| 1 | #include "mupdf/fitz.h" |
| 2 | |
| 3 | #include <limits.h> |
| 4 | #include <assert.h> |
| 5 | #include <string.h> |
| 6 | |
| 7 | /* |
| 8 | * TIFF image loader. Should be enough to support TIFF files in XPS. |
| 9 | * Baseline TIFF 6.0 plus CMYK, LZW, Flate and JPEG support. |
| 10 | * Limited bit depths (1,2,4,8). |
| 11 | * Limited planar configurations (1=chunky). |
| 12 | * TODO: RGBPal images |
| 13 | */ |
| 14 | |
| 15 | struct tiff |
| 16 | { |
| 17 | /* "file" */ |
| 18 | const unsigned char *bp, *rp, *ep; |
| 19 | |
| 20 | /* byte order */ |
| 21 | unsigned order; |
| 22 | |
| 23 | /* offset of first ifd */ |
| 24 | unsigned *ifd_offsets; |
| 25 | int ifds; |
| 26 | |
| 27 | /* where we can find the strips of image data */ |
| 28 | unsigned rowsperstrip; |
| 29 | unsigned *stripoffsets; |
| 30 | unsigned *stripbytecounts; |
| 31 | unsigned stripoffsetslen; |
| 32 | unsigned stripbytecountslen; |
| 33 | |
| 34 | /* where we can find the tiles of image data */ |
| 35 | unsigned tilelength; |
| 36 | unsigned tilewidth; |
| 37 | unsigned *tileoffsets; |
| 38 | unsigned *tilebytecounts; |
| 39 | unsigned tileoffsetslen; |
| 40 | unsigned tilebytecountslen; |
| 41 | |
| 42 | /* colormap */ |
| 43 | unsigned *colormap; |
| 44 | unsigned colormaplen; |
| 45 | |
| 46 | /* assorted tags */ |
| 47 | unsigned subfiletype; |
| 48 | unsigned photometric; |
| 49 | unsigned compression; |
| 50 | unsigned imagewidth; |
| 51 | unsigned imagelength; |
| 52 | unsigned samplesperpixel; |
| 53 | unsigned bitspersample; |
| 54 | unsigned planar; |
| 55 | unsigned ; |
| 56 | unsigned xresolution; |
| 57 | unsigned yresolution; |
| 58 | unsigned resolutionunit; |
| 59 | unsigned fillorder; |
| 60 | unsigned g3opts; |
| 61 | unsigned g4opts; |
| 62 | unsigned predictor; |
| 63 | |
| 64 | unsigned ycbcrsubsamp[2]; |
| 65 | |
| 66 | const unsigned char *jpegtables; /* point into "file" buffer */ |
| 67 | unsigned jpegtableslen; |
| 68 | |
| 69 | unsigned char *profile; |
| 70 | int profilesize; |
| 71 | |
| 72 | /* decoded data */ |
| 73 | fz_colorspace *colorspace; |
| 74 | unsigned char *samples; |
| 75 | unsigned char *data; |
| 76 | int tilestride; |
| 77 | int stride; |
| 78 | }; |
| 79 | |
| 80 | enum |
| 81 | { |
| 82 | TII = 0x4949, /* 'II' */ |
| 83 | TMM = 0x4d4d, /* 'MM' */ |
| 84 | TBYTE = 1, |
| 85 | TASCII = 2, |
| 86 | TSHORT = 3, |
| 87 | TLONG = 4, |
| 88 | TRATIONAL = 5 |
| 89 | }; |
| 90 | |
| 91 | #define NewSubfileType 254 |
| 92 | #define ImageWidth 256 |
| 93 | #define ImageLength 257 |
| 94 | #define BitsPerSample 258 |
| 95 | #define Compression 259 |
| 96 | #define PhotometricInterpretation 262 |
| 97 | #define FillOrder 266 |
| 98 | #define StripOffsets 273 |
| 99 | #define SamplesPerPixel 277 |
| 100 | #define RowsPerStrip 278 |
| 101 | #define StripByteCounts 279 |
| 102 | #define XResolution 282 |
| 103 | #define YResolution 283 |
| 104 | #define PlanarConfiguration 284 |
| 105 | #define T4Options 292 |
| 106 | #define T6Options 293 |
| 107 | #define ResolutionUnit 296 |
| 108 | #define Predictor 317 |
| 109 | #define ColorMap 320 |
| 110 | #define TileWidth 322 |
| 111 | #define TileLength 323 |
| 112 | #define TileOffsets 324 |
| 113 | #define TileByteCounts 325 |
| 114 | #define 338 |
| 115 | #define JPEGTables 347 |
| 116 | #define YCbCrSubSampling 530 |
| 117 | #define ICCProfile 34675 |
| 118 | |
| 119 | static const unsigned char bitrev[256] = |
| 120 | { |
| 121 | 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, |
| 122 | 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, |
| 123 | 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, |
| 124 | 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, |
| 125 | 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, |
| 126 | 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, |
| 127 | 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, |
| 128 | 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, |
| 129 | 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, |
| 130 | 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, |
| 131 | 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, |
| 132 | 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, |
| 133 | 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, |
| 134 | 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, |
| 135 | 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, |
| 136 | 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, |
| 137 | 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, |
| 138 | 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, |
| 139 | 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, |
| 140 | 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, |
| 141 | 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, |
| 142 | 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, |
| 143 | 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, |
| 144 | 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, |
| 145 | 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, |
| 146 | 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, |
| 147 | 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, |
| 148 | 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, |
| 149 | 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, |
| 150 | 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, |
| 151 | 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, |
| 152 | 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff |
| 153 | }; |
| 154 | |
| 155 | static inline int tiff_getcomp(unsigned char *line, int x, int bpc) |
| 156 | { |
| 157 | switch (bpc) |
| 158 | { |
| 159 | case 1: return (line[x >> 3] >> ( 7 - (x & 7) ) ) & 1; |
| 160 | case 2: return (line[x >> 2] >> ( ( 3 - (x & 3) ) << 1 ) ) & 3; |
| 161 | case 4: return (line[x >> 1] >> ( ( 1 - (x & 1) ) << 2 ) ) & 15; |
| 162 | case 8: return line[x]; |
| 163 | case 16: return line[x << 1] << 8 | line[(x << 1) + 1]; |
| 164 | } |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | static inline void tiff_putcomp(unsigned char *line, int x, int bpc, int value) |
| 169 | { |
| 170 | int maxval = (1 << bpc) - 1; |
| 171 | |
| 172 | switch (bpc) |
| 173 | { |
| 174 | case 1: line[x >> 3] &= ~(maxval << (7 - (x & 7))); break; |
| 175 | case 2: line[x >> 2] &= ~(maxval << ((3 - (x & 3)) << 1)); break; |
| 176 | case 4: line[x >> 1] &= ~(maxval << ((1 - (x & 1)) << 2)); break; |
| 177 | } |
| 178 | |
| 179 | switch (bpc) |
| 180 | { |
| 181 | case 1: line[x >> 3] |= value << (7 - (x & 7)); break; |
| 182 | case 2: line[x >> 2] |= value << ((3 - (x & 3)) << 1); break; |
| 183 | case 4: line[x >> 1] |= value << ((1 - (x & 1)) << 2); break; |
| 184 | case 8: line[x] = value; break; |
| 185 | case 16: line[x << 1] = value >> 8; line[(x << 1) + 1] = value & 0xFF; break; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | static void |
| 190 | tiff_unpredict_line(unsigned char *line, int width, int comps, int bits) |
| 191 | { |
