1 | #include "mupdf/fitz.h" |
2 | |
3 | #include <limits.h> |
4 | #include <assert.h> |
5 | #include <string.h> |
6 | |
7 | /* |
8 | * TIFF image loader. Should be enough to support TIFF files in XPS. |
9 | * Baseline TIFF 6.0 plus CMYK, LZW, Flate and JPEG support. |
10 | * Limited bit depths (1,2,4,8). |
11 | * Limited planar configurations (1=chunky). |
12 | * TODO: RGBPal images |
13 | */ |
14 | |
15 | struct tiff |
16 | { |
17 | /* "file" */ |
18 | const unsigned char *bp, *rp, *ep; |
19 | |
20 | /* byte order */ |
21 | unsigned order; |
22 | |
23 | /* offset of first ifd */ |
24 | unsigned *ifd_offsets; |
25 | int ifds; |
26 | |
27 | /* where we can find the strips of image data */ |
28 | unsigned rowsperstrip; |
29 | unsigned *stripoffsets; |
30 | unsigned *stripbytecounts; |
31 | unsigned stripoffsetslen; |
32 | unsigned stripbytecountslen; |
33 | |
34 | /* where we can find the tiles of image data */ |
35 | unsigned tilelength; |
36 | unsigned tilewidth; |
37 | unsigned *tileoffsets; |
38 | unsigned *tilebytecounts; |
39 | unsigned tileoffsetslen; |
40 | unsigned tilebytecountslen; |
41 | |
42 | /* colormap */ |
43 | unsigned *colormap; |
44 | unsigned colormaplen; |
45 | |
46 | /* assorted tags */ |
47 | unsigned subfiletype; |
48 | unsigned photometric; |
49 | unsigned compression; |
50 | unsigned imagewidth; |
51 | unsigned imagelength; |
52 | unsigned samplesperpixel; |
53 | unsigned bitspersample; |
54 | unsigned planar; |
55 | unsigned ; |
56 | unsigned xresolution; |
57 | unsigned yresolution; |
58 | unsigned resolutionunit; |
59 | unsigned fillorder; |
60 | unsigned g3opts; |
61 | unsigned g4opts; |
62 | unsigned predictor; |
63 | |
64 | unsigned ycbcrsubsamp[2]; |
65 | |
66 | const unsigned char *jpegtables; /* point into "file" buffer */ |
67 | unsigned jpegtableslen; |
68 | |
69 | unsigned char *profile; |
70 | int profilesize; |
71 | |
72 | /* decoded data */ |
73 | fz_colorspace *colorspace; |
74 | unsigned char *samples; |
75 | unsigned char *data; |
76 | int tilestride; |
77 | int stride; |
78 | }; |
79 | |
80 | enum |
81 | { |
82 | TII = 0x4949, /* 'II' */ |
83 | TMM = 0x4d4d, /* 'MM' */ |
84 | TBYTE = 1, |
85 | TASCII = 2, |
86 | TSHORT = 3, |
87 | TLONG = 4, |
88 | TRATIONAL = 5 |
89 | }; |
90 | |
91 | #define NewSubfileType 254 |
92 | #define ImageWidth 256 |
93 | #define ImageLength 257 |
94 | #define BitsPerSample 258 |
95 | #define Compression 259 |
96 | #define PhotometricInterpretation 262 |
97 | #define FillOrder 266 |
98 | #define StripOffsets 273 |
99 | #define SamplesPerPixel 277 |
100 | #define RowsPerStrip 278 |
101 | #define StripByteCounts 279 |
102 | #define XResolution 282 |
103 | #define YResolution 283 |
104 | #define PlanarConfiguration 284 |
105 | #define T4Options 292 |
106 | #define T6Options 293 |
107 | #define ResolutionUnit 296 |
108 | #define Predictor 317 |
109 | #define ColorMap 320 |
110 | #define TileWidth 322 |
111 | #define TileLength 323 |
112 | #define TileOffsets 324 |
113 | #define TileByteCounts 325 |
114 | #define 338 |
115 | #define JPEGTables 347 |
116 | #define YCbCrSubSampling 530 |
117 | #define ICCProfile 34675 |
118 | |
119 | static const unsigned char bitrev[256] = |
120 | { |
121 | 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, |
122 | 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, |
123 | 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, |
124 | 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, |
125 | 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, |
126 | 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, |
127 | 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, |
128 | 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, |
129 | 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, |
130 | 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, |
131 | 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, |
132 | 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, |
133 | 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, |
134 | 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, |
135 | 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, |
136 | 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, |
137 | 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, |
138 | 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, |
139 | 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, |
140 | 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, |
141 | 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, |
142 | 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, |
143 | 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, |
144 | 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, |
145 | 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, |
146 | 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, |
147 | 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, |
148 | 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, |
149 | 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, |
150 | 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, |
151 | 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, |
152 | 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff |
153 | }; |
154 | |
155 | static inline int tiff_getcomp(unsigned char *line, int x, int bpc) |
156 | { |
157 | switch (bpc) |
158 | { |
159 | case 1: return (line[x >> 3] >> ( 7 - (x & 7) ) ) & 1; |
160 | case 2: return (line[x >> 2] >> ( ( 3 - (x & 3) ) << 1 ) ) & 3; |
161 | case 4: return (line[x >> 1] >> ( ( 1 - (x & 1) ) << 2 ) ) & 15; |
162 | case 8: return line[x]; |
163 | case 16: return line[x << 1] << 8 | line[(x << 1) + 1]; |
164 | } |
165 | return 0; |
166 | } |
167 | |
168 | static inline void tiff_putcomp(unsigned char *line, int x, int bpc, int value) |
169 | { |
170 | int maxval = (1 << bpc) - 1; |
171 | |
172 | switch (bpc) |
173 | { |
174 | case 1: line[x >> 3] &= ~(maxval << (7 - (x & 7))); break; |
175 | case 2: line[x >> 2] &= ~(maxval << ((3 - (x & 3)) << 1)); break; |
176 | case 4: line[x >> 1] &= ~(maxval << ((1 - (x & 1)) << 2)); break; |
177 | } |
178 | |
179 | switch (bpc) |
180 | { |
181 | case 1: line[x >> 3] |= value << (7 - (x & 7)); break; |
182 | case 2: line[x >> 2] |= value << ((3 - (x & 3)) << 1); break; |
183 | case 4: line[x >> 1] |= value << ((1 - (x & 1)) << 2); break; |
184 | case 8: line[x] = value; break; |
185 | case 16: line[x << 1] = value >> 8; line[(x << 1) + 1] = value & 0xFF; break; |
186 | } |
187 | } |
188 | |
189 | static void |
190 | tiff_unpredict_line(unsigned char *line, int width, int comps, int bits) |
191 | { |
