| 1 | #include "mupdf/fitz.h" |
| 2 | #include "fitz-imp.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <limits.h> |
| 6 | #include <stdio.h> |
| 7 | #include <string.h> |
| 8 | |
| 9 | typedef struct fz_item_s fz_item; |
| 10 | |
| 11 | struct fz_item_s |
| 12 | { |
| 13 | void *key; |
| 14 | fz_storable *val; |
| 15 | size_t size; |
| 16 | fz_item *next; |
| 17 | fz_item *prev; |
| 18 | fz_store *store; |
| 19 | const fz_store_type *type; |
| 20 | }; |
| 21 | |
| 22 | /* Every entry in fz_store is protected by the alloc lock */ |
| 23 | struct fz_store_s |
| 24 | { |
| 25 | int refs; |
| 26 | |
| 27 | /* Every item in the store is kept in a doubly linked list, ordered |
| 28 | * by usage (so LRU entries are at the end). */ |
| 29 | fz_item *head; |
| 30 | fz_item *tail; |
| 31 | |
| 32 | /* We have a hash table that allows to quickly find a subset of the |
| 33 | * entries (those whose keys are indirect objects). */ |
| 34 | fz_hash_table *hash; |
| 35 | |
| 36 | /* We keep track of the size of the store, and keep it below max. */ |
| 37 | size_t max; |
| 38 | size_t size; |
| 39 | |
| 40 | int defer_reap_count; |
| 41 | int needs_reaping; |
| 42 | }; |
| 43 | |
| 44 | /* |
| 45 | Create a new store inside the context |
| 46 | |
| 47 | max: The maximum size (in bytes) that the store is allowed to grow |
| 48 | to. FZ_STORE_UNLIMITED means no limit. |
| 49 | */ |
| 50 | void |
| 51 | fz_new_store_context(fz_context *ctx, size_t max) |
| 52 | { |
| 53 | fz_store *store; |
| 54 | store = fz_malloc_struct(ctx, fz_store); |
| 55 | fz_try(ctx) |
| 56 | { |
| 57 | store->hash = fz_new_hash_table(ctx, 4096, sizeof(fz_store_hash), FZ_LOCK_ALLOC, NULL); |
| 58 | } |
| 59 | fz_catch(ctx) |
| 60 | { |
| 61 | fz_free(ctx, store); |
| 62 | fz_rethrow(ctx); |
| 63 | } |
| 64 | store->refs = 1; |
| 65 | store->head = NULL; |
| 66 | store->tail = NULL; |
| 67 | store->size = 0; |
| 68 | store->max = max; |
| 69 | store->defer_reap_count = 0; |
| 70 | store->needs_reaping = 0; |
| 71 | ctx->store = store; |
| 72 | } |
| 73 | |
| 74 | void * |
| 75 | fz_keep_storable(fz_context *ctx, const fz_storable *sc) |
| 76 | { |
| 77 | /* Explicitly drop const to allow us to use const |
| 78 | * sanely throughout the code. */ |
| 79 | fz_storable *s = (fz_storable *)sc; |
| 80 | |
| 81 | return fz_keep_imp(ctx, s, &s->refs); |
| 82 | } |
| 83 | |
| 84 | void |
| 85 | fz_drop_storable(fz_context *ctx, const fz_storable *sc) |
| 86 | { |
| 87 | /* Explicitly drop const to allow us to use const |
| 88 | * sanely throughout the code. */ |
| 89 | fz_storable *s = (fz_storable *)sc; |
| 90 | |
| 91 | /* |
| 92 | If we are dropping the last reference to an object, then |
| 93 | it cannot possibly be in the store (as the store always |
| 94 | keeps a ref to everything in it, and doesn't drop via |
| 95 | this method. So we can simply drop the storable object |
| 96 | itself without any operations on the fz_store. |
| 97 | */ |
| 98 | if (fz_drop_imp(ctx, s, &s->refs)) |
| 99 | s->drop(ctx, s); |
| 100 | } |
| 101 | |
| 102 | void *fz_keep_key_storable(fz_context *ctx, const fz_key_storable *sc) |
| 103 | { |
| 104 | return fz_keep_storable(ctx, &sc->storable); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | Entered with FZ_LOCK_ALLOC held. |
| 109 | Drops FZ_LOCK_ALLOC. |
| 110 | */ |
| 111 | static void |
| 112 | do_reap(fz_context *ctx) |
| 113 | { |
| 114 | fz_store *store = ctx->store; |
| 115 | fz_item *item, *prev, *remove; |
| 116 | |
| 117 | if (store == NULL) |
| 118 | { |
| 119 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 120 | return; |
| 121 | } |
| 122 | |
| 123 | fz_assert_lock_held(ctx, FZ_LOCK_ALLOC); |
| 124 | |
| 125 | ctx->store->needs_reaping = 0; |
| 126 | |
| 127 | /* Reap the items */ |
| 128 | remove = NULL; |
| 129 | for (item = store->tail; item; item = prev) |
| 130 | { |
| 131 | prev = item->prev; |
| 132 | |
| 133 | if (item->type->needs_reap == NULL || item->type->needs_reap(ctx, item->key) == 0) |
| 134 | continue; |
| 135 | |
| 136 | /* We have to drop it */ |
| 137 | store->size -= item->size; |
| 138 | |
| 139 | /* Unlink from the linked list */ |
| 140 | if (item->next) |
| 141 | item->next->prev = item->prev; |
| 142 | else |
| 143 | store->tail = item->prev; |
| 144 | if (item->prev) |
| 145 | item->prev->next = item->next; |
| 146 | else |
| 147 | store->head = item->next; |
| 148 | |
| 149 | /* Remove from the hash table */ |
| 150 | if (item->type->make_hash_key) |
| 151 | { |
