1 | #include "mupdf/fitz.h" |
2 | #include "fitz-imp.h" |
3 | |
4 | #include <assert.h> |
5 | #include <limits.h> |
6 | #include <stdio.h> |
7 | #include <string.h> |
8 | |
9 | typedef struct fz_item_s fz_item; |
10 | |
11 | struct fz_item_s |
12 | { |
13 | void *key; |
14 | fz_storable *val; |
15 | size_t size; |
16 | fz_item *next; |
17 | fz_item *prev; |
18 | fz_store *store; |
19 | const fz_store_type *type; |
20 | }; |
21 | |
22 | /* Every entry in fz_store is protected by the alloc lock */ |
23 | struct fz_store_s |
24 | { |
25 | int refs; |
26 | |
27 | /* Every item in the store is kept in a doubly linked list, ordered |
28 | * by usage (so LRU entries are at the end). */ |
29 | fz_item *head; |
30 | fz_item *tail; |
31 | |
32 | /* We have a hash table that allows to quickly find a subset of the |
33 | * entries (those whose keys are indirect objects). */ |
34 | fz_hash_table *hash; |
35 | |
36 | /* We keep track of the size of the store, and keep it below max. */ |
37 | size_t max; |
38 | size_t size; |
39 | |
40 | int defer_reap_count; |
41 | int needs_reaping; |
42 | }; |
43 | |
44 | /* |
45 | Create a new store inside the context |
46 | |
47 | max: The maximum size (in bytes) that the store is allowed to grow |
48 | to. FZ_STORE_UNLIMITED means no limit. |
49 | */ |
50 | void |
51 | fz_new_store_context(fz_context *ctx, size_t max) |
52 | { |
53 | fz_store *store; |
54 | store = fz_malloc_struct(ctx, fz_store); |
55 | fz_try(ctx) |
56 | { |
57 | store->hash = fz_new_hash_table(ctx, 4096, sizeof(fz_store_hash), FZ_LOCK_ALLOC, NULL); |
58 | } |
59 | fz_catch(ctx) |
60 | { |
61 | fz_free(ctx, store); |
62 | fz_rethrow(ctx); |
63 | } |
64 | store->refs = 1; |
65 | store->head = NULL; |
66 | store->tail = NULL; |
67 | store->size = 0; |
68 | store->max = max; |
69 | store->defer_reap_count = 0; |
70 | store->needs_reaping = 0; |
71 | ctx->store = store; |
72 | } |
73 | |
74 | void * |
75 | fz_keep_storable(fz_context *ctx, const fz_storable *sc) |
76 | { |
77 | /* Explicitly drop const to allow us to use const |
78 | * sanely throughout the code. */ |
79 | fz_storable *s = (fz_storable *)sc; |
80 | |
81 | return fz_keep_imp(ctx, s, &s->refs); |
82 | } |
83 | |
84 | void |
85 | fz_drop_storable(fz_context *ctx, const fz_storable *sc) |
86 | { |
87 | /* Explicitly drop const to allow us to use const |
88 | * sanely throughout the code. */ |
89 | fz_storable *s = (fz_storable *)sc; |
90 | |
91 | /* |
92 | If we are dropping the last reference to an object, then |
93 | it cannot possibly be in the store (as the store always |
94 | keeps a ref to everything in it, and doesn't drop via |
95 | this method. So we can simply drop the storable object |
96 | itself without any operations on the fz_store. |
97 | */ |
98 | if (fz_drop_imp(ctx, s, &s->refs)) |
99 | s->drop(ctx, s); |
100 | } |
101 | |
102 | void *fz_keep_key_storable(fz_context *ctx, const fz_key_storable *sc) |
103 | { |
104 | return fz_keep_storable(ctx, &sc->storable); |
105 | } |
106 | |
107 | /* |
108 | Entered with FZ_LOCK_ALLOC held. |
109 | Drops FZ_LOCK_ALLOC. |
110 | */ |
111 | static void |
112 | do_reap(fz_context *ctx) |
113 | { |
114 | fz_store *store = ctx->store; |
115 | fz_item *item, *prev, *remove; |
116 | |
117 | if (store == NULL) |
118 | { |
119 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
120 | return; |
121 | } |
122 | |
123 | fz_assert_lock_held(ctx, FZ_LOCK_ALLOC); |
124 | |
125 | ctx->store->needs_reaping = 0; |
126 | |
127 | /* Reap the items */ |
128 | remove = NULL; |
129 | for (item = store->tail; item; item = prev) |
130 | { |
131 | prev = item->prev; |
132 | |
133 | if (item->type->needs_reap == NULL || item->type->needs_reap(ctx, item->key) == 0) |
134 | continue; |
135 | |
136 | /* We have to drop it */ |
137 | store->size -= item->size; |
138 | |
139 | /* Unlink from the linked list */ |
140 | if (item->next) |
141 | item->next->prev = item->prev; |
142 | else |
143 | store->tail = item->prev; |
144 | if (item->prev) |
145 | item->prev->next = item->next; |
146 | else |
147 | store->head = item->next; |
148 | |
149 | /* Remove from the hash table */ |
150 | if (item->type->make_hash_key) |
