | fz_append_bits(ctx, buf, 62, 6); |
| 120 | else if (c == '/') |
| 121 | fz_append_bits(ctx, buf, 63, 6); |
| 122 | } |
| 123 | } |
| 124 | fz_catch(ctx) |
| 125 | { |
| 126 | fz_drop_buffer(ctx, buf); |
| 127 | fz_rethrow(ctx); |
| 128 | } |
| 129 | return buf; |
| 130 | } |
| 131 | |
| 132 | fz_buffer * |
| 133 | fz_keep_buffer(fz_context *ctx, fz_buffer *buf) |
| 134 | { |
| 135 | return fz_keep_imp(ctx, buf, &buf->refs); |
| 136 | } |
| 137 | |
| 138 | void |
| 139 | fz_drop_buffer(fz_context *ctx, fz_buffer *buf) |
| 140 | { |
| 141 | if (fz_drop_imp(ctx, buf, &buf->refs)) |
| 142 | { |
| 143 | if (!buf->shared) |
| 144 | fz_free(ctx, buf->data); |
| 145 | fz_free(ctx, buf); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | Ensure that a buffer has a given capacity, |
| 151 | truncating data if required. |
| 152 | |
| 153 | capacity: The desired capacity for the buffer. If the current size |
| 154 | of the buffer contents is smaller than capacity, it is truncated. |
| 155 | */ |
| 156 | void |
| 157 | fz_resize_buffer(fz_context *ctx, fz_buffer *buf, size_t size) |
| 158 | { |
| 159 | if (buf->shared) |
| 160 | fz_throw(ctx, FZ_ERROR_GENERIC, "cannot resize a buffer with shared storage" ); |
| 161 | buf->data = fz_realloc(ctx, buf->data, size); |
| 162 | buf->cap = size; |
| 163 | if (buf->len > buf->cap) |
| 164 | buf->len = buf->cap; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | Make some space within a buffer (i.e. ensure that |
| 169 | capacity > size). |
| 170 | */ |
| 171 | void |
| 172 | fz_grow_buffer(fz_context *ctx, fz_buffer *buf) |
| 173 | { |
| 174 | size_t newsize = (buf->cap * 3) / 2; |
| 175 | if (newsize == 0) |
| 176 | newsize = 256; |
| 177 | fz_resize_buffer(ctx, buf, newsize); |
| 178 | } |
| 179 | |
| 180 | static void |
| 181 | fz_ensure_buffer(fz_context *ctx, fz_buffer *buf, size_t min) |
| 182 | { |
| 183 | size_t newsize = buf->cap; |
| 184 | if (newsize < 16) |
| 185 | newsize = 16; |
| 186 | while (newsize < min) |
| 187 | { |
| 188 | newsize = (newsize * 3) / 2; |
| 189 | } |
| 190 | fz_resize_buffer(ctx, buf, newsize); |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | Trim wasted capacity from a buffer by resizing internal memory. |
| 195 | */ |
| 196 | void |
| 197 | fz_trim_buffer(fz_context *ctx, fz_buffer *buf) |
| 198 | { |
| 199 | if (buf->cap > buf->len+1) |
| 200 | fz_resize_buffer(ctx, buf, buf->len); |
| 201 | } |
| 202 | |
| 203 | void |
| 204 | fz_clear_buffer(fz_context *ctx, fz_buffer *buf) |
| 205 | { |
| 206 | buf->len = 0; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | Zero-terminate buffer in order to use as a C string. |
| 211 | |
| 212 | This byte is invisible and does not affect the length of the buffer as returned by fz_buffer_storage. |
| 213 | The zero byte is written *after* the data, and subsequent writes will overwrite the terminating byte. |
| 214 | */ |
| 215 | void |
| 216 | fz_terminate_buffer(fz_context *ctx, fz_buffer *buf) |
| 217 | { |
| 218 | /* ensure that there is a zero-byte after the end of the data */ |
| 219 | if (buf->len + 1 > buf->cap) |
| 220 | fz_grow_buffer(ctx, buf); |
| 221 | buf->data[buf->len] = 0; |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | Retrieve internal memory of buffer. |
| 226 | |
| 227 | datap: Output parameter that will be pointed to the data. |
| 228 | |
| 229 | Returns the current size of the data in bytes. |
| 230 | */ |
| 231 | size_t |
| 232 | fz_buffer_storage(fz_context *ctx, fz_buffer *buf, unsigned char **datap) |
| 233 | { |
| 234 | if (datap) |
| 235 | *datap = (buf ? buf->data : NULL); |