| 152 | fz_store_hash hash = { NULL }; |
| 153 | hash.drop = item->val->drop; |
| 154 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
| 155 | fz_hash_remove(ctx, store->hash, &hash); |
| 156 | } |
| 157 | |
| 158 | /* Store whether to drop this value or not in 'prev' */ |
| 159 | if (item->val->refs > 0) |
| 160 | (void)Memento_dropRef(item->val); |
| 161 | item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL; |
| 162 | |
| 163 | /* Store it in our removal chain - just singly linked */ |
| 164 | item->next = remove; |
| 165 | remove = item; |
| 166 | } |
| 167 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 168 | |
| 169 | /* Now drop the remove chain */ |
| 170 | for (item = remove; item != NULL; item = remove) |
| 171 | { |
| 172 | remove = item->next; |
| 173 | |
| 174 | /* Drop a reference to the value (freeing if required) */ |
| 175 | if (item->prev) |
| 176 | item->val->drop(ctx, item->val); |
| 177 | |
| 178 | /* Always drops the key and drop the item */ |
| 179 | item->type->drop_key(ctx, item->key); |
| 180 | fz_free(ctx, item); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | void fz_drop_key_storable(fz_context *ctx, const fz_key_storable *sc) |
| 185 | { |
| 186 | /* Explicitly drop const to allow us to use const |
| 187 | * sanely throughout the code. */ |
| 188 | fz_key_storable *s = (fz_key_storable *)sc; |
| 189 | int drop; |
| 190 | int unlock = 1; |
| 191 | |
| 192 | if (s == NULL) |
| 193 | return; |
| 194 | |
| 195 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 196 | if (s->storable.refs > 0) |
| 197 | { |
| 198 | (void)Memento_dropRef(s); |
| 199 | drop = --s->storable.refs == 0; |
| 200 | if (!drop && s->storable.refs == s->store_key_refs) |
| 201 | { |
| 202 | if (ctx->store->defer_reap_count > 0) |
| 203 | { |
| 204 | ctx->store->needs_reaping = 1; |
| 205 | } |
| 206 | else |
| 207 | { |
| 208 | do_reap(ctx); |
| 209 | unlock = 0; |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | else |
| 214 | drop = 0; |
| 215 | if (unlock) |
| 216 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 217 | /* |
| 218 | If we are dropping the last reference to an object, then |
| 219 | it cannot possibly be in the store (as the store always |
| 220 | keeps a ref to everything in it, and doesn't drop via |
| 221 | this method. So we can simply drop the storable object |
| 222 | itself without any operations on the fz_store. |
| 223 | */ |
| 224 | if (drop) |
| 225 | s->storable.drop(ctx, &s->storable); |
| 226 | } |
| 227 | |
| 228 | void *fz_keep_key_storable_key(fz_context *ctx, const fz_key_storable *sc) |
| 229 | { |
| 230 | /* Explicitly drop const to allow us to use const |
| 231 | * sanely throughout the code. */ |
| 232 | fz_key_storable *s = (fz_key_storable *)sc; |
| 233 | |
| 234 | if (s == NULL) |
| 235 | return NULL; |
| 236 | |
| 237 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 238 | if (s->storable.refs > 0) |
| 239 | { |
| 240 | (void)Memento_takeRef(s); |
| 241 | ++s->storable.refs; |
| 242 | ++s->store_key_refs; |
| 243 | } |
| 244 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 245 | return s; |
| 246 | } |
| 247 | |
| 248 | void fz_drop_key_storable_key(fz_context *ctx, const fz_key_storable *sc) |
| 249 | { |
| 250 | /* Explicitly drop const to allow us to use const |
| 251 | * sanely throughout the code. */ |
| 252 | fz_key_storable *s = (fz_key_storable *)sc; |
| 253 | int drop; |
| 254 | |
| 255 | if (s == NULL) |
| 256 | return; |
| 257 | |
| 258 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 259 | assert(s->store_key_refs > 0 && s->storable.refs >= s->store_key_refs); |
| 260 | (void)Memento_dropRef(s); |
| 261 | drop = --s->storable.refs == 0; |
| 262 | --s->store_key_refs; |
| 263 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 264 | /* |
| 265 | If we are dropping the last reference to an object, then |
| 266 | it cannot possibly be in the store (as the store always |
| 267 | keeps a ref to everything in it, and doesn't drop via |
| 268 | this method. So we can simply drop the storable object |
| 269 | itself without any operations on the fz_store. |
| 270 | */ |
| 271 | if (drop) |
| 272 | s->storable.drop(ctx, &s->storable); |
| 273 | } |
| 274 | |
| 275 | static void |
| 276 | evict(fz_context *ctx, fz_item *item) |
| 277 | { |
| 278 | fz_store *store = ctx->store; |
| 279 | int drop; |
| 280 | |
| 281 | store->size -= item->size; |
| 282 | /* Unlink from the linked list */ |
| 283 | if (item->next) |