| 192 | unsigned char left[FZ_MAX_COLORS]; |
| 193 | int i, k, v; |
| 194 | |
| 195 | for (k = 0; k < comps; k++) |
| 196 | left[k] = 0; |
| 197 | |
| 198 | for (i = 0; i < width; i++) |
| 199 | { |
| 200 | for (k = 0; k < comps; k++) |
| 201 | { |
| 202 | v = tiff_getcomp(line, i * comps + k, bits); |
| 203 | v = v + left[k]; |
| 204 | v = v % (1 << bits); |
| 205 | tiff_putcomp(line, i * comps + k, bits, v); |
| 206 | left[k] = v; |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | static void |
| 212 | tiff_invert_line(unsigned char *line, int width, int comps, int bits, int alpha) |
| 213 | { |
| 214 | int i, k, v; |
| 215 | int m = (1 << bits) - 1; |
| 216 | |
| 217 | for (i = 0; i < width; i++) |
| 218 | { |
| 219 | for (k = 0; k < comps; k++) |
| 220 | { |
| 221 | v = tiff_getcomp(line, i * comps + k, bits); |
| 222 | if (!alpha || k < comps - 1) |
| 223 | v = m - v; |
| 224 | tiff_putcomp(line, i * comps + k, bits, v); |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | static void |
| 230 | tiff_expand_colormap(fz_context *ctx, struct tiff *tiff) |
| 231 | { |
| 232 | int maxval = 1 << tiff->bitspersample; |
| 233 | unsigned char *samples; |
| 234 | unsigned char *src, *dst; |
| 235 | unsigned int x, y; |
| 236 | unsigned int stride; |
| 237 | |
| 238 | /* colormap has first all red, then all green, then all blue values */ |
| 239 | /* colormap values are 0..65535, bits is 4 or 8 */ |
| 240 | /* image can be with or without extrasamples: comps is 1 or 2 */ |
| 241 | |
| 242 | if (tiff->samplesperpixel != 1 && tiff->samplesperpixel != 2) |
| 243 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid number of samples for RGBPal" ); |
| 244 | |
| 245 | if (tiff->bitspersample != 1 && tiff->bitspersample != 2 && tiff->bitspersample != 4 && tiff->bitspersample != 8 && tiff->bitspersample != 16) |
| 246 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid number of bits for RGBPal" ); |
| 247 | |
| 248 | if (tiff->colormaplen < (unsigned)maxval * 3) |
| 249 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient colormap data" ); |
| 250 | |
| 251 | if (tiff->imagelength > UINT_MAX / tiff->imagewidth / (tiff->samplesperpixel + 2)) |
| 252 | fz_throw(ctx, FZ_ERROR_GENERIC, "image too large" ); |
| 253 | |
| 254 | stride = tiff->imagewidth * (tiff->samplesperpixel + 2); |
| 255 | |
| 256 | samples = fz_malloc(ctx, stride * tiff->imagelength); |
| 257 | |
| 258 | for (y = 0; y < tiff->imagelength; y++) |
| 259 | { |
| 260 | src = tiff->samples + (unsigned int)(tiff->stride * y); |
| 261 | dst = samples + (unsigned int)(stride * y); |
| 262 | |
| 263 | for (x = 0; x < tiff->imagewidth; x++) |
| 264 | { |
| 265 | if (tiff->extrasamples) |
| 266 | { |
| 267 | int c = tiff_getcomp(src, x * 2, tiff->bitspersample); |
| 268 | int a = tiff_getcomp(src, x * 2 + 1, tiff->bitspersample); |
| 269 | *dst++ = tiff->colormap[c + 0] >> 8; |
| 270 | *dst++ = tiff->colormap[c + maxval] >> 8; |
| 271 | *dst++ = tiff->colormap[c + maxval * 2] >> 8; |
| 272 | if (tiff->bitspersample <= 8) |
| 273 | *dst++ = a << (8 - tiff->bitspersample); |
| 274 | else |
| 275 | *dst++ = a >> (tiff->bitspersample - 8); |
| 276 | } |
| 277 | else |
| 278 | { |
| 279 | int c = tiff_getcomp(src, x, tiff->bitspersample); |
| 280 | *dst++ = tiff->colormap[c + 0] >> 8; |
| 281 | *dst++ = tiff->colormap[c + maxval] >> 8; |
| 282 | *dst++ = tiff->colormap[c + maxval * 2] >> 8; |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | tiff->samplesperpixel += 2; |
| 288 | tiff->bitspersample = 8; |
| 289 | tiff->stride = stride; |
| 290 | fz_free(ctx, tiff->samples); |
| 291 | tiff->samples = samples; |
| 292 | } |
| 293 | |
| 294 | static unsigned |
| 295 | tiff_decode_data(fz_context *ctx, struct tiff *tiff, const unsigned char *rp, unsigned int rlen, unsigned char *wp, unsigned int wlen) |
| 296 | { |
| 297 | fz_stream *encstm = NULL; |
| 298 | fz_stream *stm = NULL; |
| 299 | unsigned i, size = 0; |
| 300 | unsigned char *reversed = NULL; |
| 301 | fz_stream *jpegtables = NULL; |
| 302 | int old_tiff; |
| 303 | |
| 304 | if (rp + rlen > tiff->ep) |
| 305 | fz_throw(ctx, FZ_ERROR_GENERIC, "strip extends beyond the end of the file" ); |
| 306 | |
| 307 | /* the bits are in un-natural order */ |
| 308 | if (tiff->fillorder == 2) |
| 309 | { |
| 310 | reversed = fz_malloc(ctx, rlen); |
| 311 | for (i = 0; i < rlen; i++) |
| 312 | reversed[i] = bitrev[rp[i]]; |
| 313 | rp = reversed; |
| 314 | } |
| 315 | |
| 316 | fz_var(jpegtables); |
| 317 | fz_var(encstm); |
| 318 | fz_var(stm); |
| 319 | |
| 320 | fz_try(ctx) |
| 321 | { |
| 322 | encstm = fz_open_memory(ctx, rp, rlen); |
| 323 | |
| 324 | /* switch on compression to create a filter */ |
| 325 | /* feed each chunk (strip or tile) to the filter */ |
| 326 | /* read out the data into a buffer */ |
| 327 | /* the level above packs the chunk's samples into a pixmap */ |
| 328 | |
| 329 | /* type 32773 / packbits -- nothing special (same row-padding as PDF) */ |
| 330 | /* type 2 / ccitt rle -- no EOL, no RTC, rows are byte-aligned */ |
| 331 | /* type 3 and 4 / g3 and g4 -- each strip starts new section */ |
| 332 | /* type 5 / lzw -- each strip is handled separately */ |
| 333 | |
| 334 | switch (tiff->compression) |
| 335 | { |
| 336 | case 1: |
| 337 | /* stm already open and reading uncompressed data */ |
| 338 | stm = fz_keep_stream(ctx, encstm); |
| 339 | break; |
| 340 | case 2: |
| 341 | case 3: |
| 342 | case 4: |
| 343 | stm = fz_open_faxd(ctx, encstm, |
| 344 | tiff->compression == 4 ? -1 : |
| 345 | tiff->compression == 2 ? 0 : |
| 346 | tiff->g3opts & 1, |
| 347 | 0, |
| 348 | tiff->compression == 2, |
| 349 | tiff->imagewidth, |
| 350 | tiff->imagelength, |
| 351 | 0, |
| 352 | 1); |
| 353 | break; |
| 354 | case 5: |
| 355 | old_tiff = rp[0] == 0 && (rp[1] & 1); |
| 356 | stm = fz_open_lzwd(ctx, encstm, old_tiff ? 0 : 1, 9, old_tiff ? 1 : 0, old_tiff); |
| 357 | break; |
| 358 | case 6: |
| 359 | fz_warn(ctx, "deprecated JPEG in TIFF compression not fully supported" ); |
| 360 | /* fall through */ |
| 361 | case 7: |
| 362 | if (tiff->jpegtables && (int)tiff->jpegtableslen > 0) |
| 363 | jpegtables = fz_open_memory(ctx, tiff->jpegtables, tiff->jpegtableslen); |
| 364 | |
| 365 | stm = fz_open_dctd(ctx, encstm, |
| 366 | tiff->photometric == 2 || tiff->photometric == 3 ? 0 : -1, |
| 367 | 0, |
| 368 | jpegtables); |
| 369 | break; |
| 370 | case 8: |
| 371 | case 32946: |
| 372 | stm = fz_open_flated(ctx, encstm, 15); |
| 373 | break; |
| 374 | case 32773: |
| 375 | stm = fz_open_rld(ctx, encstm); |
| 376 | break; |
| 377 | case 34676: |
| 378 | if (tiff->photometric == 32845) |
| 379 | stm = fz_open_sgilog32(ctx, encstm, tiff->imagewidth); |
| 380 | else |
| 381 | stm = fz_open_sgilog16(ctx, encstm, tiff->imagewidth); |
| 382 | break; |
| 383 | case 34677: |
| 384 | stm = fz_open_sgilog24(ctx, encstm, tiff->imagewidth); |
| 385 | break; |
| 386 | case 32809: |
| 387 | if (tiff->bitspersample != 4) |
| 388 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid bits per pixel in thunder encoding" ); |
