1 | /**************************************************************************** |
2 | * |
3 | * ftcalc.c |
4 | * |
5 | * Arithmetic computations (body). |
6 | * |
7 | * Copyright (C) 1996-2019 by |
8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
9 | * |
10 | * This file is part of the FreeType project, and may only be used, |
11 | * modified, and distributed under the terms of the FreeType project |
12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
13 | * this file you indicate that you have read the license and |
14 | * understand and accept it fully. |
15 | * |
16 | */ |
17 | |
18 | /************************************************************************** |
19 | * |
20 | * Support for 1-complement arithmetic has been totally dropped in this |
21 | * release. You can still write your own code if you need it. |
22 | * |
23 | */ |
24 | |
25 | /************************************************************************** |
26 | * |
27 | * Implementing basic computation routines. |
28 | * |
29 | * FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), |
30 | * and FT_FloorFix() are declared in freetype.h. |
31 | * |
32 | */ |
33 | |
34 | |
35 | #include <ft2build.h> |
36 | #include FT_GLYPH_H |
37 | #include FT_TRIGONOMETRY_H |
38 | #include FT_INTERNAL_CALC_H |
39 | #include FT_INTERNAL_DEBUG_H |
40 | #include FT_INTERNAL_OBJECTS_H |
41 | |
42 | |
43 | #ifdef FT_MULFIX_ASSEMBLER |
44 | #undef FT_MulFix |
45 | #endif |
46 | |
47 | /* we need to emulate a 64-bit data type if a real one isn't available */ |
48 | |
49 | #ifndef FT_LONG64 |
50 | |
51 | typedef struct FT_Int64_ |
52 | { |
53 | FT_UInt32 lo; |
54 | FT_UInt32 hi; |
55 | |
56 | } FT_Int64; |
57 | |
58 | #endif /* !FT_LONG64 */ |
59 | |
60 | |
61 | /************************************************************************** |
62 | * |
63 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
64 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
65 | * messages during execution. |
66 | */ |
67 | #undef FT_COMPONENT |
68 | #define FT_COMPONENT calc |
69 | |
70 | |
71 | /* transfer sign, leaving a positive number; */ |
72 | /* we need an unsigned value to safely negate INT_MIN (or LONG_MIN) */ |
73 | #define FT_MOVE_SIGN( x, x_unsigned, s ) \ |
74 | FT_BEGIN_STMNT \ |
75 | if ( x < 0 ) \ |
76 | { \ |
77 | x_unsigned = 0U - (x_unsigned); \ |
78 | s = -s; \ |
79 | } \ |
80 | FT_END_STMNT |
81 | |
82 | /* The following three functions are available regardless of whether */ |
83 | /* FT_LONG64 is defined. */ |
84 | |
85 | /* documentation is in freetype.h */ |
86 | |
87 | FT_EXPORT_DEF( FT_Fixed ) |
88 | FT_RoundFix( FT_Fixed a ) |
89 | { |
90 | return ( ADD_LONG( a, 0x8000L - ( a < 0 ) ) ) & ~0xFFFFL; |
91 | } |
92 | |
93 | |
94 | /* documentation is in freetype.h */ |
95 | |
96 | FT_EXPORT_DEF( FT_Fixed ) |
97 | FT_CeilFix( FT_Fixed a ) |
98 | { |
99 | return ( ADD_LONG( a, 0xFFFFL ) ) & ~0xFFFFL; |
100 | } |
101 | |
102 | |
103 | /* documentation is in freetype.h */ |
104 | |
105 | FT_EXPORT_DEF( FT_Fixed ) |
106 | FT_FloorFix( FT_Fixed a ) |
107 | { |
108 | return a & ~0xFFFFL; |
109 | } |
110 | |
111 | #ifndef FT_MSB |
112 | |
113 | FT_BASE_DEF ( FT_Int ) |
114 | FT_MSB( FT_UInt32 z ) |
115 | { |
116 | FT_Int shift = 0; |
117 | |
118 | |
119 | /* determine msb bit index in `shift' */ |
120 | if ( z & 0xFFFF0000UL ) |
121 | { |
122 | z >>= 16; |
123 | shift += 16; |
124 | } |
125 | if ( z & 0x0000FF00UL ) |
126 | { |
127 | z >>= 8; |
128 | shift += 8; |
129 | } |
130 | if ( z & 0x000000F0UL ) |
131 | { |
132 | z >>= 4; |
133 | shift += 4; |
134 | } |