| 284 | item->next->prev = item->prev; |
| 285 | else |
| 286 | store->tail = item->prev; |
| 287 | if (item->prev) |
| 288 | item->prev->next = item->next; |
| 289 | else |
| 290 | store->head = item->next; |
| 291 | |
| 292 | /* Drop a reference to the value (freeing if required) */ |
| 293 | if (item->val->refs > 0) |
| 294 | (void)Memento_dropRef(item->val); |
| 295 | drop = (item->val->refs > 0 && --item->val->refs == 0); |
| 296 | |
| 297 | /* Remove from the hash table */ |
| 298 | if (item->type->make_hash_key) |
| 299 | { |
| 300 | fz_store_hash hash = { NULL }; |
| 301 | hash.drop = item->val->drop; |
| 302 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
| 303 | fz_hash_remove(ctx, store->hash, &hash); |
| 304 | } |
| 305 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 306 | if (drop) |
| 307 | item->val->drop(ctx, item->val); |
| 308 | |
| 309 | /* Always drops the key and drop the item */ |
| 310 | item->type->drop_key(ctx, item->key); |
| 311 | fz_free(ctx, item); |
| 312 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 313 | } |
| 314 | |
| 315 | static size_t |
| 316 | ensure_space(fz_context *ctx, size_t tofree) |
| 317 | { |
| 318 | fz_item *item, *prev; |
| 319 | size_t count; |
| 320 | fz_store *store = ctx->store; |
| 321 | fz_item *to_be_freed = NULL; |
| 322 | |
| 323 | fz_assert_lock_held(ctx, FZ_LOCK_ALLOC); |
| 324 | |
| 325 | /* First check that we *can* free tofree; if not, we'd rather not |
| 326 | * cache this. */ |
| 327 | count = 0; |
| 328 | for (item = store->tail; item; item = item->prev) |
| 329 | { |
| 330 | if (item->val->refs == 1) |
| 331 | { |
| 332 | count += item->size; |
| 333 | if (count >= tofree) |
| 334 | break; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /* If we ran out of items to search, then we can never free enough */ |
| 339 | if (item == NULL) |
| 340 | { |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /* Now move all the items to be freed onto 'to_be_freed' */ |
| 345 | count = 0; |
| 346 | for (item = store->tail; item; item = prev) |
| 347 | { |
| 348 | prev = item->prev; |
| 349 | if (item->val->refs != 1) |
| 350 | continue; |
| 351 | |
| 352 | store->size -= item->size; |
| 353 | |
| 354 | /* Unlink from the linked list */ |
| 355 | if (item->next) |
| 356 | item->next->prev = item->prev; |
| 357 | else |
| 358 | store->tail = item->prev; |
| 359 | if (item->prev) |
| 360 | item->prev->next = item->next; |
| 361 | else |
| 362 | store->head = item->next; |
| 363 | |
| 364 | /* Remove from the hash table */ |
| 365 | if (item->type->make_hash_key) |
| 366 | { |
| 367 | fz_store_hash hash = { NULL }; |
| 368 | hash.drop = item->val->drop; |
| 369 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
| 370 | fz_hash_remove(ctx, store->hash, &hash); |
| 371 | } |
| 372 | |
| 373 | /* Link into to_be_freed */ |
| 374 | item->next = to_be_freed; |
| 375 | to_be_freed = item; |
| 376 | |
| 377 | count += item->size; |
| 378 | if (count >= tofree) |
| 379 | break; |
| 380 | } |
| 381 | |
| 382 | /* Now we can safely drop the lock and free our pending items. These |
| 383 | * have all been removed from both the store list, and the hash table, |
| 384 | * so they can't be 'found' by anyone else in the meantime. */ |
| 385 | |
| 386 | while (to_be_freed) |
| 387 | { |
| 388 | fz_item *item = to_be_freed; |
| 389 | int drop; |
| 390 | |
| 391 | to_be_freed = to_be_freed->next; |
| 392 | |
| 393 | /* Drop a reference to the value (freeing if required) */ |
| 394 | if (item->val->refs > 0) |
| 395 | (void)Memento_dropRef(item->val); |
| 396 | drop = (item->val->refs > 0 && --item->val->refs == 0); |
| 397 | |
| 398 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 399 | if (drop) |
| 400 | item->val->drop(ctx, item->val); |
| 401 | |
| 402 | /* Always drops the key and drop the item */ |
| 403 | item->type->drop_key(ctx, item->key); |
| 404 | fz_free(ctx, item); |
| 405 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 406 | } |
| 407 | |
| 408 | return count; |
| 409 | } |
| 410 | |
| 411 | static void |
| 412 | touch(fz_store *store, fz_item *item) |
| 413 | { |
| 414 | if (item->next != item) |
| 415 | { |
| 416 | /* Already in the list - unlink it */ |
| 417 | if (item->next) |
| 418 | item->next->prev = item->prev; |
| 419 | else |
| 420 | store->tail = item->prev; |
| 421 | if (item->prev) |
| 422 | item->prev->next = item->next; |
| 423 | else |
| 424 | store->head = item->next; |
| 425 | } |
| 426 | /* Now relink it at the start of the LRU chain */ |
