1 | /**************************************************************************** |
2 | * |
3 | * ftgrays.c |
4 | * |
5 | * A new `perfect' anti-aliasing renderer (body). |
6 | * |
7 | * Copyright (C) 2000-2019 by |
8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
9 | * |
10 | * This file is part of the FreeType project, and may only be used, |
11 | * modified, and distributed under the terms of the FreeType project |
12 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
13 | * this file you indicate that you have read the license and |
14 | * understand and accept it fully. |
15 | * |
16 | */ |
17 | |
18 | /************************************************************************** |
19 | * |
20 | * This file can be compiled without the rest of the FreeType engine, by |
21 | * defining the STANDALONE_ macro when compiling it. You also need to |
22 | * put the files `ftgrays.h' and `ftimage.h' into the current |
23 | * compilation directory. Typically, you could do something like |
24 | * |
25 | * - copy `src/smooth/ftgrays.c' (this file) to your current directory |
26 | * |
27 | * - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the |
28 | * same directory |
29 | * |
30 | * - compile `ftgrays' with the STANDALONE_ macro defined, as in |
31 | * |
32 | * cc -c -DSTANDALONE_ ftgrays.c |
33 | * |
34 | * The renderer can be initialized with a call to |
35 | * `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated |
36 | * with a call to `ft_gray_raster.raster_render'. |
37 | * |
38 | * See the comments and documentation in the file `ftimage.h' for more |
39 | * details on how the raster works. |
40 | * |
41 | */ |
42 | |
43 | /************************************************************************** |
44 | * |
45 | * This is a new anti-aliasing scan-converter for FreeType 2. The |
46 | * algorithm used here is _very_ different from the one in the standard |
47 | * `ftraster' module. Actually, `ftgrays' computes the _exact_ |
48 | * coverage of the outline on each pixel cell. |
49 | * |
50 | * It is based on ideas that I initially found in Raph Levien's |
51 | * excellent LibArt graphics library (see https://www.levien.com/libart |
52 | * for more information, though the web pages do not tell anything |
53 | * about the renderer; you'll have to dive into the source code to |
54 | * understand how it works). |
55 | * |
56 | * Note, however, that this is a _very_ different implementation |
57 | * compared to Raph's. Coverage information is stored in a very |
58 | * different way, and I don't use sorted vector paths. Also, it doesn't |
59 | * use floating point values. |
60 | * |
61 | * This renderer has the following advantages: |
62 | * |
63 | * - It doesn't need an intermediate bitmap. Instead, one can supply a |
64 | * callback function that will be called by the renderer to draw gray |
65 | * spans on any target surface. You can thus do direct composition on |
66 | * any kind of bitmap, provided that you give the renderer the right |
67 | * callback. |
68 | * |
69 | * - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on |
70 | * each pixel cell. |
71 | * |
72 | * - It performs a single pass on the outline (the `standard' FT2 |
73 | * renderer makes two passes). |
74 | * |
75 | * - It can easily be modified to render to _any_ number of gray levels |
76 | * cheaply. |
77 | * |
78 | * - For small (< 20) pixel sizes, it is faster than the standard |
79 | * renderer. |
80 | * |
81 | */ |
82 | |
83 | |
84 | /************************************************************************** |
85 | * |
86 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
87 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
88 | * messages during execution. |
89 | */ |
90 | #undef FT_COMPONENT |
91 | #define FT_COMPONENT smooth |
92 | |
93 | |
94 | #ifdef STANDALONE_ |
95 | |
96 | |
97 | /* The size in bytes of the render pool used by the scan-line converter */ |
98 | /* to do all of its work. */ |
99 | #define FT_RENDER_POOL_SIZE 16384L |
100 | |
101 | |
102 | /* Auxiliary macros for token concatenation. */ |
103 | #define FT_ERR_XCAT( x, y ) x ## y |
104 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
105 | |
106 | #define FT_BEGIN_STMNT do { |
107 | #define FT_END_STMNT } while ( 0 ) |
108 | |
109 | #define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) ) |
110 | #define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
111 | #define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
112 | |
113 | |
114 | /* |
115 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
116 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
117 | * largest error less than 7% compared to the exact value. |
118 | */ |
119 | #define FT_HYPOT( x, y ) \ |
120 | ( x = FT_ABS( x ), \ |
121 | y = FT_ABS( y ), \ |
122 | x > y ? x + ( 3 * y >> 3 ) \ |
123 | : y + ( 3 * x >> 3 ) ) |
124 | |
125 | |
126 | /* define this to dump debugging information */ |
127 | /* #define FT_DEBUG_LEVEL_TRACE */ |
128 | |
129 | |
130 | #ifdef FT_DEBUG_LEVEL_TRACE |
131 | #include <stdio.h> |
132 | #include <stdarg.h> |
133 | #endif |
134 | |
135 | #include <stddef.h> |
136 | #include <string.h> |
137 | #include <setjmp.h> |
138 | #include <limits.h> |
139 | #define FT_CHAR_BIT CHAR_BIT |
140 | #define FT_UINT_MAX UINT_MAX |
141 | #define FT_INT_MAX INT_MAX |
142 | #define FT_ULONG_MAX ULONG_MAX |
143 | |
144 | #define ADD_LONG( a, b ) \ |
145 | (long)( (unsigned long)(a) + (unsigned long)(b) ) |
146 | #define SUB_LONG( a, b ) \ |
147 | (long)( (unsigned long)(a) - (unsigned long)(b) ) |
148 | #define MUL_LONG( a, b ) \ |
149 | (long)( (unsigned long)(a) * (unsigned long)(b) ) |
150 | #define NEG_LONG( a ) \ |
151 | (long)( -(unsigned long)(a) ) |
152 | |
153 | |
154 | #define ft_memset memset |
155 | |
156 | #define ft_setjmp setjmp |
157 | #define ft_longjmp longjmp |
158 | #define ft_jmp_buf jmp_buf |
159 | |
160 | typedef ptrdiff_t FT_PtrDist; |
161 | |
162 | |
163 | #define ErrRaster_Invalid_Mode -2 |
164 | #define ErrRaster_Invalid_Outline -1 |
165 | #define ErrRaster_Invalid_Argument -3 |
166 | #define ErrRaster_Memory_Overflow -4 |
167 | |
168 | #define FT_BEGIN_HEADER |
169 | #define FT_END_HEADER |
170 | |
171 | #include "ftimage.h" |
172 | #include "ftgrays.h" |
173 | |
174 | |
175 | /* This macro is used to indicate that a function parameter is unused. */ |
176 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
177 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
178 | /* ANSI compilers (e.g. LCC). */ |
179 | #define FT_UNUSED( x ) (x) = (x) |
180 | |
181 | |
182 | /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */ |
183 | |
184 | #ifdef FT_DEBUG_LEVEL_TRACE |
185 | |
186 | void |
187 | FT_Message( const char* fmt, |
188 | ... ) |
189 | { |
190 | va_list ap; |
191 | |
192 | |
193 | va_start( ap, fmt ); |
194 | vfprintf( stderr, fmt, ap ); |
195 | va_end( ap ); |
196 | } |
197 | |
198 | |
199 | /* empty function useful for setting a breakpoint to catch errors */ |
