1 | /* |
2 | This code is based on the code found from 7-Zip, which has a modified |
3 | version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>. |
4 | The code was modified a little to fit into liblzma and fitz. |
5 | |
6 | This file has been put into the public domain. |
7 | You can do whatever you want with this file. |
8 | |
9 | SHA-384 and SHA-512 were also taken from Crypto++ and adapted for fitz. |
10 | */ |
11 | |
12 | #include "mupdf/fitz.h" |
13 | |
14 | #include <string.h> |
15 | |
16 | static inline int isbigendian(void) |
17 | { |
18 | static const int one = 1; |
19 | return *(char*)&one == 0; |
20 | } |
21 | |
22 | static inline unsigned int bswap32(unsigned int num) |
23 | { |
24 | return ( (((num) << 24)) |
25 | | (((num) << 8) & 0x00FF0000) |
26 | | (((num) >> 8) & 0x0000FF00) |
27 | | (((num) >> 24)) ); |
28 | } |
29 | |
30 | static inline uint64_t bswap64(uint64_t num) |
31 | { |
32 | return ( (((num) << 56)) |
33 | | (((num) << 40) & 0x00FF000000000000ULL) |
34 | | (((num) << 24) & 0x0000FF0000000000ULL) |
35 | | (((num) << 8) & 0x000000FF00000000ULL) |
36 | | (((num) >> 8) & 0x00000000FF000000ULL) |
37 | | (((num) >> 24) & 0x0000000000FF0000ULL) |
38 | | (((num) >> 40) & 0x000000000000FF00ULL) |
39 | | (((num) >> 56)) ); |
40 | } |
41 | |
42 | /* At least on x86, GCC is able to optimize this to a rotate instruction. */ |
43 | #define rotr(num, amount) ((num) >> (amount) | (num) << (8 * sizeof(num) - (amount))) |
44 | |
45 | #define blk0(i) (W[i] = data[i]) |
46 | #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \ |
47 | + s0(W[(i - 15) & 15])) |
48 | |
49 | #define Ch(x, y, z) (z ^ (x & (y ^ z))) |
50 | #define Maj(x, y, z) ((x & y) | (z & (x | y))) |
51 | |
52 | #define a(i) T[(0 - i) & 7] |
53 | #define b(i) T[(1 - i) & 7] |
54 | #define c(i) T[(2 - i) & 7] |
55 | #define d(i) T[(3 - i) & 7] |
56 | #define e(i) T[(4 - i) & 7] |
57 | #define f(i) T[(5 - i) & 7] |
58 | #define g(i) T[(6 - i) & 7] |
59 | #define h(i) T[(7 - i) & 7] |
60 | |
61 | #define R(i) \ |
62 | h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + K[i + j] \ |
63 | + (j ? blk2(i) : blk0(i)); \ |
64 | d(i) += h(i); \ |
65 | h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) |
66 | |
67 | /* For SHA256 */ |
68 | |
69 | #define S0(x) (rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22)) |
70 | #define S1(x) (rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25)) |
71 | #define s0(x) (rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3)) |
72 | #define s1(x) (rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10)) |
73 | |
74 | static const unsigned int SHA256_K[64] = { |
75 | 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, |
76 | 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, |
77 | 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, |
78 | 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, |
79 | 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, |
80 | 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, |
81 | 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, |
82 | 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, |
83 | 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, |
84 | 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, |
85 | 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, |
86 | 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, |
87 | 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, |
88 | 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, |
89 | 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, |
90 | 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, |
91 | }; |
92 | |
93 | static void |
94 | transform256(unsigned int state[8], unsigned int data[16]) |
95 | { |
96 | const unsigned int *K = SHA256_K; |
97 | unsigned int W[16]; |