| 427 | item->next = store->head; |
| 428 | if (item->next) |
| 429 | item->next->prev = item; |
| 430 | else |
| 431 | store->tail = item; |
| 432 | store->head = item; |
| 433 | item->prev = NULL; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | Add an item to the store. |
| 438 | |
| 439 | Add an item into the store, returning NULL for success. If an item |
| 440 | with the same key is found in the store, then our item will not be |
| 441 | inserted, and the function will return a pointer to that value |
| 442 | instead. This function takes its own reference to val, as required |
| 443 | (i.e. the caller maintains ownership of its own reference). |
| 444 | |
| 445 | key: The key used to index the item. |
| 446 | |
| 447 | val: The value to store. |
| 448 | |
| 449 | itemsize: The size in bytes of the value (as counted towards the |
| 450 | store size). |
| 451 | |
| 452 | type: Functions used to manipulate the key. |
| 453 | */ |
| 454 | void * |
| 455 | fz_store_item(fz_context *ctx, void *key, void *val_, size_t itemsize, const fz_store_type *type) |
| 456 | { |
| 457 | fz_item *item = NULL; |
| 458 | size_t size; |
| 459 | fz_storable *val = (fz_storable *)val_; |
| 460 | fz_store *store = ctx->store; |
| 461 | fz_store_hash hash = { NULL }; |
| 462 | int use_hash = 0; |
| 463 | |
| 464 | if (!store) |
| 465 | return NULL; |
| 466 | |
| 467 | /* If we fail for any reason, we swallow the exception and continue. |
| 468 | * All that the above program will see is that we failed to store |
| 469 | * the item. */ |
| 470 | |
| 471 | item = fz_malloc_no_throw(ctx, sizeof (fz_item)); |
| 472 | if (!item) |
| 473 | return NULL; |
| 474 | memset(item, 0, sizeof (fz_item)); |
| 475 | |
| 476 | if (type->make_hash_key) |
| 477 | { |
| 478 | hash.drop = val->drop; |
| 479 | use_hash = type->make_hash_key(ctx, &hash, key); |
| 480 | } |
| 481 | |
| 482 | type->keep_key(ctx, key); |
| 483 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 484 | |
| 485 | /* Fill out the item. To start with, we always set item->next == item |
| 486 | * and item->prev == item. This is so that we can spot items that have |
| 487 | * been put into the hash table without having made it into the linked |
| 488 | * list yet. */ |
| 489 | item->key = key; |
| 490 | item->val = val; |
| 491 | item->size = itemsize; |
| 492 | item->next = item; |
| 493 | item->prev = item; |
| 494 | item->type = type; |
| 495 | |
| 496 | /* If we can index it fast, put it into the hash table. This serves |
| 497 | * to check whether we have one there already. */ |
| 498 | if (use_hash) |
| 499 | { |
| 500 | fz_item *existing = NULL; |
| 501 | |
| 502 | fz_try(ctx) |
| 503 | { |
| 504 | /* May drop and retake the lock */ |
| 505 | existing = fz_hash_insert(ctx, store->hash, &hash, item); |
| 506 | } |
| 507 | fz_catch(ctx) |
| 508 | { |
| 509 | /* Any error here means that item never made it into the |
| 510 | * hash - so no one else can have a reference. */ |
| 511 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 512 | fz_free(ctx, item); |
| 513 | type->drop_key(ctx, key); |
| 514 | return NULL; |
| 515 | } |
| 516 | if (existing) |
| 517 | { |
| 518 | /* There was one there already! Take a new reference |
| 519 | * to the existing one, and drop our current one. */ |
| 520 | touch(store, existing); |
| 521 | if (existing->val->refs > 0) |
| 522 | { |
| 523 | (void)Memento_takeRef(existing->val); |
| 524 | existing->val->refs++; |
| 525 | } |
| 526 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 527 | fz_free(ctx, item); |
| 528 | type->drop_key(ctx, key); |
| 529 | return existing->val; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /* Now bump the ref */ |
| 534 | if (val->refs > 0) |
| 535 | { |
| 536 | (void)Memento_takeRef(val); |
| 537 | val->refs++; |
| 538 | } |
| 539 | |
| 540 | /* If we haven't got an infinite store, check for space within it */ |
| 541 | if (store->max != FZ_STORE_UNLIMITED) |
| 542 | { |
| 543 | size = store->size + itemsize; |
| 544 | while (size > store->max) |
| 545 | { |
| 546 | size_t saved; |
| 547 | |
| 548 | /* First, do any outstanding reaping, even if defer_reap_count > 0 */ |
| 549 | if (store->needs_reaping) |
| 550 | { |
| 551 | do_reap(ctx); /* Drops alloc lock */ |
| 552 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 553 | } |
| 554 | size = store->size + itemsize; |
| 555 | if (size <= store->max) |
| 556 | break; |
| 557 | |
| 558 | /* ensure_space may drop, then retake the lock */ |
