1 | #include "fitz-imp.h" |
2 | |
3 | #include <string.h> |
4 | #include <math.h> |
5 | #include <assert.h> |
6 | |
7 | /* TODO: here or public? */ |
8 | static int |
9 | fz_key_storable_needs_reaping(fz_context *ctx, const fz_key_storable *ks) |
10 | { |
11 | return ks == NULL ? 0 : (ks->store_key_refs == ks->storable.refs); |
12 | } |
13 | |
14 | #define SANE_DPI 72.0f |
15 | #define INSANE_DPI 4800.0f |
16 | |
17 | #define SCALABLE_IMAGE_DPI 96 |
18 | |
19 | struct fz_compressed_image_s |
20 | { |
21 | fz_image super; |
22 | fz_pixmap *tile; |
23 | fz_compressed_buffer *buffer; |
24 | }; |
25 | |
26 | struct fz_pixmap_image_s |
27 | { |
28 | fz_image super; |
29 | fz_pixmap *tile; |
30 | }; |
31 | |
32 | typedef struct fz_image_key_s fz_image_key; |
33 | |
34 | struct fz_image_key_s { |
35 | int refs; |
36 | fz_image *image; |
37 | int l2factor; |
38 | fz_irect rect; |
39 | }; |
40 | |
41 | fz_image * |
42 | fz_keep_image(fz_context *ctx, fz_image *image) |
43 | { |
44 | return fz_keep_key_storable(ctx, &image->key_storable); |
45 | } |
46 | |
47 | fz_image * |
48 | fz_keep_image_store_key(fz_context *ctx, fz_image *image) |
49 | { |
50 | return fz_keep_key_storable_key(ctx, &image->key_storable); |
51 | } |
52 | |
53 | void |
54 | fz_drop_image_store_key(fz_context *ctx, fz_image *image) |
55 | { |
56 | fz_drop_key_storable_key(ctx, &image->key_storable); |
57 | } |
58 | |
59 | static int |
60 | fz_make_hash_image_key(fz_context *ctx, fz_store_hash *hash, void *key_) |
61 | { |
62 | fz_image_key *key = (fz_image_key *)key_; |
63 | hash->u.pir.ptr = key->image; |
64 | hash->u.pir.i = key->l2factor; |
65 | hash->u.pir.r = key->rect; |
66 | return 1; |
67 | } |
68 | |
69 | static void * |
70 | fz_keep_image_key(fz_context *ctx, void *key_) |
71 | { |
72 | fz_image_key *key = (fz_image_key *)key_; |
73 | return fz_keep_imp(ctx, key, &key->refs); |
74 | } |
75 | |
76 | static void |
77 | fz_drop_image_key(fz_context *ctx, void *key_) |
78 | { |
79 | fz_image_key *key = (fz_image_key *)key_; |
80 | if (fz_drop_imp(ctx, key, &key->refs)) |
81 | { |
82 | fz_drop_image_store_key(ctx, key->image); |
83 | fz_free(ctx, key); |
84 | } |
85 | } |
86 | |
87 | static int |
88 | fz_cmp_image_key(fz_context *ctx, void *k0_, void *k1_) |
89 | { |
90 | fz_image_key *k0 = (fz_image_key *)k0_; |
91 | fz_image_key *k1 = (fz_image_key *)k1_; |
92 | return k0->image == k1->image && k0->l2factor == k1->l2factor && k0->rect.x0 == k1->rect.x0 && k0->rect.y0 == k1->rect.y0 && k0->rect.x1 == k1->rect.x1 && k0->rect.y1 == k1->rect.y1; |
93 | } |
94 | |
95 | static void |
96 | fz_format_image_key(fz_context *ctx, char *s, int n, void *key_) |
97 | { |
98 | fz_image_key *key = (fz_image_key *)key_; |
99 | fz_snprintf(s, n, "(image %d x %d sf=%d)" , key->image->w, key->image->h, key->l2factor); |
100 | } |
101 | |
102 | static int |
103 | fz_needs_reap_image_key(fz_context *ctx, void *key_) |
104 | { |
105 | fz_image_key *key = (fz_image_key *)key_; |
106 | |
107 | return fz_key_storable_needs_reaping(ctx, &key->image->key_storable); |
108 | } |
109 | |
110 | static const fz_store_type fz_image_store_type = |
111 | { |
112 | fz_make_hash_image_key, |
113 | fz_keep_image_key, |
114 | fz_drop_image_key, |
115 | fz_cmp_image_key, |
116 | fz_format_image_key, |
117 | fz_needs_reap_image_key |
118 | }; |
119 | |
120 | void |
121 | fz_drop_image(fz_context *ctx, fz_image *image) |
122 | { |
123 | fz_drop_key_storable(ctx, &image->key_storable); |
124 | } |
125 | |
126 | static void |
127 | fz_mask_color_key(fz_pixmap *pix, int n, const int *colorkey) |
128 | { |
129 | unsigned char *p = pix->samples; |
130 | int w; |
131 | int k, t; |
132 | int h = pix->h; |
133 | int stride = pix->stride - pix->w * pix->n; |
134 | if (pix->w == 0) |
135 | return; |
136 | while (h--) |
137 | { |
138 | w = pix->w; |
139 | do |
140 | { |
141 | t = 1; |
142 | for (k = 0; k < n; k++) |
143 | if (p[k] < colorkey[k * 2] || p[k] > colorkey[k * 2 + 1]) |
144 | t = 0; |
145 | if (t) |
146 | for (k = 0; k < pix->n; k++) |
147 | p[k] = 0; |
148 | p += pix->n; |
149 | } |
150 | while (--w); |
151 | p += stride; |
152 | } |
153 | } |
154 | |
155 | static void |
156 | fz_unblend_masked_tile(fz_context *ctx, fz_pixmap *tile, fz_image *image, const fz_irect *isa) |
157 | { |
158 | fz_pixmap *mask; |
159 | unsigned char *s, *d = tile->samples; |
160 | int n = tile->n; |
161 | int k; |
162 | int sstride, dstride = tile->stride - tile->w * tile->n; |
163 | int h; |
164 | fz_irect subarea; |
165 | |
166 | /* We need at least as much of the mask as there was of the tile. */ |
167 | if (isa) |
168 | subarea = *isa; |
169 | else |
170 | { |
171 | subarea.x0 = 0; |
172 | subarea.y0 = 0; |
173 | subarea.x1 = tile->w; |
174 | subarea.y1 = tile->h; |
175 | } |
176 | |
177 | mask = fz_get_pixmap_from_image(ctx, image->mask, &subarea, NULL, NULL, NULL); |
178 | s = mask->samples; |
179 | /* RJW: Urgh, bit of nastiness here. fz_pixmap_from_image will either return |
180 | * an exact match for the subarea we asked for, or the full image, and the |
181 | * normal way to know is that the matrix will be updated. That doesn't help |
182 | * us here. */ |
183 | if (image->mask->w == mask->w && image->mask->h == mask->h) { |
184 | subarea.x0 = 0; |
185 | subarea.y0 = 0; |
186 | } |
187 | if (isa) |
188 | s += (isa->x0 - subarea.x0) * mask->n + (isa->y0 - subarea.y0) * mask->stride; |
189 | sstride = mask->stride - tile->w * mask->n; |
190 | h = tile->h; |
191 | |
192 | if (tile->w != 0) |
193 | { |
194 | while (h--) |
195 | { |
196 | int w = tile->w; |
197 | do |
198 | { |
199 | if (*s == 0) |
200 | for (k = 0; k < image->n; k++) |
201 | d[k] = image->colorkey[k]; |
202 | else |
203 | for (k = 0; k < image->n; k++) |