151 | { |
152 | fz_store_hash hash = { NULL }; |
153 | hash.drop = item->val->drop; |
154 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
155 | fz_hash_remove(ctx, store->hash, &hash); |
156 | } |
157 | |
158 | /* Store whether to drop this value or not in 'prev' */ |
159 | if (item->val->refs > 0) |
160 | (void)Memento_dropRef(item->val); |
161 | item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL; |
162 | |
163 | /* Store it in our removal chain - just singly linked */ |
164 | item->next = remove; |
165 | remove = item; |
166 | } |
167 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
168 | |
169 | /* Now drop the remove chain */ |
170 | for (item = remove; item != NULL; item = remove) |
171 | { |
172 | remove = item->next; |
173 | |
174 | /* Drop a reference to the value (freeing if required) */ |
175 | if (item->prev) |
176 | item->val->drop(ctx, item->val); |
177 | |
178 | /* Always drops the key and drop the item */ |
179 | item->type->drop_key(ctx, item->key); |
180 | fz_free(ctx, item); |
181 | } |
182 | } |
183 | |
184 | void fz_drop_key_storable(fz_context *ctx, const fz_key_storable *sc) |
185 | { |
186 | /* Explicitly drop const to allow us to use const |
187 | * sanely throughout the code. */ |
188 | fz_key_storable *s = (fz_key_storable *)sc; |
189 | int drop; |
190 | int unlock = 1; |
191 | |
192 | if (s == NULL) |
193 | return; |
194 | |
195 | fz_lock(ctx, FZ_LOCK_ALLOC); |
196 | if (s->storable.refs > 0) |
197 | { |
198 | (void)Memento_dropRef(s); |
199 | drop = --s->storable.refs == 0; |
200 | if (!drop && s->storable.refs == s->store_key_refs) |
201 | { |
202 | if (ctx->store->defer_reap_count > 0) |
203 | { |
204 | ctx->store->needs_reaping = 1; |
205 | } |
206 | else |
207 | { |
208 | do_reap(ctx); |
209 | unlock = 0; |
210 | } |
211 | } |
212 | } |
213 | else |
214 | drop = 0; |
215 | if (unlock) |
216 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
217 | /* |
218 | If we are dropping the last reference to an object, then |
219 | it cannot possibly be in the store (as the store always |
220 | keeps a ref to everything in it, and doesn't drop via |
221 | this method. So we can simply drop the storable object |
222 | itself without any operations on the fz_store. |
223 | */ |
224 | if (drop) |
225 | s->storable.drop(ctx, &s->storable); |
226 | } |
227 | |
228 | void *fz_keep_key_storable_key(fz_context *ctx, const fz_key_storable *sc) |
229 | { |
230 | /* Explicitly drop const to allow us to use const |
231 | * sanely throughout the code. */ |
232 | fz_key_storable *s = (fz_key_storable *)sc; |
233 | |
234 | if (s == NULL) |
235 | return NULL; |
236 | |
237 | fz_lock(ctx, FZ_LOCK_ALLOC); |
238 | if (s->storable.refs > 0) |
239 | { |
240 | (void)Memento_takeRef(s); |
241 | ++s->storable.refs; |
242 | ++s->store_key_refs; |
243 | } |
244 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
245 | return s; |
246 | } |
247 | |
248 | void fz_drop_key_storable_key(fz_context *ctx, const fz_key_storable *sc) |
249 | { |
250 | /* Explicitly drop const to allow us to use const |
251 | * sanely throughout the code. */ |
252 | fz_key_storable *s = (fz_key_storable *)sc; |
253 | int drop; |
254 | |
255 | if (s == NULL) |
256 | return; |
257 | |
258 | fz_lock(ctx, FZ_LOCK_ALLOC); |
259 | assert(s->store_key_refs > 0 && s->storable.refs >= s->store_key_refs); |
260 | (void)Memento_dropRef(s); |
261 | drop = --s->storable.refs == 0; |
262 | --s->store_key_refs; |
263 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
264 | /* |
265 | If we are dropping the last reference to an object, then |
266 | it cannot possibly be in the store (as the store always |
267 | keeps a ref to everything in it, and doesn't drop via |
268 | this method. So we can simply drop the storable object |
269 | itself without any operations on the fz_store. |
270 | */ |
271 | if (drop) |
272 | s->storable.drop(ctx, &s->storable); |
273 | } |
274 | |
275 | static void |
276 | evict(fz_context *ctx, fz_item *item) |
277 | { |
278 | fz_store *store = ctx->store; |
279 | int drop; |
280 | |
281 | store->size -= item->size; |
282 | /* Unlink from the linked list */ |
283 | if (item->next) |