| 389 | stm = fz_open_thunder(ctx, encstm, tiff->imagewidth); |
| 390 | break; |
| 391 | default: |
| 392 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown TIFF compression: %d" , tiff->compression); |
| 393 | } |
| 394 | |
| 395 | size = (unsigned)fz_read(ctx, stm, wp, wlen); |
| 396 | } |
| 397 | fz_always(ctx) |
| 398 | { |
| 399 | fz_drop_stream(ctx, jpegtables); |
| 400 | fz_drop_stream(ctx, encstm); |
| 401 | fz_drop_stream(ctx, stm); |
| 402 | fz_free(ctx, reversed); |
| 403 | } |
| 404 | fz_catch(ctx) |
| 405 | fz_rethrow(ctx); |
| 406 | |
| 407 | return size; |
| 408 | } |
| 409 | |
| 410 | static void |
| 411 | tiff_paste_tile(fz_context *ctx, struct tiff *tiff, unsigned char *tile, unsigned int row, unsigned int col) |
| 412 | { |
| 413 | unsigned int x, y, k; |
| 414 | |
| 415 | for (y = 0; y < tiff->tilelength && row + y < tiff->imagelength; y++) |
| 416 | { |
| 417 | for (x = 0; x < tiff->tilewidth && col + x < tiff->imagewidth; x++) |
| 418 | { |
| 419 | for (k = 0; k < tiff->samplesperpixel; k++) |
| 420 | { |
| 421 | unsigned char *dst, *src; |
| 422 | |
| 423 | dst = tiff->samples; |
| 424 | dst += (row + y) * tiff->stride; |
| 425 | dst += (((col + x) * tiff->samplesperpixel + k) * tiff->bitspersample + 7) / 8; |
| 426 | |
| 427 | src = tile; |
| 428 | src += y * tiff->tilestride; |
| 429 | src += ((x * tiff->samplesperpixel + k) * tiff->bitspersample + 7) / 8; |
| 430 | |
| 431 | switch (tiff->bitspersample) |
| 432 | { |
| 433 | case 1: *dst |= (*src >> (7 - 1 * ((col + x) % 8))) & 0x1; break; |
| 434 | case 2: *dst |= (*src >> (6 - 2 * ((col + x) % 4))) & 0x3; break; |
| 435 | case 4: *dst |= (*src >> (4 - 4 * ((col + x) % 2))) & 0xf; break; |
| 436 | case 8: *dst = *src; break; |
| 437 | case 16: dst[0] = src[0]; dst[1] = src[1]; break; |
| 438 | case 24: dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; break; |
| 439 | case 32: dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; break; |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | static void |
| 447 | tiff_paste_subsampled_tile(fz_context *ctx, struct tiff *tiff, unsigned char *tile, unsigned len, unsigned tw, unsigned th, unsigned col, unsigned row) |
| 448 | { |
| 449 | /* |
| 450 | This explains how the samples are laid out in tiff data, the spec example is non-obvious. |
| 451 | The y, cb, cr indicies follow the spec, i.e. y17 is the y sample at row 1, column 7. |
| 452 | All indicies start at 0. |
| 453 | |
| 454 | hexlookup = (horizontalsubsampling & 0xf) << 4 | (verticalsubsampling & 0xf) |
| 455 | |
| 456 | 0x11 y00 cb00 cr00 0x21 y00 y01 cb00 cr00 0x41 y00 y01 y02 y03 cb00 cr00 |
| 457 | y01 cb01 cr01 y10 y11 cb01 cr01 y04 y05 y06 y07 cb01 cr01 |
| 458 | .... ... ... |
| 459 | y10 cb10 cr10 y20 y21 cb10 cr10 y10 y11 y12 y13 cb10 cr10 |
| 460 | y11 cb11 cr11 y30 y31 cb11 cr11 y14 y15 y16 y17 cb11 cr11 |
| 461 | |
| 462 | 0x12 y00 0x22 y00 y01 0x42 y00 y01 y02 y03 |
| 463 | y10 cb00 cr00 y10 y11 cb00 cr00 y10 y11 y12 y13 cb00 cr00 |
| 464 | y01 y02 y03 y04 y05 y06 y07 |
| 465 | y11 cb01 cr01 y12 y13 cb01 cr01 y14 y15 y16 y17 cb01 cr01 |
| 466 | .... ... ... |
| 467 | y20 y20 y21 y20 y21 y22 y23 |
| 468 | y30 cb10 cr10 y30 y31 cb10 cr10 y30 y31 y32 y33 cb10 cr10 |
| 469 | y21 y22 y23 y24 y25 y26 y27 |
| 470 | y31 cb11 cr11 y32 y33 cb11 cr11 y34 y35 y36 y37 cb11 cr11 |
| 471 | |
| 472 | 0x14 y00 0x24 y00 y01 0x44 y00 y01 y02 y03 |
| 473 | y10 y10 y11 y10 y11 y12 y13 |
| 474 | y20 y20 y21 y20 y21 y22 y23 |
| 475 | y30 cb00 cr00 y30 y31 cb00 cr00 y30 y31 y32 y33 cb00 cr00 |
| 476 | y01 y02 y03 y04 y05 y06 y07 |
| 477 | y11 y12 y13 y14 y15 y16 y17 |
| 478 | y21 y22 y23 y24 y25 y26 y27 |
| 479 | y31 cb01 cr01 y32 y33 cb01 cr01 y34 y35 y36 y37 cb01 cr01 |
| 480 | .... ... ... |
| 481 | y40 y40 y41 y40 y41 y42 y43 |
| 482 | y50 y50 y51 y50 y51 y52 y53 |
| 483 | y60 y60 y61 y60 y61 y62 y63 |
| 484 | y70 cb10 cr10 y70 y71 cb10 cr10 y70 y71 y72 y73 cb10 cr10 |
| 485 | y41 y42 y43 y44 y45 y46 y47 |
| 486 | y51 y52 y53 y54 y55 y56 y57 |
| 487 | y61 y62 y63 y64 y65 y66 y67 |
| 488 | y71 cb11 cr11 y72 y73 cb11 cr11 y74 y75 y76 y77 cb11 cr11 |
| 489 | */ |
| 490 | |
| 491 | unsigned char *src = tile; |
| 492 | unsigned char *dst; |
| 493 | unsigned x, y, w, h; /* coordinates and dimensions of entire image */ |
| 494 | unsigned sx, sy, sw, sh; /* coordinates and dimensions of a single subsample region, i.e. max 4 x 4 samples */ |
| 495 | int k; |
| 496 | int offsets[4 * 4 * 3]; /* for a pixel position, these point to all pixel components in a subsample region */ |
| 497 | int *offset = offsets; |
| 498 | |
| 499 | assert(tiff->samplesperpixel == 3); |
| 500 | assert(tiff->bitspersample == 8); |
| 501 | |
| 502 | w = tiff->imagewidth; |
| 503 | h = tiff->imagelength; |
| 504 | |
| 505 | sx = 0; |
| 506 | sy = 0; |
| 507 | sw = tiff->ycbcrsubsamp[0]; |
| 508 | sh = tiff->ycbcrsubsamp[1]; |
| 509 | if (sw > 4 || sh > 4 || !fz_is_pow2(sw) || !fz_is_pow2(sh)) |
| 510 | fz_throw(ctx, FZ_ERROR_GENERIC, "Illegal TIFF Subsample values %d %d" , sw, sh); |
| 511 | |
| 512 | for (k = 0; k < 3; k++) |
| 513 | for (y = 0; y < sh; y++) |
| 514 | for (x = 0; x < sw; x++) |
| 515 | *offset++ = k + y * tiff->stride + x * 3; |
| 516 | |
| 517 | offset = offsets; |
| 518 | x = col; |
| 519 | y = row; |
| 520 | k = 0; |
| 521 | |
| 522 | dst = &tiff->samples[row * tiff->stride + col * 3]; |
| 523 | |
| 524 | while (src < tile + len) |
| 525 | { |
| 526 | if (k == 0) |
| 527 | { /* put all Y samples for a subsample region at the correct image pixel */ |
| 528 | if (y + sy < h && y + sy < row + th && x + sx < w && x + sx < col + tw) |
| 529 | dst[*offset] = *src; |
| 530 | offset++; |
| 531 | |
| 532 | if (++sx >= sw) |
| 533 | { |
| 534 | sx = 0; |
| 535 | if (++sy >= sh) |
| 536 | { |
| 537 | sy = 0; |
| 538 | k++; |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | else |
| 543 | { /* put all Cb/Cr samples for a subsample region at the correct image pixel */ |
| 544 | for (sy = 0; sy < sh; sy++) |
| 545 | for (sx = 0; sx < sw; sx++) |
| 546 | { |
| 547 | if (y + sy < h && y + sy < row + th && x + sx < w && x + sx < col + tw) |
| 548 | dst[*offset] = *src; |
| 549 | offset++; |
| 550 | } |
| 551 | |
| 552 | if (++k >= 3) |
| 553 | { /* we're done with this subsample region, on to the next one */ |
| 554 | k = sx = sy = 0; |
| 555 | offset = offsets; |
| 556 | |
| 557 | dst += sw * 3; |
| 558 | |
| 559 | x += sw; |
| 560 | if (x >= col + tw) |
| 561 | { |
| 562 | dst -= (x - (col + tw)) * 3; |
| 563 | dst += (sh - 1) * w * 3; |
| 564 | dst += col * 3; |
| 565 | x = col; |
| 566 | y += sh; |
| 567 | } |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | src++; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | static void |
| 576 | tiff_decode_tiles(fz_context *ctx, struct tiff *tiff) |
| 577 | { |
| 578 | unsigned char *data; |
| 579 | unsigned x, y, wlen, tile; |
| 580 | unsigned tiles, tilesacross, tilesdown; |
| 581 | |