192 | unsigned char left[FZ_MAX_COLORS]; |
193 | int i, k, v; |
194 | |
195 | for (k = 0; k < comps; k++) |
196 | left[k] = 0; |
197 | |
198 | for (i = 0; i < width; i++) |
199 | { |
200 | for (k = 0; k < comps; k++) |
201 | { |
202 | v = tiff_getcomp(line, i * comps + k, bits); |
203 | v = v + left[k]; |
204 | v = v % (1 << bits); |
205 | tiff_putcomp(line, i * comps + k, bits, v); |
206 | left[k] = v; |
207 | } |
208 | } |
209 | } |
210 | |
211 | static void |
212 | tiff_invert_line(unsigned char *line, int width, int comps, int bits, int alpha) |
213 | { |
214 | int i, k, v; |
215 | int m = (1 << bits) - 1; |
216 | |
217 | for (i = 0; i < width; i++) |
218 | { |
219 | for (k = 0; k < comps; k++) |
220 | { |
221 | v = tiff_getcomp(line, i * comps + k, bits); |
222 | if (!alpha || k < comps - 1) |
223 | v = m - v; |
224 | tiff_putcomp(line, i * comps + k, bits, v); |
225 | } |
226 | } |
227 | } |
228 | |
229 | static void |
230 | tiff_expand_colormap(fz_context *ctx, struct tiff *tiff) |
231 | { |
232 | int maxval = 1 << tiff->bitspersample; |
233 | unsigned char *samples; |
234 | unsigned char *src, *dst; |
235 | unsigned int x, y; |
236 | unsigned int stride; |
237 | |
238 | /* colormap has first all red, then all green, then all blue values */ |
239 | /* colormap values are 0..65535, bits is 4 or 8 */ |
240 | /* image can be with or without extrasamples: comps is 1 or 2 */ |
241 | |
242 | if (tiff->samplesperpixel != 1 && tiff->samplesperpixel != 2) |
243 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid number of samples for RGBPal" ); |
244 | |
245 | if (tiff->bitspersample != 1 && tiff->bitspersample != 2 && tiff->bitspersample != 4 && tiff->bitspersample != 8 && tiff->bitspersample != 16) |
246 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid number of bits for RGBPal" ); |
247 | |
248 | if (tiff->colormaplen < (unsigned)maxval * 3) |
249 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient colormap data" ); |
250 | |
251 | if (tiff->imagelength > UINT_MAX / tiff->imagewidth / (tiff->samplesperpixel + 2)) |
252 | fz_throw(ctx, FZ_ERROR_GENERIC, "image too large" ); |
253 | |
254 | stride = tiff->imagewidth * (tiff->samplesperpixel + 2); |
255 | |
256 | samples = fz_malloc(ctx, stride * tiff->imagelength); |
257 | |
258 | for (y = 0; y < tiff->imagelength; y++) |
259 | { |
260 | src = tiff->samples + (unsigned int)(tiff->stride * y); |
261 | dst = samples + (unsigned int)(stride * y); |
262 | |
263 | for (x = 0; x < tiff->imagewidth; x++) |
264 | { |
265 | if (tiff->extrasamples) |
266 | { |
267 | int c = tiff_getcomp(src, x * 2, tiff->bitspersample); |
268 | int a = tiff_getcomp(src, x * 2 + 1, tiff->bitspersample); |
269 | *dst++ = tiff->colormap[c + 0] >> 8; |
270 | *dst++ = tiff->colormap[c + maxval] >> 8; |
271 | *dst++ = tiff->colormap[c + maxval * 2] >> 8; |
272 | if (tiff->bitspersample <= 8) |
273 | *dst++ = a << (8 - tiff->bitspersample); |
274 | else |
275 | *dst++ = a >> (tiff->bitspersample - 8); |
276 | } |
277 | else |
278 | { |
279 | int c = tiff_getcomp(src, x, tiff->bitspersample); |
280 | *dst++ = tiff->colormap[c + 0] >> 8; |
281 | *dst++ = tiff->colormap[c + maxval] >> 8; |
282 | *dst++ = tiff->colormap[c + maxval * 2] >> 8; |
283 | } |
284 | } |
285 | } |
286 | |
287 | tiff->samplesperpixel += 2; |
288 | tiff->bitspersample = 8; |
289 | tiff->stride = stride; |
290 | fz_free(ctx, tiff->samples); |
291 | tiff->samples = samples; |
292 | } |
293 | |
294 | static unsigned |
295 | tiff_decode_data(fz_context *ctx, struct tiff *tiff, const unsigned char *rp, unsigned int rlen, unsigned char *wp, unsigned int wlen) |
296 | { |
297 | fz_stream *encstm = NULL; |
298 | fz_stream *stm = NULL; |
299 | unsigned i, size = 0; |
300 | unsigned char *reversed = NULL; |
301 | fz_stream *jpegtables = NULL; |
302 | int old_tiff; |
303 | |
304 | if (rp + rlen > tiff->ep) |
305 | fz_throw(ctx, FZ_ERROR_GENERIC, "strip extends beyond the end of the file" ); |
306 | |
307 | /* the bits are in un-natural order */ |
308 | if (tiff->fillorder == 2) |
309 | { |
310 | reversed = fz_malloc(ctx, rlen); |
311 | for (i = 0; i < rlen; i++) |
312 | reversed[i] = bitrev[rp[i]]; |
313 | rp = reversed; |
314 | } |
315 | |
316 | fz_var(jpegtables); |
317 | fz_var(encstm); |
318 | fz_var(stm); |
319 | |
320 | fz_try(ctx) |
321 | { |
322 | encstm = fz_open_memory(ctx, rp, rlen); |
323 | |
324 | /* switch on compression to create a filter */ |
325 | /* feed each chunk (strip or tile) to the filter */ |
326 | /* read out the data into a buffer */ |
327 | /* the level above packs the chunk's samples into a pixmap */ |
328 | |
329 | /* type 32773 / packbits -- nothing special (same row-padding as PDF) */ |
330 | /* type 2 / ccitt rle -- no EOL, no RTC, rows are byte-aligned */ |
331 | /* type 3 and 4 / g3 and g4 -- each strip starts new section */ |
332 | /* type 5 / lzw -- each strip is handled separately */ |
333 | |
334 | switch (tiff->compression) |
335 | { |
336 | case 1: |
337 | /* stm already open and reading uncompressed data */ |
338 | stm = fz_keep_stream(ctx, encstm); |
339 | break; |
340 | case 2: |
341 | case 3: |
342 | case 4: |
343 | stm = fz_open_faxd(ctx, encstm, |
344 | tiff->compression == 4 ? -1 : |
345 | tiff->compression == 2 ? 0 : |
346 | tiff->g3opts & 1, |
347 | 0, |
348 | tiff->compression == 2, |
349 | tiff->imagewidth, |
350 | tiff->imagelength, |
351 | 0, |
352 | 1); |
353 | break; |
354 | case 5: |
355 | old_tiff = rp[0] == 0 && (rp[1] & 1); |
356 | stm = fz_open_lzwd(ctx, encstm, old_tiff ? 0 : 1, 9, old_tiff ? 1 : 0, old_tiff); |
357 | break; |
358 | case 6: |
359 | fz_warn(ctx, "deprecated JPEG in TIFF compression not fully supported" ); |
360 | /* fall through */ |
361 | case 7: |
362 | if (tiff->jpegtables && (int)tiff->jpegtableslen > 0) |
363 | jpegtables = fz_open_memory(ctx, tiff->jpegtables, tiff->jpegtableslen); |
364 | |
365 | stm = fz_open_dctd(ctx, encstm, |
366 | tiff->photometric == 2 || tiff->photometric == 3 ? 0 : -1, |
367 | 0, |
368 | jpegtables); |
369 | break; |
370 | case 8: |
371 | case 32946: |
372 | stm = fz_open_flated(ctx, encstm, 15); |
373 | break; |
374 | case 32773: |
375 | stm = fz_open_rld(ctx, encstm); |
376 | break; |
377 | case 34676: |
378 | if (tiff->photometric == 32845) |
379 | stm = fz_open_sgilog32(ctx, encstm, tiff->imagewidth); |
380 | else |
381 | stm = fz_open_sgilog16(ctx, encstm, tiff->imagewidth); |
382 | break; |
383 | case 34677: |
384 | stm = fz_open_sgilog24(ctx, encstm, tiff->imagewidth); |
385 | break; |
386 | case 32809: |
387 | if (tiff->bitspersample != 4) |
388 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid bits per pixel in thunder encoding" ); |