204 | d[k] = fz_clampi(image->colorkey[k] + (d[k] - image->colorkey[k]) * 255 / *s, 0, 255); |
205 | s++; |
206 | d += n; |
207 | } |
208 | while (--w); |
209 | s += sstride; |
210 | d += dstride; |
211 | } |
212 | } |
213 | |
214 | fz_drop_pixmap(ctx, mask); |
215 | } |
216 | |
217 | static void fz_adjust_image_subarea(fz_context *ctx, fz_image *image, fz_irect *subarea, int l2factor) |
218 | { |
219 | int f = 1<<l2factor; |
220 | int bpp = image->bpc * image->n; |
221 | int mask; |
222 | |
223 | switch (bpp) |
224 | { |
225 | case 1: mask = 8*f; break; |
226 | case 2: mask = 4*f; break; |
227 | case 4: mask = 2*f; break; |
228 | default: mask = (bpp & 7) == 0 ? f : 0; break; |
229 | } |
230 | |
231 | if (mask != 0) |
232 | { |
233 | subarea->x0 &= ~(mask - 1); |
234 | subarea->x1 = (subarea->x1 + mask - 1) & ~(mask - 1); |
235 | } |
236 | else |
237 | { |
238 | /* Awkward case - mask cannot be a power of 2. */ |
239 | mask = bpp*f; |
240 | switch (bpp) |
241 | { |
242 | case 3: |
243 | case 5: |
244 | case 7: |
245 | case 9: |
246 | case 11: |
247 | case 13: |
248 | case 15: |
249 | default: |
250 | mask *= 8; |
251 | break; |
252 | case 6: |
253 | case 10: |
254 | case 14: |
255 | mask *= 4; |
256 | break; |
257 | case 12: |
258 | mask *= 2; |
259 | break; |
260 | } |
261 | subarea->x0 = (subarea->x0 / mask) * mask; |
262 | subarea->x1 = ((subarea->x1 + mask - 1) / mask) * mask; |
263 | } |
264 | |
265 | subarea->y0 &= ~(f - 1); |
266 | if (subarea->x1 > image->w) |
267 | subarea->x1 = image->w; |
268 | subarea->y1 = (subarea->y1 + f - 1) & ~(f - 1); |
269 | if (subarea->y1 > image->h) |
270 | subarea->y1 = image->h; |
271 | } |
272 | |
273 | static void fz_compute_image_key(fz_context *ctx, fz_image *image, fz_matrix *ctm, |
274 | fz_image_key *key, const fz_irect *subarea, int l2factor, int *w, int *h, int *dw, int *dh) |
275 | { |
276 | key->refs = 1; |
277 | key->image = image; |
278 | key->l2factor = l2factor; |
279 | |
280 | if (subarea == NULL) |
281 | { |
282 | key->rect.x0 = 0; |
283 | key->rect.y0 = 0; |
284 | key->rect.x1 = image->w; |
285 | key->rect.y1 = image->h; |
286 | } |
287 | else |
288 | { |
289 | key->rect = *subarea; |
290 | ctx->tuning->image_decode(ctx->tuning->image_decode_arg, image->w, image->h, key->l2factor, &key->rect); |
291 | fz_adjust_image_subarea(ctx, image, &key->rect, key->l2factor); |
292 | } |
293 | |
294 | /* Based on that subarea, recalculate the extents */ |
295 | if (ctm) |
296 | { |
297 | float frac_w = (float) (key->rect.x1 - key->rect.x0) / image->w; |
298 | float frac_h = (float) (key->rect.y1 - key->rect.y0) / image->h; |
299 | float a = ctm->a * frac_w; |
300 | float b = ctm->b * frac_h; |
301 | float c = ctm->c * frac_w; |
302 | float d = ctm->d * frac_h; |
303 | *w = sqrtf(a * a + b * b); |
304 | *h = sqrtf(c * c + d * d); |
305 | } |
306 | else |
307 | { |
308 | *w = image->w; |
309 | *h = image->h; |
310 | } |
311 | |
312 | /* Return the true sizes to the caller */ |
313 | if (dw) |
314 | *dw = *w; |
315 | if (dh) |
316 | *dh = *h; |
317 | if (*w > image->w) |
318 | *w = image->w; |
319 | if (*h > image->h) |
320 | *h = image->h; |
321 | |
322 | if (*w == 0 || *h == 0) |
323 | key->l2factor = 0; |
324 | } |
325 | |
326 | fz_pixmap * |
327 | fz_decomp_image_from_stream(fz_context *ctx, fz_stream *stm, fz_compressed_image *cimg, fz_irect *subarea, int indexed, int l2factor) |
328 | { |
329 | fz_image *image = &cimg->super; |
330 | fz_pixmap *tile = NULL; |
331 | size_t stride, len, i; |
332 | unsigned char *samples = NULL; |
333 | int f = 1<<l2factor; |
334 | int w = image->w; |
335 | int h = image->h; |
336 | int matte = image->use_colorkey && image->mask; |
337 | |
338 | if (matte) |
339 | { |
340 | /* Can't do l2factor decoding */ |
341 | if (image->w != image->mask->w || image->h != image->mask->h) |
342 | { |
343 | fz_warn(ctx, "mask must be of same size as image for /Matte" ); |
344 | matte = 0; |
345 | } |
346 | assert(l2factor == 0); |
347 | } |
348 | if (subarea) |
349 | { |
350 | fz_adjust_image_subarea(ctx, image, subarea, l2factor); |
351 | w = (subarea->x1 - subarea->x0); |
352 | h = (subarea->y1 - subarea->y0); |
353 | } |
354 | w = (w + f - 1) >> l2factor; |
355 | h = (h + f - 1) >> l2factor; |
356 | |
357 | fz_var(tile); |
358 | fz_var(samples); |
359 | |
360 | fz_try(ctx) |
361 | { |
362 | int alpha = (image->colorspace == NULL); |
363 | if (image->use_colorkey) |
364 | alpha = 1; |
365 | tile = fz_new_pixmap(ctx, image->colorspace, w, h, NULL, alpha); |
366 | if (image->interpolate & FZ_PIXMAP_FLAG_INTERPOLATE) |
367 | tile->flags |= FZ_PIXMAP_FLAG_INTERPOLATE; |
368 | else |
369 | tile->flags &= ~FZ_PIXMAP_FLAG_INTERPOLATE; |
370 | |
371 | stride = (w * image->n * image->bpc + 7) / 8; |
372 | if (h > SIZE_MAX / stride) |
373 | fz_throw(ctx, FZ_ERROR_MEMORY, "image too large" ); |
374 | samples = fz_malloc(ctx, h * stride); |
375 | |
376 | if (subarea) |
377 | { |
378 | int hh; |
379 | unsigned char *s = samples; |
380 | int stream_w = (image->w + f - 1)>>l2factor; |
381 | size_t stream_stride = (stream_w * image->n * image->bpc + 7) / 8; |
382 | int l_margin = subarea->x0 >> l2factor; |
383 | int t_margin = subarea->y0 >> l2factor; |
384 | int r_margin = (image->w + f - 1 - subarea->x1) >> l2factor; |
385 | int b_margin = (image->h + f - 1 - subarea->y1) >> l2factor; |
386 | int l_skip = (l_margin * image->n * image->bpc)/8; |
387 | int r_skip = (r_margin * image->n * image->bpc + 7)/8; |
388 | size_t t_skip = t_margin * stream_stride + l_skip; |
389 | size_t b_skip = b_margin * stream_stride + r_skip; |
390 | size_t l = fz_skip(ctx, stm, t_skip); |
391 | len = 0; |
392 | if (l == t_skip) |
393 | { |
394 | hh = h; |
395 | do |
396 | { |
397 | l = fz_read(ctx, stm, s, stride); |
398 | s += l; |
399 | len += l; |
400 | if (l < stride) |