| 236 | return (buf ? buf->len : 0); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | Ensure that a buffer's data ends in a |
| 241 | 0 byte, and return a pointer to it. |
| 242 | */ |
| 243 | const char * |
| 244 | fz_string_from_buffer(fz_context *ctx, fz_buffer *buf) |
| 245 | { |
| 246 | if (!buf) |
| 247 | return "" ; |
| 248 | fz_terminate_buffer(ctx, buf); |
| 249 | return (const char *)buf->data; |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | Take ownership of buffer contents. |
| 254 | Performs the same task as fz_buffer_storage, but ownership of |
| 255 | the data buffer returns with this call. The buffer is left |
| 256 | empty. |
| 257 | |
| 258 | Note: Bad things may happen if this is called on a buffer with |
| 259 | multiple references that is being used from multiple threads. |
| 260 | |
| 261 | data: Pointer to place to retrieve data pointer. |
| 262 | |
| 263 | Returns length of stream. |
| 264 | */ |
| 265 | size_t |
| 266 | (fz_context *ctx, fz_buffer *buf, unsigned char **datap) |
| 267 | { |
| 268 | size_t len = buf ? buf->len : 0; |
| 269 | *datap = (buf ? buf->data : NULL); |
| 270 | |
| 271 | if (buf) |
| 272 | { |
| 273 | buf->data = NULL; |
| 274 | buf->len = 0; |
| 275 | } |
| 276 | return len; |
| 277 | } |
| 278 | |
| 279 | void |
| 280 | fz_append_buffer(fz_context *ctx, fz_buffer *buf, fz_buffer *) |
| 281 | { |
| 282 | if (buf->cap - buf->len < extra->len) |
| 283 | { |
| 284 | buf->data = fz_realloc(ctx, buf->data, buf->len + extra->len); |
| 285 | buf->cap = buf->len + extra->len; |
| 286 | } |
| 287 | |
| 288 | memcpy(buf->data + buf->len, extra->data, extra->len); |
| 289 | buf->len += extra->len; |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | fz_append_*: Append data to a buffer. |
| 294 | fz_append_printf: Format and append data to buffer using printf-like formatting (see fz_vsnprintf). |
| 295 | fz_append_pdf_string: Append a string with PDF syntax quotes and escapes. |
| 296 | The buffer will automatically grow as required. |
| 297 | */ |
| 298 | void |
| 299 | fz_append_data(fz_context *ctx, fz_buffer *buf, const void *data, size_t len) |
| 300 | { |
| 301 | if (buf->len + len > buf->cap) |
| 302 | fz_ensure_buffer(ctx, buf, buf->len + len); |
| 303 | memcpy(buf->data + buf->len, data, len); |
| 304 | buf->len += len; |
| 305 | buf->unused_bits = 0; |
| 306 | } |
| 307 | |
| 308 | void |
| 309 | fz_append_string(fz_context *ctx, fz_buffer *buf, const char *data) |
| 310 | { |
| 311 | size_t len = strlen(data); |
| 312 | if (buf->len + len > buf->cap) |
| 313 | fz_ensure_buffer(ctx, buf, buf->len + len); |
| 314 | memcpy(buf->data + buf->len, data, len); |
| 315 | buf->len += len; |
| 316 | buf->unused_bits = 0; |
| 317 | } |
| 318 | |
| 319 | void |
| 320 | fz_append_byte(fz_context *ctx, fz_buffer *buf, int val) |
| 321 | { |
| 322 | if (buf->len + 1 > buf->cap) |
| 323 | fz_grow_buffer(ctx, buf); |
| 324 | buf->data[buf->len++] = val; |
| 325 | buf->unused_bits = 0; |
| 326 | } |
| 327 | |
| 328 | void |
| 329 | fz_append_rune(fz_context *ctx, fz_buffer *buf, int c) |
| 330 | { |
| 331 | char data[10]; |
| 332 | int len = fz_runetochar(data, c); |
| 333 | if (buf->len + len > buf->cap) |
| 334 | fz_ensure_buffer(ctx, buf, buf->len + len); |
| 335 | memcpy(buf->data + buf->len, data, len); |
| 336 | buf->len += len; |
| 337 | buf->unused_bits = 0; |
| 338 | } |
| 339 | |
| 340 | void |
| 341 | fz_append_int32_be(fz_context *ctx, fz_buffer *buf, int x) |
| 342 | { |
| 343 | fz_append_byte(ctx, buf, (x >> 24) & 0xFF); |