200 | int |
201 | FT_Throw( int error, |
202 | int line, |
203 | const char* file ) |
204 | { |
205 | FT_UNUSED( error ); |
206 | FT_UNUSED( line ); |
207 | FT_UNUSED( file ); |
208 | |
209 | return 0; |
210 | } |
211 | |
212 | |
213 | /* we don't handle tracing levels in stand-alone mode; */ |
214 | #ifndef FT_TRACE5 |
215 | #define FT_TRACE5( varformat ) FT_Message varformat |
216 | #endif |
217 | #ifndef FT_TRACE7 |
218 | #define FT_TRACE7( varformat ) FT_Message varformat |
219 | #endif |
220 | #ifndef FT_ERROR |
221 | #define FT_ERROR( varformat ) FT_Message varformat |
222 | #endif |
223 | |
224 | #define FT_THROW( e ) \ |
225 | ( FT_Throw( FT_ERR_CAT( ErrRaster_, e ), \ |
226 | __LINE__, \ |
227 | __FILE__ ) | \ |
228 | FT_ERR_CAT( ErrRaster_, e ) ) |
229 | |
230 | #else /* !FT_DEBUG_LEVEL_TRACE */ |
231 | |
232 | #define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
233 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
234 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
235 | #define FT_THROW( e ) FT_ERR_CAT( ErrRaster_, e ) |
236 | |
237 | |
238 | #endif /* !FT_DEBUG_LEVEL_TRACE */ |
239 | |
240 | |
241 | #define FT_DEFINE_OUTLINE_FUNCS( class_, \ |
242 | move_to_, line_to_, \ |
243 | conic_to_, cubic_to_, \ |
244 | shift_, delta_ ) \ |
245 | static const FT_Outline_Funcs class_ = \ |
246 | { \ |
247 | move_to_, \ |
248 | line_to_, \ |
249 | conic_to_, \ |
250 | cubic_to_, \ |
251 | shift_, \ |
252 | delta_ \ |
253 | }; |
254 | |
255 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \ |
256 | raster_new_, raster_reset_, \ |
257 | raster_set_mode_, raster_render_, \ |
258 | raster_done_ ) \ |
259 | const FT_Raster_Funcs class_ = \ |
260 | { \ |
261 | glyph_format_, \ |
262 | raster_new_, \ |
263 | raster_reset_, \ |
264 | raster_set_mode_, \ |
265 | raster_render_, \ |
266 | raster_done_ \ |
267 | }; |
268 | |
269 | |
270 | #else /* !STANDALONE_ */ |
271 | |
272 | |
273 | #include <ft2build.h> |
274 | #include "ftgrays.h" |
275 | #include FT_INTERNAL_OBJECTS_H |
276 | #include FT_INTERNAL_DEBUG_H |
277 | #include FT_INTERNAL_CALC_H |
278 | #include FT_OUTLINE_H |
279 | |
280 | #include "ftsmerrs.h" |
281 | |
282 | #define Smooth_Err_Invalid_Mode Smooth_Err_Cannot_Render_Glyph |
283 | #define Smooth_Err_Memory_Overflow Smooth_Err_Out_Of_Memory |
284 | #define ErrRaster_Memory_Overflow Smooth_Err_Out_Of_Memory |
285 | |
286 | |
287 | #endif /* !STANDALONE_ */ |
288 | |
289 | |
290 | #ifndef FT_MEM_SET |
291 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
292 | #endif |
293 | |
294 | #ifndef FT_MEM_ZERO |
295 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
296 | #endif |
297 | |
298 | #ifndef FT_ZERO |
299 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
300 | #endif |
301 | |
302 | /* as usual, for the speed hungry :-) */ |
303 | |
304 | #undef RAS_ARG |
305 | #undef RAS_ARG_ |
306 | #undef RAS_VAR |
307 | #undef RAS_VAR_ |
308 | |
309 | #ifndef FT_STATIC_RASTER |
310 | |
311 | #define RAS_ARG gray_PWorker worker |
312 | #define RAS_ARG_ gray_PWorker worker, |
313 | |
314 | #define RAS_VAR worker |
315 | #define RAS_VAR_ worker, |
316 | |
317 | #else /* FT_STATIC_RASTER */ |
318 | |
319 | #define RAS_ARG void |
320 | #define RAS_ARG_ /* empty */ |
321 | #define RAS_VAR /* empty */ |
322 | #define RAS_VAR_ /* empty */ |
323 | |
324 | #endif /* FT_STATIC_RASTER */ |
325 | |
326 | |
327 | /* must be at least 6 bits! */ |
328 | #define PIXEL_BITS 8 |
329 | |
330 | #undef FLOOR |
331 | #undef CEILING |
332 | #undef TRUNC |
333 | #undef SCALED |
334 | |
335 | #define ONE_PIXEL ( 1 << PIXEL_BITS ) |
336 | #define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) ) |
337 | #define SUBPIXELS( x ) ( (TPos)(x) * ONE_PIXEL ) |
338 | #define FLOOR( x ) ( (x) & -ONE_PIXEL ) |
339 | #define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL ) |
340 | #define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL ) |
341 | |
342 | #if PIXEL_BITS >= 6 |
343 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
344 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
345 | #else |
346 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
347 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
348 | #endif |
349 | |
350 | |
351 | /* Compute `dividend / divisor' and return both its quotient and */ |
352 | /* remainder, cast to a specific type. This macro also ensures that */ |
353 | /* the remainder is always positive. We use the remainder to keep */ |
354 | /* track of accumulating errors and compensate for them. */ |
355 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
356 | FT_BEGIN_STMNT \ |
357 | (quotient) = (type)( (dividend) / (divisor) ); \ |
358 | (remainder) = (type)( (dividend) % (divisor) ); \ |
359 | if ( (remainder) < 0 ) \ |
360 | { \ |
361 | (quotient)--; \ |
362 | (remainder) += (type)(divisor); \ |
363 | } \ |
364 | FT_END_STMNT |
365 | |
366 | #ifdef __arm__ |
367 | /* Work around a bug specific to GCC which make the compiler fail to */ |
368 | /* optimize a division and modulo operation on the same parameters */ |
369 | /* into a single call to `__aeabi_idivmod'. See */ |
370 | /* */ |
371 | /* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */ |
372 | #undef FT_DIV_MOD |
373 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
374 | FT_BEGIN_STMNT \ |
375 | (quotient) = (type)( (dividend) / (divisor) ); \ |
376 | (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \ |
377 | if ( (remainder) < 0 ) \ |
378 | { \ |
379 | (quotient)--; \ |
380 | (remainder) += (type)(divisor); \ |
381 | } \ |
382 | FT_END_STMNT |
383 | #endif /* __arm__ */ |
384 | |
385 | |
386 | /* These macros speed up repetitive divisions by replacing them */ |
387 | /* with multiplications and right shifts. */ |
388 | #define FT_UDIVPREP( c, b ) \ |
389 | long b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \ |
390 | : 0 |
391 | #define FT_UDIV( a, b ) \ |
392 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
393 | ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) ) |
394 | |
395 | |
396 | /************************************************************************** |
397 | * |
398 | * TYPE DEFINITIONS |
399 | */ |
400 | |
401 | /* don't change the following types to FT_Int or FT_Pos, since we might */ |
402 | /* need to define them to "float" or "double" when experimenting with */ |
403 | /* new algorithms */ |
404 | |
405 | typedef long TPos; /* subpixel coordinate */ |
406 | typedef int TCoord; /* integer scanline/pixel coordinate */ |
407 | typedef int TArea; /* cell areas, coordinate products */ |
408 | |
409 | |
410 | typedef struct TCell_* PCell; |
411 | |
412 | typedef struct TCell_ |
413 | { |
414 | TCoord x; /* same with gray_TWorker.ex */ |
415 | TCoord cover; /* same with gray_TWorker.cover */ |
416 | TArea area; |
417 | PCell next; |
418 | |
419 | } TCell; |
420 | |
421 | typedef struct TPixmap_ |
422 | { |
423 | unsigned char* origin; /* pixmap origin at the bottom-left */ |