389 | stm = fz_open_thunder(ctx, encstm, tiff->imagewidth); |
390 | break; |
391 | default: |
392 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown TIFF compression: %d" , tiff->compression); |
393 | } |
394 | |
395 | size = (unsigned)fz_read(ctx, stm, wp, wlen); |
396 | } |
397 | fz_always(ctx) |
398 | { |
399 | fz_drop_stream(ctx, jpegtables); |
400 | fz_drop_stream(ctx, encstm); |
401 | fz_drop_stream(ctx, stm); |
402 | fz_free(ctx, reversed); |
403 | } |
404 | fz_catch(ctx) |
405 | fz_rethrow(ctx); |
406 | |
407 | return size; |
408 | } |
409 | |
410 | static void |
411 | tiff_paste_tile(fz_context *ctx, struct tiff *tiff, unsigned char *tile, unsigned int row, unsigned int col) |
412 | { |
413 | unsigned int x, y, k; |
414 | |
415 | for (y = 0; y < tiff->tilelength && row + y < tiff->imagelength; y++) |
416 | { |
417 | for (x = 0; x < tiff->tilewidth && col + x < tiff->imagewidth; x++) |
418 | { |
419 | for (k = 0; k < tiff->samplesperpixel; k++) |
420 | { |
421 | unsigned char *dst, *src; |
422 | |
423 | dst = tiff->samples; |
424 | dst += (row + y) * tiff->stride; |
425 | dst += (((col + x) * tiff->samplesperpixel + k) * tiff->bitspersample + 7) / 8; |
426 | |
427 | src = tile; |
428 | src += y * tiff->tilestride; |
429 | src += ((x * tiff->samplesperpixel + k) * tiff->bitspersample + 7) / 8; |
430 | |
431 | switch (tiff->bitspersample) |
432 | { |
433 | case 1: *dst |= (*src >> (7 - 1 * ((col + x) % 8))) & 0x1; break; |
434 | case 2: *dst |= (*src >> (6 - 2 * ((col + x) % 4))) & 0x3; break; |
435 | case 4: *dst |= (*src >> (4 - 4 * ((col + x) % 2))) & 0xf; break; |
436 | case 8: *dst = *src; break; |
437 | case 16: dst[0] = src[0]; dst[1] = src[1]; break; |
438 | case 24: dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; break; |
439 | case 32: dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; break; |
440 | } |
441 | } |
442 | } |
443 | } |
444 | } |
445 | |
446 | static void |
447 | tiff_paste_subsampled_tile(fz_context *ctx, struct tiff *tiff, unsigned char *tile, unsigned len, unsigned tw, unsigned th, unsigned col, unsigned row) |
448 | { |
449 | /* |
450 | This explains how the samples are laid out in tiff data, the spec example is non-obvious. |
451 | The y, cb, cr indicies follow the spec, i.e. y17 is the y sample at row 1, column 7. |
452 | All indicies start at 0. |
453 | |
454 | hexlookup = (horizontalsubsampling & 0xf) << 4 | (verticalsubsampling & 0xf) |
455 | |
456 | 0x11 y00 cb00 cr00 0x21 y00 y01 cb00 cr00 0x41 y00 y01 y02 y03 cb00 cr00 |
457 | y01 cb01 cr01 y10 y11 cb01 cr01 y04 y05 y06 y07 cb01 cr01 |
458 | .... ... ... |
459 | y10 cb10 cr10 y20 y21 cb10 cr10 y10 y11 y12 y13 cb10 cr10 |
460 | y11 cb11 cr11 y30 y31 cb11 cr11 y14 y15 y16 y17 cb11 cr11 |
461 | |
462 | 0x12 y00 0x22 y00 y01 0x42 y00 y01 y02 y03 |
463 | y10 cb00 cr00 y10 y11 cb00 cr00 y10 y11 y12 y13 cb00 cr00 |
464 | y01 y02 y03 y04 y05 y06 y07 |
465 | y11 cb01 cr01 y12 y13 cb01 cr01 y14 y15 y16 y17 cb01 cr01 |
466 | .... ... ... |
467 | y20 y20 y21 y20 y21 y22 y23 |
468 | y30 cb10 cr10 y30 y31 cb10 cr10 y30 y31 y32 y33 cb10 cr10 |
469 | y21 y22 y23 y24 y25 y26 y27 |
470 | y31 cb11 cr11 y32 y33 cb11 cr11 y34 y35 y36 y37 cb11 cr11 |
471 | |
472 | 0x14 y00 0x24 y00 y01 0x44 y00 y01 y02 y03 |
473 | y10 y10 y11 y10 y11 y12 y13 |
474 | y20 y20 y21 y20 y21 y22 y23 |
475 | y30 cb00 cr00 y30 y31 cb00 cr00 y30 y31 y32 y33 cb00 cr00 |
476 | y01 y02 y03 y04 y05 y06 y07 |
477 | y11 y12 y13 y14 y15 y16 y17 |
478 | y21 y22 y23 y24 y25 y26 y27 |
479 | y31 cb01 cr01 y32 y33 cb01 cr01 y34 y35 y36 y37 cb01 cr01 |
480 | .... ... ... |
481 | y40 y40 y41 y40 y41 y42 y43 |
482 | y50 y50 y51 y50 y51 y52 y53 |
483 | y60 y60 y61 y60 y61 y62 y63 |
484 | y70 cb10 cr10 y70 y71 cb10 cr10 y70 y71 y72 y73 cb10 cr10 |
485 | y41 y42 y43 y44 y45 y46 y47 |
486 | y51 y52 y53 y54 y55 y56 y57 |
487 | y61 y62 y63 y64 y65 y66 y67 |
488 | y71 cb11 cr11 y72 y73 cb11 cr11 y74 y75 y76 y77 cb11 cr11 |
489 | */ |
490 | |
491 | unsigned char *src = tile; |
492 | unsigned char *dst; |
493 | unsigned x, y, w, h; /* coordinates and dimensions of entire image */ |
494 | unsigned sx, sy, sw, sh; /* coordinates and dimensions of a single subsample region, i.e. max 4 x 4 samples */ |
495 | int k; |
496 | int offsets[4 * 4 * 3]; /* for a pixel position, these point to all pixel components in a subsample region */ |
497 | int *offset = offsets; |
498 | |
499 | assert(tiff->samplesperpixel == 3); |
500 | assert(tiff->bitspersample == 8); |
501 | |
502 | w = tiff->imagewidth; |
503 | h = tiff->imagelength; |
504 | |
505 | sx = 0; |
506 | sy = 0; |
507 | sw = tiff->ycbcrsubsamp[0]; |
508 | sh = tiff->ycbcrsubsamp[1]; |
509 | if (sw > 4 || sh > 4 || !fz_is_pow2(sw) || !fz_is_pow2(sh)) |
510 | fz_throw(ctx, FZ_ERROR_GENERIC, "Illegal TIFF Subsample values %d %d" , sw, sh); |
511 | |
512 | for (k = 0; k < 3; k++) |
513 | for (y = 0; y < sh; y++) |
514 | for (x = 0; x < sw; x++) |
515 | *offset++ = k + y * tiff->stride + x * 3; |
516 | |
517 | offset = offsets; |
518 | x = col; |
519 | y = row; |
520 | k = 0; |
521 | |
522 | dst = &tiff->samples[row * tiff->stride + col * 3]; |
523 | |
524 | while (src < tile + len) |
525 | { |
526 | if (k == 0) |
527 | { /* put all Y samples for a subsample region at the correct image pixel */ |
528 | if (y + sy < h && y + sy < row + th && x + sx < w && x + sx < col + tw) |
529 | dst[*offset] = *src; |
530 | offset++; |
531 | |
532 | if (++sx >= sw) |
533 | { |
534 | sx = 0; |
535 | if (++sy >= sh) |
536 | { |
537 | sy = 0; |
538 | k++; |
539 | } |
540 | } |
541 | } |
542 | else |
543 | { /* put all Cb/Cr samples for a subsample region at the correct image pixel */ |
544 | for (sy = 0; sy < sh; sy++) |
545 | for (sx = 0; sx < sw; sx++) |
546 | { |
547 | if (y + sy < h && y + sy < row + th && x + sx < w && x + sx < col + tw) |
548 | dst[*offset] = *src; |
549 | offset++; |
550 | } |
551 | |
552 | if (++k >= 3) |
553 | { /* we're done with this subsample region, on to the next one */ |
554 | k = sx = sy = 0; |
555 | offset = offsets; |
556 | |
557 | dst += sw * 3; |
558 | |
559 | x += sw; |
560 | if (x >= col + tw) |
561 | { |
562 | dst -= (x - (col + tw)) * 3; |
563 | dst += (sh - 1) * w * 3; |
564 | dst += col * 3; |
565 | x = col; |
566 | y += sh; |
567 | } |
568 | } |
569 | } |
570 | |
571 | src++; |
572 | } |
573 | } |
574 | |
575 | static void |
576 | tiff_decode_tiles(fz_context *ctx, struct tiff *tiff) |
577 | { |
578 | unsigned char *data; |
579 | unsigned x, y, wlen, tile; |
580 | unsigned tiles, tilesacross, tilesdown; |
581 | |
