1 | /**************************************************************************** |
2 | * |
3 | * ftbbox.c |
4 | * |
5 | * FreeType bbox computation (body). |
6 | * |
7 | * Copyright (C) 1996-2019 by |
8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
9 | * |
10 | * This file is part of the FreeType project, and may only be used |
11 | * modified and distributed under the terms of the FreeType project |
12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
13 | * this file you indicate that you have read the license and |
14 | * understand and accept it fully. |
15 | * |
16 | */ |
17 | |
18 | |
19 | /************************************************************************** |
20 | * |
21 | * This component has a _single_ role: to compute exact outline bounding |
22 | * boxes. |
23 | * |
24 | */ |
25 | |
26 | |
27 | #include <ft2build.h> |
28 | #include FT_INTERNAL_DEBUG_H |
29 | |
30 | #include FT_BBOX_H |
31 | #include FT_IMAGE_H |
32 | #include FT_OUTLINE_H |
33 | #include FT_INTERNAL_CALC_H |
34 | #include FT_INTERNAL_OBJECTS_H |
35 | |
36 | |
37 | typedef struct TBBox_Rec_ |
38 | { |
39 | FT_Vector last; |
40 | FT_BBox bbox; |
41 | |
42 | } TBBox_Rec; |
43 | |
44 | |
45 | #define FT_UPDATE_BBOX( p, bbox ) \ |
46 | FT_BEGIN_STMNT \ |
47 | if ( p->x < bbox.xMin ) \ |
48 | bbox.xMin = p->x; \ |
49 | if ( p->x > bbox.xMax ) \ |
50 | bbox.xMax = p->x; \ |
51 | if ( p->y < bbox.yMin ) \ |
52 | bbox.yMin = p->y; \ |
53 | if ( p->y > bbox.yMax ) \ |
54 | bbox.yMax = p->y; \ |
55 | FT_END_STMNT |
56 | |
57 | #define CHECK_X( p, bbox ) \ |
58 | ( p->x < bbox.xMin || p->x > bbox.xMax ) |
59 | |
60 | #define CHECK_Y( p, bbox ) \ |
61 | ( p->y < bbox.yMin || p->y > bbox.yMax ) |
62 | |
63 | |
64 | /************************************************************************** |
65 | * |
66 | * @Function: |
67 | * BBox_Move_To |
68 | * |
69 | * @Description: |
70 | * This function is used as a `move_to' emitter during |
71 | * FT_Outline_Decompose(). It simply records the destination point |
72 | * in `user->last'. We also update bbox in case contour starts with |
73 | * an implicit `on' point. |
74 | * |
75 | * @Input: |
76 | * to :: |
77 | * A pointer to the destination vector. |
78 | * |
79 | * @InOut: |
80 | * user :: |
81 | * A pointer to the current walk context. |
82 | * |
83 | * @Return: |
84 | * Always 0. Needed for the interface only. |
85 | */ |
86 | static int |
87 | BBox_Move_To( FT_Vector* to, |
88 | TBBox_Rec* user ) |
89 | { |
90 | FT_UPDATE_BBOX( to, user->bbox ); |
91 | |
92 | user->last = *to; |
93 | |
94 | return 0; |
95 | } |
96 | |
97 | |
98 | /************************************************************************** |
99 | * |
100 | * @Function: |
101 | * BBox_Line_To |
102 | * |
103 | * @Description: |
104 | * This function is used as a `line_to' emitter during |
105 | * FT_Outline_Decompose(). It simply records the destination point |
106 | * in `user->last'; no further computations are necessary because |
107 | * bbox already contains both explicit ends of the line segment. |
108 | * |
109 | * @Input: |
110 | * to :: |
111 | * A pointer to the destination vector. |
112 | * |
113 | * @InOut: |
114 | * user :: |
115 | * A pointer to the current walk context. |
116 | * |
117 | * @Return: |
118 | * Always 0. Needed for the interface only. |
119 | */ |
120 | static int |
121 | BBox_Line_To( FT_Vector* to, |
122 | TBBox_Rec* user ) |
123 | { |
124 | user->last = *to; |
125 | |
126 | return 0; |
127 | } |
128 | |
129 | |
130 | /************************************************************************** |
131 | * |
132 | * @Function: |
133 | * BBox_Conic_Check |
134 | * |
135 | * @Description: |
136 | * Find the extrema of a 1-dimensional conic Bezier curve and update |