| 559 | saved = ensure_space(ctx, size - store->max); |
| 560 | size -= saved; |
| 561 | if (saved == 0) |
| 562 | { |
| 563 | /* Failed to free any space. */ |
| 564 | /* We used to 'unstore' it here, but that's wrong. |
| 565 | * If we've already spent the memory to malloc it |
| 566 | * then not putting it in the store just means that |
| 567 | * a resource used multiple times will just be malloced |
| 568 | * again. Better to put it in the store, have the |
| 569 | * store account for it, and for it to potentially be reused. |
| 570 | * When the caller drops the reference to it, it can then |
| 571 | * be dropped from the store on the next attempt to store |
| 572 | * anything else. */ |
| 573 | break; |
| 574 | } |
| 575 | } |
| 576 | } |
| 577 | store->size += itemsize; |
| 578 | |
| 579 | /* Regardless of whether it's indexed, it goes into the linked list */ |
| 580 | touch(store, item); |
| 581 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 582 | |
| 583 | return NULL; |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | Find an item within the store. |
| 588 | |
| 589 | drop: The function used to free the value (to ensure we get a value |
| 590 | of the correct type). |
| 591 | |
| 592 | key: The key used to index the item. |
| 593 | |
| 594 | type: Functions used to manipulate the key. |
| 595 | |
| 596 | Returns NULL for not found, otherwise returns a pointer to the value |
| 597 | indexed by key to which a reference has been taken. |
| 598 | */ |
| 599 | void * |
| 600 | fz_find_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type) |
| 601 | { |
| 602 | fz_item *item; |
| 603 | fz_store *store = ctx->store; |
| 604 | fz_store_hash hash = { NULL }; |
| 605 | int use_hash = 0; |
| 606 | |
| 607 | if (!store) |
| 608 | return NULL; |
| 609 | |
| 610 | if (!key) |
| 611 | return NULL; |
| 612 | |
| 613 | if (type->make_hash_key) |
| 614 | { |
| 615 | hash.drop = drop; |
| 616 | use_hash = type->make_hash_key(ctx, &hash, key); |
| 617 | } |
| 618 | |
| 619 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 620 | if (use_hash) |
| 621 | { |
| 622 | /* We can find objects keyed on indirected objects quickly */ |
| 623 | item = fz_hash_find(ctx, store->hash, &hash); |
| 624 | } |
| 625 | else |
| 626 | { |
| 627 | /* Others we have to hunt for slowly */ |
| 628 | for (item = store->head; item; item = item->next) |
| 629 | { |
| 630 | if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key)) |
| 631 | break; |
| 632 | } |
| 633 | } |
| 634 | if (item) |
| 635 | { |
| 636 | /* LRU the block. This also serves to ensure that any item |
| 637 | * picked up from the hash before it has made it into the |
| 638 | * linked list does not get whipped out again due to the |
| 639 | * store being full. */ |
| 640 | touch(store, item); |
| 641 | /* And bump the refcount before returning */ |
| 642 | if (item->val->refs > 0) |
| 643 | { |
| 644 | (void)Memento_takeRef(item->val); |
| 645 | item->val->refs++; |
| 646 | } |
| 647 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 648 | return (void *)item->val; |
| 649 | } |
| 650 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 651 | |
| 652 | return NULL; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | Remove an item from the store. |
| 657 | |
| 658 | If an item indexed by the given key exists in the store, remove it. |
| 659 | |
| 660 | drop: The function used to free the value (to ensure we get a value |
| 661 | of the correct type). |
| 662 | |
| 663 | key: The key used to find the item to remove. |
| 664 | |
| 665 | type: Functions used to manipulate the key. |
| 666 | */ |
| 667 | void |
| 668 | fz_remove_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type) |
| 669 | { |
| 670 | fz_item *item; |
| 671 | fz_store *store = ctx->store; |
| 672 | int dodrop; |
| 673 | fz_store_hash hash = { NULL }; |
| 674 | int use_hash = 0; |
| 675 | |
| 676 | if (type->make_hash_key) |
| 677 | { |
| 678 | hash.drop = drop; |
| 679 | use_hash = type->make_hash_key(ctx, &hash, key); |
| 680 | } |
| 681 | |
| 682 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 683 | if (use_hash) |
| 684 | { |
| 685 | /* We can find objects keyed on indirect objects quickly */ |
| 686 | item = fz_hash_find(ctx, store->hash, &hash); |
| 687 | if (item) |
| 688 | fz_hash_remove(ctx, store->hash, &hash); |
| 689 | } |
| 690 | else |
| 691 | { |
| 692 | /* Others we have to hunt for slowly */ |
| 693 | for (item = store->head; item; item = item->next) |