401 | break; |
402 | if (--hh == 0) |
403 | break; |
404 | l = fz_skip(ctx, stm, r_skip + l_skip); |
405 | if (l < (size_t)(r_skip + l_skip)) |
406 | break; |
407 | } |
408 | while (1); |
409 | (void)fz_skip(ctx, stm, r_skip + b_skip); |
410 | } |
411 | } |
412 | else |
413 | { |
414 | len = fz_read(ctx, stm, samples, h * stride); |
415 | } |
416 | |
417 | /* Pad truncated images */ |
418 | if (len < stride * h) |
419 | { |
420 | fz_warn(ctx, "padding truncated image" ); |
421 | memset(samples + len, 0, stride * h - len); |
422 | } |
423 | |
424 | /* Invert 1-bit image masks */ |
425 | if (image->imagemask) |
426 | { |
427 | /* 0=opaque and 1=transparent so we need to invert */ |
428 | unsigned char *p = samples; |
429 | len = h * stride; |
430 | for (i = 0; i < len; i++) |
431 | p[i] = ~p[i]; |
432 | } |
433 | |
434 | fz_unpack_tile(ctx, tile, samples, image->n, image->bpc, stride, indexed); |
435 | |
436 | fz_free(ctx, samples); |
437 | samples = NULL; |
438 | |
439 | /* color keyed transparency */ |
440 | if (image->use_colorkey && !image->mask) |
441 | fz_mask_color_key(tile, image->n, image->colorkey); |
442 | |
443 | if (indexed) |
444 | { |
445 | fz_pixmap *conv; |
446 | fz_decode_indexed_tile(ctx, tile, image->decode, (1 << image->bpc) - 1); |
447 | conv = fz_convert_indexed_pixmap_to_base(ctx, tile); |
448 | fz_drop_pixmap(ctx, tile); |
449 | tile = conv; |
450 | } |
451 | else if (image->use_decode) |
452 | { |
453 | fz_decode_tile(ctx, tile, image->decode); |
454 | } |
455 | |
456 | /* pre-blended matte color */ |
457 | if (matte) |
458 | fz_unblend_masked_tile(ctx, tile, image, subarea); |
459 | } |
460 | fz_catch(ctx) |
461 | { |
462 | fz_drop_pixmap(ctx, tile); |
463 | fz_free(ctx, samples); |
464 | fz_rethrow(ctx); |
465 | } |
466 | |
467 | return tile; |
468 | } |
469 | |
470 | void |
471 | fz_drop_image_base(fz_context *ctx, fz_image *image) |
472 | { |
473 | fz_drop_colorspace(ctx, image->colorspace); |
474 | fz_drop_image(ctx, image->mask); |
475 | fz_free(ctx, image); |
476 | } |
477 | |
478 | void |
479 | fz_drop_image_imp(fz_context *ctx, fz_storable *image_) |
480 | { |
481 | fz_image *image = (fz_image *)image_; |
482 | |
483 | image->drop_image(ctx, image); |
484 | fz_drop_image_base(ctx, image); |
485 | } |
486 | |
487 | static void |
488 | drop_compressed_image(fz_context *ctx, fz_image *image_) |
489 | { |
490 | fz_compressed_image *image = (fz_compressed_image *)image_; |
491 | |
492 | fz_drop_pixmap(ctx, image->tile); |
493 | fz_drop_compressed_buffer(ctx, image->buffer); |
494 | } |
495 | |
496 | static void |
497 | drop_pixmap_image(fz_context *ctx, fz_image *image_) |
498 | { |
499 | fz_pixmap_image *image = (fz_pixmap_image *)image_; |
500 | |
501 | fz_drop_pixmap(ctx, image->tile); |
502 | } |
503 | |
504 | static fz_pixmap * |
505 | compressed_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
506 | { |
507 | fz_compressed_image *image = (fz_compressed_image *)image_; |
508 | int native_l2factor; |
509 | fz_stream *stm; |
510 | int indexed; |
511 | fz_pixmap *tile; |
512 | int can_sub = 0; |
513 | int local_l2factor; |
514 | |
515 | /* If we are using matte, then the decode code requires both image and tile sizes |
516 | * to match. The simplest way to ensure this is to do no native l2factor decoding. |
517 | */ |
518 | if (image->super.use_colorkey && image->super.mask) |
519 | { |
520 | local_l2factor = 0; |
521 | l2factor = &local_l2factor; |
522 | } |
523 | |
524 | /* We need to make a new one. */ |
525 | /* First check for ones that we can't decode using streams */ |
526 | switch (image->buffer->params.type) |
527 | { |
528 | case FZ_IMAGE_PNG: |
529 | tile = fz_load_png(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
530 | break; |
531 | case FZ_IMAGE_GIF: |
532 | tile = fz_load_gif(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
533 | break; |
534 | case FZ_IMAGE_BMP: |
535 | tile = fz_load_bmp(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
536 | break; |
537 | case FZ_IMAGE_TIFF: |
538 | tile = fz_load_tiff(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
539 | break; |
540 | case FZ_IMAGE_PNM: |
541 | tile = fz_load_pnm(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
542 | break; |
543 | case FZ_IMAGE_JXR: |
544 | tile = fz_load_jxr(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
545 | break; |
546 | case FZ_IMAGE_JPX: |
547 | tile = fz_load_jpx(ctx, image->buffer->buffer->data, image->buffer->buffer->len, NULL); |
548 | break; |
549 | case FZ_IMAGE_JPEG: |
550 | /* Scan JPEG stream and patch missing height values in header */ |
551 | { |
552 | unsigned char *s = image->buffer->buffer->data; |
553 | unsigned char *e = s + image->buffer->buffer->len; |
554 | unsigned char *d; |
555 | for (d = s + 2; s < d && d < e - 9 && d[0] == 0xFF; d += (d[2] << 8 | d[3]) + 2) |
556 | { |
557 | if (d[1] < 0xC0 || (0xC3 < d[1] && d[1] < 0xC9) || 0xCB < d[1]) |
558 | continue; |
559 | if ((d[5] == 0 && d[6] == 0) || ((d[5] << 8) | d[6]) > image->super.h) |
560 | { |
561 | d[5] = (image->super.h >> 8) & 0xFF; |
562 | d[6] = image->super.h & 0xFF; |
563 | } |
564 | } |
565 | } |
566 | /* fall through */ |
567 | |
568 | default: |
569 | native_l2factor = l2factor ? *l2factor : 0; |
570 | stm = fz_open_image_decomp_stream_from_buffer(ctx, image->buffer, l2factor); |
571 | fz_try(ctx) |
572 | { |
573 | if (l2factor) |
574 | native_l2factor -= *l2factor; |
575 | indexed = fz_colorspace_is_indexed(ctx, image->super.colorspace); |
576 | can_sub = 1; |
577 | tile = fz_decomp_image_from_stream(ctx, stm, image, subarea, indexed, native_l2factor); |
578 | } |
579 | fz_always(ctx) |
580 | fz_drop_stream(ctx, stm); |
581 | fz_catch(ctx) |
582 | fz_rethrow(ctx); |
583 | |