284 | item->next->prev = item->prev; |
285 | else |
286 | store->tail = item->prev; |
287 | if (item->prev) |
288 | item->prev->next = item->next; |
289 | else |
290 | store->head = item->next; |
291 | |
292 | /* Drop a reference to the value (freeing if required) */ |
293 | if (item->val->refs > 0) |
294 | (void)Memento_dropRef(item->val); |
295 | drop = (item->val->refs > 0 && --item->val->refs == 0); |
296 | |
297 | /* Remove from the hash table */ |
298 | if (item->type->make_hash_key) |
299 | { |
300 | fz_store_hash hash = { NULL }; |
301 | hash.drop = item->val->drop; |
302 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
303 | fz_hash_remove(ctx, store->hash, &hash); |
304 | } |
305 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
306 | if (drop) |
307 | item->val->drop(ctx, item->val); |
308 | |
309 | /* Always drops the key and drop the item */ |
310 | item->type->drop_key(ctx, item->key); |
311 | fz_free(ctx, item); |
312 | fz_lock(ctx, FZ_LOCK_ALLOC); |
313 | } |
314 | |
315 | static size_t |
316 | ensure_space(fz_context *ctx, size_t tofree) |
317 | { |
318 | fz_item *item, *prev; |
319 | size_t count; |
320 | fz_store *store = ctx->store; |
321 | fz_item *to_be_freed = NULL; |
322 | |
323 | fz_assert_lock_held(ctx, FZ_LOCK_ALLOC); |
324 | |
325 | /* First check that we *can* free tofree; if not, we'd rather not |
326 | * cache this. */ |
327 | count = 0; |
328 | for (item = store->tail; item; item = item->prev) |
329 | { |
330 | if (item->val->refs == 1) |
331 | { |
332 | count += item->size; |
333 | if (count >= tofree) |
334 | break; |
335 | } |
336 | } |
337 | |
338 | /* If we ran out of items to search, then we can never free enough */ |
339 | if (item == NULL) |
340 | { |
341 | return 0; |
342 | } |
343 | |
344 | /* Now move all the items to be freed onto 'to_be_freed' */ |
345 | count = 0; |
346 | for (item = store->tail; item; item = prev) |
347 | { |
348 | prev = item->prev; |
349 | if (item->val->refs != 1) |
350 | continue; |
351 | |
352 | store->size -= item->size; |
353 | |
354 | /* Unlink from the linked list */ |
355 | if (item->next) |
356 | item->next->prev = item->prev; |
357 | else |
358 | store->tail = item->prev; |
359 | if (item->prev) |
360 | item->prev->next = item->next; |
361 | else |
362 | store->head = item->next; |
363 | |
364 | /* Remove from the hash table */ |
365 | if (item->type->make_hash_key) |
366 | { |
367 | fz_store_hash hash = { NULL }; |
368 | hash.drop = item->val->drop; |
369 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
370 | fz_hash_remove(ctx, store->hash, &hash); |
371 | } |
372 | |
373 | /* Link into to_be_freed */ |
374 | item->next = to_be_freed; |
375 | to_be_freed = item; |
376 | |
377 | count += item->size; |
378 | if (count >= tofree) |
379 | break; |
380 | } |
381 | |
382 | /* Now we can safely drop the lock and free our pending items. These |
383 | * have all been removed from both the store list, and the hash table, |
384 | * so they can't be 'found' by anyone else in the meantime. */ |
385 | |
386 | while (to_be_freed) |
387 | { |
388 | fz_item *item = to_be_freed; |
389 | int drop; |
390 | |
391 | to_be_freed = to_be_freed->next; |
392 | |
393 | /* Drop a reference to the value (freeing if required) */ |
394 | if (item->val->refs > 0) |
395 | (void)Memento_dropRef(item->val); |
396 | drop = (item->val->refs > 0 && --item->val->refs == 0); |
397 | |
398 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
399 | if (drop) |
400 | item->val->drop(ctx, item->val); |
401 | |
402 | /* Always drops the key and drop the item */ |
403 | item->type->drop_key(ctx, item->key); |
404 | fz_free(ctx, item); |
405 | fz_lock(ctx, FZ_LOCK_ALLOC); |
406 | } |
407 | |
408 | return count; |
409 | } |
410 | |
411 | static void |
412 | touch(fz_store *store, fz_item *item) |
413 | { |
414 | if (item->next != item) |
415 | { |
416 | /* Already in the list - unlink it */ |
417 | if (item->next) |
418 | item->next->prev = item->prev; |
419 | else |
420 | store->tail = item->prev; |
421 | if (item->prev) |
422 | item->prev->next = item->next; |
423 | else |
424 | store->head = item->next; |
425 | } |
426 | /* Now relink it at the start of the LRU chain */ |