98 | unsigned int T[8]; |
99 | unsigned int j; |
100 | |
101 | /* ensure big-endian integers */ |
102 | if (!isbigendian()) |
103 | for (j = 0; j < 16; j++) |
104 | data[j] = bswap32(data[j]); |
105 | |
106 | /* Copy state[] to working vars. */ |
107 | memcpy(T, state, sizeof(T)); |
108 | |
109 | /* 64 operations, partially loop unrolled */ |
110 | for (j = 0; j < 64; j += 16) { |
111 | R( 0); R( 1); R( 2); R( 3); |
112 | R( 4); R( 5); R( 6); R( 7); |
113 | R( 8); R( 9); R(10); R(11); |
114 | R(12); R(13); R(14); R(15); |
115 | } |
116 | |
117 | /* Add the working vars back into state[]. */ |
118 | state[0] += a(0); |
119 | state[1] += b(0); |
120 | state[2] += c(0); |
121 | state[3] += d(0); |
122 | state[4] += e(0); |
123 | state[5] += f(0); |
124 | state[6] += g(0); |
125 | state[7] += h(0); |
126 | } |
127 | |
128 | #undef S0 |
129 | #undef S1 |
130 | #undef s0 |
131 | #undef s1 |
132 | |
133 | void fz_sha256_init(fz_sha256 *context) |
134 | { |
135 | context->count[0] = context->count[1] = 0; |
136 | |
137 | context->state[0] = 0x6A09E667; |
138 | context->state[1] = 0xBB67AE85; |
139 | context->state[2] = 0x3C6EF372; |
140 | context->state[3] = 0xA54FF53A; |
141 | context->state[4] = 0x510E527F; |
142 | context->state[5] = 0x9B05688C; |
143 | context->state[6] = 0x1F83D9AB; |
144 | context->state[7] = 0x5BE0CD19; |
145 | } |
146 | |
147 | void fz_sha256_update(fz_sha256 *context, const unsigned char *input, size_t inlen) |
148 | { |
149 | /* Copy the input data into a properly aligned temporary buffer. |
150 | * This way we can be called with arbitrarily sized buffers |
151 | * (no need to be multiple of 64 bytes), and the code works also |
152 | * on architectures that don't allow unaligned memory access. */ |
153 | while (inlen > 0) |
154 | { |
155 | const unsigned int copy_start = context->count[0] & 0x3F; |
156 | unsigned int copy_size = 64 - copy_start; |
157 | if (copy_size > inlen) |
158 | copy_size = (unsigned int)inlen; |
159 | |
160 | memcpy(context->buffer.u8 + copy_start, input, copy_size); |
161 | |
162 | input += copy_size; |
163 | inlen -= copy_size; |
164 | context->count[0] += copy_size; |
165 | /* carry overflow from low to high */ |
166 | if (context->count[0] < copy_size) |
167 | context->count[1]++; |
168 | |
169 | if ((context->count[0] & 0x3F) == 0) |
170 | transform256(context->state, context->buffer.u32); |
171 | } |
172 | } |
173 | |
174 | void fz_sha256_final(fz_sha256 *context, unsigned char digest[32]) |
175 | { |
176 | /* Add padding as described in RFC 3174 (it describes SHA-1 but |
177 | * the same padding style is used for SHA-256 too). */ |
178 | unsigned int j = context->count[0] & 0x3F; |
179 | context->buffer.u8[j++] = 0x80; |
180 | |
181 | while (j != 56) |
182 | { |
183 | if (j == 64) |
184 | { |
185 | transform256(context->state, context->buffer.u32); |
186 | j = 0; |
187 | } |
188 | context->buffer.u8[j++] = 0x00; |
189 | } |
190 | |
191 | /* Convert the message size from bytes to bits. */ |
192 | context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29); |
193 | context->count[0] = context->count[0] << 3; |
194 | |
195 | if (!isbigendian()) |
196 | { |
197 | context->buffer.u32[14] = bswap32(context->count[1]); |
198 | context->buffer.u32[15] = bswap32(context->count[0]); |
199 | } |
200 | else |
201 | { |
202 | context->buffer.u32[14] = context->count[1]; |
203 | context->buffer.u32[15] = context->count[0]; |
204 | } |
205 | transform256(context->state, context->buffer.u32); |
206 | |
207 | if (!isbigendian()) |
208 | for (j = 0; j < 8; j++) |
209 | context->state[j] = bswap32(context->state[j]); |
210 | |
211 | memcpy(digest, &context->state[0], 32); |
212 | memset(context, 0, sizeof(fz_sha256)); |
213 | } |
214 | |
215 | /* For SHA512 */ |
216 | |
217 | #define S0(x) (rotr(x, 28) ^ rotr(x, 34) ^ rotr(x, 39)) |