424 | int pitch; /* pitch to go down one row */ |
425 | |
426 | } TPixmap; |
427 | |
428 | /* maximum number of gray cells in the buffer */ |
429 | #if FT_RENDER_POOL_SIZE > 2048 |
430 | #define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) ) |
431 | #else |
432 | #define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) ) |
433 | #endif |
434 | |
435 | |
436 | #if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */ |
437 | /* We disable the warning `structure was padded due to */ |
438 | /* __declspec(align())' in order to compile cleanly with */ |
439 | /* the maximum level of warnings. */ |
440 | #pragma warning( push ) |
441 | #pragma warning( disable : 4324 ) |
442 | #endif /* _MSC_VER */ |
443 | |
444 | typedef struct gray_TWorker_ |
445 | { |
446 | ft_jmp_buf jump_buffer; |
447 | |
448 | TCoord ex, ey; |
449 | TCoord min_ex, max_ex; |
450 | TCoord min_ey, max_ey; |
451 | |
452 | TArea area; |
453 | TCoord cover; |
454 | int invalid; |
455 | |
456 | PCell* ycells; |
457 | PCell cells; |
458 | FT_PtrDist max_cells; |
459 | FT_PtrDist num_cells; |
460 | |
461 | TPos x, y; |
462 | |
463 | FT_Outline outline; |
464 | TPixmap target; |
465 | |
466 | FT_Raster_Span_Func render_span; |
467 | void* render_span_data; |
468 | |
469 | } gray_TWorker, *gray_PWorker; |
470 | |
471 | #if defined( _MSC_VER ) |
472 | #pragma warning( pop ) |
473 | #endif |
474 | |
475 | |
476 | #ifndef FT_STATIC_RASTER |
477 | #define ras (*worker) |
478 | #else |
479 | static gray_TWorker ras; |
480 | #endif |
481 | |
482 | |
483 | typedef struct gray_TRaster_ |
484 | { |
485 | void* memory; |
486 | |
487 | } gray_TRaster, *gray_PRaster; |
488 | |
489 | |
490 | #ifdef FT_DEBUG_LEVEL_TRACE |
491 | |
492 | /* to be called while in the debugger -- */ |
493 | /* this function causes a compiler warning since it is unused otherwise */ |
494 | static void |
495 | gray_dump_cells( RAS_ARG ) |
496 | { |
497 | int y; |
498 | |
499 | |
500 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
501 | { |
502 | PCell cell = ras.ycells[y - ras.min_ey]; |
503 | |
504 | |
505 | printf( "%3d:" , y ); |
506 | |
507 | for ( ; cell != NULL; cell = cell->next ) |
508 | printf( " (%3d, c:%4d, a:%6d)" , |
509 | cell->x, cell->cover, cell->area ); |
510 | printf( "\n" ); |
511 | } |
512 | } |
513 | |
514 | #endif /* FT_DEBUG_LEVEL_TRACE */ |
515 | |
516 | |
517 | /************************************************************************** |
518 | * |
519 | * Record the current cell in the table. |
520 | */ |
521 | static void |
522 | gray_record_cell( RAS_ARG ) |
523 | { |
524 | PCell *pcell, cell; |
525 | TCoord x = ras.ex; |
526 | |
527 | |
528 | pcell = &ras.ycells[ras.ey - ras.min_ey]; |
529 | for (;;) |
530 | { |
531 | cell = *pcell; |
532 | if ( !cell || cell->x > x ) |
533 | break; |
534 | |
535 | if ( cell->x == x ) |
536 | goto Found; |
537 | |
538 | pcell = &cell->next; |
539 | } |
540 | |
541 | if ( ras.num_cells >= ras.max_cells ) |
542 | ft_longjmp( ras.jump_buffer, 1 ); |
543 | |
544 | /* insert new cell */ |
545 | cell = ras.cells + ras.num_cells++; |
546 | cell->x = x; |
547 | cell->area = ras.area; |
548 | cell->cover = ras.cover; |
549 | |
550 | cell->next = *pcell; |
551 | *pcell = cell; |
552 | |
553 | return; |
554 | |
555 | Found: |
556 | /* update old cell */ |
557 | cell->area += ras.area; |
558 | cell->cover += ras.cover; |
559 | } |
560 | |
561 | |
562 | /************************************************************************** |
563 | * |
564 | * Set the current cell to a new position. |
565 | */ |
566 | static void |
567 | gray_set_cell( RAS_ARG_ TCoord ex, |
568 | TCoord ey ) |
569 | { |
570 | /* Move the cell pointer to a new position. We set the `invalid' */ |
571 | /* flag to indicate that the cell isn't part of those we're interested */ |
572 | /* in during the render phase. This means that: */ |
573 | /* */ |
574 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
575 | /* . the new horizontal position must be strictly less than max_ex */ |
576 | /* */ |
577 | /* Note that if a cell is to the left of the clipping region, it is */ |
578 | /* actually set to the (min_ex-1) horizontal position. */ |
579 | |
580 | if ( ex < ras.min_ex ) |
581 | ex = ras.min_ex - 1; |
582 | |
583 | /* record the current one if it is valid and substantial */ |
584 | if ( !ras.invalid && ( ras.area || ras.cover ) ) |
585 | gray_record_cell( RAS_VAR ); |
586 | |
587 | ras.area = 0; |
588 | ras.cover = 0; |
589 | ras.ex = ex; |
590 | ras.ey = ey; |
591 | |
592 | ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey || |
593 | ex >= ras.max_ex ); |
594 | } |
595 | |
596 | |
597 | #ifndef FT_LONG64 |
598 | |
599 | /************************************************************************** |
600 | * |
601 | * Render a scanline as one or more cells. |
602 | */ |
603 | static void |
604 | gray_render_scanline( RAS_ARG_ TCoord ey, |
605 | TPos x1, |
606 | TCoord y1, |
607 | TPos x2, |
608 | TCoord y2 ) |
609 | { |
610 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
611 | TPos p, dx; |
612 | int incr; |
613 | |
614 | |
615 | ex1 = TRUNC( x1 ); |
616 | ex2 = TRUNC( x2 ); |
617 | |
618 | /* trivial case. Happens often */ |
619 | if ( y1 == y2 ) |
620 | { |
621 | gray_set_cell( RAS_VAR_ ex2, ey ); |
622 | return; |
623 | } |
624 | |
625 | fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) ); |
626 | fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) ); |
627 | |
628 | /* everything is located in a single cell. That is easy! */ |
629 | /* */ |
630 | if ( ex1 == ex2 ) |
631 | goto End; |
632 | |
633 | /* ok, we'll have to render a run of adjacent cells on the same */ |
634 | /* scanline... */ |
635 | /* */ |
636 | dx = x2 - x1; |
637 | dy = y2 - y1; |
638 | |
639 | if ( dx > 0 ) |
640 | { |
641 | p = ( ONE_PIXEL - fx1 ) * dy; |
642 | first = ONE_PIXEL; |
643 | incr = 1; |
644 | } |
645 | else |
646 | { |
647 | p = fx1 * dy; |
648 | first = 0; |
649 | incr = -1; |
650 | dx = -dx; |
651 | } |
652 | |
653 | FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
654 | |
655 | ras.area += (TArea)( ( fx1 + first ) * delta ); |
656 | ras.cover += delta; |
657 | y1 += delta; |
658 | ex1 += incr; |
659 | gray_set_cell( RAS_VAR_ ex1, ey ); |
660 | |
661 | if ( ex1 != ex2 ) |
662 | { |
663 | TCoord lift, rem; |
664 | |
665 | |
666 | p = ONE_PIXEL * dy; |
667 | FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
668 | |
669 | do |
670 | { |
671 | delta = lift; |
672 | mod += rem; |
673 | if ( mod >= (TCoord)dx ) |
674 | { |
675 | mod -= (TCoord)dx; |
676 | delta++; |
677 | } |
678 | |
679 | ras.area += (TArea)( ONE_PIXEL * delta ); |
680 | ras.cover += delta; |
681 | y1 += delta; |
682 | ex1 += incr; |
683 | gray_set_cell( RAS_VAR_ ex1, ey ); |
684 | } while ( ex1 != ex2 ); |
685 | } |
686 | |
687 | fx1 = ONE_PIXEL - first; |
688 | |
689 | End: |
690 | dy = y2 - y1; |
691 | |
692 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
693 | ras.cover += dy; |
694 | } |
695 | |
696 | |