| 582 | tilesdown = (tiff->imagelength + tiff->tilelength - 1) / tiff->tilelength; |
| 583 | tilesacross = (tiff->imagewidth + tiff->tilewidth - 1) / tiff->tilewidth; |
| 584 | tiles = tilesacross * tilesdown; |
| 585 | if (tiff->tileoffsetslen < tiles || tiff->tilebytecountslen < tiles) |
| 586 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient tile metadata" ); |
| 587 | |
| 588 | /* JPEG can handle subsampling on its own */ |
| 589 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
| 590 | { |
| 591 | /* regardless of how this is subsampled, a tile is never larger */ |
| 592 | if (tiff->tilelength >= tiff->ycbcrsubsamp[1]) |
| 593 | wlen = tiff->tilestride * tiff->tilelength; |
| 594 | else |
| 595 | wlen = tiff->tilestride * tiff->ycbcrsubsamp[1]; |
| 596 | |
| 597 | data = tiff->data = fz_malloc(ctx, wlen); |
| 598 | |
| 599 | tile = 0; |
| 600 | for (x = 0; x < tiff->imagelength; x += tiff->tilelength) |
| 601 | { |
| 602 | for (y = 0; y < tiff->imagewidth; y += tiff->tilewidth) |
| 603 | { |
| 604 | unsigned int offset = tiff->tileoffsets[tile]; |
| 605 | unsigned int rlen = tiff->tilebytecounts[tile]; |
| 606 | const unsigned char *rp = tiff->bp + offset; |
| 607 | unsigned decoded; |
| 608 | |
| 609 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
| 610 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile offset %u" , offset); |
| 611 | if (rlen > (unsigned)(tiff->ep - rp)) |
| 612 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile byte count %u" , rlen); |
| 613 | |
| 614 | decoded = tiff_decode_data(ctx, tiff, rp, rlen, data, wlen); |
| 615 | tiff_paste_subsampled_tile(ctx, tiff, data, decoded, tiff->tilewidth, tiff->tilelength, x, y); |
| 616 | tile++; |
| 617 | } |
| 618 | } |
| 619 | } |
| 620 | else |
| 621 | { |
| 622 | wlen = tiff->tilelength * tiff->tilestride; |
| 623 | data = tiff->data = fz_malloc(ctx, wlen); |
| 624 | |
| 625 | tile = 0; |
| 626 | for (x = 0; x < tiff->imagelength; x += tiff->tilelength) |
| 627 | { |
| 628 | for (y = 0; y < tiff->imagewidth; y += tiff->tilewidth) |
| 629 | { |
| 630 | unsigned int offset = tiff->tileoffsets[tile]; |
| 631 | unsigned int rlen = tiff->tilebytecounts[tile]; |
| 632 | const unsigned char *rp = tiff->bp + offset; |
| 633 | |
| 634 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
| 635 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile offset %u" , offset); |
| 636 | if (rlen > (unsigned)(tiff->ep - rp)) |
| 637 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid tile byte count %u" , rlen); |
| 638 | |
| 639 | if (tiff_decode_data(ctx, tiff, rp, rlen, data, wlen) != wlen) |
| 640 | fz_throw(ctx, FZ_ERROR_GENERIC, "decoded tile is the wrong size" ); |
| 641 | |
| 642 | tiff_paste_tile(ctx, tiff, data, x, y); |
| 643 | tile++; |
| 644 | } |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | static void |
| 650 | tiff_decode_strips(fz_context *ctx, struct tiff *tiff) |
| 651 | { |
| 652 | unsigned char *data; |
| 653 | unsigned strips; |
| 654 | unsigned strip; |
| 655 | unsigned y; |
| 656 | |
| 657 | strips = (tiff->imagelength + tiff->rowsperstrip - 1) / tiff->rowsperstrip; |
| 658 | if (tiff->stripoffsetslen < strips || tiff->stripbytecountslen < strips) |
| 659 | fz_throw(ctx, FZ_ERROR_GENERIC, "insufficient strip metadata" ); |
| 660 | |
| 661 | data = tiff->samples; |
| 662 | |
| 663 | /* JPEG can handle subsampling on its own */ |
| 664 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
| 665 | { |
| 666 | unsigned wlen; |
| 667 | unsigned rowsperstrip; |
| 668 | |
| 669 | /* regardless of how this is subsampled, a strip is never taller */ |
| 670 | if (tiff->rowsperstrip >= tiff->ycbcrsubsamp[1]) |
| 671 | rowsperstrip = tiff->rowsperstrip; |
| 672 | else |
| 673 | rowsperstrip = tiff->ycbcrsubsamp[1]; |
| 674 | |
| 675 | wlen = rowsperstrip * tiff->stride; |
| 676 | data = tiff->data = fz_malloc(ctx, wlen); |
| 677 | |
| 678 | strip = 0; |
| 679 | for (y = 0; y < tiff->imagelength; y += rowsperstrip) |
| 680 | { |
| 681 | unsigned offset = tiff->stripoffsets[strip]; |
| 682 | unsigned rlen = tiff->stripbytecounts[strip]; |
| 683 | const unsigned char *rp = tiff->bp + offset; |
| 684 | int decoded; |
| 685 | |
| 686 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
| 687 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip offset %u" , offset); |
| 688 | if (rlen > (unsigned)(tiff->ep - rp)) |
| 689 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip byte count %u" , rlen); |
| 690 | |
| 691 | decoded = tiff_decode_data(ctx, tiff, rp, rlen, data, wlen); |
| 692 | tiff_paste_subsampled_tile(ctx, tiff, data, decoded, tiff->imagewidth, tiff->rowsperstrip, 0, y); |
| 693 | strip++; |
| 694 | } |
| 695 | } |
| 696 | else |
| 697 | { |
| 698 | strip = 0; |
| 699 | for (y = 0; y < tiff->imagelength; y += tiff->rowsperstrip) |
| 700 | { |
| 701 | unsigned offset = tiff->stripoffsets[strip]; |
| 702 | unsigned rlen = tiff->stripbytecounts[strip]; |
| 703 | unsigned wlen = tiff->stride * tiff->rowsperstrip; |
| 704 | const unsigned char *rp = tiff->bp + offset; |
| 705 | |
| 706 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
| 707 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip offset %u" , offset); |
| 708 | if (rlen > (unsigned)(tiff->ep - rp)) |
| 709 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid strip byte count %u" , rlen); |
| 710 | |
| 711 | /* if imagelength is not a multiple of rowsperstrip, adjust the expectation of the size of the decoded data */ |
| 712 | if (y + tiff->rowsperstrip >= tiff->imagelength) |
| 713 | wlen = tiff->stride * (tiff->imagelength - y); |
| 714 | |
| 715 | if (tiff_decode_data(ctx, tiff, rp, rlen, data, wlen) < wlen) |
| 716 | { |
| 717 | fz_warn(ctx, "premature end of data in decoded strip" ); |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | data += wlen; |
| 722 | strip ++; |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | static inline int tiff_readbyte(struct tiff *tiff) |
| 728 | { |
| 729 | if (tiff->rp < tiff->ep) |
| 730 | return *tiff->rp++; |
| 731 | return EOF; |
| 732 | } |
| 733 | |
| 734 | static inline unsigned readshort(struct tiff *tiff) |
| 735 | { |
| 736 | unsigned a = tiff_readbyte(tiff); |
| 737 | unsigned b = tiff_readbyte(tiff); |
| 738 | if (tiff->order == TII) |
| 739 | return (b << 8) | a; |
| 740 | return (a << 8) | b; |
| 741 | } |
| 742 | |
| 743 | static inline unsigned tiff_readlong(struct tiff *tiff) |
| 744 | { |
| 745 | unsigned a = tiff_readbyte(tiff); |
| 746 | unsigned b = tiff_readbyte(tiff); |
| 747 | unsigned c = tiff_readbyte(tiff); |
| 748 | unsigned d = tiff_readbyte(tiff); |
| 749 | if (tiff->order == TII) |
| 750 | return (d << 24) | (c << 16) | (b << 8) | a; |
| 751 | return (a << 24) | (b << 16) | (c << 8) | d; |
| 752 | } |
| 753 | |
| 754 | static void |
| 755 | tiff_read_bytes(unsigned char *p, struct tiff *tiff, unsigned ofs, unsigned n) |
| 756 | { |
| 757 | if (ofs > (unsigned)(tiff->ep - tiff->bp)) |
| 758 | ofs = (unsigned)(tiff->ep - tiff->bp); |
| 759 | tiff->rp = tiff->bp + ofs; |