582 | tilesdown = (tiff->imagelength + tiff->tilelength - 1) / tiff->tilelength; |
583 | tilesacross = (tiff->imagewidth + tiff->tilewidth - 1) / tiff->tilewidth; |
584 | tiles = tilesacross * tilesdown; |
585 | if (tiff->tileoffsetslen < tiles || tiff->tilebytecountslen < tiles) |
586 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient tile metadata" ); |
587 | |
588 | /* JPEG can handle subsampling on its own */ |
589 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
590 | { |
591 | /* regardless of how this is subsampled, a tile is never larger */ |
592 | if (tiff->tilelength >= tiff->ycbcrsubsamp[1]) |
593 | wlen = tiff->tilestride * tiff->tilelength; |
594 | else |
595 | wlen = tiff->tilestride * tiff->ycbcrsubsamp[1]; |
596 | |
597 | data = tiff->data = fz_malloc(ctx, wlen); |
598 | |
599 | tile = 0; |
600 | for (x = 0; x < tiff->imagelength; x += tiff->tilelength) |
601 | { |
602 | for (y = 0; y < tiff->imagewidth; y += tiff->tilewidth) |
603 | { |
604 | unsigned int offset = tiff->tileoffsets[tile]; |
605 | unsigned int rlen = tiff->tilebytecounts[tile]; |
606 | const unsigned char *rp = tiff->bp + offset; |
607 | unsigned decoded; |
608 | |
609 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
610 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile offset %u" , offset); |
611 | if (rlen > (unsigned)(tiff->ep - rp)) |
612 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile byte count %u" , rlen); |
613 | |
614 | decoded = tiff_decode_data(ctx, tiff, rp, rlen, data, wlen); |
615 | tiff_paste_subsampled_tile(ctx, tiff, data, decoded, tiff->tilewidth, tiff->tilelength, x, y); |
616 | tile++; |
617 | } |
618 | } |
619 | } |
620 | else |
621 | { |
622 | wlen = tiff->tilelength * tiff->tilestride; |
623 | data = tiff->data = fz_malloc(ctx, wlen); |
624 | |
625 | tile = 0; |
626 | for (x = 0; x < tiff->imagelength; x += tiff->tilelength) |
627 | { |
628 | for (y = 0; y < tiff->imagewidth; y += tiff->tilewidth) |
629 | { |
630 | unsigned int offset = tiff->tileoffsets[tile]; |
631 | unsigned int rlen = tiff->tilebytecounts[tile]; |
632 | const unsigned char *rp = tiff->bp + offset; |
633 | |
634 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
635 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile offset %u" , offset); |
636 | if (rlen > (unsigned)(tiff->ep - rp)) |
637 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile byte count %u" , rlen); |
638 | |
639 | if (tiff_decode_data(ctx, tiff, rp, rlen, data, wlen) != wlen) |
640 | fz_throw(ctx, FZ_ERROR_GENERIC, "decoded tile is the wrong size" ); |
641 | |
642 | tiff_paste_tile(ctx, tiff, data, x, y); |
643 | tile++; |
644 | } |
645 | } |
646 | } |
647 | } |
648 | |
649 | static void |
650 | tiff_decode_strips(fz_context *ctx, struct tiff *tiff) |
651 | { |
652 | unsigned char *data; |
653 | unsigned strips; |
654 | unsigned strip; |
655 | unsigned y; |
656 | |
657 | strips = (tiff->imagelength + tiff->rowsperstrip - 1) / tiff->rowsperstrip; |
658 | if (tiff->stripoffsetslen < strips || tiff->stripbytecountslen < strips) |
659 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient strip metadata" ); |
660 | |
661 | data = tiff->samples; |
662 | |
663 | /* JPEG can handle subsampling on its own */ |
664 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
665 | { |
666 | unsigned wlen; |
667 | unsigned rowsperstrip; |
668 | |
669 | /* regardless of how this is subsampled, a strip is never taller */ |
670 | if (tiff->rowsperstrip >= tiff->ycbcrsubsamp[1]) |
671 | rowsperstrip = tiff->rowsperstrip; |
672 | else |
673 | rowsperstrip = tiff->ycbcrsubsamp[1]; |
674 | |
675 | wlen = rowsperstrip * tiff->stride; |
676 | data = tiff->data = fz_malloc(ctx, wlen); |
677 | |
678 | strip = 0; |
679 | for (y = 0; y < tiff->imagelength; y += rowsperstrip) |
680 | { |
681 | unsigned offset = tiff->stripoffsets[strip]; |
682 | unsigned rlen = tiff->stripbytecounts[strip]; |
683 | const unsigned char *rp = tiff->bp + offset; |
684 | int decoded; |
685 | |
686 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
687 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip offset %u" , offset); |
688 | if (rlen > (unsigned)(tiff->ep - rp)) |
689 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip byte count %u" , rlen); |
690 | |
691 | decoded = tiff_decode_data(ctx, tiff, rp, rlen, data, wlen); |
692 | tiff_paste_subsampled_tile(ctx, tiff, data, decoded, tiff->imagewidth, tiff->rowsperstrip, 0, y); |
693 | strip++; |
694 | } |
695 | } |
696 | else |
697 | { |
698 | strip = 0; |
699 | for (y = 0; y < tiff->imagelength; y += tiff->rowsperstrip) |
700 | { |
701 | unsigned offset = tiff->stripoffsets[strip]; |
702 | unsigned rlen = tiff->stripbytecounts[strip]; |
703 | unsigned wlen = tiff->stride * tiff->rowsperstrip; |
704 | const unsigned char *rp = tiff->bp + offset; |
705 | |
706 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
707 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip offset %u" , offset); |
708 | if (rlen > (unsigned)(tiff->ep - rp)) |
709 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip byte count %u" , rlen); |
710 | |
711 | /* if imagelength is not a multiple of rowsperstrip, adjust the expectation of the size of the decoded data */ |
712 | if (y + tiff->rowsperstrip >= tiff->imagelength) |
713 | wlen = tiff->stride * (tiff->imagelength - y); |
714 | |
715 | if (tiff_decode_data(ctx, tiff, rp, rlen, data, wlen) < wlen) |
716 | { |
717 | fz_warn(ctx, "premature end of data in decoded strip" ); |
718 | break; |
719 | } |
720 | |
721 | data += wlen; |
722 | strip ++; |
723 | } |
724 | } |
725 | } |
726 | |
727 | static inline int tiff_readbyte(struct tiff *tiff) |
728 | { |
729 | if (tiff->rp < tiff->ep) |
730 | return *tiff->rp++; |
731 | return EOF; |
732 | } |
733 | |
734 | static inline unsigned readshort(struct tiff *tiff) |
735 | { |
736 | unsigned a = tiff_readbyte(tiff); |
737 | unsigned b = tiff_readbyte(tiff); |
738 | if (tiff->order == TII) |
739 | return (b << 8) | a; |
740 | return (a << 8) | b; |
741 | } |
742 | |
743 | static inline unsigned tiff_readlong(struct tiff *tiff) |
744 | { |
745 | unsigned a = tiff_readbyte(tiff); |
746 | unsigned b = tiff_readbyte(tiff); |
747 | unsigned c = tiff_readbyte(tiff); |
748 | unsigned d = tiff_readbyte(tiff); |
749 | if (tiff->order == TII) |
750 | return (d << 24) | (c << 16) | (b << 8) | a; |
751 | return (a << 24) | (b << 16) | (c << 8) | d; |
752 | } |
753 | |
754 | static void |
755 | tiff_read_bytes(unsigned char *p, struct tiff *tiff, unsigned ofs, unsigned n) |
756 | { |
757 | if (ofs > (unsigned)(tiff->ep - tiff->bp)) |
758 | ofs = (unsigned)(tiff->ep - tiff->bp); |