584 | /* CMYK JPEGs in XPS documents have to be inverted */ |
585 | if (image->super.invert_cmyk_jpeg && |
586 | image->buffer->params.type == FZ_IMAGE_JPEG && |
587 | fz_colorspace_is_cmyk(ctx, image->super.colorspace) && |
588 | image->buffer->params.u.jpeg.color_transform) |
589 | { |
590 | fz_invert_pixmap(ctx, tile); |
591 | } |
592 | |
593 | break; |
594 | } |
595 | |
596 | if (can_sub == 0 && subarea != NULL) |
597 | { |
598 | subarea->x0 = 0; |
599 | subarea->y0 = 0; |
600 | subarea->x1 = image->super.w; |
601 | subarea->y1 = image->super.h; |
602 | } |
603 | |
604 | return tile; |
605 | } |
606 | |
607 | static fz_pixmap * |
608 | pixmap_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
609 | { |
610 | fz_pixmap_image *image = (fz_pixmap_image *)image_; |
611 | |
612 | /* 'Simple' images created direct from pixmaps will have no buffer |
613 | * of compressed data. We cannot do any better than just returning |
614 | * a pointer to the original 'tile'. |
615 | */ |
616 | return fz_keep_pixmap(ctx, image->tile); /* That's all we can give you! */ |
617 | } |
618 | |
619 | static void |
620 | update_ctm_for_subarea(fz_matrix *ctm, const fz_irect *subarea, int w, int h) |
621 | { |
622 | fz_matrix m; |
623 | |
624 | if (subarea->x0 == 0 && subarea->y0 == 0 && subarea->x1 == w && subarea->y1 == h) |
625 | return; |
626 | |
627 | m.a = (float) (subarea->x1 - subarea->x0) / w; |
628 | m.b = 0; |
629 | m.c = 0; |
630 | m.d = (float) (subarea->y1 - subarea->y0) / h; |
631 | m.e = (float) subarea->x0 / w; |
632 | m.f = (float) subarea->y0 / h; |
633 | *ctm = fz_concat(m, *ctm); |
634 | } |
635 | |
636 | void fz_default_image_decode(void *arg, int w, int h, int l2factor, fz_irect *subarea) |
637 | { |
638 | (void)arg; |
639 | |
640 | if ((subarea->x1-subarea->x0)*(subarea->y1-subarea->y0) >= (w*h/10)*9) |
641 | { |
642 | /* Either no subarea specified, or a subarea 90% or more of the |
643 | * whole area specified. Use the whole image. */ |
644 | subarea->x0 = 0; |
645 | subarea->y0 = 0; |
646 | subarea->x1 = w; |
647 | subarea->y1 = h; |
648 | } |
649 | else |
650 | { |
651 | /* Clip to the edges if they are within 1% */ |
652 | if (subarea->x0 <= w/100) |
653 | subarea->x0 = 0; |
654 | if (subarea->y0 <= h/100) |
655 | subarea->y0 = 0; |
656 | if (subarea->x1 >= w*99/100) |
657 | subarea->x1 = w; |
658 | if (subarea->y1 >= h*99/100) |
659 | subarea->y1 = h; |
660 | } |
661 | } |
662 | |
663 | static fz_pixmap * |
664 | fz_find_image_tile(fz_context *ctx, fz_image *image, fz_image_key *key, fz_matrix *ctm) |
665 | { |
666 | fz_pixmap *tile; |
667 | do |
668 | { |
669 | tile = fz_find_item(ctx, fz_drop_pixmap_imp, key, &fz_image_store_type); |
670 | if (tile) |
671 | { |
672 | update_ctm_for_subarea(ctm, &key->rect, image->w, image->h); |
673 | return tile; |
674 | } |
675 | key->l2factor--; |
676 | } |
677 | while (key->l2factor >= 0); |
678 | return NULL; |
679 | } |
680 | |
681 | /* |
682 | Called to get a handle to a pixmap from an image. |
683 | |
684 | image: The image to retrieve a pixmap from. |
685 | |
686 | color_params: The color parameters (or NULL for defaults). |
687 | |
688 | subarea: The subarea of the image that we actually care about (or NULL |
689 | to indicate the whole image). |
690 | |
691 | trans: Optional, unless subarea is given. If given, then on entry this is |
692 | the transform that will be applied to the complete image. It should be |
693 | updated on exit to the transform to apply to the given subarea of the |
694 | image. This is used to calculate the desired width/height for subsampling. |
695 | |
696 | w: If non-NULL, a pointer to an int to be updated on exit to the |
697 | width (in pixels) that the scaled output will cover. |
698 | |
699 | h: If non-NULL, a pointer to an int to be updated on exit to the |
700 | height (in pixels) that the scaled output will cover. |
701 | |
702 | Returns a non NULL pixmap pointer. May throw exceptions. |
703 | */ |
704 | fz_pixmap * |
705 | fz_get_pixmap_from_image(fz_context *ctx, fz_image *image, const fz_irect *subarea, fz_matrix *ctm, int *dw, int *dh) |
706 | { |
707 | fz_pixmap *tile; |
708 | int l2factor, l2factor_remaining; |
709 | fz_image_key key; |
710 | fz_image_key *keyp = NULL; |
711 | int w; |
712 | int h; |
713 | |
714 | fz_var(keyp); |
715 | |
716 | if (!image) |
717 | return NULL; |
718 | |
719 | /* Figure out the extent. */ |
720 | if (ctm) |
721 | { |
722 | w = sqrtf(ctm->a * ctm->a + ctm->b * ctm->b); |
723 | h = sqrtf(ctm->c * ctm->c + ctm->d * ctm->d); |
724 | } |
725 | else |
726 | { |
727 | w = image->w; |
728 | h = image->h; |
729 | } |
730 | |
731 | if (image->scalable) |
732 | { |
733 | /* If the image is scalable, we always want to re-render and never cache. */ |
734 | fz_irect subarea_copy; |
735 | if (subarea) |
736 | subarea_copy = *subarea; |
737 | l2factor_remaining = 0; |
738 | if (dw) *dw = w; |
739 | if (dh) *dh = h; |
740 | return image->get_pixmap(ctx, image, subarea ? &subarea_copy : NULL, image->w, image->h, &l2factor_remaining); |
741 | } |
742 | |
743 | /* Clamp requested image size, since we never want to magnify images here. */ |
744 | if (w > image->w) |
745 | w = image->w; |
746 | if (h > image->h) |
747 | h = image->h; |
748 | |
749 | if (image->decoded) |
750 | { |
751 | /* If the image is already decoded, then we can't offer a subarea, |
752 | * or l2factor, and we don't want to cache. */ |
753 | l2factor_remaining = 0; |
754 | if (dw) *dw = w; |
755 | if (dh) *dh = h; |
756 | return image->get_pixmap(ctx, image, NULL, image->w, image->h, &l2factor_remaining); |
757 | } |
758 | |
759 | /* What is our ideal factor? We search for the largest factor where |
760 | * we can subdivide and stay larger than the required size. We add |
761 | * a fudge factor of +2 here to allow for the possibility of |