697 | /************************************************************************** |
698 | * |
699 | * Render a given line as a series of scanlines. |
700 | */ |
701 | static void |
702 | gray_render_line( RAS_ARG_ TPos to_x, |
703 | TPos to_y ) |
704 | { |
705 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
706 | TPos p, dx, dy, x, x2; |
707 | int incr; |
708 | |
709 | |
710 | ey1 = TRUNC( ras.y ); |
711 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
712 | |
713 | /* perform vertical clipping */ |
714 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
715 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
716 | goto End; |
717 | |
718 | fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) ); |
719 | fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) ); |
720 | |
721 | /* everything is on a single scanline */ |
722 | if ( ey1 == ey2 ) |
723 | { |
724 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); |
725 | goto End; |
726 | } |
727 | |
728 | dx = to_x - ras.x; |
729 | dy = to_y - ras.y; |
730 | |
731 | /* vertical line - avoid calling gray_render_scanline */ |
732 | if ( dx == 0 ) |
733 | { |
734 | TCoord ex = TRUNC( ras.x ); |
735 | TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 ); |
736 | TArea area; |
737 | |
738 | |
739 | if ( dy > 0) |
740 | { |
741 | first = ONE_PIXEL; |
742 | incr = 1; |
743 | } |
744 | else |
745 | { |
746 | first = 0; |
747 | incr = -1; |
748 | } |
749 | |
750 | delta = first - fy1; |
751 | ras.area += (TArea)two_fx * delta; |
752 | ras.cover += delta; |
753 | ey1 += incr; |
754 | |
755 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
756 | |
757 | delta = first + first - ONE_PIXEL; |
758 | area = (TArea)two_fx * delta; |
759 | while ( ey1 != ey2 ) |
760 | { |
761 | ras.area += area; |
762 | ras.cover += delta; |
763 | ey1 += incr; |
764 | |
765 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
766 | } |
767 | |
768 | delta = fy2 - ONE_PIXEL + first; |
769 | ras.area += (TArea)two_fx * delta; |
770 | ras.cover += delta; |
771 | |
772 | goto End; |
773 | } |
774 | |
775 | /* ok, we have to render several scanlines */ |
776 | if ( dy > 0) |
777 | { |
778 | p = ( ONE_PIXEL - fy1 ) * dx; |
779 | first = ONE_PIXEL; |
780 | incr = 1; |
781 | } |
782 | else |
783 | { |
784 | p = fy1 * dx; |
785 | first = 0; |
786 | incr = -1; |
787 | dy = -dy; |
788 | } |
789 | |
790 | FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
791 | |
792 | x = ras.x + delta; |
793 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ); |
794 | |
795 | ey1 += incr; |
796 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
797 | |
798 | if ( ey1 != ey2 ) |
799 | { |
800 | TCoord lift, rem; |
801 | |
802 | |
803 | p = ONE_PIXEL * dx; |
804 | FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
805 | |
806 | do |
807 | { |
808 | delta = lift; |
809 | mod += rem; |
810 | if ( mod >= (TCoord)dy ) |
811 | { |
812 | mod -= (TCoord)dy; |
813 | delta++; |
814 | } |
815 | |
816 | x2 = x + delta; |
817 | gray_render_scanline( RAS_VAR_ ey1, |
818 | x, ONE_PIXEL - first, |
819 | x2, first ); |
820 | x = x2; |
821 | |
822 | ey1 += incr; |
823 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
824 | } while ( ey1 != ey2 ); |
825 | } |
826 | |
827 | gray_render_scanline( RAS_VAR_ ey1, |
828 | x, ONE_PIXEL - first, |
829 | to_x, fy2 ); |
830 | |
831 | End: |
832 | ras.x = to_x; |
833 | ras.y = to_y; |
834 | } |
835 | |
836 | #else |
837 | |
838 | /************************************************************************** |
839 | * |
840 | * Render a straight line across multiple cells in any direction. |
841 | */ |
842 | static void |
843 | gray_render_line( RAS_ARG_ TPos to_x, |
844 | TPos to_y ) |
845 | { |
846 | TPos dx, dy, fx1, fy1, fx2, fy2; |
847 | TCoord ex1, ex2, ey1, ey2; |
848 | |
849 | |
850 | ey1 = TRUNC( ras.y ); |
851 | ey2 = TRUNC( to_y ); |
852 | |
853 | /* perform vertical clipping */ |
854 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
855 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
856 | goto End; |
857 | |
858 | ex1 = TRUNC( ras.x ); |
859 | ex2 = TRUNC( to_x ); |
860 | |
861 | fx1 = ras.x - SUBPIXELS( ex1 ); |
862 | fy1 = ras.y - SUBPIXELS( ey1 ); |
863 | |
864 | dx = to_x - ras.x; |
865 | dy = to_y - ras.y; |
866 | |
867 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
868 | ; |
869 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
870 | { |
871 | ex1 = ex2; |
872 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
873 | } |
874 | else if ( dx == 0 ) |
875 | { |
876 | if ( dy > 0 ) /* vertical line up */ |
877 | do |
878 | { |
879 | fy2 = ONE_PIXEL; |
880 | ras.cover += ( fy2 - fy1 ); |
881 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
882 | fy1 = 0; |
883 | ey1++; |
884 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
885 | } while ( ey1 != ey2 ); |
886 | else /* vertical line down */ |
887 | do |
888 | { |
889 | fy2 = 0; |
890 | ras.cover += ( fy2 - fy1 ); |
891 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
892 | fy1 = ONE_PIXEL; |
893 | ey1--; |
894 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
895 | } while ( ey1 != ey2 ); |
896 | } |
897 | else /* any other line */ |
898 | { |
899 | TPos prod = dx * fy1 - dy * fx1; |
900 | FT_UDIVPREP( ex1 != ex2, dx ); |
901 | FT_UDIVPREP( ey1 != ey2, dy ); |
902 | |
903 | |
904 | /* The fundamental value `prod' determines which side and the */ |
905 | /* exact coordinate where the line exits current cell. It is */ |
906 | /* also easily updated when moving from one cell to the next. */ |
907 | do |
908 | { |
909 | if ( prod <= 0 && |
910 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
911 | { |
912 | fx2 = 0; |
913 | fy2 = (TPos)FT_UDIV( -prod, -dx ); |
914 | prod -= dy * ONE_PIXEL; |
915 | ras.cover += ( fy2 - fy1 ); |
916 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
917 | fx1 = ONE_PIXEL; |
918 | fy1 = fy2; |
919 | ex1--; |
920 | } |
921 | else if ( prod - dx * ONE_PIXEL <= 0 && |
922 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
923 | { |
924 | prod -= dx * ONE_PIXEL; |
925 | fx2 = (TPos)FT_UDIV( -prod, dy ); |
926 | fy2 = ONE_PIXEL; |
927 | ras.cover += ( fy2 - fy1 ); |
928 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
929 | fx1 = fx2; |
930 | fy1 = 0; |
931 | ey1++; |
932 | } |
933 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
934 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
935 | { |
936 | prod += dy * ONE_PIXEL; |
937 | fx2 = ONE_PIXEL; |
938 | fy2 = (TPos)FT_UDIV( prod, dx ); |
939 | ras.cover += ( fy2 - fy1 ); |
940 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
941 | fx1 = 0; |
942 | fy1 = fy2; |
943 | ex1++; |
944 | } |
945 | else /* ( prod + dy * ONE_PIXEL < 0 && |
946 | prod > 0 ) down */ |
947 | { |
948 | fx2 = (TPos)FT_UDIV( prod, -dy ); |
949 | fy2 = 0; |
950 | prod += dx * ONE_PIXEL; |
951 | ras.cover += ( fy2 - fy1 ); |
952 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
953 | fx1 = fx2; |
954 | fy1 = ONE_PIXEL; |