218 | #define S1(x) (rotr(x, 14) ^ rotr(x, 18) ^ rotr(x, 41)) |
219 | #define s0(x) (rotr(x, 1) ^ rotr(x, 8) ^ (x >> 7)) |
220 | #define s1(x) (rotr(x, 19) ^ rotr(x, 61) ^ (x >> 6)) |
221 | |
222 | static const uint64_t SHA512_K[80] = { |
223 | 0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, |
224 | 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL, |
225 | 0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, |
226 | 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL, |
227 | 0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, |
228 | 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL, |
229 | 0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, |
230 | 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL, |
231 | 0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, |
232 | 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL, |
233 | 0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, |
234 | 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL, |
235 | 0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, |
236 | 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL, |
237 | 0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, |
238 | 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL, |
239 | 0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, |
240 | 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL, |
241 | 0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, |
242 | 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL, |
243 | 0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, |
244 | 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL, |
245 | 0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, |
246 | 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL, |
247 | 0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, |
248 | 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL, |
249 | 0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, |
250 | 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL, |
251 | 0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, |
252 | 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL, |
253 | 0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, |
254 | 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL, |
255 | 0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, |
256 | 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL, |
257 | 0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, |
258 | 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL, |
259 | 0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, |
260 | 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL, |
261 | 0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, |
262 | 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL, |
263 | }; |
264 | |
265 | static void |
266 | transform512(uint64_t state[8], uint64_t data[16]) |
267 | { |
268 | const uint64_t *K = SHA512_K; |
269 | uint64_t W[16]; |
270 | uint64_t T[8]; |
271 | unsigned int j; |
272 | |
273 | /* ensure big-endian integers */ |
274 | if (!isbigendian()) |
275 | for (j = 0; j < 16; j++) |
276 | data[j] = bswap64(data[j]); |
277 | |
278 | /* Copy state[] to working vars. */ |
279 | memcpy(T, state, sizeof(T)); |
280 | |
281 | /* 80 operations, partially loop unrolled */ |
282 | for (j = 0; j < 80; j+= 16) { |
283 | R( 0); R( 1); R( 2); R( 3); |
284 | R( 4); R( 5); R( 6); R( 7); |
285 | R( 8); R( 9); R(10); R(11); |
286 | R(12); R(13); R(14); R(15); |
287 | } |
288 | |
289 | /* Add the working vars back into state[]. */ |
290 | state[0] += a(0); |
291 | state[1] += b(0); |
292 | state[2] += c(0); |
293 | state[3] += d(0); |
294 | state[4] += e(0); |
295 | state[5] += f(0); |
296 | state[6] += g(0); |
297 | state[7] += h(0); |
298 | } |
299 | |
300 | #undef S0 |
301 | #undef S1 |