762 | * expansion due to grid fitting. */ |
763 | l2factor = 0; |
764 | if (w > 0 && h > 0) |
765 | { |
766 | while (image->w>>(l2factor+1) >= w+2 && image->h>>(l2factor+1) >= h+2 && l2factor < 6) |
767 | l2factor++; |
768 | } |
769 | |
770 | /* First, look through the store for existing tiles */ |
771 | if (subarea) |
772 | { |
773 | fz_compute_image_key(ctx, image, ctm, &key, subarea, l2factor, &w, &h, dw, dh); |
774 | tile = fz_find_image_tile(ctx, image, &key, ctm); |
775 | if (tile) |
776 | return tile; |
777 | } |
778 | |
779 | /* No subarea given, or no tile for subarea found; try entire image */ |
780 | fz_compute_image_key(ctx, image, ctm, &key, NULL, l2factor, &w, &h, dw, dh); |
781 | tile = fz_find_image_tile(ctx, image, &key, ctm); |
782 | if (tile) |
783 | return tile; |
784 | |
785 | /* Neither subarea nor full image tile found; prepare the subarea key again */ |
786 | if (subarea) |
787 | fz_compute_image_key(ctx, image, ctm, &key, subarea, l2factor, &w, &h, dw, dh); |
788 | |
789 | /* We'll have to decode the image; request the correct amount of downscaling. */ |
790 | l2factor_remaining = l2factor; |
791 | tile = image->get_pixmap(ctx, image, &key.rect, w, h, &l2factor_remaining); |
792 | |
793 | /* Update the ctm to allow for subareas. */ |
794 | if (ctm) |
795 | update_ctm_for_subarea(ctm, &key.rect, image->w, image->h); |
796 | |
797 | /* l2factor_remaining is updated to the amount of subscaling left to do */ |
798 | assert(l2factor_remaining >= 0 && l2factor_remaining <= 6); |
799 | if (l2factor_remaining) |
800 | { |
801 | fz_try(ctx) |
802 | fz_subsample_pixmap(ctx, tile, l2factor_remaining); |
803 | fz_catch(ctx) |
804 | { |
805 | fz_drop_pixmap(ctx, tile); |
806 | fz_rethrow(ctx); |
807 | } |
808 | } |
809 | |
810 | fz_try(ctx) |
811 | { |
812 | fz_pixmap *existing_tile; |
813 | |
814 | /* Now we try to cache the pixmap. Any failure here will just result |
815 | * in us not caching. */ |
816 | keyp = fz_malloc_struct(ctx, fz_image_key); |
817 | keyp->refs = 1; |
818 | keyp->image = fz_keep_image_store_key(ctx, image); |
819 | keyp->l2factor = l2factor; |
820 | keyp->rect = key.rect; |
821 | |
822 | existing_tile = fz_store_item(ctx, keyp, tile, fz_pixmap_size(ctx, tile), &fz_image_store_type); |
823 | if (existing_tile) |
824 | { |
825 | /* We already have a tile. This must have been produced by a |
826 | * racing thread. We'll throw away ours and use that one. */ |
827 | fz_drop_pixmap(ctx, tile); |
828 | tile = existing_tile; |
829 | } |
830 | } |
831 | fz_always(ctx) |
832 | { |
833 | fz_drop_image_key(ctx, keyp); |
834 | } |
835 | fz_catch(ctx) |
836 | { |
837 | /* Do nothing */ |
838 | } |
839 | |
840 | return tile; |
841 | } |
842 | |
843 | static size_t |
844 | pixmap_image_get_size(fz_context *ctx, fz_image *image) |
845 | { |
846 | fz_pixmap_image *im = (fz_pixmap_image *)image; |
847 | |
848 | if (image == NULL) |
849 | return 0; |
850 | |
851 | return sizeof(fz_pixmap_image) + fz_pixmap_size(ctx, im->tile); |
852 | } |
853 | |
854 | size_t fz_image_size(fz_context *ctx, fz_image *im) |
855 | { |
856 | if (im == NULL) |
857 | return 0; |
858 | |
859 | return im->get_size(ctx, im); |
860 | } |
861 | |
862 | /* |
863 | Create an image from the given |
864 | pixmap. |
865 | |
866 | pixmap: The pixmap to base the image upon. A new reference |
867 | to this is taken. |
868 | |
869 | mask: NULL, or another image to use as a mask for this one. |
870 | A new reference is taken to this image. Supplying a masked |
871 | image as a mask to another image is illegal! |
872 | */ |
873 | fz_image * |
874 | fz_new_image_from_pixmap(fz_context *ctx, fz_pixmap *pixmap, fz_image *mask) |
875 | { |
876 | fz_pixmap_image *image; |
877 | |
878 | image = fz_new_derived_image(ctx, pixmap->w, pixmap->h, 8, pixmap->colorspace, |
879 | pixmap->xres, pixmap->yres, 0, 0, |
880 | NULL, NULL, mask, fz_pixmap_image, |
881 | pixmap_image_get_pixmap, |
882 | pixmap_image_get_size, |
883 | drop_pixmap_image); |
884 | image->tile = fz_keep_pixmap(ctx, pixmap); |
885 | image->super.decoded = 1; |
886 | |
887 | return &image->super; |
888 | } |
889 | |
890 | /* |
891 | Internal function to make a new fz_image structure |
892 | for a derived class. |
893 | |
894 | w,h: Width and height of the created image. |
895 | |
896 | bpc: Bits per component. |
897 | |
898 | colorspace: The colorspace (determines the number of components, |
899 | and any color conversions required while decoding). |
900 | |
901 | xres, yres: The X and Y resolutions respectively. |
902 | |
903 | interpolate: 1 if interpolation should be used when decoding |
904 | this image, 0 otherwise. |
905 | |
906 | imagemask: 1 if this is an imagemask (i.e. transparent), 0 |
907 | otherwise. |
908 | |
909 | decode: NULL, or a pointer to to a decode array. The default |
910 | decode array is [0 1] (repeated n times, for n color components). |
911 | |
912 | colorkey: NULL, or a pointer to a colorkey array. The default |
913 | colorkey array is [0 255] (repeatd n times, for n color |
914 | components). |
915 | |
916 | mask: NULL, or another image to use as a mask for this one. |
917 | A new reference is taken to this image. Supplying a masked |
918 | image as a mask to another image is illegal! |
919 | |
920 | size: The size of the required allocated structure (the size of |
921 | the derived structure). |
922 | |
923 | get: The function to be called to obtain a decoded pixmap. |
924 | |
925 | get_size: The function to be called to return the storage size |
926 | used by this image. |
927 | |
928 | drop: The function to be called to dispose of this image once |
929 | the last reference is dropped. |
930 | |
931 | Returns a pointer to an allocated structure of the required size, |