427 | item->next = store->head; |
428 | if (item->next) |
429 | item->next->prev = item; |
430 | else |
431 | store->tail = item; |
432 | store->head = item; |
433 | item->prev = NULL; |
434 | } |
435 | |
436 | /* |
437 | Add an item to the store. |
438 | |
439 | Add an item into the store, returning NULL for success. If an item |
440 | with the same key is found in the store, then our item will not be |
441 | inserted, and the function will return a pointer to that value |
442 | instead. This function takes its own reference to val, as required |
443 | (i.e. the caller maintains ownership of its own reference). |
444 | |
445 | key: The key used to index the item. |
446 | |
447 | val: The value to store. |
448 | |
449 | itemsize: The size in bytes of the value (as counted towards the |
450 | store size). |
451 | |
452 | type: Functions used to manipulate the key. |
453 | */ |
454 | void * |
455 | fz_store_item(fz_context *ctx, void *key, void *val_, size_t itemsize, const fz_store_type *type) |
456 | { |
457 | fz_item *item = NULL; |
458 | size_t size; |
459 | fz_storable *val = (fz_storable *)val_; |
460 | fz_store *store = ctx->store; |
461 | fz_store_hash hash = { NULL }; |
462 | int use_hash = 0; |
463 | |
464 | if (!store) |
465 | return NULL; |
466 | |
467 | /* If we fail for any reason, we swallow the exception and continue. |
468 | * All that the above program will see is that we failed to store |
469 | * the item. */ |
470 | |
471 | item = fz_malloc_no_throw(ctx, sizeof (fz_item)); |
472 | if (!item) |
473 | return NULL; |
474 | memset(item, 0, sizeof (fz_item)); |
475 | |
476 | if (type->make_hash_key) |
477 | { |
478 | hash.drop = val->drop; |
479 | use_hash = type->make_hash_key(ctx, &hash, key); |
480 | } |
481 | |
482 | type->keep_key(ctx, key); |
483 | fz_lock(ctx, FZ_LOCK_ALLOC); |
484 | |
485 | /* Fill out the item. To start with, we always set item->next == item |
486 | * and item->prev == item. This is so that we can spot items that have |
487 | * been put into the hash table without having made it into the linked |
488 | * list yet. */ |
489 | item->key = key; |
490 | item->val = val; |
491 | item->size = itemsize; |
492 | item->next = item; |
493 | item->prev = item; |
494 | item->type = type; |
495 | |
496 | /* If we can index it fast, put it into the hash table. This serves |
497 | * to check whether we have one there already. */ |
498 | if (use_hash) |
499 | { |
500 | fz_item *existing = NULL; |
501 | |
502 | fz_try(ctx) |
503 | { |
504 | /* May drop and retake the lock */ |
505 | existing = fz_hash_insert(ctx, store->hash, &hash, item); |
506 | } |
507 | fz_catch(ctx) |
508 | { |
509 | /* Any error here means that item never made it into the |
510 | * hash - so no one else can have a reference. */ |
511 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
512 | fz_free(ctx, item); |
513 | type->drop_key(ctx, key); |
514 | return NULL; |
515 | } |
516 | if (existing) |
517 | { |
518 | /* There was one there already! Take a new reference |
519 | * to the existing one, and drop our current one. */ |
520 | touch(store, existing); |
521 | if (existing->val->refs > 0) |
522 | { |
523 | (void)Memento_takeRef(existing->val); |
524 | existing->val->refs++; |
525 | } |
526 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
527 | fz_free(ctx, item); |
528 | type->drop_key(ctx, key); |
529 | return existing->val; |
530 | } |
531 | } |
532 | |
533 | /* Now bump the ref */ |
534 | if (val->refs > 0) |
535 | { |
536 | (void)Memento_takeRef(val); |
537 | val->refs++; |
538 | } |
539 | |
540 | /* If we haven't got an infinite store, check for space within it */ |
541 | if (store->max != FZ_STORE_UNLIMITED) |
542 | { |
543 | size = store->size + itemsize; |
544 | while (size > store->max) |
545 | { |
546 | size_t saved; |
547 | |
548 | /* First, do any outstanding reaping, even if defer_reap_count > 0 */ |
549 | if (store->needs_reaping) |
550 | { |
551 | do_reap(ctx); /* Drops alloc lock */ |
552 | fz_lock(ctx, FZ_LOCK_ALLOC); |
553 | } |
554 | size = store->size + itemsize; |
555 | if (size <= store->max) |
556 | break; |
557 | |
558 | /* ensure_space may drop, then retake the lock */ |