| 760 | |
| 761 | while (n--) |
| 762 | *p++ = tiff_readbyte(tiff); |
| 763 | } |
| 764 | |
| 765 | static void |
| 766 | tiff_read_tag_value(unsigned *p, struct tiff *tiff, unsigned type, unsigned ofs, unsigned n) |
| 767 | { |
| 768 | unsigned den; |
| 769 | |
| 770 | if (ofs > (unsigned)(tiff->ep - tiff->bp)) |
| 771 | ofs = (unsigned)(tiff->ep - tiff->bp); |
| 772 | tiff->rp = tiff->bp + ofs; |
| 773 | |
| 774 | while (n--) |
| 775 | { |
| 776 | switch (type) |
| 777 | { |
| 778 | case TRATIONAL: |
| 779 | *p = tiff_readlong(tiff); |
| 780 | den = tiff_readlong(tiff); |
| 781 | if (den) |
| 782 | *p = *p / den; |
| 783 | else |
| 784 | *p = UINT_MAX; |
| 785 | p ++; |
| 786 | break; |
| 787 | case TBYTE: *p++ = tiff_readbyte(tiff); break; |
| 788 | case TSHORT: *p++ = readshort(tiff); break; |
| 789 | case TLONG: *p++ = tiff_readlong(tiff); break; |
| 790 | default: *p++ = 0; break; |
| 791 | } |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | static void |
| 796 | tiff_read_tag(fz_context *ctx, struct tiff *tiff, unsigned offset) |
| 797 | { |
| 798 | unsigned tag; |
| 799 | unsigned type; |
| 800 | unsigned count; |
| 801 | unsigned value; |
| 802 | |
| 803 | tiff->rp = tiff->bp + offset; |
| 804 | |
| 805 | tag = readshort(tiff); |
| 806 | type = readshort(tiff); |
| 807 | count = tiff_readlong(tiff); |
| 808 | |
| 809 | if ((type == TBYTE && count <= 4) || |
| 810 | (type == TSHORT && count <= 2) || |
| 811 | (type == TLONG && count <= 1)) |
| 812 | value = tiff->rp - tiff->bp; |
| 813 | else |
| 814 | value = tiff_readlong(tiff); |
| 815 | |
| 816 | switch (tag) |
| 817 | { |
| 818 | case NewSubfileType: |
| 819 | tiff_read_tag_value(&tiff->subfiletype, tiff, type, value, 1); |
| 820 | break; |
| 821 | case ImageWidth: |
| 822 | tiff_read_tag_value(&tiff->imagewidth, tiff, type, value, 1); |
| 823 | break; |
| 824 | case ImageLength: |
| 825 | tiff_read_tag_value(&tiff->imagelength, tiff, type, value, 1); |
| 826 | break; |
| 827 | case BitsPerSample: |
| 828 | tiff_read_tag_value(&tiff->bitspersample, tiff, type, value, 1); |
| 829 | break; |
| 830 | case Compression: |
| 831 | tiff_read_tag_value(&tiff->compression, tiff, type, value, 1); |
| 832 | break; |
| 833 | case PhotometricInterpretation: |
| 834 | tiff_read_tag_value(&tiff->photometric, tiff, type, value, 1); |
| 835 | break; |
| 836 | case FillOrder: |
| 837 | tiff_read_tag_value(&tiff->fillorder, tiff, type, value, 1); |
| 838 | break; |
| 839 | case SamplesPerPixel: |
| 840 | tiff_read_tag_value(&tiff->samplesperpixel, tiff, type, value, 1); |
| 841 | break; |
| 842 | case RowsPerStrip: |
| 843 | tiff_read_tag_value(&tiff->rowsperstrip, tiff, type, value, 1); |
| 844 | break; |
| 845 | case XResolution: |
| 846 | tiff_read_tag_value(&tiff->xresolution, tiff, type, value, 1); |
| 847 | break; |
| 848 | case YResolution: |
| 849 | tiff_read_tag_value(&tiff->yresolution, tiff, type, value, 1); |
| 850 | break; |
| 851 | case PlanarConfiguration: |
| 852 | tiff_read_tag_value(&tiff->planar, tiff, type, value, 1); |
| 853 | break; |
| 854 | case T4Options: |
| 855 | tiff_read_tag_value(&tiff->g3opts, tiff, type, value, 1); |
| 856 | break; |
| 857 | case T6Options: |
| 858 | tiff_read_tag_value(&tiff->g4opts, tiff, type, value, 1); |
| 859 | break; |
| 860 | case Predictor: |
| 861 | tiff_read_tag_value(&tiff->predictor, tiff, type, value, 1); |
| 862 | break; |
| 863 | case ResolutionUnit: |
| 864 | tiff_read_tag_value(&tiff->resolutionunit, tiff, type, value, 1); |
| 865 | break; |
| 866 | case YCbCrSubSampling: |
| 867 | tiff_read_tag_value(tiff->ycbcrsubsamp, tiff, type, value, 2); |
| 868 | break; |
| 869 | case ExtraSamples: |
| 870 | tiff_read_tag_value(&tiff->extrasamples, tiff, type, value, 1); |
| 871 | break; |
| 872 | |
| 873 | case ICCProfile: |
| 874 | if (tiff->profile) |
| 875 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one ICC profile tag allowed" ); |
| 876 | tiff->profile = fz_malloc(ctx, count); |
| 877 | /* ICC profile data type is set to UNDEFINED. |
| 878 | * TBYTE reading not correct in tiff_read_tag_value */ |
| 879 | tiff_read_bytes(tiff->profile, tiff, value, count); |
| 880 | tiff->profilesize = count; |
| 881 | break; |
| 882 | |
| 883 | case JPEGTables: |
| 884 | /* Check both value and value + count to allow for overflow */ |
| 885 | if (value > tiff->ep - tiff->bp || value + count > tiff->ep - tiff->bp) |
| 886 | fz_throw(ctx, FZ_ERROR_GENERIC, "TIFF JPEG tables out of range" ); |
| 887 | tiff->jpegtables = tiff->bp + value; |
| 888 | tiff->jpegtableslen = count; |
| 889 | break; |
| 890 | |
| 891 | case StripOffsets: |
| 892 | if (tiff->stripoffsets) |
| 893 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one strip offsets tag allowed" ); |
| 894 | tiff->stripoffsets = fz_malloc_array(ctx, count, unsigned); |
| 895 | tiff_read_tag_value(tiff->stripoffsets, tiff, type, value, count); |
| 896 | tiff->stripoffsetslen = count; |
| 897 | break; |
| 898 | |
| 899 | case StripByteCounts: |
| 900 | if (tiff->stripbytecounts) |
| 901 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one strip byte counts tag allowed" ); |
| 902 | tiff->stripbytecounts = fz_malloc_array(ctx, count, unsigned); |
| 903 | tiff_read_tag_value(tiff->stripbytecounts, tiff, type, value, count); |
| 904 | tiff->stripbytecountslen = count; |
| 905 | break; |
| 906 | |
| 907 | case ColorMap: |
| 908 | if (tiff->colormap) |
| 909 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one color map allowed" ); |
| 910 | tiff->colormap = fz_malloc_array(ctx, count, unsigned); |
| 911 | tiff_read_tag_value(tiff->colormap, tiff, type, value, count); |
| 912 | tiff->colormaplen = count; |
| 913 | break; |
| 914 | |
| 915 | case TileWidth: |
| 916 | tiff_read_tag_value(&tiff->tilewidth, tiff, type, value, 1); |
| 917 | break; |
| 918 | |
| 919 | case TileLength: |
| 920 | tiff_read_tag_value(&tiff->tilelength, tiff, type, value, 1); |
| 921 | break; |
| 922 | |
| 923 | case TileOffsets: |
| 924 | if (tiff->tileoffsets) |
| 925 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one tile offsets tag allowed" ); |
| 926 | tiff->tileoffsets = fz_malloc_array(ctx, count, unsigned); |
| 927 | tiff_read_tag_value(tiff->tileoffsets, tiff, type, value, count); |
| 928 | tiff->tileoffsetslen = count; |
| 929 | break; |
| 930 | |
| 931 | case TileByteCounts: |
| 932 | if (tiff->tilebytecounts) |
| 933 | fz_throw(ctx, FZ_ERROR_GENERIC, "at most one tile byte counts tag allowed" ); |
| 934 | tiff->tilebytecounts = fz_malloc_array(ctx, count, unsigned); |
| 935 | tiff_read_tag_value(tiff->tilebytecounts, tiff, type, value, count); |
| 936 | tiff->tilebytecountslen = count; |
| 937 | break; |
| 938 | |
| 939 | default: |
| 940 | /* fz_warn(ctx, "unknown tag: %d t=%d n=%d", tag, type, count); */ |
| 941 | break; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | static void |
| 946 | tiff_swap_byte_order(unsigned char *buf, int n) |
| 947 | { |
| 948 | int i, t; |
| 949 | for (i = 0; i < n; i++) |