932 | with the first sizeof(fz_image) bytes initialised as appropriate |
933 | given the supplied parameters, and the other bytes set to zero. |
934 | */ |
935 | fz_image * |
936 | fz_new_image_of_size(fz_context *ctx, int w, int h, int bpc, fz_colorspace *colorspace, |
937 | int xres, int yres, int interpolate, int imagemask, float *decode, |
938 | int *colorkey, fz_image *mask, int size, |
939 | fz_image_get_pixmap_fn *get_pixmap, |
940 | fz_image_get_size_fn *get_size, |
941 | fz_drop_image_fn *drop) |
942 | { |
943 | fz_image *image; |
944 | int i; |
945 | |
946 | assert(mask == NULL || mask->mask == NULL); |
947 | assert(size >= sizeof(fz_image)); |
948 | |
949 | image = Memento_label(fz_calloc(ctx, 1, size), "fz_image" ); |
950 | FZ_INIT_KEY_STORABLE(image, 1, fz_drop_image_imp); |
951 | image->drop_image = drop; |
952 | image->get_pixmap = get_pixmap; |
953 | image->get_size = get_size; |
954 | image->w = w; |
955 | image->h = h; |
956 | image->xres = xres; |
957 | image->yres = yres; |
958 | image->bpc = bpc; |
959 | image->n = (colorspace ? fz_colorspace_n(ctx, colorspace) : 1); |
960 | image->colorspace = fz_keep_colorspace(ctx, colorspace); |
961 | image->invert_cmyk_jpeg = 1; |
962 | image->interpolate = interpolate; |
963 | image->imagemask = imagemask; |
964 | image->use_colorkey = (colorkey != NULL); |
965 | if (colorkey) |
966 | memcpy(image->colorkey, colorkey, sizeof(int)*image->n*2); |
967 | image->use_decode = 0; |
968 | if (decode) |
969 | { |
970 | memcpy(image->decode, decode, sizeof(float)*image->n*2); |
971 | } |
972 | else |
973 | { |
974 | float maxval = fz_colorspace_is_indexed(ctx, colorspace) ? (1 << bpc) - 1 : 1; |
975 | for (i = 0; i < image->n; i++) |
976 | { |
977 | image->decode[2*i] = 0; |
978 | image->decode[2*i+1] = maxval; |
979 | } |
980 | } |
981 | /* ICC spaces have the default decode arrays pickled into them. |
982 | * For most spaces this is fine, because [ 0 1 0 1 0 1 ] is |
983 | * idempotent. For Lab, however, we need to adjust it. */ |
984 | if (fz_colorspace_is_lab_icc(ctx, colorspace)) |
985 | { |
986 | /* Undo the default decode array of [0 100 -128 127 -128 127] */ |
987 | image->decode[0] = image->decode[0]/100.0f; |
988 | image->decode[1] = image->decode[1]/100.0f; |
989 | image->decode[2] = (image->decode[2]+128)/255.0f; |
990 | image->decode[3] = (image->decode[3]+128)/255.0f; |
991 | image->decode[4] = (image->decode[4]+128)/255.0f; |
992 | image->decode[5] = (image->decode[5]+128)/255.0f; |
993 | } |
994 | for (i = 0; i < image->n; i++) |
995 | { |
996 | if (image->decode[i * 2] != 0 || image->decode[i * 2 + 1] != 1) |
997 | break; |
998 | } |
999 | if (i != image->n) |
1000 | image->use_decode = 1; |
1001 | image->mask = fz_keep_image(ctx, mask); |
1002 | |
1003 | return image; |
1004 | } |
1005 | |
1006 | static size_t |
1007 | compressed_image_get_size(fz_context *ctx, fz_image *image) |
1008 | { |
1009 | fz_compressed_image *im = (fz_compressed_image *)image; |
1010 | |
1011 | if (image == NULL) |
1012 | return 0; |
1013 | |
1014 | return sizeof(fz_pixmap_image) + fz_pixmap_size(ctx, im->tile) + (im->buffer && im->buffer->buffer ? im->buffer->buffer->cap : 0); |
1015 | } |
1016 | |
1017 | /* |
1018 | Create an image based on |
1019 | the data in the supplied compressed buffer. |
1020 | |
1021 | w,h: Width and height of the created image. |
1022 | |
1023 | bpc: Bits per component. |
1024 | |
1025 | colorspace: The colorspace (determines the number of components, |
1026 | and any color conversions required while decoding). |
1027 | |
1028 | xres, yres: The X and Y resolutions respectively. |
1029 | |
1030 | interpolate: 1 if interpolation should be used when decoding |
1031 | this image, 0 otherwise. |
1032 | |
1033 | imagemask: 1 if this is an imagemask (i.e. transparency bitmap mask), 0 otherwise. |
1034 | |
1035 | decode: NULL, or a pointer to to a decode array. The default |
1036 | decode array is [0 1] (repeated n times, for n color components). |
1037 | |
1038 | colorkey: NULL, or a pointer to a colorkey array. The default |
1039 | colorkey array is [0 255] (repeatd n times, for n color |
1040 | components). |
1041 | |
1042 | buffer: Buffer of compressed data and compression parameters. |
1043 | Ownership of this reference is passed in. |
1044 | |
1045 | mask: NULL, or another image to use as a mask for this one. |
1046 | A new reference is taken to this image. Supplying a masked |
1047 | image as a mask to another image is illegal! |
1048 | */ |
1049 | fz_image * |
1050 | fz_new_image_from_compressed_buffer(fz_context *ctx, int w, int h, |
1051 | int bpc, fz_colorspace *colorspace, |
1052 | int xres, int yres, int interpolate, int imagemask, float *decode, |
1053 | int *colorkey, fz_compressed_buffer *buffer, fz_image *mask) |
1054 | { |
1055 | fz_compressed_image *image; |
1056 | |
1057 | fz_try(ctx) |
1058 | { |
1059 | image = fz_new_derived_image(ctx, w, h, bpc, |
1060 | colorspace, xres, yres, |
1061 | interpolate, imagemask, decode, |
1062 | colorkey, mask, fz_compressed_image, |
1063 | compressed_image_get_pixmap, |
1064 | compressed_image_get_size, |
1065 | drop_compressed_image); |
1066 | image->buffer = buffer; |
1067 | } |
1068 | fz_catch(ctx) |
1069 | { |
1070 | fz_drop_compressed_buffer(ctx, buffer); |
1071 | fz_rethrow(ctx); |
1072 | } |
1073 | |
1074 | return &image->super; |
1075 | } |
1076 | |
1077 | /* |
1078 | Retrieve the underlying compressed |
1079 | data for an image. |
1080 | |
1081 | Returns a pointer to the underlying data buffer for an image, |
1082 | or NULL if this image is not based upon a compressed data |
1083 | buffer. |
1084 | |
1085 | This is not a reference counted structure, so no reference is |
1086 | returned. Lifespan is limited to that of the image itself. |
1087 | */ |