955 | ey1--; |
956 | } |
957 | |
958 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
959 | } while ( ex1 != ex2 || ey1 != ey2 ); |
960 | } |
961 | |
962 | fx2 = to_x - SUBPIXELS( ex2 ); |
963 | fy2 = to_y - SUBPIXELS( ey2 ); |
964 | |
965 | ras.cover += ( fy2 - fy1 ); |
966 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
967 | |
968 | End: |
969 | ras.x = to_x; |
970 | ras.y = to_y; |
971 | } |
972 | |
973 | #endif |
974 | |
975 | static void |
976 | gray_split_conic( FT_Vector* base ) |
977 | { |
978 | TPos a, b; |
979 | |
980 | |
981 | base[4].x = base[2].x; |
982 | b = base[1].x; |
983 | a = base[3].x = ( base[2].x + b ) / 2; |
984 | b = base[1].x = ( base[0].x + b ) / 2; |
985 | base[2].x = ( a + b ) / 2; |
986 | |
987 | base[4].y = base[2].y; |
988 | b = base[1].y; |
989 | a = base[3].y = ( base[2].y + b ) / 2; |
990 | b = base[1].y = ( base[0].y + b ) / 2; |
991 | base[2].y = ( a + b ) / 2; |
992 | } |
993 | |
994 | |
995 | static void |
996 | gray_render_conic( RAS_ARG_ const FT_Vector* control, |
997 | const FT_Vector* to ) |
998 | { |
999 | FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
1000 | FT_Vector* arc = bez_stack; |
1001 | TPos dx, dy; |
1002 | int draw, split; |
1003 | |
1004 | |
1005 | arc[0].x = UPSCALE( to->x ); |
1006 | arc[0].y = UPSCALE( to->y ); |
1007 | arc[1].x = UPSCALE( control->x ); |
1008 | arc[1].y = UPSCALE( control->y ); |
1009 | arc[2].x = ras.x; |
1010 | arc[2].y = ras.y; |
1011 | |
1012 | /* short-cut the arc that crosses the current band */ |
1013 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1014 | TRUNC( arc[1].y ) >= ras.max_ey && |
1015 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
1016 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1017 | TRUNC( arc[1].y ) < ras.min_ey && |
1018 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
1019 | { |
1020 | ras.x = arc[0].x; |
1021 | ras.y = arc[0].y; |
1022 | return; |
1023 | } |
1024 | |
1025 | dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
1026 | dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
1027 | if ( dx < dy ) |
1028 | dx = dy; |
1029 | |
1030 | /* We can calculate the number of necessary bisections because */ |
1031 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
1032 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
1033 | draw = 1; |
1034 | while ( dx > ONE_PIXEL / 4 ) |
1035 | { |
1036 | dx >>= 2; |
1037 | draw <<= 1; |
1038 | } |
1039 | |
1040 | /* We use decrement counter to count the total number of segments */ |
1041 | /* to draw starting from 2^level. Before each draw we split as */ |
1042 | /* many times as there are trailing zeros in the counter. */ |
1043 | do |
1044 | { |
1045 | split = 1; |
1046 | while ( ( draw & split ) == 0 ) |
1047 | { |
1048 | gray_split_conic( arc ); |
1049 | arc += 2; |
1050 | split <<= 1; |
1051 | } |
1052 | |
1053 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1054 | arc -= 2; |
1055 | |
1056 | } while ( --draw ); |
1057 | } |
1058 | |
1059 | |
1060 | static void |
1061 | gray_split_cubic( FT_Vector* base ) |
1062 | { |
1063 | TPos a, b, c, d; |
1064 | |
1065 | |
1066 | base[6].x = base[3].x; |
1067 | c = base[1].x; |
1068 | d = base[2].x; |
1069 | base[1].x = a = ( base[0].x + c ) / 2; |
1070 | base[5].x = b = ( base[3].x + d ) / 2; |
1071 | c = ( c + d ) / 2; |
1072 | base[2].x = a = ( a + c ) / 2; |
1073 | base[4].x = b = ( b + c ) / 2; |
1074 | base[3].x = ( a + b ) / 2; |
1075 | |
1076 | base[6].y = base[3].y; |
1077 | c = base[1].y; |
1078 | d = base[2].y; |
1079 | base[1].y = a = ( base[0].y + c ) / 2; |
1080 | base[5].y = b = ( base[3].y + d ) / 2; |
1081 | c = ( c + d ) / 2; |
1082 | base[2].y = a = ( a + c ) / 2; |
1083 | base[4].y = b = ( b + c ) / 2; |
1084 | base[3].y = ( a + b ) / 2; |
1085 | } |
1086 | |
1087 | |
1088 | static void |
1089 | gray_render_cubic( RAS_ARG_ const FT_Vector* control1, |
1090 | const FT_Vector* control2, |
1091 | const FT_Vector* to ) |
1092 | { |
1093 | FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
1094 | FT_Vector* arc = bez_stack; |
1095 | TPos dx, dy, dx_, dy_; |
1096 | TPos dx1, dy1, dx2, dy2; |
1097 | TPos L, s, s_limit; |
1098 | |
1099 | |
1100 | arc[0].x = UPSCALE( to->x ); |
1101 | arc[0].y = UPSCALE( to->y ); |
1102 | arc[1].x = UPSCALE( control2->x ); |
1103 | arc[1].y = UPSCALE( control2->y ); |
1104 | arc[2].x = UPSCALE( control1->x ); |
1105 | arc[2].y = UPSCALE( control1->y ); |
1106 | arc[3].x = ras.x; |
1107 | arc[3].y = ras.y; |
1108 | |
1109 | /* short-cut the arc that crosses the current band */ |
1110 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1111 | TRUNC( arc[1].y ) >= ras.max_ey && |
1112 | TRUNC( arc[2].y ) >= ras.max_ey && |
1113 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
1114 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1115 | TRUNC( arc[1].y ) < ras.min_ey && |
1116 | TRUNC( arc[2].y ) < ras.min_ey && |
1117 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
1118 | { |
1119 | ras.x = arc[0].x; |
1120 | ras.y = arc[0].y; |
1121 | return; |
1122 | } |
1123 | |
1124 | for (;;) |
1125 | { |
1126 | /* Decide whether to split or draw. See `Rapid Termination */ |
1127 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
1128 | /* F. Hain, at */ |
1129 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
1130 | |
1131 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
1132 | dx = dx_ = arc[3].x - arc[0].x; |
1133 | dy = dy_ = arc[3].y - arc[0].y; |
1134 | |
1135 | L = FT_HYPOT( dx_, dy_ ); |
1136 | |
1137 | /* Avoid possible arithmetic overflow below by splitting. */ |
1138 | if ( L > 32767 ) |
1139 | goto Split; |
1140 | |
1141 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
1142 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
1143 | |
1144 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
1145 | dx1 = arc[1].x - arc[0].x; |
1146 | dy1 = arc[1].y - arc[0].y; |
1147 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx1 ), MUL_LONG( dx, dy1 ) ) ); |
1148 | |
1149 | if ( s > s_limit ) |
1150 | goto Split; |
1151 | |
1152 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
1153 | dx2 = arc[2].x - arc[0].x; |
1154 | dy2 = arc[2].y - arc[0].y; |
1155 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx2 ), MUL_LONG( dx, dy2 ) ) ); |
1156 | |
1157 | if ( s > s_limit ) |
1158 | goto Split; |
1159 | |
1160 | /* Split super curvy segments where the off points are so far |
1161 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
1162 | acute as detected by appropriate dot products. */ |
1163 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
1164 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
1165 | goto Split; |
1166 | |
1167 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1168 | |
1169 | if ( arc == bez_stack ) |
1170 | return; |
1171 | |
1172 | arc -= 3; |
1173 | continue; |
1174 | |
1175 | Split: |
1176 | gray_split_cubic( arc ); |
1177 | arc += 3; |
1178 | } |
1179 | } |
1180 | |
1181 | |
1182 | static int |