| 694 | if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key)) |
| 695 | break; |
| 696 | } |
| 697 | if (item) |
| 698 | { |
| 699 | /* Momentarily things can be in the hash table without being |
| 700 | * in the list. Don't attempt to unlink these. We indicate |
| 701 | * such items by setting item->next == item. */ |
| 702 | if (item->next != item) |
| 703 | { |
| 704 | if (item->next) |
| 705 | item->next->prev = item->prev; |
| 706 | else |
| 707 | store->tail = item->prev; |
| 708 | if (item->prev) |
| 709 | item->prev->next = item->next; |
| 710 | else |
| 711 | store->head = item->next; |
| 712 | } |
| 713 | if (item->val->refs > 0) |
| 714 | (void)Memento_dropRef(item->val); |
| 715 | dodrop = (item->val->refs > 0 && --item->val->refs == 0); |
| 716 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 717 | if (dodrop) |
| 718 | item->val->drop(ctx, item->val); |
| 719 | type->drop_key(ctx, item->key); |
| 720 | fz_free(ctx, item); |
| 721 | } |
| 722 | else |
| 723 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 724 | } |
| 725 | |
| 726 | void |
| 727 | fz_empty_store(fz_context *ctx) |
| 728 | { |
| 729 | fz_store *store = ctx->store; |
| 730 | |
| 731 | if (store == NULL) |
| 732 | return; |
| 733 | |
| 734 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 735 | /* Run through all the items in the store */ |
| 736 | while (store->head) |
| 737 | evict(ctx, store->head); /* Drops then retakes lock */ |
| 738 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 739 | } |
| 740 | |
| 741 | fz_store * |
| 742 | fz_keep_store_context(fz_context *ctx) |
| 743 | { |
| 744 | if (ctx == NULL || ctx->store == NULL) |
| 745 | return NULL; |
| 746 | return fz_keep_imp(ctx, ctx->store, &ctx->store->refs); |
| 747 | } |
| 748 | |
| 749 | void |
| 750 | fz_drop_store_context(fz_context *ctx) |
| 751 | { |
| 752 | if (!ctx) |
| 753 | return; |
| 754 | if (fz_drop_imp(ctx, ctx->store, &ctx->store->refs)) |
| 755 | { |
| 756 | fz_empty_store(ctx); |
| 757 | fz_drop_hash_table(ctx, ctx->store->hash); |
| 758 | fz_free(ctx, ctx->store); |
| 759 | ctx->store = NULL; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | static void |
| 764 | fz_debug_store_item(fz_context *ctx, void *state, void *key_, int keylen, void *item_) |
| 765 | { |
| 766 | unsigned char *key = key_; |
| 767 | fz_item *item = item_; |
| 768 | int i; |
| 769 | char buf[256]; |
| 770 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 771 | item->type->format_key(ctx, buf, sizeof buf, item->key); |
| 772 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 773 | printf("hash[" ); |
| 774 | for (i=0; i < keylen; ++i) |
| 775 | printf("%02x" , key[i]); |
| 776 | printf("][refs=%d][size=%d] key=%s val=%p\n" , item->val->refs, (int)item->size, buf, (void *)item->val); |
| 777 | } |
| 778 | |
| 779 | static void |
| 780 | fz_debug_store_locked(fz_context *ctx) |
| 781 | { |
| 782 | fz_item *item, *next; |
| 783 | char buf[256]; |
| 784 | fz_store *store = ctx->store; |
| 785 | |
| 786 | printf("-- resource store contents --\n" ); |
| 787 | |
| 788 | for (item = store->head; item; item = next) |
| 789 | { |
| 790 | next = item->next; |
| 791 | if (next) |
| 792 | { |
| 793 | (void)Memento_takeRef(next->val); |
| 794 | next->val->refs++; |
| 795 | } |
| 796 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 797 | item->type->format_key(ctx, buf, sizeof buf, item->key); |
| 798 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 799 | printf("store[*][refs=%d][size=%d] key=%s val=%p\n" , |
| 800 | item->val->refs, (int)item->size, buf, (void *)item->val); |
| 801 | if (next) |
| 802 | { |
| 803 | (void)Memento_dropRef(next->val); |
| 804 | next->val->refs--; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | printf("-- resource store hash contents --\n" ); |
| 809 | fz_hash_for_each(ctx, store->hash, NULL, fz_debug_store_item); |
| 810 | printf("-- end --\n" ); |
| 811 | } |
| 812 | |
| 813 | void |
| 814 | fz_debug_store(fz_context *ctx) |
| 815 | { |
| 816 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 817 | fz_debug_store_locked(ctx); |
| 818 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 819 | } |
| 820 | |
| 821 | /* This is now an n^2 algorithm - not ideal, but it'll only be bad if we are |
| 822 | * actually managing to scavenge lots of blocks back. */ |
| 823 | static int |
| 824 | scavenge(fz_context *ctx, size_t tofree) |
| 825 | { |
| 826 | fz_store *store = ctx->store; |
| 827 | size_t count = 0; |