135 | if ( z & 0x0000000CUL ) |
136 | { |
137 | z >>= 2; |
138 | shift += 2; |
139 | } |
140 | if ( z & 0x00000002UL ) |
141 | { |
142 | /* z >>= 1; */ |
143 | shift += 1; |
144 | } |
145 | |
146 | return shift; |
147 | } |
148 | |
149 | #endif /* !FT_MSB */ |
150 | |
151 | |
152 | /* documentation is in ftcalc.h */ |
153 | |
154 | FT_BASE_DEF( FT_Fixed ) |
155 | FT_Hypot( FT_Fixed x, |
156 | FT_Fixed y ) |
157 | { |
158 | FT_Vector v; |
159 | |
160 | |
161 | v.x = x; |
162 | v.y = y; |
163 | |
164 | return FT_Vector_Length( &v ); |
165 | } |
166 | |
167 | |
168 | #ifdef FT_LONG64 |
169 | |
170 | |
171 | /* documentation is in freetype.h */ |
172 | |
173 | FT_EXPORT_DEF( FT_Long ) |
174 | FT_MulDiv( FT_Long a_, |
175 | FT_Long b_, |
176 | FT_Long c_ ) |
177 | { |
178 | FT_Int s = 1; |
179 | FT_UInt64 a, b, c, d; |
180 | FT_Long d_; |
181 | |
182 | |
183 | a = (FT_UInt64)a_; |
184 | b = (FT_UInt64)b_; |
185 | c = (FT_UInt64)c_; |
186 | |
187 | FT_MOVE_SIGN( a_, a, s ); |
188 | FT_MOVE_SIGN( b_, b, s ); |
189 | FT_MOVE_SIGN( c_, c, s ); |
190 | |
191 | d = c > 0 ? ( a * b + ( c >> 1 ) ) / c |
192 | : 0x7FFFFFFFUL; |
193 | |
194 | d_ = (FT_Long)d; |
195 | |
196 | return s < 0 ? NEG_LONG( d_ ) : d_; |
197 | } |
198 | |
199 | |
200 | /* documentation is in ftcalc.h */ |
201 | |
202 | FT_BASE_DEF( FT_Long ) |
203 | FT_MulDiv_No_Round( FT_Long a_, |
204 | FT_Long b_, |
205 | FT_Long c_ ) |
206 | { |
207 | FT_Int s = 1; |
208 | FT_UInt64 a, b, c, d; |
209 | FT_Long d_; |
210 | |
211 | |
212 | a = (FT_UInt64)a_; |
213 | b = (FT_UInt64)b_; |
214 | c = (FT_UInt64)c_; |
215 | |
216 | FT_MOVE_SIGN( a_, a, s ); |
217 | FT_MOVE_SIGN( b_, b, s ); |
218 | FT_MOVE_SIGN( c_, c, s ); |
219 | |
220 | d = c > 0 ? a * b / c |
221 | : 0x7FFFFFFFUL; |
222 | |
223 | d_ = (FT_Long)d; |
224 | |
225 | return s < 0 ? NEG_LONG( d_ ) : d_; |
226 | } |
227 | |
228 | |
229 | /* documentation is in freetype.h */ |
230 | |
231 | FT_EXPORT_DEF( FT_Long ) |
232 | FT_MulFix( FT_Long a_, |
233 | FT_Long b_ ) |
234 | { |
235 | #ifdef FT_MULFIX_ASSEMBLER |
236 | |
237 | return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ ); |
238 | |
239 | #else |
240 | |
241 | FT_Int64 ab = (FT_Int64)a_ * (FT_Int64)b_; |
242 | |
243 | /* this requires arithmetic right shift of signed numbers */ |
244 | return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 ); |
245 | |
246 | #endif /* FT_MULFIX_ASSEMBLER */ |
247 | } |
248 | |
249 | |
250 | /* documentation is in freetype.h */ |
251 | |
252 | FT_EXPORT_DEF( FT_Long ) |
253 | FT_DivFix( FT_Long a_, |
254 | FT_Long b_ ) |
255 | { |
256 | FT_Int s = 1; |
257 | FT_UInt64 a, b, q; |
258 | FT_Long q_; |
259 | |
260 | |
261 | a = (FT_UInt64)a_; |
262 | b = (FT_UInt64)b_; |
263 | |
264 | FT_MOVE_SIGN( a_, a, s ); |
265 | FT_MOVE_SIGN( b_, b, s ); |
266 | |
267 | q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b |
268 | : 0x7FFFFFFFUL; |
269 | |
270 | q_ = (FT_Long)q; |
271 | |
272 | return s < 0 ? NEG_LONG( q_ ) : q_; |
273 | } |
274 | |
275 | |
276 | #else /* !FT_LONG64 */ |
277 | |
278 | |
279 | static void |
280 | ft_multo64( FT_UInt32 x, |
281 | FT_UInt32 y, |
282 | FT_Int64 *z ) |
283 | { |
284 | FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2; |
285 | |
286 | |
287 | lo1 = x & 0x0000FFFFU; hi1 = x >> 16; |
288 | lo2 = y & 0x0000FFFFU; hi2 = y >> 16; |
289 | |
290 | lo = lo1 * lo2; |
291 | i1 = lo1 * hi2; |
292 | i2 = lo2 * hi1; |
293 | hi = hi1 * hi2; |
294 | |
295 | /* Check carry overflow of i1 + i2 */ |
296 | i1 += i2; |
297 | hi += (FT_UInt32)( i1 < i2 ) << 16; |
298 | |
299 | hi += i1 >> 16; |
300 | i1 = i1 << 16; |