| 344 | fz_append_byte(ctx, buf, (x >> 16) & 0xFF); |
| 345 | fz_append_byte(ctx, buf, (x >> 8) & 0xFF); |
| 346 | fz_append_byte(ctx, buf, (x) & 0xFF); |
| 347 | } |
| 348 | |
| 349 | void |
| 350 | fz_append_int16_be(fz_context *ctx, fz_buffer *buf, int x) |
| 351 | { |
| 352 | fz_append_byte(ctx, buf, (x >> 8) & 0xFF); |
| 353 | fz_append_byte(ctx, buf, (x) & 0xFF); |
| 354 | } |
| 355 | |
| 356 | void |
| 357 | fz_append_int32_le(fz_context *ctx, fz_buffer *buf, int x) |
| 358 | { |
| 359 | fz_append_byte(ctx, buf, (x)&0xFF); |
| 360 | fz_append_byte(ctx, buf, (x>>8)&0xFF); |
| 361 | fz_append_byte(ctx, buf, (x>>16)&0xFF); |
| 362 | fz_append_byte(ctx, buf, (x>>24)&0xFF); |
| 363 | } |
| 364 | |
| 365 | void |
| 366 | fz_append_int16_le(fz_context *ctx, fz_buffer *buf, int x) |
| 367 | { |
| 368 | fz_append_byte(ctx, buf, (x)&0xFF); |
| 369 | fz_append_byte(ctx, buf, (x>>8)&0xFF); |
| 370 | } |
| 371 | |
| 372 | void |
| 373 | fz_append_bits(fz_context *ctx, fz_buffer *buf, int val, int bits) |
| 374 | { |
| 375 | int shift; |
| 376 | |
| 377 | /* Throughout this code, the invariant is that we need to write the |
| 378 | * bottom 'bits' bits of 'val' into the stream. On entry we assume |
| 379 | * that val & ((1<<bits)-1) == val, but we do not rely on this after |
| 380 | * having written the first partial byte. */ |
| 381 | |
| 382 | if (bits == 0) |
| 383 | return; |
| 384 | |
| 385 | /* buf->len always covers all the bits in the buffer, including |
| 386 | * any unused ones in the last byte, which will always be 0. |
| 387 | * buf->unused_bits = the number of unused bits in the last byte. |
| 388 | */ |
| 389 | |
| 390 | /* Find the amount we need to shift val up by so that it will be in |
| 391 | * the correct position to be inserted into any existing data byte. */ |
| 392 | shift = (buf->unused_bits - bits); |
| 393 | |
| 394 | /* Extend the buffer as required before we start; that way we never |
| 395 | * fail part way during writing. If shift < 0, then we'll need -shift |
| 396 | * more bits. */ |
| 397 | if (shift < 0) |
| 398 | { |
| 399 | int = (7-shift)>>3; /* Round up to bytes */ |
| 400 | fz_ensure_buffer(ctx, buf, buf->len + extra); |
| 401 | } |
| 402 | |
| 403 | /* Write any bits that will fit into the existing byte */ |
| 404 | if (buf->unused_bits) |
| 405 | { |
| 406 | buf->data[buf->len-1] |= (shift >= 0 ? (((unsigned int)val)<<shift) : (((unsigned int)val)>>-shift)); |
| 407 | if (shift >= 0) |
| 408 | { |
| 409 | /* If we were shifting up, we're done. */ |
| 410 | buf->unused_bits -= bits; |
| 411 | return; |
| 412 | } |
| 413 | /* The number of bits left to write is the number that didn't |
| 414 | * fit in this first byte. */ |
| 415 | bits = -shift; |
| 416 | } |
| 417 | |
| 418 | /* Write any whole bytes */ |
| 419 | while (bits >= 8) |
| 420 | { |
| 421 | bits -= 8; |
| 422 | buf->data[buf->len++] = val>>bits; |
| 423 | } |
| 424 | |
| 425 | /* Write trailing bits (with 0's in unused bits) */ |
| 426 | if (bits > 0) |
| 427 | { |
| 428 | bits = 8-bits; |
| 429 | buf->data[buf->len++] = val<<bits; |
| 430 | } |
| 431 | buf->unused_bits = bits; |
| 432 | } |
| 433 | |
| 434 | void |
| 435 | fz_append_bits_pad(fz_context *ctx, fz_buffer *buf) |
| 436 | { |
| 437 | buf->unused_bits = 0; |
| 438 | } |
| 439 | |
| 440 | static void fz_append_emit(fz_context *ctx, void *buffer, int c) |
| 441 | { |
| 442 | fz_append_byte(ctx, buffer, c); |
| 443 | } |
| 444 | |
| 445 | void |
| 446 | fz_append_printf(fz_context *ctx, fz_buffer *buffer, const char *fmt, ...) |
| 447 | { |
| 448 | va_list args; |
| 449 | va_start(args, fmt); |