1183 | gray_move_to( const FT_Vector* to, |
1184 | gray_PWorker worker ) |
1185 | { |
1186 | TPos x, y; |
1187 | |
1188 | |
1189 | /* start to a new position */ |
1190 | x = UPSCALE( to->x ); |
1191 | y = UPSCALE( to->y ); |
1192 | |
1193 | gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) ); |
1194 | |
1195 | ras.x = x; |
1196 | ras.y = y; |
1197 | return 0; |
1198 | } |
1199 | |
1200 | |
1201 | static int |
1202 | gray_line_to( const FT_Vector* to, |
1203 | gray_PWorker worker ) |
1204 | { |
1205 | gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) ); |
1206 | return 0; |
1207 | } |
1208 | |
1209 | |
1210 | static int |
1211 | gray_conic_to( const FT_Vector* control, |
1212 | const FT_Vector* to, |
1213 | gray_PWorker worker ) |
1214 | { |
1215 | gray_render_conic( RAS_VAR_ control, to ); |
1216 | return 0; |
1217 | } |
1218 | |
1219 | |
1220 | static int |
1221 | gray_cubic_to( const FT_Vector* control1, |
1222 | const FT_Vector* control2, |
1223 | const FT_Vector* to, |
1224 | gray_PWorker worker ) |
1225 | { |
1226 | gray_render_cubic( RAS_VAR_ control1, control2, to ); |
1227 | return 0; |
1228 | } |
1229 | |
1230 | |
1231 | static void |
1232 | gray_hline( RAS_ARG_ TCoord x, |
1233 | TCoord y, |
1234 | TArea coverage, |
1235 | TCoord acount ) |
1236 | { |
1237 | /* scale the coverage from 0..(ONE_PIXEL*ONE_PIXEL*2) to 0..256 */ |
1238 | coverage >>= PIXEL_BITS * 2 + 1 - 8; |
1239 | if ( coverage < 0 ) |
1240 | coverage = -coverage - 1; |
1241 | |
1242 | /* compute the line's coverage depending on the outline fill rule */ |
1243 | if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) |
1244 | { |
1245 | coverage &= 511; |
1246 | |
1247 | if ( coverage >= 256 ) |
1248 | coverage = 511 - coverage; |
1249 | } |
1250 | else |
1251 | { |
1252 | /* normal non-zero winding rule */ |
1253 | if ( coverage >= 256 ) |
1254 | coverage = 255; |
1255 | } |
1256 | |
1257 | if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */ |
1258 | { |
1259 | FT_Span span; |
1260 | |
1261 | |
1262 | span.x = (short)x; |
1263 | span.len = (unsigned short)acount; |
1264 | span.coverage = (unsigned char)coverage; |
1265 | |
1266 | ras.render_span( y, 1, &span, ras.render_span_data ); |
1267 | } |
1268 | else |
1269 | { |
1270 | unsigned char* q = ras.target.origin - ras.target.pitch * y + x; |
1271 | unsigned char c = (unsigned char)coverage; |
1272 | |
1273 | |
1274 | /* For small-spans it is faster to do it by ourselves than |
1275 | * calling `memset'. This is mainly due to the cost of the |
1276 | * function call. |
1277 | */ |
1278 | switch ( acount ) |
1279 | { |
1280 | case 7: *q++ = c; |
1281 | case 6: *q++ = c; |
1282 | case 5: *q++ = c; |
1283 | case 4: *q++ = c; |
1284 | case 3: *q++ = c; |
1285 | case 2: *q++ = c; |
1286 | case 1: *q = c; |
1287 | case 0: break; |
1288 | default: |
1289 | FT_MEM_SET( q, c, acount ); |
1290 | } |
1291 | } |
1292 | } |
1293 | |
1294 | |
1295 | static void |
1296 | gray_sweep( RAS_ARG ) |
1297 | { |
1298 | int y; |
1299 | |
1300 | |
1301 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
1302 | { |
1303 | PCell cell = ras.ycells[y - ras.min_ey]; |
1304 | TCoord x = ras.min_ex; |
1305 | TArea cover = 0; |
1306 | TArea area; |
1307 | |
1308 | |
1309 | for ( ; cell != NULL; cell = cell->next ) |
1310 | { |
1311 | if ( cover != 0 && cell->x > x ) |
1312 | gray_hline( RAS_VAR_ x, y, cover, cell->x - x ); |
1313 | |
1314 | cover += (TArea)cell->cover * ( ONE_PIXEL * 2 ); |
1315 | area = cover - cell->area; |
1316 | |
1317 | if ( area != 0 && cell->x >= ras.min_ex ) |
1318 | gray_hline( RAS_VAR_ cell->x, y, area, 1 ); |
1319 | |
1320 | x = cell->x + 1; |
1321 | } |
1322 | |
1323 | if ( cover != 0 ) |
1324 | gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x ); |
1325 | } |
1326 | } |
1327 | |
1328 | |
1329 | #ifdef STANDALONE_ |
1330 | |
1331 | /************************************************************************** |
1332 | * |
1333 | * The following functions should only compile in stand-alone mode, |
1334 | * i.e., when building this component without the rest of FreeType. |
1335 | * |
1336 | */ |
1337 | |
1338 | /************************************************************************** |
1339 | * |
1340 | * @Function: |
1341 | * FT_Outline_Decompose |
1342 | * |
1343 | * @Description: |
1344 | * Walk over an outline's structure to decompose it into individual |
1345 | * segments and Bézier arcs. This function is also able to emit |
1346 | * `move to' and `close to' operations to indicate the start and end |
1347 | * of new contours in the outline. |
1348 | * |
1349 | * @Input: |
1350 | * outline :: |
1351 | * A pointer to the source target. |
1352 | * |
1353 | * func_interface :: |
1354 | * A table of `emitters', i.e., function pointers |
1355 | * called during decomposition to indicate path |
1356 | * operations. |
1357 | * |
1358 | * @InOut: |
1359 | * user :: |
1360 | * A typeless pointer which is passed to each |
1361 | * emitter during the decomposition. It can be |
1362 | * used to store the state during the |
1363 | * decomposition. |
1364 | * |
1365 | * @Return: |
1366 | * Error code. 0 means success. |
1367 | */ |
1368 | static int |
1369 | FT_Outline_Decompose( const FT_Outline* outline, |
1370 | const FT_Outline_Funcs* func_interface, |
1371 | void* user ) |
1372 | { |
1373 | #undef SCALED |
1374 | #define SCALED( x ) ( ( (x) << shift ) - delta ) |
1375 | |
1376 | FT_Vector v_last; |
1377 | FT_Vector v_control; |
1378 | FT_Vector v_start; |
1379 | |
1380 | FT_Vector* point; |
1381 | FT_Vector* limit; |
1382 | char* tags; |
1383 | |
1384 | int error; |
1385 | |
1386 | int n; /* index of contour in outline */ |
1387 | int first; /* index of first point in contour */ |
1388 | char tag; /* current point's state */ |
1389 | |
1390 | int shift; |
1391 | TPos delta; |
1392 | |
1393 | |
1394 | if ( !outline ) |
1395 | return FT_THROW( Invalid_Outline ); |
1396 | |
1397 | if ( !func_interface ) |
1398 | return FT_THROW( Invalid_Argument ); |
1399 | |
1400 | shift = func_interface->shift; |
1401 | delta = func_interface->delta; |
1402 | first = 0; |
1403 | |
1404 | for ( n = 0; n < outline->n_contours; n++ ) |
1405 | { |
1406 | int last; /* index of last point in contour */ |
1407 | |
1408 | |
1409 | FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n" , n )); |
1410 | |
1411 | last = outline->contours[n]; |
1412 | if ( last < 0 ) |
1413 | goto Invalid_Outline; |
1414 | limit = outline->points + last; |
1415 | |
1416 | v_start = outline->points[first]; |
1417 | v_start.x = SCALED( v_start.x ); |
1418 | v_start.y = SCALED( v_start.y ); |
1419 | |
1420 | v_last = outline->points[last]; |
1421 | v_last.x = SCALED( v_last.x ); |
1422 | v_last.y = SCALED( v_last.y ); |
1423 | |
1424 | v_control = v_start; |
1425 | |
1426 | point = outline->points + first; |
1427 | tags = outline->tags + first; |
1428 | tag = FT_CURVE_TAG( tags[0] ); |
1429 | |
1430 | /* A contour cannot start with a cubic control point! */ |