1088 | fz_compressed_buffer *fz_compressed_image_buffer(fz_context *ctx, fz_image *image) |
1089 | { |
1090 | if (image == NULL || image->get_pixmap != compressed_image_get_pixmap) |
1091 | return NULL; |
1092 | return ((fz_compressed_image *)image)->buffer; |
1093 | } |
1094 | |
1095 | void fz_set_compressed_image_buffer(fz_context *ctx, fz_compressed_image *image, fz_compressed_buffer *buf) |
1096 | { |
1097 | assert(image != NULL && image->super.get_pixmap == compressed_image_get_pixmap); |
1098 | ((fz_compressed_image *)image)->buffer = buf; /* Note: compressed buffers are not reference counted */ |
1099 | } |
1100 | |
1101 | fz_pixmap *fz_compressed_image_tile(fz_context *ctx, fz_compressed_image *image) |
1102 | { |
1103 | if (image == NULL || image->super.get_pixmap != compressed_image_get_pixmap) |
1104 | return NULL; |
1105 | return ((fz_compressed_image *)image)->tile; |
1106 | } |
1107 | |
1108 | void fz_set_compressed_image_tile(fz_context *ctx, fz_compressed_image *image, fz_pixmap *pix) |
1109 | { |
1110 | assert(image != NULL && image->super.get_pixmap == compressed_image_get_pixmap); |
1111 | fz_drop_pixmap(ctx, ((fz_compressed_image *)image)->tile); |
1112 | ((fz_compressed_image *)image)->tile = fz_keep_pixmap(ctx, pix); |
1113 | } |
1114 | |
1115 | /* |
1116 | Retried the underlying fz_pixmap |
1117 | for an image. |
1118 | |
1119 | Returns a pointer to the underlying fz_pixmap for an image, |
1120 | or NULL if this image is not based upon an fz_pixmap. |
1121 | |
1122 | No reference is returned. Lifespan is limited to that of |
1123 | the image itself. If required, use fz_keep_pixmap to take |
1124 | a reference to keep it longer. |
1125 | */ |
1126 | fz_pixmap *fz_pixmap_image_tile(fz_context *ctx, fz_pixmap_image *image) |
1127 | { |
1128 | if (image == NULL || image->super.get_pixmap != pixmap_image_get_pixmap) |
1129 | return NULL; |
1130 | return ((fz_pixmap_image *)image)->tile; |
1131 | } |
1132 | |
1133 | void fz_set_pixmap_image_tile(fz_context *ctx, fz_pixmap_image *image, fz_pixmap *pix) |
1134 | { |
1135 | assert(image != NULL && image->super.get_pixmap == pixmap_image_get_pixmap); |
1136 | ((fz_pixmap_image *)image)->tile = pix; |
1137 | } |
1138 | |
1139 | int |
1140 | fz_recognize_image_format(fz_context *ctx, unsigned char p[8]) |
1141 | { |
1142 | if (p[0] == 'P' && p[1] >= '1' && p[1] <= '7') |
1143 | return FZ_IMAGE_PNM; |
1144 | if (p[0] == 0xff && p[1] == 0x4f) |
1145 | return FZ_IMAGE_JPX; |
1146 | if (p[0] == 0x00 && p[1] == 0x00 && p[2] == 0x00 && p[3] == 0x0c && |
1147 | p[4] == 0x6a && p[5] == 0x50 && p[6] == 0x20 && p[7] == 0x20) |
1148 | return FZ_IMAGE_JPX; |
1149 | if (p[0] == 0xff && p[1] == 0xd8) |
1150 | return FZ_IMAGE_JPEG; |
1151 | if (p[0] == 137 && p[1] == 80 && p[2] == 78 && p[3] == 71 && |
1152 | p[4] == 13 && p[5] == 10 && p[6] == 26 && p[7] == 10) |
1153 | return FZ_IMAGE_PNG; |
1154 | if (p[0] == 'I' && p[1] == 'I' && p[2] == 0xBC) |
1155 | return FZ_IMAGE_JXR; |
1156 | if (p[0] == 'I' && p[1] == 'I' && p[2] == 42 && p[3] == 0) |
1157 | return FZ_IMAGE_TIFF; |
1158 | if (p[0] == 'M' && p[1] == 'M' && p[2] == 0 && p[3] == 42) |
1159 | return FZ_IMAGE_TIFF; |
1160 | if (p[0] == 'G' && p[1] == 'I' && p[2] == 'F') |
1161 | return FZ_IMAGE_GIF; |
1162 | if (p[0] == 'B' && p[1] == 'M') |
1163 | return FZ_IMAGE_BMP; |
1164 | if (p[0] == 0x97 && p[1] == 'J' && p[2] == 'B' && p[3] == '2' && |
1165 | p[4] == '\r' && p[5] == '\n' && p[6] == 0x1a && p[7] == '\n') |
1166 | return FZ_IMAGE_JBIG2; |
1167 | return FZ_IMAGE_UNKNOWN; |
1168 | } |
1169 | |
1170 | /* |
1171 | Create a new image from a |
1172 | buffer of data, inferring its type from the format |
1173 | of the data. |
1174 | */ |
1175 | fz_image * |
1176 | fz_new_image_from_buffer(fz_context *ctx, fz_buffer *buffer) |
1177 | { |
1178 | fz_compressed_buffer *bc; |
1179 | int w, h, xres, yres; |
1180 | fz_colorspace *cspace; |
1181 | size_t len = buffer->len; |
1182 | unsigned char *buf = buffer->data; |
1183 | fz_image *image = NULL; |
1184 | int type; |
1185 | |
1186 | if (len < 8) |
1187 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown image file format" ); |
1188 | |
1189 | type = fz_recognize_image_format(ctx, buf); |
1190 | switch (type) |
1191 | { |
1192 | case FZ_IMAGE_PNM: |
1193 | fz_load_pnm_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1194 | break; |
1195 | case FZ_IMAGE_JPX: |
1196 | fz_load_jpx_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1197 | break; |
1198 | case FZ_IMAGE_JPEG: |
1199 | fz_load_jpeg_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1200 | break; |
1201 | case FZ_IMAGE_PNG: |
1202 | fz_load_png_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1203 | break; |
1204 | case FZ_IMAGE_JXR: |
1205 | fz_load_jxr_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1206 | break; |
1207 | case FZ_IMAGE_TIFF: |
1208 | fz_load_tiff_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1209 | break; |
1210 | case FZ_IMAGE_GIF: |
1211 | fz_load_gif_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1212 | break; |
1213 | case FZ_IMAGE_BMP: |
1214 | fz_load_bmp_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1215 | break; |
1216 | case FZ_IMAGE_JBIG2: |
1217 | fz_load_jbig2_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1218 | break; |
1219 | default: |
1220 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown image file format" ); |
1221 | } |
1222 | |
1223 | fz_try(ctx) |
1224 | { |
1225 | bc = fz_malloc_struct(ctx, fz_compressed_buffer); |
1226 | bc->buffer = fz_keep_buffer(ctx, buffer); |
1227 | bc->params.type = type; |
1228 | if (type == FZ_IMAGE_JPEG) |
1229 | bc->params.u.jpeg.color_transform = -1; |
1230 | image = fz_new_image_from_compressed_buffer(ctx, w, h, 8, cspace, xres, yres, 0, 0, NULL, NULL, bc, NULL); |