301 | |
302 | /* Check carry overflow of i1 + lo */ |
303 | lo += i1; |
304 | hi += ( lo < i1 ); |
305 | |
306 | z->lo = lo; |
307 | z->hi = hi; |
308 | } |
309 | |
310 | |
311 | static FT_UInt32 |
312 | ft_div64by32( FT_UInt32 hi, |
313 | FT_UInt32 lo, |
314 | FT_UInt32 y ) |
315 | { |
316 | FT_UInt32 r, q; |
317 | FT_Int i; |
318 | |
319 | |
320 | if ( hi >= y ) |
321 | return (FT_UInt32)0x7FFFFFFFL; |
322 | |
323 | /* We shift as many bits as we can into the high register, perform */ |
324 | /* 32-bit division with modulo there, then work through the remaining */ |
325 | /* bits with long division. This optimization is especially noticeable */ |
326 | /* for smaller dividends that barely use the high register. */ |
327 | |
328 | i = 31 - FT_MSB( hi ); |
329 | r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */ |
330 | q = r / y; |
331 | r -= q * y; /* remainder */ |
332 | |
333 | i = 32 - i; /* bits remaining in low register */ |
334 | do |
335 | { |
336 | q <<= 1; |
337 | r = ( r << 1 ) | ( lo >> 31 ); lo <<= 1; |
338 | |
339 | if ( r >= y ) |
340 | { |
341 | r -= y; |
342 | q |= 1; |
343 | } |
344 | } while ( --i ); |
345 | |
346 | return q; |
347 | } |
348 | |
349 | |
350 | static void |
351 | FT_Add64( FT_Int64* x, |
352 | FT_Int64* y, |
353 | FT_Int64 *z ) |
354 | { |
355 | FT_UInt32 lo, hi; |
356 | |
357 | |
358 | lo = x->lo + y->lo; |
359 | hi = x->hi + y->hi + ( lo < x->lo ); |
360 | |
361 | z->lo = lo; |
362 | z->hi = hi; |
363 | } |
364 | |
365 | |
366 | /* The FT_MulDiv function has been optimized thanks to ideas from */ |
367 | /* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */ |
368 | /* a rather common case when everything fits within 32-bits. */ |
369 | /* */ |
370 | /* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */ |
371 | /* */ |
372 | /* The product of two positive numbers never exceeds the square of */ |
373 | /* its mean values. Therefore, we always avoid the overflow by */ |
374 | /* imposing */ |
375 | /* */ |
376 | /* (a + b) / 2 <= sqrt(X - c/2) , */ |
377 | /* */ |
378 | /* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */ |
379 | /* unsigned arithmetic. Now we replace `sqrt' with a linear function */ |
380 | /* that is smaller or equal for all values of c in the interval */ |
381 | /* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */ |
382 | /* endpoints. Substituting the linear solution and explicit numbers */ |
383 | /* we get */ |
384 | /* */ |
385 | /* a + b <= 131071.99 - c / 122291.84 . */ |
386 | /* */ |
387 | /* In practice, we should use a faster and even stronger inequality */ |
388 | /* */ |
389 | /* a + b <= 131071 - (c >> 16) */ |
390 | /* */ |
391 | /* or, alternatively, */ |
392 | /* */ |
393 | /* a + b <= 129894 - (c >> 17) . */ |
394 | /* */ |
395 | /* FT_MulFix, on the other hand, is optimized for a small value of */ |
396 | /* the first argument, when the second argument can be much larger. */ |
397 | /* This can be achieved by scaling the second argument and the limit */ |
398 | /* in the above inequalities. For example, */ |
399 | /* */ |
400 | /* a + (b >> 8) <= (131071 >> 4) */ |
401 | /* */ |
402 | /* covers the practical range of use. The actual test below is a bit */ |
403 | /* tighter to avoid the border case overflows. */ |
404 | /* */ |
405 | /* In the case of FT_DivFix, the exact overflow check */ |
406 | /* */ |
407 | /* a << 16 <= X - c/2 */ |
408 | /* */ |
409 | /* is scaled down by 2^16 and we use */ |
410 | /* */ |
411 | /* a <= 65535 - (c >> 17) . */ |
412 | |
413 | /* documentation is in freetype.h */ |
414 | |