| 828 | fz_item *item, *prev; |
| 829 | |
| 830 | /* Free the items */ |
| 831 | for (item = store->tail; item; item = prev) |
| 832 | { |
| 833 | prev = item->prev; |
| 834 | if (item->val->refs == 1) |
| 835 | { |
| 836 | /* Free this item */ |
| 837 | count += item->size; |
| 838 | evict(ctx, item); /* Drops then retakes lock */ |
| 839 | |
| 840 | if (count >= tofree) |
| 841 | break; |
| 842 | |
| 843 | /* Have to restart search again, as prev may no longer |
| 844 | * be valid due to release of lock in evict. */ |
| 845 | prev = store->tail; |
| 846 | } |
| 847 | } |
| 848 | /* Success is managing to evict any blocks */ |
| 849 | return count != 0; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | External function for callers to use |
| 854 | to scavenge while trying allocations. |
| 855 | |
| 856 | size: The number of bytes we are trying to have free. |
| 857 | |
| 858 | phase: What phase of the scavenge we are in. Updated on exit. |
| 859 | |
| 860 | Returns non zero if we managed to free any memory. |
| 861 | */ |
| 862 | int fz_store_scavenge_external(fz_context *ctx, size_t size, int *phase) |
| 863 | { |
| 864 | int ret; |
| 865 | |
| 866 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 867 | ret = fz_store_scavenge(ctx, size, phase); |
| 868 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 869 | |
| 870 | return ret; |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | Internal function used as part of the scavenging |
| 875 | allocator; when we fail to allocate memory, before returning a |
| 876 | failure to the caller, we try to scavenge space within the store by |
| 877 | evicting at least 'size' bytes. The allocator then retries. |
| 878 | |
| 879 | size: The number of bytes we are trying to have free. |
| 880 | |
| 881 | phase: What phase of the scavenge we are in. Updated on exit. |
| 882 | |
| 883 | Returns non zero if we managed to free any memory. |
| 884 | */ |
| 885 | int fz_store_scavenge(fz_context *ctx, size_t size, int *phase) |
| 886 | { |
| 887 | fz_store *store; |
| 888 | size_t max; |
| 889 | |
| 890 | store = ctx->store; |
| 891 | if (store == NULL) |
| 892 | return 0; |
| 893 | |
| 894 | #ifdef DEBUG_SCAVENGING |
| 895 | printf("Scavenging: store=" FZ_FMT_zu " size=" FZ_FMT_zu " phase=%d\n" , store->size, size, *phase); |
| 896 | fz_debug_store_locked(ctx); |
| 897 | Memento_stats(); |
| 898 | #endif |
| 899 | do |
| 900 | { |
| 901 | size_t tofree; |
| 902 | |
| 903 | /* Calculate 'max' as the maximum size of the store for this phase */ |
| 904 | if (*phase >= 16) |
| 905 | max = 0; |
| 906 | else if (store->max != FZ_STORE_UNLIMITED) |
| 907 | max = store->max / 16 * (16 - *phase); |
| 908 | else |
| 909 | max = store->size / (16 - *phase) * (15 - *phase); |
| 910 | (*phase)++; |
| 911 | |
| 912 | /* Slightly baroque calculations to avoid overflow */ |
| 913 | if (size > SIZE_MAX - store->size) |
| 914 | tofree = SIZE_MAX - max; |
| 915 | else if (size + store->size > max) |
| 916 | continue; |
| 917 | else |
| 918 | tofree = size + store->size - max; |
| 919 | |
| 920 | if (scavenge(ctx, tofree)) |
| 921 | { |
| 922 | #ifdef DEBUG_SCAVENGING |
| 923 | printf("scavenged: store=" FZ_FMT_zu "\n" , store->size); |
| 924 | fz_debug_store(ctx); |
| 925 | Memento_stats(); |
| 926 | #endif |
| 927 | return 1; |
| 928 | } |
| 929 | } |
| 930 | while (max > 0); |
| 931 | |
| 932 | #ifdef DEBUG_SCAVENGING |
| 933 | printf("scavenging failed\n" ); |
| 934 | fz_debug_store(ctx); |
| 935 | Memento_listBlocks(); |
| 936 | #endif |
| 937 | return 0; |
| 938 | } |
| 939 | |
| 940 | /* |
| 941 | Evict items from the store until the total size of |
| 942 | the objects in the store is reduced to a given percentage of its |
| 943 | current size. |
| 944 | |
| 945 | percent: %age of current size to reduce the store to. |
| 946 | |
| 947 | Returns non zero if we managed to free enough memory, zero otherwise. |
| 948 | */ |
| 949 | int |
| 950 | fz_shrink_store(fz_context *ctx, unsigned int percent) |
| 951 | { |
| 952 | int success; |
| 953 | fz_store *store; |
| 954 | size_t new_size; |
| 955 | |
| 956 | if (percent >= 100) |
| 957 | return 1; |
| 958 | |
| 959 | store = ctx->store; |
| 960 | if (store == NULL) |
| 961 | return 0; |
| 962 | |
| 963 | #ifdef DEBUG_SCAVENGING |
| 964 | printf("fz_shrink_store: " FZ_FMT_zu "\n" , store->size/(1024*1024)); |
| 965 | #endif |
| 966 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 967 | |
| 968 | new_size = (size_t)(((uint64_t)store->size * percent) / 100); |