559 | saved = ensure_space(ctx, size - store->max); |
560 | size -= saved; |
561 | if (saved == 0) |
562 | { |
563 | /* Failed to free any space. */ |
564 | /* We used to 'unstore' it here, but that's wrong. |
565 | * If we've already spent the memory to malloc it |
566 | * then not putting it in the store just means that |
567 | * a resource used multiple times will just be malloced |
568 | * again. Better to put it in the store, have the |
569 | * store account for it, and for it to potentially be reused. |
570 | * When the caller drops the reference to it, it can then |
571 | * be dropped from the store on the next attempt to store |
572 | * anything else. */ |
573 | break; |
574 | } |
575 | } |
576 | } |
577 | store->size += itemsize; |
578 | |
579 | /* Regardless of whether it's indexed, it goes into the linked list */ |
580 | touch(store, item); |
581 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
582 | |
583 | return NULL; |
584 | } |
585 | |
586 | /* |
587 | Find an item within the store. |
588 | |
589 | drop: The function used to free the value (to ensure we get a value |
590 | of the correct type). |
591 | |
592 | key: The key used to index the item. |
593 | |
594 | type: Functions used to manipulate the key. |
595 | |
596 | Returns NULL for not found, otherwise returns a pointer to the value |
597 | indexed by key to which a reference has been taken. |
598 | */ |
599 | void * |
600 | fz_find_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type) |
601 | { |
602 | fz_item *item; |
603 | fz_store *store = ctx->store; |
604 | fz_store_hash hash = { NULL }; |
605 | int use_hash = 0; |
606 | |
607 | if (!store) |
608 | return NULL; |
609 | |
610 | if (!key) |
611 | return NULL; |
612 | |
613 | if (type->make_hash_key) |
614 | { |
615 | hash.drop = drop; |
616 | use_hash = type->make_hash_key(ctx, &hash, key); |
617 | } |
618 | |
619 | fz_lock(ctx, FZ_LOCK_ALLOC); |
620 | if (use_hash) |
621 | { |
622 | /* We can find objects keyed on indirected objects quickly */ |
623 | item = fz_hash_find(ctx, store->hash, &hash); |
624 | } |
625 | else |
626 | { |
627 | /* Others we have to hunt for slowly */ |
628 | for (item = store->head; item; item = item->next) |
629 | { |
630 | if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key)) |
631 | break; |
632 | } |
633 | } |
634 | if (item) |
635 | { |
636 | /* LRU the block. This also serves to ensure that any item |
637 | * picked up from the hash before it has made it into the |
638 | * linked list does not get whipped out again due to the |
639 | * store being full. */ |
640 | touch(store, item); |
641 | /* And bump the refcount before returning */ |
642 | if (item->val->refs > 0) |
643 | { |
644 | (void)Memento_takeRef(item->val); |
645 | item->val->refs++; |
646 | } |
647 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
648 | return (void *)item->val; |
649 | } |
650 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
651 | |
652 | return NULL; |
653 | } |
654 | |
655 | /* |
656 | Remove an item from the store. |
657 | |
658 | If an item indexed by the given key exists in the store, remove it. |
659 | |
660 | drop: The function used to free the value (to ensure we get a value |
661 | of the correct type). |
662 | |
663 | key: The key used to find the item to remove. |
664 | |
665 | type: Functions used to manipulate the key. |
666 | */ |
667 | void |
668 | fz_remove_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type) |
669 | { |
670 | fz_item *item; |
671 | fz_store *store = ctx->store; |
672 | int dodrop; |
673 | fz_store_hash hash = { NULL }; |
674 | int use_hash = 0; |
675 | |
676 | if (type->make_hash_key) |
677 | { |
678 | hash.drop = drop; |
679 | use_hash = type->make_hash_key(ctx, &hash, key); |
680 | } |
681 | |
682 | fz_lock(ctx, FZ_LOCK_ALLOC); |
683 | if (use_hash) |
684 | { |
685 | /* We can find objects keyed on indirect objects quickly */ |
686 | item = fz_hash_find(ctx, store->hash, &hash); |
687 | if (item) |
688 | fz_hash_remove(ctx, store->hash, &hash); |
689 | } |
690 | else |
691 | { |
692 | /* Others we have to hunt for slowly */ |
693 | for (item = store->head; item; item = item->next) |