415 | FT_EXPORT_DEF( FT_Long ) |
416 | FT_MulDiv( FT_Long a_, |
417 | FT_Long b_, |
418 | FT_Long c_ ) |
419 | { |
420 | FT_Int s = 1; |
421 | FT_UInt32 a, b, c; |
422 | |
423 | |
424 | /* XXX: this function does not allow 64-bit arguments */ |
425 | |
426 | a = (FT_UInt32)a_; |
427 | b = (FT_UInt32)b_; |
428 | c = (FT_UInt32)c_; |
429 | |
430 | FT_MOVE_SIGN( a_, a, s ); |
431 | FT_MOVE_SIGN( b_, b, s ); |
432 | FT_MOVE_SIGN( c_, c, s ); |
433 | |
434 | if ( c == 0 ) |
435 | a = 0x7FFFFFFFUL; |
436 | |
437 | else if ( a + b <= 129894UL - ( c >> 17 ) ) |
438 | a = ( a * b + ( c >> 1 ) ) / c; |
439 | |
440 | else |
441 | { |
442 | FT_Int64 temp, temp2; |
443 | |
444 | |
445 | ft_multo64( a, b, &temp ); |
446 | |
447 | temp2.hi = 0; |
448 | temp2.lo = c >> 1; |
449 | |
450 | FT_Add64( &temp, &temp2, &temp ); |
451 | |
452 | /* last attempt to ditch long division */ |
453 | a = ( temp.hi == 0 ) ? temp.lo / c |
454 | : ft_div64by32( temp.hi, temp.lo, c ); |
455 | } |
456 | |
457 | a_ = (FT_Long)a; |
458 | |
459 | return s < 0 ? NEG_LONG( a_ ) : a_; |
460 | } |
461 | |
462 | |
463 | FT_BASE_DEF( FT_Long ) |
464 | FT_MulDiv_No_Round( FT_Long a_, |
465 | FT_Long b_, |
466 | FT_Long c_ ) |
467 | { |
468 | FT_Int s = 1; |
469 | FT_UInt32 a, b, c; |
470 | |
471 | |
472 | /* XXX: this function does not allow 64-bit arguments */ |
473 | |
474 | a = (FT_UInt32)a_; |
475 | b = (FT_UInt32)b_; |
476 | c = (FT_UInt32)c_; |
477 | |
478 | FT_MOVE_SIGN( a_, a, s ); |
479 | FT_MOVE_SIGN( b_, b, s ); |
480 | FT_MOVE_SIGN( c_, c, s ); |
481 | |
482 | if ( c == 0 ) |
483 | a = 0x7FFFFFFFUL; |
484 | |
485 | else if ( a + b <= 131071UL ) |
486 | a = a * b / c; |
487 | |
488 | else |
489 | { |
490 | FT_Int64 temp; |
491 | |
492 | |
493 | ft_multo64( a, b, &temp ); |
494 | |
495 | /* last attempt to ditch long division */ |
496 | a = ( temp.hi == 0 ) ? temp.lo / c |
497 | : ft_div64by32( temp.hi, temp.lo, c ); |
498 | } |
499 | |
500 | a_ = (FT_Long)a; |
501 | |
502 | return s < 0 ? NEG_LONG( a_ ) : a_; |
503 | } |
504 | |
505 | |
506 | /* documentation is in freetype.h */ |
507 | |
508 | FT_EXPORT_DEF( FT_Long ) |
509 | FT_MulFix( FT_Long a_, |
510 | FT_Long b_ ) |
511 | { |
512 | #ifdef FT_MULFIX_ASSEMBLER |
513 | |
514 | return FT_MULFIX_ASSEMBLER( a_, b_ ); |
515 | |
516 | #elif 0 |
517 | |
518 | /* |
519 | * This code is nonportable. See comment below. |
520 | * |
521 | * However, on a platform where right-shift of a signed quantity fills |
522 | * the leftmost bits by copying the sign bit, it might be faster. |
523 | */ |
524 | |
525 | FT_Long sa, sb; |
526 | FT_UInt32 a, b; |
527 | |
528 | |
529 | /* |
530 | * This is a clever way of converting a signed number `a' into its |
531 | * absolute value (stored back into `a') and its sign. The sign is |
532 | * stored in `sa'; 0 means `a' was positive or zero, and -1 means `a' |
533 | * was negative. (Similarly for `b' and `sb'). |
534 | * |
535 | * Unfortunately, it doesn't work (at least not portably). |
536 | * |
537 | * It makes the assumption that right-shift on a negative signed value |
538 | * fills the leftmost bits by copying the sign bit. This is wrong. |
539 | * According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206, |
540 | * the result of right-shift of a negative signed value is |
541 | * implementation-defined. At least one implementation fills the |
542 | * leftmost bits with 0s (i.e., it is exactly the same as an unsigned |
543 | * right shift). This means that when `a' is negative, `sa' ends up |
544 | * with the value 1 rather than -1. After that, everything else goes |
545 | * wrong. |