137 | * a bounding range. This version uses direct computation, as it |
138 | * doesn't need square roots. |
139 | * |
140 | * @Input: |
141 | * y1 :: |
142 | * The start coordinate. |
143 | * |
144 | * y2 :: |
145 | * The coordinate of the control point. |
146 | * |
147 | * y3 :: |
148 | * The end coordinate. |
149 | * |
150 | * @InOut: |
151 | * min :: |
152 | * The address of the current minimum. |
153 | * |
154 | * max :: |
155 | * The address of the current maximum. |
156 | */ |
157 | static void |
158 | BBox_Conic_Check( FT_Pos y1, |
159 | FT_Pos y2, |
160 | FT_Pos y3, |
161 | FT_Pos* min, |
162 | FT_Pos* max ) |
163 | { |
164 | /* This function is only called when a control off-point is outside */ |
165 | /* the bbox that contains all on-points. It finds a local extremum */ |
166 | /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */ |
167 | /* Or, offsetting from y2, we get */ |
168 | |
169 | y1 -= y2; |
170 | y3 -= y2; |
171 | y2 += FT_MulDiv( y1, y3, y1 + y3 ); |
172 | |
173 | if ( y2 < *min ) |
174 | *min = y2; |
175 | if ( y2 > *max ) |
176 | *max = y2; |
177 | } |
178 | |
179 | |
180 | /************************************************************************** |
181 | * |
182 | * @Function: |
183 | * BBox_Conic_To |
184 | * |
185 | * @Description: |
186 | * This function is used as a `conic_to' emitter during |
187 | * FT_Outline_Decompose(). It checks a conic Bezier curve with the |
188 | * current bounding box, and computes its extrema if necessary to |
189 | * update it. |
190 | * |
191 | * @Input: |
192 | * control :: |
193 | * A pointer to a control point. |
194 | * |
195 | * to :: |
196 | * A pointer to the destination vector. |
197 | * |
198 | * @InOut: |
199 | * user :: |
200 | * The address of the current walk context. |
201 | * |
202 | * @Return: |
203 | * Always 0. Needed for the interface only. |
204 | * |
205 | * @Note: |
206 | * In the case of a non-monotonous arc, we compute directly the |
207 | * extremum coordinates, as it is sufficiently fast. |
208 | */ |
209 | static int |
210 | BBox_Conic_To( FT_Vector* control, |
211 | FT_Vector* to, |
212 | TBBox_Rec* user ) |
213 | { |
214 | /* in case `to' is implicit and not included in bbox yet */ |
215 | FT_UPDATE_BBOX( to, user->bbox ); |
216 | |
217 | if ( CHECK_X( control, user->bbox ) ) |
218 | BBox_Conic_Check( user->last.x, |
219 | control->x, |
220 | to->x, |
221 | &user->bbox.xMin, |
222 | &user->bbox.xMax ); |
223 | |
224 | if ( CHECK_Y( control, user->bbox ) ) |
225 | BBox_Conic_Check( user->last.y, |
226 | control->y, |
227 | to->y, |
228 | &user->bbox.yMin, |
229 | &user->bbox.yMax ); |
230 | |
231 | user->last = *to; |
232 | |
233 | return 0; |
234 | } |
235 | |
236 | |
237 | /************************************************************************** |
238 | * |
239 | * @Function: |
240 | * BBox_Cubic_Check |
241 | * |
242 | * @Description: |
243 | * Find the extrema of a 1-dimensional cubic Bezier curve and |
244 | * update a bounding range. This version uses iterative splitting |
245 | * because it is faster than the exact solution with square roots. |
246 | * |
247 | * @Input: |
248 | * p1 :: |
249 | * The start coordinate. |
250 | * |
251 | * p2 :: |
252 | * The coordinate of the first control point. |
253 | * |
254 | * p3 :: |
255 | * The coordinate of the second control point. |
256 | * |
257 | * p4 :: |
258 | * The end coordinate. |
259 | * |
260 | * @InOut: |
261 | * min :: |
262 | * The address of the current minimum. |
263 | * |
264 | * max :: |
265 | * The address of the current maximum. |
266 | */ |
267 | static FT_Pos |
268 | cubic_peak( FT_Pos q1, |
269 | FT_Pos q2, |
270 | FT_Pos q3, |
271 | FT_Pos q4 ) |