694 | if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key)) |
695 | break; |
696 | } |
697 | if (item) |
698 | { |
699 | /* Momentarily things can be in the hash table without being |
700 | * in the list. Don't attempt to unlink these. We indicate |
701 | * such items by setting item->next == item. */ |
702 | if (item->next != item) |
703 | { |
704 | if (item->next) |
705 | item->next->prev = item->prev; |
706 | else |
707 | store->tail = item->prev; |
708 | if (item->prev) |
709 | item->prev->next = item->next; |
710 | else |
711 | store->head = item->next; |
712 | } |
713 | if (item->val->refs > 0) |
714 | (void)Memento_dropRef(item->val); |
715 | dodrop = (item->val->refs > 0 && --item->val->refs == 0); |
716 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
717 | if (dodrop) |
718 | item->val->drop(ctx, item->val); |
719 | type->drop_key(ctx, item->key); |
720 | fz_free(ctx, item); |
721 | } |
722 | else |
723 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
724 | } |
725 | |
726 | void |
727 | fz_empty_store(fz_context *ctx) |
728 | { |
729 | fz_store *store = ctx->store; |
730 | |
731 | if (store == NULL) |
732 | return; |
733 | |
734 | fz_lock(ctx, FZ_LOCK_ALLOC); |
735 | /* Run through all the items in the store */ |
736 | while (store->head) |
737 | evict(ctx, store->head); /* Drops then retakes lock */ |
738 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
739 | } |
740 | |
741 | fz_store * |
742 | fz_keep_store_context(fz_context *ctx) |
743 | { |
744 | if (ctx == NULL || ctx->store == NULL) |
745 | return NULL; |
746 | return fz_keep_imp(ctx, ctx->store, &ctx->store->refs); |
747 | } |
748 | |
749 | void |
750 | fz_drop_store_context(fz_context *ctx) |
751 | { |
752 | if (!ctx) |
753 | return; |
754 | if (fz_drop_imp(ctx, ctx->store, &ctx->store->refs)) |
755 | { |
756 | fz_empty_store(ctx); |
757 | fz_drop_hash_table(ctx, ctx->store->hash); |
758 | fz_free(ctx, ctx->store); |
759 | ctx->store = NULL; |
760 | } |
761 | } |
762 | |
763 | static void |
764 | fz_debug_store_item(fz_context *ctx, void *state, void *key_, int keylen, void *item_) |
765 | { |
766 | unsigned char *key = key_; |
767 | fz_item *item = item_; |
768 | int i; |
769 | char buf[256]; |
770 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
771 | item->type->format_key(ctx, buf, sizeof buf, item->key); |
772 | fz_lock(ctx, FZ_LOCK_ALLOC); |
773 | printf("hash[" ); |
774 | for (i=0; i < keylen; ++i) |
775 | printf("%02x" , key[i]); |
776 | printf("][refs=%d][size=%d] key=%s val=%p\n" , item->val->refs, (int)item->size, buf, (void *)item->val); |
777 | } |
778 | |
779 | static void |
780 | fz_debug_store_locked(fz_context *ctx) |
781 | { |
782 | fz_item *item, *next; |
783 | char buf[256]; |
784 | fz_store *store = ctx->store; |
785 | |
786 | printf("-- resource store contents --\n" ); |
787 | |
788 | for (item = store->head; item; item = next) |
789 | { |
790 | next = item->next; |
791 | if (next) |
792 | { |
793 | (void)Memento_takeRef(next->val); |
794 | next->val->refs++; |
795 | } |
796 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
797 | item->type->format_key(ctx, buf, sizeof buf, item->key); |
798 | fz_lock(ctx, FZ_LOCK_ALLOC); |
799 | printf("store[*][refs=%d][size=%d] key=%s val=%p\n" , |
800 | item->val->refs, (int)item->size, buf, (void *)item->val); |
801 | if (next) |
802 | { |
803 | (void)Memento_dropRef(next->val); |
804 | next->val->refs--; |
805 | } |
806 | } |
807 | |
808 | printf("-- resource store hash contents --\n" ); |
809 | fz_hash_for_each(ctx, store->hash, NULL, fz_debug_store_item); |
810 | printf("-- end --\n" ); |
811 | } |
812 | |
813 | void |
814 | fz_debug_store(fz_context *ctx) |
815 | { |
816 | fz_lock(ctx, FZ_LOCK_ALLOC); |
817 | fz_debug_store_locked(ctx); |
818 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
819 | } |
820 | |
821 | /* This is now an n^2 algorithm - not ideal, but it'll only be bad if we are |
822 | * actually managing to scavenge lots of blocks back. */ |
823 | static int |
824 | scavenge(fz_context *ctx, size_t tofree) |
825 | { |
826 | fz_store *store = ctx->store; |
827 | size_t count = 0; |
828 | fz_item *item, *prev; |