1431 | if ( tag == FT_CURVE_TAG_CUBIC ) |
1432 | goto Invalid_Outline; |
1433 | |
1434 | /* check first point to determine origin */ |
1435 | if ( tag == FT_CURVE_TAG_CONIC ) |
1436 | { |
1437 | /* first point is conic control. Yes, this happens. */ |
1438 | if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON ) |
1439 | { |
1440 | /* start at last point if it is on the curve */ |
1441 | v_start = v_last; |
1442 | limit--; |
1443 | } |
1444 | else |
1445 | { |
1446 | /* if both first and last points are conic, */ |
1447 | /* start at their middle and record its position */ |
1448 | /* for closure */ |
1449 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1450 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1451 | |
1452 | v_last = v_start; |
1453 | } |
1454 | point--; |
1455 | tags--; |
1456 | } |
1457 | |
1458 | FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
1459 | v_start.x / 64.0, v_start.y / 64.0 )); |
1460 | error = func_interface->move_to( &v_start, user ); |
1461 | if ( error ) |
1462 | goto Exit; |
1463 | |
1464 | while ( point < limit ) |
1465 | { |
1466 | point++; |
1467 | tags++; |
1468 | |
1469 | tag = FT_CURVE_TAG( tags[0] ); |
1470 | switch ( tag ) |
1471 | { |
1472 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
1473 | { |
1474 | FT_Vector vec; |
1475 | |
1476 | |
1477 | vec.x = SCALED( point->x ); |
1478 | vec.y = SCALED( point->y ); |
1479 | |
1480 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1481 | vec.x / 64.0, vec.y / 64.0 )); |
1482 | error = func_interface->line_to( &vec, user ); |
1483 | if ( error ) |
1484 | goto Exit; |
1485 | continue; |
1486 | } |
1487 | |
1488 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1489 | v_control.x = SCALED( point->x ); |
1490 | v_control.y = SCALED( point->y ); |
1491 | |
1492 | Do_Conic: |
1493 | if ( point < limit ) |
1494 | { |
1495 | FT_Vector vec; |
1496 | FT_Vector v_middle; |
1497 | |
1498 | |
1499 | point++; |
1500 | tags++; |
1501 | tag = FT_CURVE_TAG( tags[0] ); |
1502 | |
1503 | vec.x = SCALED( point->x ); |
1504 | vec.y = SCALED( point->y ); |
1505 | |
1506 | if ( tag == FT_CURVE_TAG_ON ) |
1507 | { |
1508 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1509 | " with control (%.2f, %.2f)\n" , |
1510 | vec.x / 64.0, vec.y / 64.0, |
1511 | v_control.x / 64.0, v_control.y / 64.0 )); |
1512 | error = func_interface->conic_to( &v_control, &vec, user ); |
1513 | if ( error ) |
1514 | goto Exit; |
1515 | continue; |
1516 | } |
1517 | |
1518 | if ( tag != FT_CURVE_TAG_CONIC ) |
1519 | goto Invalid_Outline; |
1520 | |
1521 | v_middle.x = ( v_control.x + vec.x ) / 2; |
1522 | v_middle.y = ( v_control.y + vec.y ) / 2; |
1523 | |
1524 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1525 | " with control (%.2f, %.2f)\n" , |
1526 | v_middle.x / 64.0, v_middle.y / 64.0, |
1527 | v_control.x / 64.0, v_control.y / 64.0 )); |
1528 | error = func_interface->conic_to( &v_control, &v_middle, user ); |
1529 | if ( error ) |
1530 | goto Exit; |
1531 | |
1532 | v_control = vec; |
1533 | goto Do_Conic; |
1534 | } |
1535 | |
1536 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1537 | " with control (%.2f, %.2f)\n" , |
1538 | v_start.x / 64.0, v_start.y / 64.0, |
1539 | v_control.x / 64.0, v_control.y / 64.0 )); |
1540 | error = func_interface->conic_to( &v_control, &v_start, user ); |
1541 | goto Close; |
1542 | |
1543 | default: /* FT_CURVE_TAG_CUBIC */ |
1544 | { |
1545 | FT_Vector vec1, vec2; |
1546 | |
1547 | |
1548 | if ( point + 1 > limit || |
1549 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
1550 | goto Invalid_Outline; |
1551 | |
1552 | point += 2; |
1553 | tags += 2; |
1554 | |
1555 | vec1.x = SCALED( point[-2].x ); |
1556 | vec1.y = SCALED( point[-2].y ); |
1557 | |
1558 | vec2.x = SCALED( point[-1].x ); |
1559 | vec2.y = SCALED( point[-1].y ); |
1560 | |
1561 | if ( point <= limit ) |
1562 | { |
1563 | FT_Vector vec; |
1564 | |
1565 | |
1566 | vec.x = SCALED( point->x ); |
1567 | vec.y = SCALED( point->y ); |
1568 | |
1569 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1570 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1571 | vec.x / 64.0, vec.y / 64.0, |
1572 | vec1.x / 64.0, vec1.y / 64.0, |
1573 | vec2.x / 64.0, vec2.y / 64.0 )); |
1574 | error = func_interface->cubic_to( &vec1, &vec2, &vec, user ); |
1575 | if ( error ) |
1576 | goto Exit; |
1577 | continue; |
1578 | } |
1579 | |
1580 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1581 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1582 | v_start.x / 64.0, v_start.y / 64.0, |
1583 | vec1.x / 64.0, vec1.y / 64.0, |
1584 | vec2.x / 64.0, vec2.y / 64.0 )); |
1585 | error = func_interface->cubic_to( &vec1, &vec2, &v_start, user ); |
1586 | goto Close; |
1587 | } |
1588 | } |
1589 | } |
1590 | |
1591 | /* close the contour with a line segment */ |
1592 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1593 | v_start.x / 64.0, v_start.y / 64.0 )); |
1594 | error = func_interface->line_to( &v_start, user ); |
1595 | |
1596 | Close: |
1597 | if ( error ) |
1598 | goto Exit; |
1599 | |
1600 | first = last + 1; |
1601 | } |
1602 | |
1603 | FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
1604 | return 0; |
1605 | |
1606 | Exit: |
1607 | FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n" , error )); |
1608 | return error; |
1609 | |
1610 | Invalid_Outline: |
1611 | return FT_THROW( Invalid_Outline ); |
1612 | } |
1613 | |
1614 | #endif /* STANDALONE_ */ |
1615 | |
1616 | |
1617 | FT_DEFINE_OUTLINE_FUNCS( |
1618 | func_interface, |
1619 | |
1620 | (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */ |
1621 | (FT_Outline_LineTo_Func) gray_line_to, /* line_to */ |
1622 | (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */ |
1623 | (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */ |
1624 | |
1625 | 0, /* shift */ |
1626 | 0 /* delta */ |
1627 | ) |
1628 | |
1629 | |
1630 | static int |
1631 | gray_convert_glyph_inner( RAS_ARG, |
1632 | int continued ) |
1633 | { |
1634 | volatile int error = 0; |
1635 | |
1636 | |
1637 | if ( ft_setjmp( ras.jump_buffer ) == 0 ) |
1638 | { |
1639 | if ( continued ) |
1640 | FT_Trace_Disable(); |
1641 | error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras ); |
1642 | if ( continued ) |
1643 | FT_Trace_Enable(); |
1644 | |
1645 | if ( !ras.invalid ) |
1646 | gray_record_cell( RAS_VAR ); |
1647 | |
1648 | FT_TRACE7(( "band [%d..%d]: %d cell%s\n" , |
1649 | ras.min_ey, |
1650 | ras.max_ey, |
1651 | ras.num_cells, |
1652 | ras.num_cells == 1 ? "" : "s" )); |
1653 | } |
1654 | else |
1655 | { |
1656 | error = FT_THROW( Memory_Overflow ); |
1657 | |
1658 | FT_TRACE7(( "band [%d..%d]: to be bisected\n" , |
1659 | ras.min_ey, ras.max_ey )); |
1660 | } |
1661 | |
1662 | return error; |
1663 | } |
1664 | |
1665 | |
1666 | static int |
1667 | gray_convert_glyph( RAS_ARG ) |
1668 | { |
1669 | const TCoord yMin = ras.min_ey; |
1670 | const TCoord yMax = ras.max_ey; |
1671 | |
1672 | TCell buffer[FT_MAX_GRAY_POOL]; |