759 | tiff->rp = tiff->bp + ofs; |
760 | |
761 | while (n--) |
762 | *p++ = tiff_readbyte(tiff); |
763 | } |
764 | |
765 | static void |
766 | tiff_read_tag_value(unsigned *p, struct tiff *tiff, unsigned type, unsigned ofs, unsigned n) |
767 | { |
768 | unsigned den; |
769 | |
770 | if (ofs > (unsigned)(tiff->ep - tiff->bp)) |
771 | ofs = (unsigned)(tiff->ep - tiff->bp); |
772 | tiff->rp = tiff->bp + ofs; |
773 | |
774 | while (n--) |
775 | { |
776 | switch (type) |
777 | { |
778 | case TRATIONAL: |
779 | *p = tiff_readlong(tiff); |
780 | den = tiff_readlong(tiff); |
781 | if (den) |
782 | *p = *p / den; |
783 | else |
784 | *p = UINT_MAX; |
785 | p ++; |
786 | break; |
787 | case TBYTE: *p++ = tiff_readbyte(tiff); break; |
788 | case TSHORT: *p++ = readshort(tiff); break; |
789 | case TLONG: *p++ = tiff_readlong(tiff); break; |
790 | default: *p++ = 0; break; |
791 | } |
792 | } |
793 | } |
794 | |
795 | static void |
796 | tiff_read_tag(fz_context *ctx, struct tiff *tiff, unsigned offset) |
797 | { |
798 | unsigned tag; |
799 | unsigned type; |
800 | unsigned count; |
801 | unsigned value; |
802 | |
803 | tiff->rp = tiff->bp + offset; |
804 | |
805 | tag = readshort(tiff); |
806 | type = readshort(tiff); |
807 | count = tiff_readlong(tiff); |
808 | |
809 | if ((type == TBYTE && count <= 4) || |
810 | (type == TSHORT && count <= 2) || |
811 | (type == TLONG && count <= 1)) |
812 | value = tiff->rp - tiff->bp; |
813 | else |
814 | value = tiff_readlong(tiff); |
815 | |
816 | switch (tag) |
817 | { |
818 | case NewSubfileType: |
819 | tiff_read_tag_value(&tiff->subfiletype, tiff, type, value, 1); |
820 | break; |
821 | case ImageWidth: |
822 | tiff_read_tag_value(&tiff->imagewidth, tiff, type, value, 1); |
823 | break; |
824 | case ImageLength: |
825 | tiff_read_tag_value(&tiff->imagelength, tiff, type, value, 1); |
826 | break; |
827 | case BitsPerSample: |
828 | tiff_read_tag_value(&tiff->bitspersample, tiff, type, value, 1); |
829 | break; |
830 | case Compression: |
831 | tiff_read_tag_value(&tiff->compression, tiff, type, value, 1); |
832 | break; |
833 | case PhotometricInterpretation: |
834 | tiff_read_tag_value(&tiff->photometric, tiff, type, value, 1); |
835 | break; |
836 | case FillOrder: |
837 | tiff_read_tag_value(&tiff->fillorder, tiff, type, value, 1); |
838 | break; |
839 | case SamplesPerPixel: |
840 | tiff_read_tag_value(&tiff->samplesperpixel, tiff, type, value, 1); |
841 | break; |
842 | case RowsPerStrip: |
843 | tiff_read_tag_value(&tiff->rowsperstrip, tiff, type, value, 1); |
844 | break; |
845 | case XResolution: |
846 | tiff_read_tag_value(&tiff->xresolution, tiff, type, value, 1); |
847 | break; |
848 | case YResolution: |
849 | tiff_read_tag_value(&tiff->yresolution, tiff, type, value, 1); |
850 | break; |
851 | case PlanarConfiguration: |
852 | tiff_read_tag_value(&tiff->planar, tiff, type, value, 1); |
853 | break; |
854 | case T4Options: |
855 | tiff_read_tag_value(&tiff->g3opts, tiff, type, value, 1); |
856 | break; |
857 | case T6Options: |
858 | tiff_read_tag_value(&tiff->g4opts, tiff, type, value, 1); |
859 | break; |
860 | case Predictor: |
861 | tiff_read_tag_value(&tiff->predictor, tiff, type, value, 1); |
862 | break; |
863 | case ResolutionUnit: |
864 | tiff_read_tag_value(&tiff->resolutionunit, tiff, type, value, 1); |
865 | break; |
866 | case YCbCrSubSampling: |
867 | tiff_read_tag_value(tiff->ycbcrsubsamp, tiff, type, value, 2); |
868 | break; |
869 | case ExtraSamples: |
870 | tiff_read_tag_value(&tiff->extrasamples, tiff, type, value, 1); |
871 | break; |
872 | |
873 | case ICCProfile: |
874 | if (tiff->profile) |
875 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one ICC profile tag allowed" ); |
876 | tiff->profile = fz_malloc(ctx, count); |
877 | /* ICC profile data type is set to UNDEFINED. |
878 | * TBYTE reading not correct in tiff_read_tag_value */ |
879 | tiff_read_bytes(tiff->profile, tiff, value, count); |
880 | tiff->profilesize = count; |
881 | break; |
882 | |
883 | case JPEGTables: |
884 | /* Check both value and value + count to allow for overflow */ |
885 | if (value > tiff->ep - tiff->bp || value + count > tiff->ep - tiff->bp) |
886 | fz_throw(ctx, FZ_ERROR_GENERIC, "TIFF JPEG tables out of range" ); |
887 | tiff->jpegtables = tiff->bp + value; |
888 | tiff->jpegtableslen = count; |
889 | break; |
890 | |
891 | case StripOffsets: |
892 | if (tiff->stripoffsets) |
893 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one strip offsets tag allowed" ); |
894 | tiff->stripoffsets = fz_malloc_array(ctx, count, unsigned); |
895 | tiff_read_tag_value(tiff->stripoffsets, tiff, type, value, count); |
896 | tiff->stripoffsetslen = count; |
897 | break; |
898 | |
899 | case StripByteCounts: |
900 | if (tiff->stripbytecounts) |
901 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one strip byte counts tag allowed" ); |
902 | tiff->stripbytecounts = fz_malloc_array(ctx, count, unsigned); |
903 | tiff_read_tag_value(tiff->stripbytecounts, tiff, type, value, count); |
904 | tiff->stripbytecountslen = count; |
905 | break; |
906 | |
907 | case ColorMap: |
908 | if (tiff->colormap) |
909 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one color map allowed" ); |
910 | tiff->colormap = fz_malloc_array(ctx, count, unsigned); |
911 | tiff_read_tag_value(tiff->colormap, tiff, type, value, count); |
912 | tiff->colormaplen = count; |
913 | break; |
914 | |
915 | case TileWidth: |
916 | tiff_read_tag_value(&tiff->tilewidth, tiff, type, value, 1); |
917 | break; |
918 | |
919 | case TileLength: |
920 | tiff_read_tag_value(&tiff->tilelength, tiff, type, value, 1); |
921 | break; |
922 | |
923 | case TileOffsets: |
924 | if (tiff->tileoffsets) |
925 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one tile offsets tag allowed" ); |
926 | tiff->tileoffsets = fz_malloc_array(ctx, count, unsigned); |
927 | tiff_read_tag_value(tiff->tileoffsets, tiff, type, value, count); |
928 | tiff->tileoffsetslen = count; |
929 | break; |
930 | |
931 | case TileByteCounts: |
932 | if (tiff->tilebytecounts) |
933 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one tile byte counts tag allowed" ); |
934 | tiff->tilebytecounts = fz_malloc_array(ctx, count, unsigned); |
935 | tiff_read_tag_value(tiff->tilebytecounts, tiff, type, value, count); |
936 | tiff->tilebytecountslen = count; |
937 | break; |
938 | |
939 | default: |
940 | /* fz_warn(ctx, "unknown tag: %d t=%d n=%d", tag, type, count); */ |
941 | break; |
942 | } |
943 | } |
944 | |
945 | static void |
946 | tiff_swap_byte_order(unsigned char *buf, int n) |
947 | { |
948 | int i, t; |