| 950 | { |
| 951 | t = buf[i * 2 + 0]; |
| 952 | buf[i * 2 + 0] = buf[i * 2 + 1]; |
| 953 | buf[i * 2 + 1] = t; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | static void |
| 958 | tiff_scale_lab_samples(fz_context *ctx, unsigned char *buf, int bps, int n) |
| 959 | { |
| 960 | int i; |
| 961 | if (bps == 8) |
| 962 | for (i = 0; i < n; i++, buf += 3) |
| 963 | { |
| 964 | buf[1] ^= 128; |
| 965 | buf[2] ^= 128; |
| 966 | } |
| 967 | else if (bps == 16) |
| 968 | for (i = 0; i < n; i++, buf += 6) |
| 969 | { |
| 970 | buf[2] ^= 128; |
| 971 | buf[4] ^= 128; |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | static void |
| 976 | (fz_context *ctx, struct tiff *tiff, const unsigned char *buf, size_t len) |
| 977 | { |
| 978 | unsigned version; |
| 979 | |
| 980 | memset(tiff, 0, sizeof(struct tiff)); |
| 981 | tiff->bp = buf; |
| 982 | tiff->rp = buf; |
| 983 | tiff->ep = buf + len; |
| 984 | |
| 985 | /* tag defaults, where applicable */ |
| 986 | tiff->bitspersample = 1; |
| 987 | tiff->compression = 1; |
| 988 | tiff->samplesperpixel = 1; |
| 989 | tiff->resolutionunit = 2; |
| 990 | tiff->rowsperstrip = 0xFFFFFFFF; |
| 991 | tiff->fillorder = 1; |
| 992 | tiff->planar = 1; |
| 993 | tiff->subfiletype = 0; |
| 994 | tiff->predictor = 1; |
| 995 | tiff->ycbcrsubsamp[0] = 2; |
| 996 | tiff->ycbcrsubsamp[1] = 2; |
| 997 | |
| 998 | /* |
| 999 | * Read IFH |
| 1000 | */ |
| 1001 | |
| 1002 | /* get byte order marker */ |
| 1003 | tiff->order = readshort(tiff); |
| 1004 | if (tiff->order != TII && tiff->order != TMM) |
| 1005 | fz_throw(ctx, FZ_ERROR_GENERIC, "not a TIFF file, wrong magic marker" ); |
| 1006 | |
| 1007 | /* check version */ |
| 1008 | version = readshort(tiff); |
| 1009 | if (version != 42) |
| 1010 | fz_throw(ctx, FZ_ERROR_GENERIC, "not a TIFF file, wrong version marker" ); |
| 1011 | |
| 1012 | /* get offset of IFD */ |
| 1013 | tiff->ifd_offsets = fz_malloc_array(ctx, 1, unsigned); |
| 1014 | tiff->ifd_offsets[0] = tiff_readlong(tiff); |
| 1015 | tiff->ifds = 1; |
| 1016 | } |
| 1017 | |
| 1018 | static unsigned |
| 1019 | tiff_next_ifd(fz_context *ctx, struct tiff *tiff, unsigned offset) |
| 1020 | { |
| 1021 | unsigned count; |
| 1022 | int i; |
| 1023 | |
| 1024 | if (offset > (unsigned)(tiff->ep - tiff->bp)) |
| 1025 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid IFD offset %u" , offset); |
| 1026 | |
| 1027 | tiff->rp = tiff->bp + offset; |
| 1028 | count = readshort(tiff); |
| 1029 | |
| 1030 | if (count * 12 > (unsigned)(tiff->ep - tiff->rp)) |
| 1031 | fz_throw(ctx, FZ_ERROR_GENERIC, "overlarge IFD entry count %u" , count); |
| 1032 | |
| 1033 | tiff->rp += count * 12; |
| 1034 | offset = tiff_readlong(tiff); |
| 1035 | |
| 1036 | for (i = 0; i < tiff->ifds; i++) |
| 1037 | if (tiff->ifd_offsets[i] == offset) |
| 1038 | fz_throw(ctx, FZ_ERROR_GENERIC, "cycle in IFDs detected" ); |
| 1039 | |
| 1040 | tiff->ifd_offsets = fz_realloc_array(ctx, tiff->ifd_offsets, tiff->ifds + 1, unsigned); |
| 1041 | tiff->ifd_offsets[tiff->ifds] = offset; |
| 1042 | tiff->ifds++; |
| 1043 | |
| 1044 | return offset; |
| 1045 | } |
| 1046 | |
| 1047 | static void |
| 1048 | tiff_seek_ifd(fz_context *ctx, struct tiff *tiff, int subimage) |
| 1049 | { |
| 1050 | unsigned offset = tiff->ifd_offsets[0]; |
| 1051 | |
| 1052 | while (subimage--) |
| 1053 | { |
| 1054 | offset = tiff_next_ifd(ctx, tiff, offset); |
| 1055 | |
| 1056 | if (offset == 0) |
| 1057 | fz_throw(ctx, FZ_ERROR_GENERIC, "subimage index %i out of range" , subimage); |
| 1058 | } |
| 1059 | |
| 1060 | tiff->rp = tiff->bp + offset; |
| 1061 | |
| 1062 | if (tiff->rp < tiff->bp || tiff->rp > tiff->ep) |
| 1063 | fz_throw(ctx, FZ_ERROR_GENERIC, "invalid IFD offset %u" , offset); |
| 1064 | } |
| 1065 | |
| 1066 | static void |
| 1067 | tiff_read_ifd(fz_context *ctx, struct tiff *tiff) |
| 1068 | { |
| 1069 | unsigned offset; |
| 1070 | unsigned count; |
| 1071 | unsigned i; |
| 1072 | |
| 1073 | offset = tiff->rp - tiff->bp; |
| 1074 | |
| 1075 | count = readshort(tiff); |
| 1076 | |
| 1077 | if (count * 12 > (unsigned)(tiff->ep - tiff->rp)) |
| 1078 | fz_throw(ctx, FZ_ERROR_GENERIC, "overlarge IFD entry count %u" , count); |
| 1079 | |
| 1080 | offset += 2; |
| 1081 | for (i = 0; i < count; i++) |
| 1082 | { |
| 1083 | tiff_read_tag(ctx, tiff, offset); |
| 1084 | offset += 12; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | static void |
| 1089 | tiff_ycc_to_rgb(fz_context *ctx, struct tiff *tiff) |
| 1090 | { |
| 1091 | unsigned x, y; |
| 1092 | int offset = tiff->samplesperpixel; |
| 1093 | |
| 1094 | for (y = 0; y < tiff->imagelength; y++) |
| 1095 | { |
| 1096 | unsigned char * row = &tiff->samples[tiff->stride * y]; |
| 1097 | for (x = 0; x < tiff->imagewidth; x++) |
| 1098 | { |
| 1099 | int ycc[3]; |
| 1100 | ycc[0] = row[x * offset + 0]; |
| 1101 | ycc[1] = row[x * offset + 1] - 128; |
| 1102 | ycc[2] = row[x * offset + 2] - 128; |
| 1103 | |
| 1104 | row[x * offset + 0] = fz_clampi(ycc[0] + 1.402f * ycc[2], 0, 255); |
| 1105 | row[x * offset + 1] = fz_clampi(ycc[0] - 0.34413f * ycc[1] - 0.71414f * ycc[2], 0, 255); |
| 1106 | row[x * offset + 2] = fz_clampi(ycc[0] + 1.772f * ycc[1], 0, 255); |
| 1107 | } |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | static void |
| 1112 | tiff_decode_ifd(fz_context *ctx, struct tiff *tiff) |
| 1113 | { |
| 1114 | unsigned i; |
| 1115 | |
| 1116 | if (tiff->imagelength <= 0) |
| 1117 | fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0" ); |
| 1118 | if (tiff->imagewidth <= 0) |
| 1119 | fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0" ); |
| 1120 | if (tiff->bitspersample > 16 || !fz_is_pow2(tiff->bitspersample)) |
| 1121 | fz_throw(ctx, FZ_ERROR_GENERIC, "bits per sample illegal %d" , tiff->bitspersample); |
| 1122 | if (tiff->samplesperpixel == 0 || tiff->samplesperpixel >= FZ_MAX_COLORS) |
| 1123 | fz_throw(ctx, FZ_ERROR_GENERIC, "components per pixel out of range" ); |
| 1124 | if (tiff->imagelength > UINT_MAX / tiff->imagewidth / (tiff->samplesperpixel + 2) / (tiff->bitspersample / 8 + 1)) |
| 1125 | fz_throw(ctx, FZ_ERROR_GENERIC, "image too large" ); |
| 1126 | |
| 1127 | if (tiff->planar != 1) |
| 1128 | fz_throw(ctx, FZ_ERROR_GENERIC, "image data is not in chunky format" ); |
| 1129 | |
| 1130 | if (tiff->photometric == 6) |
| 1131 | { |
| 1132 | if (tiff->samplesperpixel != 3) |
| 1133 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported samples per pixel when subsampling" ); |
| 1134 | if (tiff->bitspersample != 8) |
| 1135 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported bits per sample when subsampling" ); |
| 1136 | if (tiff->ycbcrsubsamp[0] == 0 || tiff->ycbcrsubsamp[1] == 0) |
| 1137 | fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported subsampling factor" ); |
| 1138 | } |
| 1139 | |
| 1140 | tiff->stride = (tiff->imagewidth * tiff->samplesperpixel * tiff->bitspersample + 7) / 8; |
| 1141 | tiff->tilestride = (tiff->tilewidth * tiff->samplesperpixel * tiff->bitspersample + 7) / 8; |