1231 | } |
1232 | fz_always(ctx) |
1233 | fz_drop_colorspace(ctx, cspace); |
1234 | fz_catch(ctx) |
1235 | fz_rethrow(ctx); |
1236 | |
1237 | return image; |
1238 | } |
1239 | |
1240 | /* |
1241 | Create a new image from the contents |
1242 | of a file, inferring its type from the format of the |
1243 | data. |
1244 | */ |
1245 | fz_image * |
1246 | fz_new_image_from_file(fz_context *ctx, const char *path) |
1247 | { |
1248 | fz_buffer *buffer; |
1249 | fz_image *image = NULL; |
1250 | |
1251 | buffer = fz_read_file(ctx, path); |
1252 | fz_try(ctx) |
1253 | image = fz_new_image_from_buffer(ctx, buffer); |
1254 | fz_always(ctx) |
1255 | fz_drop_buffer(ctx, buffer); |
1256 | fz_catch(ctx) |
1257 | fz_rethrow(ctx); |
1258 | |
1259 | return image; |
1260 | } |
1261 | |
1262 | /* |
1263 | Request the natural resolution |
1264 | of an image. |
1265 | |
1266 | xres, yres: Pointers to ints to be updated with the |
1267 | natural resolution of an image (or a sensible default |
1268 | if not encoded). |
1269 | */ |
1270 | void |
1271 | fz_image_resolution(fz_image *image, int *xres, int *yres) |
1272 | { |
1273 | *xres = image->xres; |
1274 | *yres = image->yres; |
1275 | if (*xres < 0 || *yres < 0 || (*xres == 0 && *yres == 0)) |
1276 | { |
1277 | /* If neither xres or yres is sane, pick a sane value */ |
1278 | *xres = SANE_DPI; *yres = SANE_DPI; |
1279 | } |
1280 | else if (*xres == 0) |
1281 | { |
1282 | *xres = *yres; |
1283 | } |
1284 | else if (*yres == 0) |
1285 | { |
1286 | *yres = *xres; |
1287 | } |
1288 | |
1289 | /* Scale xres and yres up until we get believable values */ |
1290 | if (*xres < SANE_DPI || *yres < SANE_DPI || *xres > INSANE_DPI || *yres > INSANE_DPI) |
1291 | { |
1292 | if (*xres == *yres) |
1293 | { |
1294 | *xres = SANE_DPI; |
1295 | *yres = SANE_DPI; |
1296 | } |
1297 | else if (*xres < *yres) |
1298 | { |
1299 | *yres = *yres * SANE_DPI / *xres; |
1300 | *xres = SANE_DPI; |
1301 | } |
1302 | else |
1303 | { |
1304 | *xres = *xres * SANE_DPI / *yres; |
1305 | *yres = SANE_DPI; |
1306 | } |
1307 | } |
1308 | } |
1309 | |
1310 | typedef struct fz_display_list_image_s |
1311 | { |
1312 | fz_image super; |
1313 | fz_matrix transform; |
1314 | fz_display_list *list; |
1315 | } fz_display_list_image; |
1316 | |
1317 | static fz_pixmap * |
1318 | display_list_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
1319 | { |
1320 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1321 | fz_matrix ctm; |
1322 | fz_device *dev; |
1323 | fz_pixmap *pix; |
1324 | |
1325 | fz_var(dev); |
1326 | |
1327 | if (subarea) |
1328 | { |
1329 | /* So, the whole image should be scaled to w * h, but we only want the |
1330 | * given subarea of it. */ |
1331 | int l = (subarea->x0 * w) / image->super.w; |
1332 | int t = (subarea->y0 * h) / image->super.h; |
1333 | int r = (subarea->x1 * w + image->super.w - 1) / image->super.w; |
1334 | int b = (subarea->y1 * h + image->super.h - 1) / image->super.h; |
1335 | |
1336 | pix = fz_new_pixmap(ctx, image->super.colorspace, r-l, b-t, NULL, 0); |
1337 | pix->x = l; |
1338 | pix->y = t; |
1339 | } |
1340 | else |
1341 | { |
1342 | pix = fz_new_pixmap(ctx, image->super.colorspace, w, h, NULL, 0); |
1343 | } |
1344 | |
1345 | /* If we render the display list into pix with the image matrix, we'll get a unit |
1346 | * square result. Therefore scale by w, h. */ |
1347 | ctm = fz_pre_scale(image->transform, w, h); |
1348 | |
1349 | fz_clear_pixmap(ctx, pix); /* clear to transparent */ |
1350 | fz_try(ctx) |
1351 | { |
1352 | dev = fz_new_draw_device(ctx, ctm, pix); |
1353 | fz_run_display_list(ctx, image->list, dev, fz_identity, fz_infinite_rect, NULL); |
1354 | fz_close_device(ctx, dev); |
1355 | } |
1356 | fz_always(ctx) |
1357 | fz_drop_device(ctx, dev); |
1358 | fz_catch(ctx) |
1359 | { |
1360 | fz_drop_pixmap(ctx, pix); |
1361 | fz_rethrow(ctx); |
1362 | } |
1363 | |
1364 | /* Never do more subsampling, cos we've already given them the right size */ |
1365 | if (l2factor) |
1366 | *l2factor = 0; |
1367 | |
1368 | return pix; |
1369 | } |
1370 | |
1371 | static void drop_display_list_image(fz_context *ctx, fz_image *image_) |
1372 | { |
1373 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1374 | |
1375 | if (image == NULL) |
1376 | return; |
1377 | fz_drop_display_list(ctx, image->list); |
1378 | } |
1379 | |
1380 | static size_t |
1381 | display_list_image_get_size(fz_context *ctx, fz_image *image_) |
1382 | { |
1383 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1384 | |
1385 | if (image == NULL) |
1386 | return 0; |
1387 | |
1388 | return sizeof(fz_display_list_image) + 4096; /* FIXME */ |
1389 | } |
1390 | |
1391 | /* |
1392 | Create a new image from a display list. |
1393 | |
1394 | w, h: The conceptual width/height of the image. |
1395 | |
1396 | transform: The matrix that needs to be applied to the given |
1397 | list to make it render to the unit square. |
1398 | |
1399 | list: The display list. |
1400 | */ |
1401 | fz_image *fz_new_image_from_display_list(fz_context *ctx, float w, float h, fz_display_list *list) |
1402 | { |
1403 | fz_display_list_image *image; |
1404 | int iw, ih; |
1405 | |
1406 | iw = w * SCALABLE_IMAGE_DPI / 72; |
1407 | ih = h * SCALABLE_IMAGE_DPI / 72; |
1408 | |
1409 | image = fz_new_derived_image(ctx, iw, ih, 8, fz_device_rgb(ctx), |
1410 | SCALABLE_IMAGE_DPI, SCALABLE_IMAGE_DPI, 0, 0, |
1411 | NULL, NULL, NULL, fz_display_list_image, |
1412 | display_list_image_get_pixmap, |
1413 | display_list_image_get_size, |
1414 | drop_display_list_image); |
1415 | image->super.scalable = 1; |
1416 | image->transform = fz_scale(1 / w, 1 / h); |
1417 | image->list = fz_keep_display_list(ctx, list); |
1418 | |
1419 | return &image->super; |
1420 | } |
1421 | |