949 | for (i = 0; i < n; i++) |
950 | { |
951 | t = buf[i * 2 + 0]; |
952 | buf[i * 2 + 0] = buf[i * 2 + 1]; |
953 | buf[i * 2 + 1] = t; |
954 | } |
955 | } |
956 | |
957 | static void |
958 | tiff_scale_lab_samples(fz_context *ctx, unsigned char *buf, int bps, int n) |
959 | { |
960 | int i; |
961 | if (bps == 8) |
962 | for (i = 0; i < n; i++, buf += 3) |
963 | { |
964 | buf[1] ^= 128; |
965 | buf[2] ^= 128; |
966 | } |
967 | else if (bps == 16) |
968 | for (i = 0; i < n; i++, buf += 6) |
969 | { |
970 | buf[2] ^= 128; |
971 | buf[4] ^= 128; |
972 | } |
973 | } |
974 | |
975 | static void |
976 | (fz_context *ctx, struct tiff *tiff, const unsigned char *buf, size_t len) |
977 | { |
978 | unsigned version; |
979 | |
980 | memset(tiff, 0, sizeof(struct tiff)); |
981 | tiff->bp = buf; |
982 | tiff->rp = buf; |
983 | tiff->ep = buf + len; |
984 | |
985 | /* tag defaults, where applicable */ |
986 | tiff->bitspersample = 1; |
987 | tiff->compression = 1; |
988 | tiff->samplesperpixel = 1; |
989 | tiff->resolutionunit = 2; |
990 | tiff->rowsperstrip = 0xFFFFFFFF; |
991 | tiff->fillorder = 1; |
992 | tiff->planar = 1; |
993 | tiff->subfiletype = 0; |
994 | tiff->predictor = 1; |
995 | tiff->ycbcrsubsamp[0] = 2; |
996 | tiff->ycbcrsubsamp[1] = 2; |
997 | |
998 | /* |
999 | * Read IFH |
1000 | */ |
1001 | |
1002 | /* get byte order marker */ |
1003 | tiff->order = readshort(tiff); |
1004 | if (tiff->order != TII && tiff->order != TMM) |
1005 | fz_throw(ctx, FZ_ERROR_GENERIC, "not a TIFF file, wrong magic marker" ); |
1006 | |
1007 | /* check version */ |
1008 | version = readshort(tiff); |
1009 | if (version != 42) |
1010 | fz_throw(ctx, FZ_ERROR_GENERIC, "not a TIFF file, wrong version marker" ); |
1011 | |
1012 | /* get offset of IFD */ |
1013 | tiff->ifd_offsets = fz_malloc_array(ctx, 1, unsigned); |
1014 | tiff->ifd_offsets[0] = tiff_readlong(tiff); |
1015 | tiff->ifds = 1; |
1016 | } |
1017 | |
1018 | static unsigned |
1019 | tiff_next_ifd(fz_context *ctx, struct tiff *tiff, unsigned offset) |
1020 | { |
1021 | unsigned count; |
1022 | int i; |
1023 | |
1024 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
1025 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid IFD offset %u" , offset); |
1026 | |
1027 | tiff->rp = tiff->bp + offset; |
1028 | count = readshort(tiff); |
1029 | |
1030 | if (count * 12 > (unsigned)(tiff->ep - tiff->rp)) |
1031 | fz_throw(ctx, FZ_ERROR_GENERIC, "overlarge IFD entry count %u" , count); |
1032 | |
1033 | tiff->rp += count * 12; |
1034 | offset = tiff_readlong(tiff); |
1035 | |
1036 | for (i = 0; i < tiff->ifds; i++) |
1037 | if (tiff->ifd_offsets[i] == offset) |
1038 | fz_throw(ctx, FZ_ERROR_GENERIC, "cycle in IFDs detected" ); |
1039 | |
1040 | tiff->ifd_offsets = fz_realloc_array(ctx, tiff->ifd_offsets, tiff->ifds + 1, unsigned); |
1041 | tiff->ifd_offsets[tiff->ifds] = offset; |
1042 | tiff->ifds++; |
1043 | |
1044 | return offset; |
1045 | } |
1046 | |
1047 | static void |
1048 | tiff_seek_ifd(fz_context *ctx, struct tiff *tiff, int subimage) |
1049 | { |
1050 | unsigned offset = tiff->ifd_offsets[0]; |
1051 | |
1052 | while (subimage--) |
1053 | { |
1054 | offset = tiff_next_ifd(ctx, tiff, offset); |
1055 | |
1056 | if (offset == 0) |
1057 | fz_throw(ctx, FZ_ERROR_GENERIC, "subimage index %i out of range" , subimage); |
1058 | } |
1059 | |
1060 | tiff->rp = tiff->bp + offset; |
1061 | |
1062 | if (tiff->rp < tiff->bp || tiff->rp > tiff->ep) |
1063 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid IFD offset %u" , offset); |
1064 | } |
1065 | |
1066 | static void |
1067 | tiff_read_ifd(fz_context *ctx, struct tiff *tiff) |
1068 | { |
1069 | unsigned offset; |
1070 | unsigned count; |
1071 | unsigned i; |
1072 | |
1073 | offset = tiff->rp - tiff->bp; |
1074 | |
1075 | count = readshort(tiff); |
1076 | |
1077 | if (count * 12 > (unsigned)(tiff->ep - tiff->rp)) |
1078 | fz_throw(ctx, FZ_ERROR_GENERIC, "overlarge IFD entry count %u" , count); |
1079 | |
1080 | offset += 2; |
1081 | for (i = 0; i < count; i++) |
1082 | { |
1083 | tiff_read_tag(ctx, tiff, offset); |
1084 | offset += 12; |
1085 | } |
1086 | } |
1087 | |
1088 | static void |
1089 | tiff_ycc_to_rgb(fz_context *ctx, struct tiff *tiff) |
1090 | { |
1091 | unsigned x, y; |
1092 | int offset = tiff->samplesperpixel; |
1093 | |
1094 | for (y = 0; y < tiff->imagelength; y++) |
1095 | { |
1096 | unsigned char * row = &tiff->samples[tiff->stride * y]; |
1097 | for (x = 0; x < tiff->imagewidth; x++) |
1098 | { |
1099 | int ycc[3]; |
1100 | ycc[0] = row[x * offset + 0]; |
1101 | ycc[1] = row[x * offset + 1] - 128; |
1102 | ycc[2] = row[x * offset + 2] - 128; |
1103 | |
1104 | row[x * offset + 0] = fz_clampi(ycc[0] + 1.402f * ycc[2], 0, 255); |
1105 | row[x * offset + 1] = fz_clampi(ycc[0] - 0.34413f * ycc[1] - 0.71414f * ycc[2], 0, 255); |
1106 | row[x * offset + 2] = fz_clampi(ycc[0] + 1.772f * ycc[1], 0, 255); |
1107 | } |
1108 | } |
1109 | } |
1110 | |
1111 | static void |
1112 | tiff_decode_ifd(fz_context *ctx, struct tiff *tiff) |
1113 | { |
1114 | unsigned i; |
1115 | |
1116 | if (tiff->imagelength <= 0) |
1117 | fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0" ); |
1118 | if (tiff->imagewidth <= 0) |
1119 | fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0" ); |
1120 | if (tiff->bitspersample > 16 || !fz_is_pow2(tiff->bitspersample)) |
1121 | fz_throw(ctx, FZ_ERROR_GENERIC, "bits per sample illegal %d" , tiff->bitspersample); |
1122 | if (tiff->samplesperpixel == 0 || tiff->samplesperpixel >= FZ_MAX_COLORS) |
1123 | fz_throw(ctx, FZ_ERROR_GENERIC, "components per pixel out of range" ); |
1124 | if (tiff->imagelength > UINT_MAX / tiff->imagewidth / (tiff->samplesperpixel + 2) / (tiff->bitspersample / 8 + 1)) |
1125 | fz_throw(ctx, FZ_ERROR_GENERIC, "image too large" ); |
1126 | |
1127 | if (tiff->planar != 1) |
1128 | fz_throw(ctx, FZ_ERROR_GENERIC, "image data is not in chunky format" ); |
1129 | |
1130 | if (tiff->photometric == 6) |
1131 | { |
1132 | if (tiff->samplesperpixel != 3) |
1133 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported samples per pixel when subsampling" ); |
1134 | if (tiff->bitspersample != 8) |
1135 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported bits per sample when subsampling" ); |
1136 | if (tiff->ycbcrsubsamp[0] == 0 || tiff->ycbcrsubsamp[1] == 0) |
1137 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported subsampling factor" ); |
1138 | } |
1139 | |
1140 | tiff->stride = (tiff->imagewidth * tiff->samplesperpixel * tiff->bitspersample + 7) / 8; |
1141 | tiff->tilestride = (tiff->tilewidth * tiff->samplesperpixel * tiff->bitspersample + 7) / 8; |