272 | { |
273 | FT_Pos peak = 0; |
274 | FT_Int shift; |
275 | |
276 | |
277 | /* This function finds a peak of a cubic segment if it is above 0 */ |
278 | /* using iterative bisection of the segment, or returns 0. */ |
279 | /* The fixed-point arithmetic of bisection is inherently stable */ |
280 | /* but may loose accuracy in the two lowest bits. To compensate, */ |
281 | /* we upscale the segment if there is room. Large values may need */ |
282 | /* to be downscaled to avoid overflows during bisection. */ |
283 | /* It is called with either q2 or q3 positive, which is necessary */ |
284 | /* for the peak to exist and avoids undefined FT_MSB. */ |
285 | |
286 | shift = 27 - FT_MSB( (FT_UInt32)( FT_ABS( q1 ) | |
287 | FT_ABS( q2 ) | |
288 | FT_ABS( q3 ) | |
289 | FT_ABS( q4 ) ) ); |
290 | |
291 | if ( shift > 0 ) |
292 | { |
293 | /* upscaling too much just wastes time */ |
294 | if ( shift > 2 ) |
295 | shift = 2; |
296 | |
297 | q1 <<= shift; |
298 | q2 <<= shift; |
299 | q3 <<= shift; |
300 | q4 <<= shift; |
301 | } |
302 | else |
303 | { |
304 | q1 >>= -shift; |
305 | q2 >>= -shift; |
306 | q3 >>= -shift; |
307 | q4 >>= -shift; |
308 | } |
309 | |
310 | /* for a peak to exist above 0, the cubic segment must have */ |
311 | /* at least one of its control off-points above 0. */ |
312 | while ( q2 > 0 || q3 > 0 ) |
313 | { |
314 | /* determine which half contains the maximum and split */ |
315 | if ( q1 + q2 > q3 + q4 ) /* first half */ |
316 | { |
317 | q4 = q4 + q3; |
318 | q3 = q3 + q2; |
319 | q2 = q2 + q1; |
320 | q4 = q4 + q3; |
321 | q3 = q3 + q2; |
322 | q4 = ( q4 + q3 ) / 8; |
323 | q3 = q3 / 4; |
324 | q2 = q2 / 2; |
325 | } |
326 | else /* second half */ |
327 | { |
328 | q1 = q1 + q2; |
329 | q2 = q2 + q3; |
330 | q3 = q3 + q4; |
331 | q1 = q1 + q2; |
332 | q2 = q2 + q3; |
333 | q1 = ( q1 + q2 ) / 8; |
334 | q2 = q2 / 4; |
335 | q3 = q3 / 2; |
336 | } |
337 | |
338 | /* check whether either end reached the maximum */ |
339 | if ( q1 == q2 && q1 >= q3 ) |
340 | { |
341 | peak = q1; |
342 | break; |
343 | } |
344 | if ( q3 == q4 && q2 <= q4 ) |
345 | { |
346 | peak = q4; |
347 | break; |
348 | } |
349 | } |
350 | |
351 | if ( shift > 0 ) |
352 | peak >>= shift; |
353 | else |
354 | peak <<= -shift; |
355 | |
356 | return peak; |
357 | } |
358 | |
359 | |
360 | static void |
361 | BBox_Cubic_Check( FT_Pos p1, |
362 | FT_Pos p2, |
363 | FT_Pos p3, |
364 | FT_Pos p4, |
365 | FT_Pos* min, |
366 | FT_Pos* max ) |
367 | { |
368 | /* This function is only called when a control off-point is outside */ |
369 | /* the bbox that contains all on-points. So at least one of the */ |
370 | /* conditions below holds and cubic_peak is called with at least one */ |
371 | /* non-zero argument. */ |
372 | |
373 | if ( p2 > *max || p3 > *max ) |
374 | *max += cubic_peak( p1 - *max, p2 - *max, p3 - *max, p4 - *max ); |
375 | |
376 | /* now flip the signs to update the minimum */ |
377 | if ( p2 < *min || p3 < *min ) |
378 | *min -= cubic_peak( *min - p1, *min - p2, *min - p3, *min - p4 ); |
379 | } |
380 | |
381 | |
382 | /************************************************************************** |
383 | * |
384 | * @Function: |
385 | * BBox_Cubic_To |
386 | * |
387 | * @Description: |
388 | * This function is used as a `cubic_to' emitter during |
389 | * FT_Outline_Decompose(). It checks a cubic Bezier curve with the |
390 | * current bounding box, and computes its extrema if necessary to |
391 | * update it. |
392 | * |
393 | * @Input: |
394 | * control1 :: |
395 | * A pointer to the first control point. |
396 | * |
397 | * control2 :: |
398 | * A pointer to the second control point. |
399 | * |
400 | * to :: |
401 | * A pointer to the destination vector. |