| 1142 | |
| 1143 | switch (tiff->photometric) |
| 1144 | { |
| 1145 | case 0: /* WhiteIsZero -- inverted */ |
| 1146 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
| 1147 | break; |
| 1148 | case 1: /* BlackIsZero */ |
| 1149 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
| 1150 | break; |
| 1151 | case 2: /* RGB */ |
| 1152 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
| 1153 | break; |
| 1154 | case 3: /* RGBPal */ |
| 1155 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
| 1156 | break; |
| 1157 | case 4: /* Transparency mask */ |
| 1158 | tiff->colorspace = NULL; |
| 1159 | break; |
| 1160 | case 5: /* CMYK */ |
| 1161 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_cmyk(ctx)); |
| 1162 | break; |
| 1163 | case 6: /* YCbCr */ |
| 1164 | /* it's probably a jpeg ... we let jpeg convert to rgb */ |
| 1165 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
| 1166 | break; |
| 1167 | case 8: /* Direct L*a*b* encoding. a*, b* signed values */ |
| 1168 | case 9: /* ICC Style L*a*b* encoding */ |
| 1169 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_lab(ctx)); |
| 1170 | break; |
| 1171 | case 32844: /* SGI CIE Log 2 L (16bpp Greyscale) */ |
| 1172 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_gray(ctx)); |
| 1173 | if (tiff->bitspersample != 8) |
| 1174 | tiff->bitspersample = 8; |
| 1175 | tiff->stride >>= 1; |
| 1176 | break; |
| 1177 | case 32845: /* SGI CIE Log 2 L, u, v (24bpp or 32bpp) */ |
| 1178 | tiff->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
| 1179 | if (tiff->bitspersample != 8) |
| 1180 | tiff->bitspersample = 8; |
| 1181 | tiff->stride >>= 1; |
| 1182 | break; |
| 1183 | default: |
| 1184 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown photometric: %d" , tiff->photometric); |
| 1185 | } |
| 1186 | |
| 1187 | #if FZ_ENABLE_ICC |
| 1188 | if (tiff->profile) |
| 1189 | { |
| 1190 | fz_buffer *buff = NULL; |
| 1191 | fz_colorspace *icc = NULL; |
| 1192 | fz_var(buff); |
| 1193 | fz_try(ctx) |
| 1194 | { |
| 1195 | buff = fz_new_buffer_from_copied_data(ctx, tiff->profile, tiff->profilesize); |
| 1196 | icc = fz_new_icc_colorspace(ctx, fz_colorspace_type(ctx, tiff->colorspace), 0, NULL, buff); |
| 1197 | fz_drop_colorspace(ctx, tiff->colorspace); |
| 1198 | tiff->colorspace = icc; |
| 1199 | } |
| 1200 | fz_always(ctx) |
| 1201 | fz_drop_buffer(ctx, buff); |
| 1202 | fz_catch(ctx) |
| 1203 | fz_warn(ctx, "ignoring embedded ICC profile" ); |
| 1204 | } |
| 1205 | #endif |
| 1206 | |
| 1207 | if (!tiff->colorspace && tiff->samplesperpixel < 1) |
| 1208 | fz_throw(ctx, FZ_ERROR_GENERIC, "too few components for transparency mask" ); |
| 1209 | if (tiff->colorspace && tiff->colormap && tiff->samplesperpixel < 1) |
| 1210 | fz_throw(ctx, FZ_ERROR_GENERIC, "too few components for RGBPal" ); |
| 1211 | if (tiff->colorspace && !tiff->colormap && tiff->samplesperpixel < fz_colorspace_n(ctx, tiff->colorspace)) |
| 1212 | fz_throw(ctx, FZ_ERROR_GENERIC, "fewer components per pixel than indicated by colorspace" ); |
| 1213 | |
| 1214 | switch (tiff->resolutionunit) |
| 1215 | { |
| 1216 | case 2: |
| 1217 | /* no unit conversion needed */ |
| 1218 | break; |
| 1219 | case 3: |
| 1220 | tiff->xresolution = tiff->xresolution * 254 / 100; |
| 1221 | tiff->yresolution = tiff->yresolution * 254 / 100; |
| 1222 | break; |
| 1223 | default: |
| 1224 | tiff->xresolution = 96; |
| 1225 | tiff->yresolution = 96; |
| 1226 | break; |
| 1227 | } |
| 1228 | |
| 1229 | /* Note xres and yres could be 0 even if unit was set. If so default to 96dpi. */ |
| 1230 | if (tiff->xresolution == 0 || tiff->yresolution == 0) |
| 1231 | { |
| 1232 | tiff->xresolution = 96; |
| 1233 | tiff->yresolution = 96; |
| 1234 | } |
| 1235 | |
| 1236 | if (tiff->rowsperstrip > tiff->imagelength) |
| 1237 | tiff->rowsperstrip = tiff->imagelength; |
| 1238 | |
| 1239 | /* some creators don't write byte counts for uncompressed images */ |
| 1240 | if (tiff->compression == 1) |
| 1241 | { |
| 1242 | if (tiff->rowsperstrip == 0) |
| 1243 | fz_throw(ctx, FZ_ERROR_GENERIC, "rowsperstrip cannot be 0" ); |
| 1244 | if (!tiff->tilelength && !tiff->tilewidth && !tiff->stripbytecounts) |
| 1245 | { |
| 1246 | tiff->stripbytecountslen = (tiff->imagelength + tiff->rowsperstrip - 1) / tiff->rowsperstrip; |
| 1247 | tiff->stripbytecounts = fz_malloc_array(ctx, tiff->stripbytecountslen, unsigned); |
| 1248 | for (i = 0; i < tiff->stripbytecountslen; i++) |
| 1249 | tiff->stripbytecounts[i] = tiff->rowsperstrip * tiff->stride; |
| 1250 | } |
| 1251 | if (tiff->tilelength && tiff->tilewidth && !tiff->tilebytecounts) |
| 1252 | { |
| 1253 | unsigned tilesdown = (tiff->imagelength + tiff->tilelength - 1) / tiff->tilelength; |
| 1254 | unsigned tilesacross = (tiff->imagewidth + tiff->tilewidth - 1) / tiff->tilewidth; |
| 1255 | tiff->tilebytecountslen = tilesacross * tilesdown; |
| 1256 | tiff->tilebytecounts = fz_malloc_array(ctx, tiff->tilebytecountslen, unsigned); |
| 1257 | for (i = 0; i < tiff->tilebytecountslen; i++) |
| 1258 | tiff->tilebytecounts[i] = tiff->tilelength * tiff->tilestride; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | /* some creators write strip tags when they meant to write tile tags... */ |
| 1263 | if (tiff->tilelength && tiff->tilewidth) |
| 1264 | { |
| 1265 | if (!tiff->tileoffsets && !tiff->tileoffsetslen && |
| 1266 | tiff->stripoffsets && tiff->stripoffsetslen) |
| 1267 | { |
| 1268 | tiff->tileoffsets = tiff->stripoffsets; |
| 1269 | tiff->tileoffsetslen = tiff->stripoffsetslen; |
| 1270 | tiff->stripoffsets = NULL; |
| 1271 | tiff->stripoffsetslen = 0; |
| 1272 | } |
| 1273 | if (!tiff->tilebytecounts && !tiff->tilebytecountslen && |
| 1274 | tiff->stripbytecounts && tiff->stripbytecountslen) |
| 1275 | { |
| 1276 | tiff->tilebytecounts = tiff->stripbytecounts; |
| 1277 | tiff->tilebytecountslen = tiff->stripbytecountslen; |
| 1278 | tiff->stripbytecounts = NULL; |
| 1279 | tiff->stripbytecountslen = 0; |
| 1280 | } |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | static void |
| 1285 | tiff_decode_samples(fz_context *ctx, struct tiff *tiff) |
| 1286 | { |
| 1287 | unsigned i; |
| 1288 | |
| 1289 | if (tiff->imagelength > UINT_MAX / tiff->stride) |
| 1290 | fz_throw(ctx, FZ_ERROR_MEMORY, "image too large" ); |
| 1291 | tiff->samples = fz_malloc(ctx, tiff->imagelength * tiff->stride); |
| 1292 | memset(tiff->samples, 0x55, tiff->imagelength * tiff->stride); |
| 1293 | |
| 1294 | if (tiff->tilelength && tiff->tilewidth && tiff->tileoffsets && tiff->tilebytecounts) |
| 1295 | tiff_decode_tiles(ctx, tiff); |
| 1296 | else if (tiff->rowsperstrip && tiff->stripoffsets && tiff->stripbytecounts) |
| 1297 | tiff_decode_strips(ctx, tiff); |
| 1298 | else |
| 1299 | fz_throw(ctx, FZ_ERROR_GENERIC, "image is missing both strip and tile data" ); |
| 1300 | |
| 1301 | /* Predictor (only for LZW and Flate) */ |
| 1302 | if ((tiff->compression == 5 || tiff->compression == 8 || tiff->compression == 32946) && tiff->predictor == 2) |
| 1303 | { |