546 | */ |
547 | sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) ); |
548 | a = ( a_ ^ sa ) - sa; |
549 | sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) ); |
550 | b = ( b_ ^ sb ) - sb; |
551 | |
552 | a = (FT_UInt32)a_; |
553 | b = (FT_UInt32)b_; |
554 | |
555 | if ( a + ( b >> 8 ) <= 8190UL ) |
556 | a = ( a * b + 0x8000U ) >> 16; |
557 | else |
558 | { |
559 | FT_UInt32 al = a & 0xFFFFUL; |
560 | |
561 | |
562 | a = ( a >> 16 ) * b + al * ( b >> 16 ) + |
563 | ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 ); |
564 | } |
565 | |
566 | sa ^= sb; |
567 | a = ( a ^ sa ) - sa; |
568 | |
569 | return (FT_Long)a; |
570 | |
571 | #else /* 0 */ |
572 | |
573 | FT_Int s = 1; |
574 | FT_UInt32 a, b; |
575 | |
576 | |
577 | /* XXX: this function does not allow 64-bit arguments */ |
578 | |
579 | a = (FT_UInt32)a_; |
580 | b = (FT_UInt32)b_; |
581 | |
582 | FT_MOVE_SIGN( a_, a, s ); |
583 | FT_MOVE_SIGN( b_, b, s ); |
584 | |
585 | if ( a + ( b >> 8 ) <= 8190UL ) |
586 | a = ( a * b + 0x8000UL ) >> 16; |
587 | else |
588 | { |
589 | FT_UInt32 al = a & 0xFFFFUL; |
590 | |
591 | |
592 | a = ( a >> 16 ) * b + al * ( b >> 16 ) + |
593 | ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 ); |
594 | } |
595 | |
596 | a_ = (FT_Long)a; |
597 | |
598 | return s < 0 ? NEG_LONG( a_ ) : a_; |
599 | |
600 | #endif /* 0 */ |
601 | |
602 | } |
603 | |
604 | |
605 | /* documentation is in freetype.h */ |
606 | |
607 | FT_EXPORT_DEF( FT_Long ) |
608 | FT_DivFix( FT_Long a_, |
609 | FT_Long b_ ) |
610 | { |
611 | FT_Int s = 1; |
612 | FT_UInt32 a, b, q; |
613 | FT_Long q_; |
614 | |
615 | |
616 | /* XXX: this function does not allow 64-bit arguments */ |
617 | |
618 | a = (FT_UInt32)a_; |
619 | b = (FT_UInt32)b_; |
620 | |
621 | FT_MOVE_SIGN( a_, a, s ); |
622 | FT_MOVE_SIGN( b_, b, s ); |
623 | |
624 | if ( b == 0 ) |
625 | { |
626 | /* check for division by 0 */ |
627 | q = 0x7FFFFFFFUL; |
628 | } |
629 | else if ( a <= 65535UL - ( b >> 17 ) ) |
630 | { |
631 | /* compute result directly */ |
632 | q = ( ( a << 16 ) + ( b >> 1 ) ) / b; |
633 | } |
634 | else |
635 | { |
636 | /* we need more bits; we have to do it by hand */ |
637 | FT_Int64 temp, temp2; |
638 | |
639 | |
640 | temp.hi = a >> 16; |
641 | temp.lo = a << 16; |
642 | temp2.hi = 0; |
643 | temp2.lo = b >> 1; |
644 | |
645 | FT_Add64( &temp, &temp2, &temp ); |
646 | q = ft_div64by32( temp.hi, temp.lo, b ); |
647 | } |
648 | |
649 | q_ = (FT_Long)q; |
650 | |
651 | return s < 0 ? NEG_LONG( q_ ) : q_; |
652 | } |
653 | |
654 | |
655 | #endif /* !FT_LONG64 */ |
656 | |
657 | |
658 | /* documentation is in ftglyph.h */ |
659 | |
660 | FT_EXPORT_DEF( void ) |
661 | FT_Matrix_Multiply( const FT_Matrix* a, |
662 | FT_Matrix *b ) |
663 | { |
664 | FT_Fixed xx, xy, yx, yy; |
665 | |
666 | |
667 | if ( !a || !b ) |
668 | return; |
669 | |
670 | xx = ADD_LONG( FT_MulFix( a->xx, b->xx ), |
671 | FT_MulFix( a->xy, b->yx ) ); |
672 | xy = ADD_LONG( FT_MulFix( a->xx, b->xy ), |
673 | FT_MulFix( a->xy, b->yy ) ); |
674 | yx = ADD_LONG( FT_MulFix( a->yx, b->xx ), |
675 | FT_MulFix( a->yy, b->yx ) ); |
676 | yy = ADD_LONG( FT_MulFix( a->yx, b->xy ), |
677 | FT_MulFix( a->yy, b->yy ) ); |
678 | |
679 | b->xx = xx; |
680 | b->xy = xy; |
681 | b->yx = yx; |
682 | b->yy = yy; |
683 | } |
684 | |
685 | |
686 | /* documentation is in ftglyph.h */ |
687 | |
688 | FT_EXPORT_DEF( FT_Error ) |
689 | FT_Matrix_Invert( FT_Matrix* matrix ) |
690 | { |
691 | FT_Pos delta, xx, yy; |
692 | |
693 | |
694 | if ( !matrix ) |
695 | return FT_THROW( Invalid_Argument ); |
696 | |