402 | * |
403 | * @InOut: |
404 | * user :: |
405 | * The address of the current walk context. |
406 | * |
407 | * @Return: |
408 | * Always 0. Needed for the interface only. |
409 | * |
410 | * @Note: |
411 | * In the case of a non-monotonous arc, we don't compute directly |
412 | * extremum coordinates, we subdivide instead. |
413 | */ |
414 | static int |
415 | BBox_Cubic_To( FT_Vector* control1, |
416 | FT_Vector* control2, |
417 | FT_Vector* to, |
418 | TBBox_Rec* user ) |
419 | { |
420 | /* We don't need to check `to' since it is always an on-point, */ |
421 | /* thus within the bbox. Only segments with an off-point outside */ |
422 | /* the bbox can possibly reach new extreme values. */ |
423 | |
424 | if ( CHECK_X( control1, user->bbox ) || |
425 | CHECK_X( control2, user->bbox ) ) |
426 | BBox_Cubic_Check( user->last.x, |
427 | control1->x, |
428 | control2->x, |
429 | to->x, |
430 | &user->bbox.xMin, |
431 | &user->bbox.xMax ); |
432 | |
433 | if ( CHECK_Y( control1, user->bbox ) || |
434 | CHECK_Y( control2, user->bbox ) ) |
435 | BBox_Cubic_Check( user->last.y, |
436 | control1->y, |
437 | control2->y, |
438 | to->y, |
439 | &user->bbox.yMin, |
440 | &user->bbox.yMax ); |
441 | |
442 | user->last = *to; |
443 | |
444 | return 0; |
445 | } |
446 | |
447 | |
448 | FT_DEFINE_OUTLINE_FUNCS( |
449 | bbox_interface, |
450 | |
451 | (FT_Outline_MoveTo_Func) BBox_Move_To, /* move_to */ |
452 | (FT_Outline_LineTo_Func) BBox_Line_To, /* line_to */ |
453 | (FT_Outline_ConicTo_Func)BBox_Conic_To, /* conic_to */ |
454 | (FT_Outline_CubicTo_Func)BBox_Cubic_To, /* cubic_to */ |
455 | 0, /* shift */ |
456 | 0 /* delta */ |
457 | ) |
458 | |
459 | |
460 | /* documentation is in ftbbox.h */ |
461 | |
462 | FT_EXPORT_DEF( FT_Error ) |
463 | FT_Outline_Get_BBox( FT_Outline* outline, |
464 | FT_BBox *abbox ) |
465 | { |
466 | FT_BBox cbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
467 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
468 | FT_BBox bbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
469 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
470 | FT_Vector* vec; |
471 | FT_UShort n; |
472 | |
473 | |
474 | if ( !abbox ) |
475 | return FT_THROW( Invalid_Argument ); |
476 | |
477 | if ( !outline ) |
478 | return FT_THROW( Invalid_Outline ); |
479 | |
480 | /* if outline is empty, return (0,0,0,0) */ |
481 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
482 | { |
483 | abbox->xMin = abbox->xMax = 0; |
484 | abbox->yMin = abbox->yMax = 0; |
485 | |
486 | return 0; |
487 | } |
488 | |
489 | /* We compute the control box as well as the bounding box of */ |
490 | /* all `on' points in the outline. Then, if the two boxes */ |
491 | /* coincide, we exit immediately. */ |
492 | |
493 | vec = outline->points; |
494 | |
495 | for ( n = 0; n < outline->n_points; n++ ) |
496 | { |
497 | FT_UPDATE_BBOX( vec, cbox ); |
498 | |
499 | if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) |
500 | FT_UPDATE_BBOX( vec, bbox ); |
501 | |
502 | vec++; |
503 | } |
504 | |
505 | /* test two boxes for equality */ |
506 | if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
507 | cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
508 | { |
509 | /* the two boxes are different, now walk over the outline to */ |
510 | /* get the Bezier arc extrema. */ |
511 | |
512 | FT_Error error; |
513 | TBBox_Rec user; |
514 | |
515 | |
516 | user.bbox = bbox; |
517 | |
518 | error = FT_Outline_Decompose( outline, &bbox_interface, &user ); |
519 | if ( error ) |
520 | return error; |
521 | |
522 | *abbox = user.bbox; |
523 | } |
524 | else |
525 | *abbox = bbox; |
526 | |
527 | return FT_Err_Ok; |
528 | } |
529 | |
530 | |
531 | /* END */ |
532 | |