| 1304 | unsigned char *p = tiff->samples; |
| 1305 | for (i = 0; i < tiff->imagelength; i++) |
| 1306 | { |
| 1307 | tiff_unpredict_line(p, tiff->imagewidth, tiff->samplesperpixel, tiff->bitspersample); |
| 1308 | p += tiff->stride; |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | /* YCbCr -> RGB, but JPEG already has done this conversion */ |
| 1313 | if (tiff->photometric == 6 && tiff->compression != 6 && tiff->compression != 7) |
| 1314 | tiff_ycc_to_rgb(ctx, tiff); |
| 1315 | |
| 1316 | /* RGBPal */ |
| 1317 | if (tiff->photometric == 3 && tiff->colormap) |
| 1318 | tiff_expand_colormap(ctx, tiff); |
| 1319 | |
| 1320 | /* WhiteIsZero .. invert */ |
| 1321 | if (tiff->photometric == 0) |
| 1322 | { |
| 1323 | unsigned char *p = tiff->samples; |
| 1324 | for (i = 0; i < tiff->imagelength; i++) |
| 1325 | { |
| 1326 | tiff_invert_line(p, tiff->imagewidth, tiff->samplesperpixel, tiff->bitspersample, tiff->extrasamples); |
| 1327 | p += tiff->stride; |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | /* Premultiplied transparency */ |
| 1332 | if (tiff->extrasamples == 1) |
| 1333 | { |
| 1334 | /* In GhostXPS we undo the premultiplication here; muxps holds |
| 1335 | * all our images premultiplied by default, so nothing to do. |
| 1336 | */ |
| 1337 | } |
| 1338 | |
| 1339 | /* Non-premultiplied transparency */ |
| 1340 | if (tiff->extrasamples == 2) |
| 1341 | { |
| 1342 | /* Premultiplied files are corrected for elsewhere */ |
| 1343 | } |
| 1344 | |
| 1345 | /* Byte swap 16-bit images to big endian if necessary */ |
| 1346 | if (tiff->bitspersample == 16 && tiff->order == TII) |
| 1347 | tiff_swap_byte_order(tiff->samples, tiff->imagewidth * tiff->imagelength * tiff->samplesperpixel); |
| 1348 | |
| 1349 | /* Lab colorspace expects all sample components 0..255. |
| 1350 | TIFF supplies them as L = 0..255, a/b = -128..127 (for |
| 1351 | 8 bits per sample, -32768..32767 for 16 bits per sample) |
| 1352 | Scale them to the colorspace's expectations. */ |
| 1353 | if (tiff->photometric == 8 && tiff->samplesperpixel == 3) |
| 1354 | tiff_scale_lab_samples(ctx, tiff->samples, tiff->bitspersample, tiff->imagewidth * tiff->imagelength); |
| 1355 | } |
| 1356 | |
| 1357 | fz_pixmap * |
| 1358 | fz_load_tiff_subimage(fz_context *ctx, const unsigned char *buf, size_t len, int subimage) |
| 1359 | { |
| 1360 | fz_pixmap *image = NULL; |
| 1361 | struct tiff tiff = { 0 }; |
| 1362 | int alpha; |
| 1363 | |
| 1364 | fz_var(image); |
| 1365 | |
| 1366 | fz_try(ctx) |
| 1367 | { |
| 1368 | tiff_read_header(ctx, &tiff, buf, len); |
| 1369 | tiff_seek_ifd(ctx, &tiff, subimage); |
| 1370 | tiff_read_ifd(ctx, &tiff); |
| 1371 | |
| 1372 | /* Decode the image data */ |
| 1373 | tiff_decode_ifd(ctx, &tiff); |
| 1374 | tiff_decode_samples(ctx, &tiff); |
| 1375 | |
| 1376 | /* Expand into fz_pixmap struct */ |
| 1377 | alpha = tiff.extrasamples != 0 || tiff.colorspace == NULL; |
| 1378 | image = fz_new_pixmap(ctx, tiff.colorspace, tiff.imagewidth, tiff.imagelength, NULL, alpha); |
| 1379 | image->xres = tiff.xresolution; |
| 1380 | image->yres = tiff.yresolution; |
| 1381 | |
| 1382 | fz_unpack_tile(ctx, image, tiff.samples, tiff.samplesperpixel, tiff.bitspersample, tiff.stride, 0); |
| 1383 | |
| 1384 | /* We should only do this on non-pre-multiplied images, but files in the wild are bad */ |
| 1385 | /* TODO: check if any samples are non-premul to detect bad files */ |
| 1386 | if (tiff.extrasamples /* == 2 */) |
| 1387 | fz_premultiply_pixmap(ctx, image); |
| 1388 | } |
| 1389 | fz_always(ctx) |
| 1390 | { |
| 1391 | /* Clean up scratch memory */ |
| 1392 | fz_drop_colorspace(ctx, tiff.colorspace); |
| 1393 | fz_free(ctx, tiff.colormap); |
| 1394 | fz_free(ctx, tiff.stripoffsets); |
| 1395 | fz_free(ctx, tiff.stripbytecounts); |
| 1396 | fz_free(ctx, tiff.tileoffsets); |
| 1397 | fz_free(ctx, tiff.tilebytecounts); |
| 1398 | fz_free(ctx, tiff.data); |
| 1399 | fz_free(ctx, tiff.samples); |
| 1400 | fz_free(ctx, tiff.profile); |
| 1401 | fz_free(ctx, tiff.ifd_offsets); |
| 1402 | } |
| 1403 | fz_catch(ctx) |
| 1404 | { |
| 1405 | fz_drop_pixmap(ctx, image); |
| 1406 | fz_rethrow(ctx); |
| 1407 | } |
| 1408 | |
| 1409 | return image; |
| 1410 | } |
| 1411 | |
| 1412 | fz_pixmap * |
| 1413 | fz_load_tiff(fz_context *ctx, const unsigned char *buf, size_t len) |
| 1414 | { |
| 1415 | return fz_load_tiff_subimage(ctx, buf, len, 0); |
| 1416 | } |
| 1417 | |
| 1418 | void |
| 1419 | fz_load_tiff_info_subimage(fz_context *ctx, const unsigned char *buf, size_t len, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep, int subimage) |
| 1420 | { |
| 1421 | struct tiff tiff = { 0 }; |
| 1422 | |
| 1423 | fz_try(ctx) |
| 1424 | { |
| 1425 | tiff_read_header(ctx, &tiff, buf, len); |
| 1426 | tiff_seek_ifd(ctx, &tiff, subimage); |
| 1427 | tiff_read_ifd(ctx, &tiff); |
| 1428 | |
| 1429 | tiff_decode_ifd(ctx, &tiff); |
| 1430 | |
| 1431 | *wp = tiff.imagewidth; |
| 1432 | *hp = tiff.imagelength; |
| 1433 | *xresp = (tiff.xresolution ? tiff.xresolution : 96); |
| 1434 | *yresp = (tiff.yresolution ? tiff.yresolution : 96); |
| 1435 | if (tiff.extrasamples /* == 2 */) |
| 1436 | { |
| 1437 | fz_drop_colorspace(ctx, tiff.colorspace); |
| 1438 | tiff.colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx)); |
| 1439 | } |
| 1440 | *cspacep = fz_keep_colorspace(ctx, tiff.colorspace); |
| 1441 | } |
| 1442 | fz_always(ctx) |
| 1443 | { |
| 1444 | /* Clean up scratch memory */ |
| 1445 | fz_drop_colorspace(ctx, tiff.colorspace); |
| 1446 | fz_free(ctx, tiff.colormap); |
| 1447 | fz_free(ctx, tiff.stripoffsets); |
| 1448 | fz_free(ctx, tiff.stripbytecounts); |
| 1449 | fz_free(ctx, tiff.tileoffsets); |
| 1450 | fz_free(ctx, tiff.tilebytecounts); |
| 1451 | fz_free(ctx, tiff.data); |
| 1452 | fz_free(ctx, tiff.samples); |
| 1453 | fz_free(ctx, tiff.profile); |
| 1454 | fz_free(ctx, tiff.ifd_offsets); |
| 1455 | } |
| 1456 | fz_catch(ctx) |
| 1457 | { |
| 1458 | fz_rethrow(ctx); |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | void |
| 1463 | fz_load_tiff_info(fz_context *ctx, const unsigned char *buf, size_t len, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep) |
| 1464 | { |
| 1465 | fz_load_tiff_info_subimage(ctx, buf, len, wp, hp, xresp, yresp, cspacep, 0); |
| 1466 | } |
| 1467 | |
| 1468 | int |
| 1469 | fz_load_tiff_subimage_count(fz_context *ctx, const unsigned char *buf, size_t len) |
| 1470 | { |
| 1471 | unsigned offset; |
| 1472 | unsigned subimage_count = 0; |
| 1473 | struct tiff tiff = { 0 }; |
| 1474 | |
| 1475 | fz_try(ctx) |
| 1476 | { |
| 1477 | tiff_read_header(ctx, &tiff, buf, len); |
| 1478 | |
| 1479 | offset = tiff.ifd_offsets[0]; |
| 1480 | |
| 1481 | do { |
| 1482 | subimage_count++; |
| 1483 | offset = tiff_next_ifd(ctx, &tiff, offset); |
| 1484 | } while (offset != 0); |
| 1485 | } |
| 1486 | fz_always(ctx) |
| 1487 | fz_free(ctx, tiff.ifd_offsets); |
| 1488 | fz_catch(ctx) |
| 1489 | fz_rethrow(ctx); |
| 1490 | |
| 1491 | return subimage_count; |
| 1492 | } |
| 1493 | |