697 | /* compute discriminant */ |
698 | delta = FT_MulFix( matrix->xx, matrix->yy ) - |
699 | FT_MulFix( matrix->xy, matrix->yx ); |
700 | |
701 | if ( !delta ) |
702 | return FT_THROW( Invalid_Argument ); /* matrix can't be inverted */ |
703 | |
704 | matrix->xy = -FT_DivFix( matrix->xy, delta ); |
705 | matrix->yx = -FT_DivFix( matrix->yx, delta ); |
706 | |
707 | xx = matrix->xx; |
708 | yy = matrix->yy; |
709 | |
710 | matrix->xx = FT_DivFix( yy, delta ); |
711 | matrix->yy = FT_DivFix( xx, delta ); |
712 | |
713 | return FT_Err_Ok; |
714 | } |
715 | |
716 | |
717 | /* documentation is in ftcalc.h */ |
718 | |
719 | FT_BASE_DEF( void ) |
720 | FT_Matrix_Multiply_Scaled( const FT_Matrix* a, |
721 | FT_Matrix *b, |
722 | FT_Long scaling ) |
723 | { |
724 | FT_Fixed xx, xy, yx, yy; |
725 | |
726 | FT_Long val = 0x10000L * scaling; |
727 | |
728 | |
729 | if ( !a || !b ) |
730 | return; |
731 | |
732 | xx = ADD_LONG( FT_MulDiv( a->xx, b->xx, val ), |
733 | FT_MulDiv( a->xy, b->yx, val ) ); |
734 | xy = ADD_LONG( FT_MulDiv( a->xx, b->xy, val ), |
735 | FT_MulDiv( a->xy, b->yy, val ) ); |
736 | yx = ADD_LONG( FT_MulDiv( a->yx, b->xx, val ), |
737 | FT_MulDiv( a->yy, b->yx, val ) ); |
738 | yy = ADD_LONG( FT_MulDiv( a->yx, b->xy, val ), |
739 | FT_MulDiv( a->yy, b->yy, val ) ); |
740 | |
741 | b->xx = xx; |
742 | b->xy = xy; |
743 | b->yx = yx; |
744 | b->yy = yy; |
745 | } |
746 | |
747 | |
748 | /* documentation is in ftcalc.h */ |
749 | |
750 | FT_BASE_DEF( FT_Bool ) |
751 | FT_Matrix_Check( const FT_Matrix* matrix ) |
752 | { |
753 | FT_Matrix m; |
754 | FT_Fixed val[4]; |
755 | FT_Fixed nonzero_minval, maxval; |
756 | FT_Fixed temp1, temp2; |
757 | FT_UInt i; |
758 | |
759 | |
760 | if ( !matrix ) |
761 | return 0; |
762 | |
763 | val[0] = FT_ABS( matrix->xx ); |
764 | val[1] = FT_ABS( matrix->xy ); |
765 | val[2] = FT_ABS( matrix->yx ); |
766 | val[3] = FT_ABS( matrix->yy ); |
767 | |
768 | /* |
769 | * To avoid overflow, we ensure that each value is not larger than |
770 | * |
771 | * int(sqrt(2^31 / 4)) = 23170 ; |
772 | * |
773 | * we also check that no value becomes zero if we have to scale. |
774 | */ |
775 | |
776 | maxval = 0; |
777 | nonzero_minval = FT_LONG_MAX; |
778 | |
779 | for ( i = 0; i < 4; i++ ) |
780 | { |
781 | if ( val[i] > maxval ) |
782 | maxval = val[i]; |
783 | if ( val[i] && val[i] < nonzero_minval ) |
784 | nonzero_minval = val[i]; |
785 | } |
786 | |
787 | /* we only handle 32bit values */ |
788 | if ( maxval > 0x7FFFFFFFL ) |
789 | return 0; |
790 | |
791 | if ( maxval > 23170 ) |
792 | { |
793 | FT_Fixed scale = FT_DivFix( maxval, 23170 ); |
794 | |
795 | |
796 | if ( !FT_DivFix( nonzero_minval, scale ) ) |
797 | return 0; /* value range too large */ |
798 | |
799 | m.xx = FT_DivFix( matrix->xx, scale ); |
800 | m.xy = FT_DivFix( matrix->xy, scale ); |
801 | m.yx = FT_DivFix( matrix->yx, scale ); |
802 | m.yy = FT_DivFix( matrix->yy, scale ); |
803 | } |
804 | else |
805 | m = *matrix; |
806 | |
807 | temp1 = FT_ABS( m.xx * m.yy - m.xy * m.yx ); |
808 | temp2 = m.xx * m.xx + m.xy * m.xy + m.yx * m.yx + m.yy * m.yy; |
809 | |
810 | if ( temp1 == 0 || |
811 | temp2 / temp1 > 50 ) |
812 | return 0; |
813 | |
814 | return 1; |
815 | } |
816 | |
817 | |
818 | /* documentation is in ftcalc.h */ |
819 | |
820 | FT_BASE_DEF( void ) |
821 | FT_Vector_Transform_Scaled( FT_Vector* vector, |
822 | const FT_Matrix* matrix, |
823 | FT_Long scaling ) |
824 | { |
825 | FT_Pos xz, yz; |
826 | |
827 | FT_Long val = 0x10000L * scaling; |
828 | |
829 | |
830 | if ( !vector || !matrix ) |
831 | return; |
832 | |