| 969 | if (store->size > new_size) |
| 970 | scavenge(ctx, store->size - new_size); |
| 971 | |
| 972 | success = (store->size <= new_size) ? 1 : 0; |
| 973 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 974 | #ifdef DEBUG_SCAVENGING |
| 975 | printf("fz_shrink_store after: " FZ_FMT_zu "\n" , store->size/(1024*1024)); |
| 976 | #endif |
| 977 | |
| 978 | return success; |
| 979 | } |
| 980 | |
| 981 | void fz_filter_store(fz_context *ctx, fz_store_filter_fn *fn, void *arg, const fz_store_type *type) |
| 982 | { |
| 983 | fz_store *store; |
| 984 | fz_item *item, *prev, *remove; |
| 985 | |
| 986 | store = ctx->store; |
| 987 | if (store == NULL) |
| 988 | return; |
| 989 | |
| 990 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 991 | |
| 992 | /* Filter the items */ |
| 993 | remove = NULL; |
| 994 | for (item = store->tail; item; item = prev) |
| 995 | { |
| 996 | prev = item->prev; |
| 997 | if (item->type != type) |
| 998 | continue; |
| 999 | |
| 1000 | if (fn(ctx, arg, item->key) == 0) |
| 1001 | continue; |
| 1002 | |
| 1003 | /* We have to drop it */ |
| 1004 | store->size -= item->size; |
| 1005 | |
| 1006 | /* Unlink from the linked list */ |
| 1007 | if (item->next) |
| 1008 | item->next->prev = item->prev; |
| 1009 | else |
| 1010 | store->tail = item->prev; |
| 1011 | if (item->prev) |
| 1012 | item->prev->next = item->next; |
| 1013 | else |
| 1014 | store->head = item->next; |
| 1015 | |
| 1016 | /* Remove from the hash table */ |
| 1017 | if (item->type->make_hash_key) |
| 1018 | { |
| 1019 | fz_store_hash hash = { NULL }; |
| 1020 | hash.drop = item->val->drop; |
| 1021 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
| 1022 | fz_hash_remove(ctx, store->hash, &hash); |
| 1023 | } |
| 1024 | |
| 1025 | /* Store whether to drop this value or not in 'prev' */ |
| 1026 | if (item->val->refs > 0) |
| 1027 | (void)Memento_dropRef(item->val); |
| 1028 | item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL; |
| 1029 | |
| 1030 | /* Store it in our removal chain - just singly linked */ |
| 1031 | item->next = remove; |
| 1032 | remove = item; |
| 1033 | } |
| 1034 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 1035 | |
| 1036 | /* Now drop the remove chain */ |
| 1037 | for (item = remove; item != NULL; item = remove) |
| 1038 | { |
| 1039 | remove = item->next; |
| 1040 | |
| 1041 | /* Drop a reference to the value (freeing if required) */ |
| 1042 | if (item->prev) /* See above for our abuse of prev here */ |
| 1043 | item->val->drop(ctx, item->val); |
| 1044 | |
| 1045 | /* Always drops the key and drop the item */ |
| 1046 | item->type->drop_key(ctx, item->key); |
| 1047 | fz_free(ctx, item); |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | /* |
| 1052 | Increment the defer reap count. |
| 1053 | |
| 1054 | No reap operations will take place (except for those |
| 1055 | triggered by an immediate failed malloc) until the |
| 1056 | defer reap count returns to 0. |
| 1057 | |
| 1058 | Call this at the start of a process during which you |
| 1059 | potentially might drop many reapable objects. |
| 1060 | |
| 1061 | It is vital that every fz_defer_reap_start is matched |
| 1062 | by a fz_defer_reap_end call. |
| 1063 | */ |
| 1064 | void fz_defer_reap_start(fz_context *ctx) |
| 1065 | { |
| 1066 | if (ctx->store == NULL) |
| 1067 | return; |
| 1068 | |
| 1069 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 1070 | ctx->store->defer_reap_count++; |
| 1071 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | Decrement the defer reap count. |
| 1076 | |
| 1077 | If the defer reap count returns to 0, and the store |
| 1078 | has reapable objects in, a reap pass will begin. |
| 1079 | |
| 1080 | Call this at the end of a process during which you |
| 1081 | potentially might drop many reapable objects. |
| 1082 | |
| 1083 | It is vital that every fz_defer_reap_start is matched |
| 1084 | by a fz_defer_reap_end call. |
| 1085 | */ |
| 1086 | void fz_defer_reap_end(fz_context *ctx) |
| 1087 | { |
| 1088 | int reap; |
| 1089 | |
| 1090 | if (ctx->store == NULL) |
| 1091 | return; |
| 1092 | |
| 1093 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 1094 | --ctx->store->defer_reap_count; |
| 1095 | reap = ctx->store->defer_reap_count == 0 && ctx->store->needs_reaping; |
| 1096 | if (reap) |
| 1097 | do_reap(ctx); /* Drops FZ_LOCK_ALLOC */ |
| 1098 | else |
| 1099 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 1100 | } |
| 1101 | |