829 | |
830 | /* Free the items */ |
831 | for (item = store->tail; item; item = prev) |
832 | { |
833 | prev = item->prev; |
834 | if (item->val->refs == 1) |
835 | { |
836 | /* Free this item */ |
837 | count += item->size; |
838 | evict(ctx, item); /* Drops then retakes lock */ |
839 | |
840 | if (count >= tofree) |
841 | break; |
842 | |
843 | /* Have to restart search again, as prev may no longer |
844 | * be valid due to release of lock in evict. */ |
845 | prev = store->tail; |
846 | } |
847 | } |
848 | /* Success is managing to evict any blocks */ |
849 | return count != 0; |
850 | } |
851 | |
852 | /* |
853 | External function for callers to use |
854 | to scavenge while trying allocations. |
855 | |
856 | size: The number of bytes we are trying to have free. |
857 | |
858 | phase: What phase of the scavenge we are in. Updated on exit. |
859 | |
860 | Returns non zero if we managed to free any memory. |
861 | */ |
862 | int fz_store_scavenge_external(fz_context *ctx, size_t size, int *phase) |
863 | { |
864 | int ret; |
865 | |
866 | fz_lock(ctx, FZ_LOCK_ALLOC); |
867 | ret = fz_store_scavenge(ctx, size, phase); |
868 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
869 | |
870 | return ret; |
871 | } |
872 | |
873 | /* |
874 | Internal function used as part of the scavenging |
875 | allocator; when we fail to allocate memory, before returning a |
876 | failure to the caller, we try to scavenge space within the store by |
877 | evicting at least 'size' bytes. The allocator then retries. |
878 | |
879 | size: The number of bytes we are trying to have free. |
880 | |
881 | phase: What phase of the scavenge we are in. Updated on exit. |
882 | |
883 | Returns non zero if we managed to free any memory. |
884 | */ |
885 | int fz_store_scavenge(fz_context *ctx, size_t size, int *phase) |
886 | { |
887 | fz_store *store; |
888 | size_t max; |
889 | |
890 | store = ctx->store; |
891 | if (store == NULL) |
892 | return 0; |
893 | |
894 | #ifdef DEBUG_SCAVENGING |
895 | printf("Scavenging: store=" FZ_FMT_zu " size=" FZ_FMT_zu " phase=%d\n" , store->size, size, *phase); |
896 | fz_debug_store_locked(ctx); |
897 | Memento_stats(); |
898 | #endif |
899 | do |
900 | { |
901 | size_t tofree; |
902 | |
903 | /* Calculate 'max' as the maximum size of the store for this phase */ |
904 | if (*phase >= 16) |
905 | max = 0; |
906 | else if (store->max != FZ_STORE_UNLIMITED) |
907 | max = store->max / 16 * (16 - *phase); |
908 | else |
909 | max = store->size / (16 - *phase) * (15 - *phase); |
910 | (*phase)++; |
911 | |
912 | /* Slightly baroque calculations to avoid overflow */ |
913 | if (size > SIZE_MAX - store->size) |
914 | tofree = SIZE_MAX - max; |
915 | else if (size + store->size > max) |
916 | continue; |
917 | else |
918 | tofree = size + store->size - max; |
919 | |
920 | if (scavenge(ctx, tofree)) |
921 | { |
922 | #ifdef DEBUG_SCAVENGING |
923 | printf("scavenged: store=" FZ_FMT_zu "\n" , store->size); |
924 | fz_debug_store(ctx); |
925 | Memento_stats(); |
926 | #endif |
927 | return 1; |
928 | } |
929 | } |
930 | while (max > 0); |
931 | |
932 | #ifdef DEBUG_SCAVENGING |
933 | printf("scavenging failed\n" ); |
934 | fz_debug_store(ctx); |
935 | Memento_listBlocks(); |
936 | #endif |
937 | return 0; |
938 | } |
939 | |
940 | /* |
941 | Evict items from the store until the total size of |
942 | the objects in the store is reduced to a given percentage of its |
943 | current size. |
944 | |
945 | percent: %age of current size to reduce the store to. |
946 | |
947 | Returns non zero if we managed to free enough memory, zero otherwise. |
948 | */ |
949 | int |
950 | fz_shrink_store(fz_context *ctx, unsigned int percent) |
951 | { |
952 | int success; |
953 | fz_store *store; |
954 | size_t new_size; |
955 | |
956 | if (percent >= 100) |
957 | return 1; |
958 | |
959 | store = ctx->store; |
960 | if (store == NULL) |
961 | return 0; |
962 | |
963 | #ifdef DEBUG_SCAVENGING |
964 | printf("fz_shrink_store: " FZ_FMT_zu "\n" , store->size/(1024*1024)); |
965 | #endif |
966 | fz_lock(ctx, FZ_LOCK_ALLOC); |
967 | |
968 | new_size = (size_t)(((uint64_t)store->size * percent) / 100); |