833 | xz = ADD_LONG( FT_MulDiv( vector->x, matrix->xx, val ), |
834 | FT_MulDiv( vector->y, matrix->xy, val ) ); |
835 | yz = ADD_LONG( FT_MulDiv( vector->x, matrix->yx, val ), |
836 | FT_MulDiv( vector->y, matrix->yy, val ) ); |
837 | |
838 | vector->x = xz; |
839 | vector->y = yz; |
840 | } |
841 | |
842 | |
843 | /* documentation is in ftcalc.h */ |
844 | |
845 | FT_BASE_DEF( FT_UInt32 ) |
846 | FT_Vector_NormLen( FT_Vector* vector ) |
847 | { |
848 | FT_Int32 x_ = vector->x; |
849 | FT_Int32 y_ = vector->y; |
850 | FT_Int32 b, z; |
851 | FT_UInt32 x, y, u, v, l; |
852 | FT_Int sx = 1, sy = 1, shift; |
853 | |
854 | |
855 | x = (FT_UInt32)x_; |
856 | y = (FT_UInt32)y_; |
857 | |
858 | FT_MOVE_SIGN( x_, x, sx ); |
859 | FT_MOVE_SIGN( y_, y, sy ); |
860 | |
861 | /* trivial cases */ |
862 | if ( x == 0 ) |
863 | { |
864 | if ( y > 0 ) |
865 | vector->y = sy * 0x10000; |
866 | return y; |
867 | } |
868 | else if ( y == 0 ) |
869 | { |
870 | if ( x > 0 ) |
871 | vector->x = sx * 0x10000; |
872 | return x; |
873 | } |
874 | |
875 | /* Estimate length and prenormalize by shifting so that */ |
876 | /* the new approximate length is between 2/3 and 4/3. */ |
877 | /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps */ |
878 | /* achieve this in 16.16 fixed-point representation. */ |
879 | l = x > y ? x + ( y >> 1 ) |
880 | : y + ( x >> 1 ); |
881 | |
882 | shift = 31 - FT_MSB( l ); |
883 | shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) ); |
884 | |
885 | if ( shift > 0 ) |
886 | { |
887 | x <<= shift; |
888 | y <<= shift; |
889 | |
890 | /* re-estimate length for tiny vectors */ |
891 | l = x > y ? x + ( y >> 1 ) |
892 | : y + ( x >> 1 ); |
893 | } |
894 | else |
895 | { |
896 | x >>= -shift; |
897 | y >>= -shift; |
898 | l >>= -shift; |
899 | } |
900 | |
901 | /* lower linear approximation for reciprocal length minus one */ |
902 | b = 0x10000 - (FT_Int32)l; |
903 | |
904 | x_ = (FT_Int32)x; |
905 | y_ = (FT_Int32)y; |
906 | |
907 | /* Newton's iterations */ |
908 | do |
909 | { |
910 | u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) ); |
911 | v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) ); |
912 | |
913 | /* Normalized squared length in the parentheses approaches 2^32. */ |
914 | /* On two's complement systems, converting to signed gives the */ |
915 | /* difference with 2^32 even if the expression wraps around. */ |
916 | z = -(FT_Int32)( u * u + v * v ) / 0x200; |
917 | z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000; |
918 | |
919 | b += z; |
920 | |
921 | } while ( z > 0 ); |
922 | |
923 | vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u; |
924 | vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v; |
925 | |
926 | /* Conversion to signed helps to recover from likely wrap around */ |
927 | /* in calculating the prenormalized length, because it gives the */ |
928 | /* correct difference with 2^32 on two's complement systems. */ |
929 | l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 ); |
930 | if ( shift > 0 ) |
931 | l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift; |
932 | else |
933 | l <<= -shift; |
934 | |
935 | return l; |
936 | } |
937 | |
938 | |
939 | #if 0 |
940 | |
941 | /* documentation is in ftcalc.h */ |
942 | |
943 | FT_BASE_DEF( FT_Int32 ) |
944 | FT_SqrtFixed( FT_Int32 x ) |
945 | { |
946 | FT_UInt32 root, rem_hi, rem_lo, test_div; |
947 | FT_Int count; |
948 | |
949 | |
950 | root = 0; |
951 | |
952 | if ( x > 0 ) |
953 | { |
954 | rem_hi = 0; |
955 | rem_lo = (FT_UInt32)x; |
956 | count = 24; |
957 | do |
958 | { |
959 | rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 ); |