1142 | |
1143 | switch (tiff->photometric) |
1144 | { |
1145 | case 0: /* WhiteIsZero -- inverted */ |
1146 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
1147 | break; |
1148 | case 1: /* BlackIsZero */ |
1149 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
1150 | break; |
1151 | case 2: /* RGB */ |
1152 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
1153 | break; |
1154 | case 3: /* RGBPal */ |
1155 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
1156 | break; |
1157 | case 4: /* Transparency mask */ |
1158 | tiff->colorspace = NULL; |
1159 | break; |
1160 | case 5: /* CMYK */ |
1161 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_cmyk(ctx)); |
1162 | break; |
1163 | case 6: /* YCbCr */ |
1164 | /* it's probably a jpeg ... we let jpeg convert to rgb */ |
1165 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
1166 | break; |
1167 | case 8: /* Direct L*a*b* encoding. a*, b* signed values */ |
1168 | case 9: /* ICC Style L*a*b* encoding */ |
1169 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_lab(ctx)); |
1170 | break; |
1171 | case 32844: /* SGI CIE Log 2 L (16bpp Greyscale) */ |
1172 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
1173 | if (tiff->bitspersample != 8) |
1174 | tiff->bitspersample = 8; |
1175 | tiff->stride >>= 1; |
1176 | break; |
1177 | case 32845: /* SGI CIE Log 2 L, u, v (24bpp or 32bpp) */ |
1178 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
1179 | if (tiff->bitspersample != 8) |
1180 | tiff->bitspersample = 8; |
1181 | tiff->stride >>= 1; |
1182 | break; |
1183 | default: |
1184 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown photometric: %d" , tiff->photometric); |
1185 | } |
1186 | |
1187 | #if FZ_ENABLE_ICC |
1188 | if (tiff->profile) |
1189 | { |
1190 | fz_buffer *buff = NULL; |
1191 | fz_colorspace *icc = NULL; |
1192 | fz_var(buff); |
1193 | fz_try(ctx) |
1194 | { |
1195 | buff = fz_new_buffer_from_copied_data(ctx, tiff->profile, tiff->profilesize); |
1196 | icc = fz_new_icc_colorspace(ctx, fz_colorspace_type(ctx, tiff->colorspace), 0, NULL, buff); |
1197 | fz_drop_colorspace(ctx, tiff->colorspace); |
1198 | tiff->colorspace = icc; |
1199 | } |
1200 | fz_always(ctx) |
1201 | fz_drop_buffer(ctx, buff); |
1202 | fz_catch(ctx) |
1203 | fz_warn(ctx, "ignoring embedded ICC profile" ); |
1204 | } |
1205 | #endif |
1206 | |
1207 | if (!tiff->colorspace && tiff->samplesperpixel < 1) |
1208 | fz_throw(ctx, FZ_ERROR_GENERIC, "too few components for transparency mask" ); |
1209 | if (tiff->colorspace && tiff->colormap && tiff->samplesperpixel < 1) |
1210 | fz_throw(ctx, FZ_ERROR_GENERIC, "too few components for RGBPal" ); |
1211 | if (tiff->colorspace && !tiff->colormap && tiff->samplesperpixel < fz_colorspace_n(ctx, tiff->colorspace)) |
1212 | fz_throw(ctx, FZ_ERROR_GENERIC, "fewer components per pixel than indicated by colorspace" ); |
1213 | |
1214 | switch (tiff->resolutionunit) |
1215 | { |
1216 | case 2: |
1217 | /* no unit conversion needed */ |
1218 | break; |
1219 | case 3: |
1220 | tiff->xresolution = tiff->xresolution * 254 / 100; |
1221 | tiff->yresolution = tiff->yresolution * 254 / 100; |
1222 | break; |
1223 | default: |
1224 | tiff->xresolution = 96; |
1225 | tiff->yresolution = 96; |
1226 | break; |
1227 | } |
1228 | |
1229 | /* Note xres and yres could be 0 even if unit was set. If so default to 96dpi. */ |
1230 | if (tiff->xresolution == 0 || tiff->yresolution == 0) |
1231 | { |
1232 | tiff->xresolution = 96; |
1233 | tiff->yresolution = 96; |
1234 | } |
1235 | |
1236 | if (tiff->rowsperstrip > tiff->imagelength) |
1237 | tiff->rowsperstrip = tiff->imagelength; |
1238 | |
1239 | /* some creators don't write byte counts for uncompressed images */ |
1240 | if (tiff->compression == 1) |
1241 | { |
1242 | if (tiff->rowsperstrip == 0) |
1243 | fz_throw(ctx, FZ_ERROR_GENERIC, "rowsperstrip cannot be 0" ); |
1244 | if (!tiff->tilelength && !tiff->tilewidth && !tiff->stripbytecounts) |
1245 | { |
1246 | tiff->stripbytecountslen = (tiff->imagelength + tiff->rowsperstrip - 1) / tiff->rowsperstrip; |
1247 | tiff->stripbytecounts = fz_malloc_array(ctx, tiff->stripbytecountslen, unsigned); |
1248 | for (i = 0; i < tiff->stripbytecountslen; i++) |
1249 | tiff->stripbytecounts[i] = tiff->rowsperstrip * tiff->stride; |
1250 | } |
1251 | if (tiff->tilelength && tiff->tilewidth && !tiff->tilebytecounts) |
1252 | { |
1253 | unsigned tilesdown = (tiff->imagelength + tiff->tilelength - 1) / tiff->tilelength; |
1254 | unsigned tilesacross = (tiff->imagewidth + tiff->tilewidth - 1) / tiff->tilewidth; |
1255 | tiff->tilebytecountslen = tilesacross * tilesdown; |
1256 | tiff->tilebytecounts = fz_malloc_array(ctx, tiff->tilebytecountslen, unsigned); |
1257 | for (i = 0; i < tiff->tilebytecountslen; i++) |
1258 | tiff->tilebytecounts[i] = tiff->tilelength * tiff->tilestride; |
1259 | } |
1260 | } |
1261 | |
1262 | /* some creators write strip tags when they meant to write tile tags... */ |
1263 | if (tiff->tilelength && tiff->tilewidth) |
1264 | { |
1265 | if (!tiff->tileoffsets && !tiff->tileoffsetslen && |
1266 | tiff->stripoffsets && tiff->stripoffsetslen) |
1267 | { |
1268 | tiff->tileoffsets = tiff->stripoffsets; |
1269 | tiff->tileoffsetslen = tiff->stripoffsetslen; |
1270 | tiff->stripoffsets = NULL; |
1271 | tiff->stripoffsetslen = 0; |
1272 | } |
1273 | if (!tiff->tilebytecounts && !tiff->tilebytecountslen && |
1274 | tiff->stripbytecounts && tiff->stripbytecountslen) |
1275 | { |
1276 | tiff->tilebytecounts = tiff->stripbytecounts; |
1277 | tiff->tilebytecountslen = tiff->stripbytecountslen; |
1278 | tiff->stripbytecounts = NULL; |
1279 | tiff->stripbytecountslen = 0; |
1280 | } |
1281 | } |
1282 | } |
1283 | |
1284 | static void |
1285 | tiff_decode_samples(fz_context *ctx, struct tiff *tiff) |
1286 | { |
1287 | unsigned i; |
1288 | |
1289 | if (tiff->imagelength > UINT_MAX / tiff->stride) |
1290 | fz_throw(ctx, FZ_ERROR_MEMORY, "image too large" ); |
1291 | tiff->samples = fz_malloc(ctx, tiff->imagelength * tiff->stride); |
1292 | memset(tiff->samples, 0x55, tiff->imagelength * tiff->stride); |
1293 | |
1294 | if (tiff->tilelength && tiff->tilewidth && tiff->tileoffsets && tiff->tilebytecounts) |
1295 | tiff_decode_tiles(ctx, tiff); |
1296 | else if (tiff->rowsperstrip && tiff->stripoffsets && tiff->stripbytecounts) |
1297 | tiff_decode_strips(ctx, tiff); |
1298 | else |
1299 | fz_throw(ctx, FZ_ERROR_GENERIC, "image is missing both strip and tile data" ); |
1300 | |
1301 | /* Predictor (only for LZW and Flate) */ |
1302 | if ((tiff->compression == 5 || tiff->compression == 8 || tiff->compression == 32946) && tiff->predictor == 2) |