| 450 | fz_format_string(ctx, buffer, fz_append_emit, fmt, args); |
| 451 | va_end(args); |
| 452 | } |
| 453 | |
| 454 | void |
| 455 | fz_append_vprintf(fz_context *ctx, fz_buffer *buffer, const char *fmt, va_list args) |
| 456 | { |
| 457 | fz_format_string(ctx, buffer, fz_append_emit, fmt, args); |
| 458 | } |
| 459 | |
| 460 | void |
| 461 | fz_append_pdf_string(fz_context *ctx, fz_buffer *buffer, const char *text) |
| 462 | { |
| 463 | size_t len = 2; |
| 464 | const char *s = text; |
| 465 | char *d; |
| 466 | char c; |
| 467 | |
| 468 | while ((c = *s++) != 0) |
| 469 | { |
| 470 | switch (c) |
| 471 | { |
| 472 | case '\n': |
| 473 | case '\r': |
| 474 | case '\t': |
| 475 | case '\b': |
| 476 | case '\f': |
| 477 | case '(': |
| 478 | case ')': |
| 479 | case '\\': |
| 480 | len++; |
| 481 | break; |
| 482 | } |
| 483 | len++; |
| 484 | } |
| 485 | |
| 486 | while(buffer->cap - buffer->len < len) |
| 487 | fz_grow_buffer(ctx, buffer); |
| 488 | |
| 489 | s = text; |
| 490 | d = (char *)buffer->data + buffer->len; |
| 491 | *d++ = '('; |
| 492 | while ((c = *s++) != 0) |
| 493 | { |
| 494 | switch (c) |
| 495 | { |
| 496 | case '\n': |
| 497 | *d++ = '\\'; |
| 498 | *d++ = 'n'; |
| 499 | break; |
| 500 | case '\r': |
| 501 | *d++ = '\\'; |
| 502 | *d++ = 'r'; |
| 503 | break; |
| 504 | case '\t': |
| 505 | *d++ = '\\'; |
| 506 | *d++ = 't'; |
| 507 | break; |
| 508 | case '\b': |
| 509 | *d++ = '\\'; |
| 510 | *d++ = 'b'; |
| 511 | break; |
| 512 | case '\f': |
| 513 | *d++ = '\\'; |
| 514 | *d++ = 'f'; |
| 515 | break; |
| 516 | case '(': |
| 517 | *d++ = '\\'; |
| 518 | *d++ = '('; |
| 519 | break; |
| 520 | case ')': |
| 521 | *d++ = '\\'; |
| 522 | *d++ = ')'; |
| 523 | break; |
| 524 | case '\\': |
| 525 | *d++ = '\\'; |
| 526 | *d++ = '\\'; |
| 527 | break; |
| 528 | default: |
| 529 | *d++ = c; |
| 530 | } |
| 531 | } |
| 532 | *d = ')'; |
| 533 | buffer->len += len; |
| 534 | } |
| 535 | |
| 536 | void |
| 537 | fz_md5_buffer(fz_context *ctx, fz_buffer *buffer, unsigned char digest[16]) |
| 538 | { |
| 539 | fz_md5 state; |
| 540 | fz_md5_init(&state); |
| 541 | if (buffer) |
| 542 | fz_md5_update(&state, buffer->data, buffer->len); |
| 543 | fz_md5_final(&state, digest); |
| 544 | } |
| 545 | |
| 546 | #ifdef TEST_BUFFER_WRITE |
| 547 | |
| 548 | #define TEST_LEN 1024 |
| 549 | |
| 550 | void |
| 551 | fz_test_buffer_write(fz_context *ctx) |
| 552 | { |
| 553 | fz_buffer *master = fz_new_buffer(ctx, TEST_LEN); |
| 554 | fz_buffer *copy = fz_new_buffer(ctx, TEST_LEN); |
| 555 | fz_stream *stm; |
| 556 | int i, j, k; |
| 557 | |
| 558 | /* Make us a dummy buffer */ |
| 559 | for (i = 0; i < TEST_LEN; i++) |
| 560 | { |
| 561 | master->data[i] = rand(); |
| 562 | } |
| 563 | master->len = TEST_LEN; |
| 564 | |
| 565 | /* Now copy that buffer several times, checking it for validity */ |
| 566 | stm = fz_open_buffer(ctx, master); |
| 567 | for (i = 0; i < 256; i++) |
| 568 | { |
| 569 | memset(copy->data, i, TEST_LEN); |
| 570 | copy->len = 0; |
| 571 | j = TEST_LEN * 8; |
| 572 | do |
| 573 | { |
| 574 | k = (rand() & 31)+1; |
| 575 | if (k > j) |
| 576 | k = j; |
| 577 | fz_append_bits(ctx, copy, fz_read_bits(ctx, stm, k), k); |
| 578 | j -= k; |
| 579 | } |
| 580 | while (j); |
| 581 | |
| 582 | if (memcmp(copy->data, master->data, TEST_LEN) != 0) |
| 583 | fprintf(stderr, "Copied buffer is different!\n" ); |
| 584 | fz_seek(stm, 0, 0); |
| 585 | } |
| 586 | fz_drop_stream(stm); |
| 587 | fz_drop_buffer(ctx, master); |
| 588 | fz_drop_buffer(ctx, copy); |
| 589 | } |
| 590 | #endif |
| 591 | |