960 | rem_lo <<= 2; |
961 | root <<= 1; |
962 | test_div = ( root << 1 ) + 1; |
963 | |
964 | if ( rem_hi >= test_div ) |
965 | { |
966 | rem_hi -= test_div; |
967 | root += 1; |
968 | } |
969 | } while ( --count ); |
970 | } |
971 | |
972 | return (FT_Int32)root; |
973 | } |
974 | |
975 | #endif /* 0 */ |
976 | |
977 | |
978 | /* documentation is in ftcalc.h */ |
979 | |
980 | FT_BASE_DEF( FT_Int ) |
981 | ft_corner_orientation( FT_Pos in_x, |
982 | FT_Pos in_y, |
983 | FT_Pos out_x, |
984 | FT_Pos out_y ) |
985 | { |
986 | /* we silently ignore overflow errors since such large values */ |
987 | /* lead to even more (harmless) rendering errors later on */ |
988 | |
989 | #ifdef FT_LONG64 |
990 | |
991 | FT_Int64 delta = SUB_INT64( MUL_INT64( in_x, out_y ), |
992 | MUL_INT64( in_y, out_x ) ); |
993 | |
994 | |
995 | return ( delta > 0 ) - ( delta < 0 ); |
996 | |
997 | #else |
998 | |
999 | FT_Int result; |
1000 | |
1001 | |
1002 | if ( ADD_LONG( FT_ABS( in_x ), FT_ABS( out_y ) ) <= 131071L && |
1003 | ADD_LONG( FT_ABS( in_y ), FT_ABS( out_x ) ) <= 131071L ) |
1004 | { |
1005 | FT_Long z1 = MUL_LONG( in_x, out_y ); |
1006 | FT_Long z2 = MUL_LONG( in_y, out_x ); |
1007 | |
1008 | |
1009 | if ( z1 > z2 ) |
1010 | result = +1; |
1011 | else if ( z1 < z2 ) |
1012 | result = -1; |
1013 | else |
1014 | result = 0; |
1015 | } |
1016 | else /* products might overflow 32 bits */ |
1017 | { |
1018 | FT_Int64 z1, z2; |
1019 | |
1020 | |
1021 | /* XXX: this function does not allow 64-bit arguments */ |
1022 | ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 ); |
1023 | ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 ); |
1024 | |
1025 | if ( z1.hi > z2.hi ) |
1026 | result = +1; |
1027 | else if ( z1.hi < z2.hi ) |
1028 | result = -1; |
1029 | else if ( z1.lo > z2.lo ) |
1030 | result = +1; |
1031 | else if ( z1.lo < z2.lo ) |
1032 | result = -1; |
1033 | else |
1034 | result = 0; |
1035 | } |
1036 | |
1037 | /* XXX: only the sign of return value, +1/0/-1 must be used */ |
1038 | return result; |
1039 | |
1040 | #endif |
1041 | } |
1042 | |
1043 | |
1044 | /* documentation is in ftcalc.h */ |
1045 | |
1046 | FT_BASE_DEF( FT_Int ) |
1047 | ft_corner_is_flat( FT_Pos in_x, |
1048 | FT_Pos in_y, |
1049 | FT_Pos out_x, |
1050 | FT_Pos out_y ) |
1051 | { |
1052 | FT_Pos ax = in_x + out_x; |
1053 | FT_Pos ay = in_y + out_y; |
1054 | |
1055 | FT_Pos d_in, d_out, d_hypot; |
1056 | |
1057 | |
1058 | /* The idea of this function is to compare the length of the */ |
1059 | /* hypotenuse with the `in' and `out' length. The `corner' */ |
1060 | /* represented by `in' and `out' is flat if the hypotenuse's */ |
1061 | /* length isn't too large. */ |
1062 | /* */ |
1063 | /* This approach has the advantage that the angle between */ |
1064 | /* `in' and `out' is not checked. In case one of the two */ |
1065 | /* vectors is `dominant', this is, much larger than the */ |
1066 | /* other vector, we thus always have a flat corner. */ |
1067 | /* */ |
1068 | /* hypotenuse */ |
1069 | /* x---------------------------x */ |
1070 | /* \ / */ |
1071 | /* \ / */ |
1072 | /* in \ / out */ |
1073 | /* \ / */ |
1074 | /* o */ |
1075 | /* Point */ |
1076 | |
1077 | d_in = FT_HYPOT( in_x, in_y ); |
1078 | d_out = FT_HYPOT( out_x, out_y ); |
1079 | d_hypot = FT_HYPOT( ax, ay ); |
1080 | |
1081 | /* now do a simple length comparison: */ |
1082 | /* */ |
1083 | /* d_in + d_out < 17/16 d_hypot */ |
1084 | |
1085 | return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 ); |
1086 | } |
1087 | |
1088 | |
1089 | /* END */ |
1090 | |