302 | #undef s0 |
303 | #undef s1 |
304 | |
305 | void fz_sha512_init(fz_sha512 *context) |
306 | { |
307 | context->count[0] = context->count[1] = 0; |
308 | |
309 | context->state[0] = 0x6A09E667F3BCC908ull; |
310 | context->state[1] = 0xBB67AE8584CAA73Bull; |
311 | context->state[2] = 0x3C6EF372FE94F82Bull; |
312 | context->state[3] = 0xA54FF53A5F1D36F1ull; |
313 | context->state[4] = 0x510E527FADE682D1ull; |
314 | context->state[5] = 0x9B05688C2B3E6C1Full; |
315 | context->state[6] = 0x1F83D9ABFB41BD6Bull; |
316 | context->state[7] = 0x5BE0CD19137E2179ull; |
317 | } |
318 | |
319 | void fz_sha512_update(fz_sha512 *context, const unsigned char *input, size_t inlen) |
320 | { |
321 | /* Copy the input data into a properly aligned temporary buffer. |
322 | * This way we can be called with arbitrarily sized buffers |
323 | * (no need to be multiple of 128 bytes), and the code works also |
324 | * on architectures that don't allow unaligned memory access. */ |
325 | while (inlen > 0) |
326 | { |
327 | const unsigned int copy_start = context->count[0] & 0x7F; |
328 | unsigned int copy_size = 128 - copy_start; |
329 | if (copy_size > inlen) |
330 | copy_size = (unsigned int)inlen; |
331 | |
332 | memcpy(context->buffer.u8 + copy_start, input, copy_size); |
333 | |
334 | input += copy_size; |
335 | inlen -= copy_size; |
336 | context->count[0] += copy_size; |
337 | /* carry overflow from low to high */ |
338 | if (context->count[0] < copy_size) |
339 | context->count[1]++; |
340 | |
341 | if ((context->count[0] & 0x7F) == 0) |
342 | transform512(context->state, context->buffer.u64); |
343 | } |
344 | } |
345 | |
346 | void fz_sha512_final(fz_sha512 *context, unsigned char digest[64]) |
347 | { |
348 | /* Add padding as described in RFC 3174 (it describes SHA-1 but |
349 | * the same padding style is used for SHA-512 too). */ |
350 | unsigned int j = context->count[0] & 0x7F; |
351 | context->buffer.u8[j++] = 0x80; |
352 | |
353 | while (j != 112) |
354 | { |
355 | if (j == 128) |
356 | { |
357 | transform512(context->state, context->buffer.u64); |
358 | j = 0; |
359 | } |
360 | context->buffer.u8[j++] = 0x00; |
361 | } |
362 | |
363 | /* Convert the message size from bytes to bits. */ |
364 | context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29); |
365 | context->count[0] = context->count[0] << 3; |
366 | |
367 | if (!isbigendian()) |
368 | { |
369 | context->buffer.u64[14] = bswap64(context->count[1]); |
370 | context->buffer.u64[15] = bswap64(context->count[0]); |
371 | } |
372 | else |
373 | { |
374 | context->buffer.u64[14] = context->count[1]; |
375 | context->buffer.u64[15] = context->count[0]; |
376 | } |
377 | transform512(context->state, context->buffer.u64); |
378 | |
379 | if (!isbigendian()) |
380 | for (j = 0; j < 8; j++) |
381 | context->state[j] = bswap64(context->state[j]); |
382 | |
383 | memcpy(digest, &context->state[0], 64); |
384 | memset(context, 0, sizeof(fz_sha512)); |
385 | } |
386 | |
387 | void fz_sha384_init(fz_sha384 *context) |
388 | { |
389 | context->count[0] = context->count[1] = 0; |
390 | |
391 | context->state[0] = 0xCBBB9D5DC1059ED8ull; |
392 | context->state[1] = 0x629A292A367CD507ull; |
393 | context->state[2] = 0x9159015A3070DD17ull; |
394 | context->state[3] = 0x152FECD8F70E5939ull; |
395 | context->state[4] = 0x67332667FFC00B31ull; |
396 | context->state[5] = 0x8EB44A8768581511ull; |
397 | context->state[6] = 0xDB0C2E0D64F98FA7ull; |
398 | context->state[7] = 0x47B5481DBEFA4FA4ull; |
399 | } |
400 | |
401 | void fz_sha384_update(fz_sha384 *context, const unsigned char *input, size_t inlen) |
402 | { |
403 | fz_sha512_update(context, input, inlen); |
404 | } |
405 | |
406 | void fz_sha384_final(fz_sha384 *context, unsigned char digest[64]) |
407 | { |
408 | fz_sha512_final(context, digest); |
409 | } |
410 | |