969 | if (store->size > new_size) |
970 | scavenge(ctx, store->size - new_size); |
971 | |
972 | success = (store->size <= new_size) ? 1 : 0; |
973 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
974 | #ifdef DEBUG_SCAVENGING |
975 | printf("fz_shrink_store after: " FZ_FMT_zu "\n" , store->size/(1024*1024)); |
976 | #endif |
977 | |
978 | return success; |
979 | } |
980 | |
981 | void fz_filter_store(fz_context *ctx, fz_store_filter_fn *fn, void *arg, const fz_store_type *type) |
982 | { |
983 | fz_store *store; |
984 | fz_item *item, *prev, *remove; |
985 | |
986 | store = ctx->store; |
987 | if (store == NULL) |
988 | return; |
989 | |
990 | fz_lock(ctx, FZ_LOCK_ALLOC); |
991 | |
992 | /* Filter the items */ |
993 | remove = NULL; |
994 | for (item = store->tail; item; item = prev) |
995 | { |
996 | prev = item->prev; |
997 | if (item->type != type) |
998 | continue; |
999 | |
1000 | if (fn(ctx, arg, item->key) == 0) |
1001 | continue; |
1002 | |
1003 | /* We have to drop it */ |
1004 | store->size -= item->size; |
1005 | |
1006 | /* Unlink from the linked list */ |
1007 | if (item->next) |
1008 | item->next->prev = item->prev; |
1009 | else |
1010 | store->tail = item->prev; |
1011 | if (item->prev) |
1012 | item->prev->next = item->next; |
1013 | else |
1014 | store->head = item->next; |
1015 | |
1016 | /* Remove from the hash table */ |
1017 | if (item->type->make_hash_key) |
1018 | { |
1019 | fz_store_hash hash = { NULL }; |
1020 | hash.drop = item->val->drop; |
1021 | if (item->type->make_hash_key(ctx, &hash, item->key)) |
1022 | fz_hash_remove(ctx, store->hash, &hash); |
1023 | } |
1024 | |
1025 | /* Store whether to drop this value or not in 'prev' */ |
1026 | if (item->val->refs > 0) |
1027 | (void)Memento_dropRef(item->val); |
1028 | item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL; |
1029 | |
1030 | /* Store it in our removal chain - just singly linked */ |
1031 | item->next = remove; |
1032 | remove = item; |
1033 | } |
1034 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
1035 | |
1036 | /* Now drop the remove chain */ |
1037 | for (item = remove; item != NULL; item = remove) |
1038 | { |
1039 | remove = item->next; |
1040 | |
1041 | /* Drop a reference to the value (freeing if required) */ |
1042 | if (item->prev) /* See above for our abuse of prev here */ |
1043 | item->val->drop(ctx, item->val); |
1044 | |
1045 | /* Always drops the key and drop the item */ |
1046 | item->type->drop_key(ctx, item->key); |
1047 | fz_free(ctx, item); |
1048 | } |
1049 | } |
1050 | |
1051 | /* |
1052 | Increment the defer reap count. |
1053 | |
1054 | No reap operations will take place (except for those |
1055 | triggered by an immediate failed malloc) until the |
1056 | defer reap count returns to 0. |
1057 | |
1058 | Call this at the start of a process during which you |
1059 | potentially might drop many reapable objects. |
1060 | |
1061 | It is vital that every fz_defer_reap_start is matched |
1062 | by a fz_defer_reap_end call. |
1063 | */ |
1064 | void fz_defer_reap_start(fz_context *ctx) |
1065 | { |
1066 | if (ctx->store == NULL) |
1067 | return; |
1068 | |
1069 | fz_lock(ctx, FZ_LOCK_ALLOC); |
1070 | ctx->store->defer_reap_count++; |
1071 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
1072 | } |
1073 | |
1074 | /* |
1075 | Decrement the defer reap count. |
1076 | |
1077 | If the defer reap count returns to 0, and the store |
1078 | has reapable objects in, a reap pass will begin. |
1079 | |
1080 | Call this at the end of a process during which you |
1081 | potentially might drop many reapable objects. |
1082 | |
1083 | It is vital that every fz_defer_reap_start is matched |
1084 | by a fz_defer_reap_end call. |
1085 | */ |
1086 | void fz_defer_reap_end(fz_context *ctx) |
1087 | { |
1088 | int reap; |
1089 | |
1090 | if (ctx->store == NULL) |
1091 | return; |
1092 | |
1093 | fz_lock(ctx, FZ_LOCK_ALLOC); |
1094 | --ctx->store->defer_reap_count; |
1095 | reap = ctx->store->defer_reap_count == 0 && ctx->store->needs_reaping; |
1096 | if (reap) |
1097 | do_reap(ctx); /* Drops FZ_LOCK_ALLOC */ |
1098 | else |
1099 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
1100 | } |
1101 | |