1303 | { |
1304 | unsigned char *p = tiff->samples; |
1305 | for (i = 0; i < tiff->imagelength; i++) |
1306 | { |
1307 | tiff_unpredict_line(p, tiff->imagewidth, tiff->samplesperpixel, tiff->bitspersample); |
1308 | p += tiff->stride; |
1309 | } |
1310 | } |
1311 | |
1312 | /* YCbCr -> RGB, but JPEG already has done this conversion */ |
1313 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
1314 | tiff_ycc_to_rgb(ctx, tiff); |
1315 | |
1316 | /* RGBPal */ |
1317 | if (tiff->photometric == 3 && tiff->colormap) |
1318 | tiff_expand_colormap(ctx, tiff); |
1319 | |
1320 | /* WhiteIsZero .. invert */ |
1321 | if (tiff->photometric == 0) |
1322 | { |
1323 | unsigned char *p = tiff->samples; |
1324 | for (i = 0; i < tiff->imagelength; i++) |
1325 | { |
1326 | tiff_invert_line(p, tiff->imagewidth, tiff->samplesperpixel, tiff->bitspersample, tiff->extrasamples); |
1327 | p += tiff->stride; |
1328 | } |
1329 | } |
1330 | |
1331 | /* Premultiplied transparency */ |
1332 | if (tiff->extrasamples == 1) |
1333 | { |
1334 | /* In GhostXPS we undo the premultiplication here; muxps holds |
1335 | * all our images premultiplied by default, so nothing to do. |
1336 | */ |
1337 | } |
1338 | |
1339 | /* Non-premultiplied transparency */ |
1340 | if (tiff->extrasamples == 2) |
1341 | { |
1342 | /* Premultiplied files are corrected for elsewhere */ |
1343 | } |
1344 | |
1345 | /* Byte swap 16-bit images to big endian if necessary */ |
1346 | if (tiff->bitspersample == 16 && tiff->order == TII) |
1347 | tiff_swap_byte_order(tiff->samples, tiff->imagewidth * tiff->imagelength * tiff->samplesperpixel); |
1348 | |
1349 | /* Lab colorspace expects all sample components 0..255. |
1350 | TIFF supplies them as L = 0..255, a/b = -128..127 (for |
1351 | 8 bits per sample, -32768..32767 for 16 bits per sample) |
1352 | Scale them to the colorspace's expectations. */ |
1353 | if (tiff->photometric == 8 && tiff->samplesperpixel == 3) |
1354 | tiff_scale_lab_samples(ctx, tiff->samples, tiff->bitspersample, tiff->imagewidth * tiff->imagelength); |
1355 | } |
1356 | |
1357 | fz_pixmap * |
1358 | fz_load_tiff_subimage(fz_context *ctx, const unsigned char *buf, size_t len, int subimage) |
1359 | { |
1360 | fz_pixmap *image = NULL; |
1361 | struct tiff tiff = { 0 }; |
1362 | int alpha; |
1363 | |
1364 | fz_var(image); |
1365 | |
1366 | fz_try(ctx) |
1367 | { |
1368 | tiff_read_header(ctx, &tiff, buf, len); |
1369 | tiff_seek_ifd(ctx, &tiff, subimage); |
1370 | tiff_read_ifd(ctx, &tiff); |
1371 | |
1372 | /* Decode the image data */ |
1373 | tiff_decode_ifd(ctx, &tiff); |
1374 | tiff_decode_samples(ctx, &tiff); |
1375 | |
1376 | /* Expand into fz_pixmap struct */ |
1377 | alpha = tiff.extrasamples != 0 || tiff.colorspace == NULL; |
1378 | image = fz_new_pixmap(ctx, tiff.colorspace, tiff.imagewidth, tiff.imagelength, NULL, alpha); |
1379 | image->xres = tiff.xresolution; |
1380 | image->yres = tiff.yresolution; |
1381 | |
1382 | fz_unpack_tile(ctx, image, tiff.samples, tiff.samplesperpixel, tiff.bitspersample, tiff.stride, 0); |
1383 | |
1384 | /* We should only do this on non-pre-multiplied images, but files in the wild are bad */ |
1385 | /* TODO: check if any samples are non-premul to detect bad files */ |
1386 | if (tiff.extrasamples /* == 2 */) |
1387 | fz_premultiply_pixmap(ctx, image); |
1388 | } |
1389 | fz_always(ctx) |
1390 | { |
1391 | /* Clean up scratch memory */ |
1392 | fz_drop_colorspace(ctx, tiff.colorspace); |
1393 | fz_free(ctx, tiff.colormap); |
1394 | fz_free(ctx, tiff.stripoffsets); |
1395 | fz_free(ctx, tiff.stripbytecounts); |
1396 | fz_free(ctx, tiff.tileoffsets); |
1397 | fz_free(ctx, tiff.tilebytecounts); |
1398 | fz_free(ctx, tiff.data); |
1399 | fz_free(ctx, tiff.samples); |
1400 | fz_free(ctx, tiff.profile); |
1401 | fz_free(ctx, tiff.ifd_offsets); |
1402 | } |
1403 | fz_catch(ctx) |
1404 | { |
1405 | fz_drop_pixmap(ctx, image); |
1406 | fz_rethrow(ctx); |
1407 | } |
1408 | |
1409 | return image; |
1410 | } |
1411 | |
1412 | fz_pixmap * |
1413 | fz_load_tiff(fz_context *ctx, const unsigned char *buf, size_t len) |
1414 | { |
1415 | return fz_load_tiff_subimage(ctx, buf, len, 0); |
1416 | } |
1417 | |
1418 | void |
1419 | fz_load_tiff_info_subimage(fz_context *ctx, const unsigned char *buf, size_t len, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep, int subimage) |
1420 | { |
1421 | struct tiff tiff = { 0 }; |
1422 | |
1423 | fz_try(ctx) |
1424 | { |
1425 | tiff_read_header(ctx, &tiff, buf, len); |
1426 | tiff_seek_ifd(ctx, &tiff, subimage); |
1427 | tiff_read_ifd(ctx, &tiff); |
1428 | |
1429 | tiff_decode_ifd(ctx, &tiff); |
1430 | |
1431 | *wp = tiff.imagewidth; |
1432 | *hp = tiff.imagelength; |
1433 | *xresp = (tiff.xresolution ? tiff.xresolution : 96); |
1434 | *yresp = (tiff.yresolution ? tiff.yresolution : 96); |
1435 | if (tiff.extrasamples /* == 2 */) |
1436 | { |
1437 | fz_drop_colorspace(ctx, tiff.colorspace); |
1438 | tiff.colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
1439 | } |
1440 | *cspacep = fz_keep_colorspace(ctx, tiff.colorspace); |
1441 | } |
1442 | fz_always(ctx) |
1443 | { |
1444 | /* Clean up scratch memory */ |
1445 | fz_drop_colorspace(ctx, tiff.colorspace); |
1446 | fz_free(ctx, tiff.colormap); |
1447 | fz_free(ctx, tiff.stripoffsets); |
1448 | fz_free(ctx, tiff.stripbytecounts); |
1449 | fz_free(ctx, tiff.tileoffsets); |
1450 | fz_free(ctx, tiff.tilebytecounts); |
1451 | fz_free(ctx, tiff.data); |
1452 | fz_free(ctx, tiff.samples); |
1453 | fz_free(ctx, tiff.profile); |
1454 | fz_free(ctx, tiff.ifd_offsets); |
1455 | } |
1456 | fz_catch(ctx) |
1457 | { |
1458 | fz_rethrow(ctx); |
1459 | } |
1460 | } |
1461 | |
1462 | void |
1463 | fz_load_tiff_info(fz_context *ctx, const unsigned char *buf, size_t len, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep) |
1464 | { |
1465 | fz_load_tiff_info_subimage(ctx, buf, len, wp, hp, xresp, yresp, cspacep, 0); |
1466 | } |
1467 | |
1468 | int |
1469 | fz_load_tiff_subimage_count(fz_context *ctx, const unsigned char *buf, size_t len) |
1470 | { |
1471 | unsigned offset; |
1472 | unsigned subimage_count = 0; |
1473 | struct tiff tiff = { 0 }; |
1474 | |
1475 | fz_try(ctx) |
1476 | { |
1477 | tiff_read_header(ctx, &tiff, buf, len); |
1478 | |
1479 | offset = tiff.ifd_offsets[0]; |
1480 | |
1481 | do { |
1482 | subimage_count++; |
1483 | offset = tiff_next_ifd(ctx, &tiff, offset); |
1484 | } while (offset != 0); |
1485 | } |
1486 | fz_always(ctx) |
1487 | fz_free(ctx, tiff.ifd_offsets); |
1488 | fz_catch(ctx) |
1489 | fz_rethrow(ctx); |
1490 | |
1491 | return subimage_count; |
1492 | } |
1493 | |