1673 | size_t height = (size_t)( yMax - yMin ); |
1674 | size_t n = FT_MAX_GRAY_POOL / 8; |
1675 | TCoord y; |
1676 | TCoord bands[32]; /* enough to accommodate bisections */ |
1677 | TCoord* band; |
1678 | |
1679 | int continued = 0; |
1680 | |
1681 | |
1682 | /* set up vertical bands */ |
1683 | if ( height > n ) |
1684 | { |
1685 | /* two divisions rounded up */ |
1686 | n = ( height + n - 1 ) / n; |
1687 | height = ( height + n - 1 ) / n; |
1688 | } |
1689 | |
1690 | /* memory management */ |
1691 | n = ( height * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / sizeof ( TCell ); |
1692 | |
1693 | ras.cells = buffer + n; |
1694 | ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - n ); |
1695 | ras.ycells = (PCell*)buffer; |
1696 | |
1697 | for ( y = yMin; y < yMax; ) |
1698 | { |
1699 | ras.min_ey = y; |
1700 | y += height; |
1701 | ras.max_ey = FT_MIN( y, yMax ); |
1702 | |
1703 | band = bands; |
1704 | band[1] = ras.min_ey; |
1705 | band[0] = ras.max_ey; |
1706 | |
1707 | do |
1708 | { |
1709 | TCoord width = band[0] - band[1]; |
1710 | int error; |
1711 | |
1712 | |
1713 | FT_MEM_ZERO( ras.ycells, height * sizeof ( PCell ) ); |
1714 | |
1715 | ras.num_cells = 0; |
1716 | ras.invalid = 1; |
1717 | ras.min_ey = band[1]; |
1718 | ras.max_ey = band[0]; |
1719 | |
1720 | error = gray_convert_glyph_inner( RAS_VAR, continued ); |
1721 | continued = 1; |
1722 | |
1723 | if ( !error ) |
1724 | { |
1725 | gray_sweep( RAS_VAR ); |
1726 | band--; |
1727 | continue; |
1728 | } |
1729 | else if ( error != ErrRaster_Memory_Overflow ) |
1730 | return 1; |
1731 | |
1732 | /* render pool overflow; we will reduce the render band by half */ |
1733 | width >>= 1; |
1734 | |
1735 | /* this should never happen even with tiny rendering pool */ |
1736 | if ( width == 0 ) |
1737 | { |
1738 | FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" )); |
1739 | return 1; |
1740 | } |
1741 | |
1742 | band++; |
1743 | band[1] = band[0]; |
1744 | band[0] += width; |
1745 | } while ( band >= bands ); |
1746 | } |
1747 | |
1748 | return 0; |
1749 | } |
1750 | |
1751 | |
1752 | static int |
1753 | gray_raster_render( FT_Raster raster, |
1754 | const FT_Raster_Params* params ) |
1755 | { |
1756 | const FT_Outline* outline = (const FT_Outline*)params->source; |
1757 | const FT_Bitmap* target_map = params->target; |
1758 | FT_BBox clip; |
1759 | |
1760 | #ifndef FT_STATIC_RASTER |
1761 | gray_TWorker worker[1]; |
1762 | #endif |
1763 | |
1764 | |
1765 | if ( !raster ) |
1766 | return FT_THROW( Invalid_Argument ); |
1767 | |
1768 | /* this version does not support monochrome rendering */ |
1769 | if ( !( params->flags & FT_RASTER_FLAG_AA ) ) |
1770 | return FT_THROW( Invalid_Mode ); |
1771 | |
1772 | if ( !outline ) |
1773 | return FT_THROW( Invalid_Outline ); |
1774 | |
1775 | /* return immediately if the outline is empty */ |
1776 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
1777 | return 0; |
1778 | |
1779 | if ( !outline->contours || !outline->points ) |
1780 | return FT_THROW( Invalid_Outline ); |
1781 | |
1782 | if ( outline->n_points != |
1783 | outline->contours[outline->n_contours - 1] + 1 ) |
1784 | return FT_THROW( Invalid_Outline ); |
1785 | |
1786 | ras.outline = *outline; |
1787 | |
1788 | if ( params->flags & FT_RASTER_FLAG_DIRECT ) |
1789 | { |
1790 | if ( !params->gray_spans ) |
1791 | return 0; |
1792 | |
1793 | ras.render_span = (FT_Raster_Span_Func)params->gray_spans; |
1794 | ras.render_span_data = params->user; |
1795 | } |
1796 | else |
1797 | { |
1798 | /* if direct mode is not set, we must have a target bitmap */ |
1799 | if ( !target_map ) |
1800 | return FT_THROW( Invalid_Argument ); |
1801 | |
1802 | /* nothing to do */ |
1803 | if ( !target_map->width || !target_map->rows ) |
1804 | return 0; |
1805 | |
1806 | if ( !target_map->buffer ) |
1807 | return FT_THROW( Invalid_Argument ); |
1808 | |
1809 | if ( target_map->pitch < 0 ) |
1810 | ras.target.origin = target_map->buffer; |
1811 | else |
1812 | ras.target.origin = target_map->buffer |
1813 | + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch; |
1814 | |
1815 | ras.target.pitch = target_map->pitch; |
1816 | |
1817 | ras.render_span = (FT_Raster_Span_Func)NULL; |
1818 | ras.render_span_data = NULL; |
1819 | } |
1820 | |
1821 | /* compute clipping box */ |
1822 | if ( params->flags & FT_RASTER_FLAG_DIRECT && |
1823 | params->flags & FT_RASTER_FLAG_CLIP ) |
1824 | clip = params->clip_box; |
1825 | else |
1826 | { |
1827 | /* compute clip box from target pixmap */ |
1828 | clip.xMin = 0; |
1829 | clip.yMin = 0; |
1830 | clip.xMax = (FT_Pos)target_map->width; |
1831 | clip.yMax = (FT_Pos)target_map->rows; |
1832 | } |
1833 | |
1834 | /* clip to target bitmap, exit if nothing to do */ |
1835 | ras.min_ex = clip.xMin; |
1836 | ras.min_ey = clip.yMin; |
1837 | ras.max_ex = clip.xMax; |
1838 | ras.max_ey = clip.yMax; |
1839 | |
1840 | if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey ) |
1841 | return 0; |
1842 | |
1843 | return gray_convert_glyph( RAS_VAR ); |
1844 | } |
1845 | |
1846 | |
1847 | /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/ |
1848 | /**** a static object. *****/ |
1849 | |
1850 | #ifdef STANDALONE_ |
1851 | |
1852 | static int |
1853 | gray_raster_new( void* memory, |
1854 | FT_Raster* araster ) |
1855 | { |
1856 | static gray_TRaster the_raster; |
1857 | |
1858 | FT_UNUSED( memory ); |
1859 | |
1860 | |
1861 | *araster = (FT_Raster)&the_raster; |
1862 | FT_ZERO( &the_raster ); |
1863 | |
1864 | return 0; |
1865 | } |
1866 | |
1867 | |
1868 | static void |
1869 | gray_raster_done( FT_Raster raster ) |
1870 | { |
1871 | /* nothing */ |
1872 | FT_UNUSED( raster ); |
1873 | } |
1874 | |
1875 | #else /* !STANDALONE_ */ |
1876 | |
1877 | static int |
1878 | gray_raster_new( FT_Memory memory, |
1879 | FT_Raster* araster ) |
1880 | { |
1881 | FT_Error error; |
1882 | gray_PRaster raster = NULL; |
1883 | |
1884 | |
1885 | *araster = 0; |
1886 | if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) ) |
1887 | { |
1888 | raster->memory = memory; |
1889 | *araster = (FT_Raster)raster; |
1890 | } |
1891 | |
1892 | return error; |
1893 | } |
1894 | |
1895 | |
1896 | static void |
1897 | gray_raster_done( FT_Raster raster ) |
1898 | { |
1899 | FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory; |
1900 | |
1901 | |
1902 | FT_FREE( raster ); |
1903 | } |
1904 | |
1905 | #endif /* !STANDALONE_ */ |
1906 | |
1907 | |
1908 | static void |
1909 | gray_raster_reset( FT_Raster raster, |
1910 | unsigned char* pool_base, |
1911 | unsigned long pool_size ) |
1912 | { |
1913 | FT_UNUSED( raster ); |
1914 | FT_UNUSED( pool_base ); |
1915 | FT_UNUSED( pool_size ); |
1916 | } |
1917 | |
1918 | |
1919 | static int |
1920 | gray_raster_set_mode( FT_Raster raster, |
1921 | unsigned long mode, |
1922 | void* args ) |
1923 | { |
1924 | FT_UNUSED( raster ); |
1925 | FT_UNUSED( mode ); |
1926 | FT_UNUSED( args ); |
1927 | |
1928 | |
1929 | return 0; /* nothing to do */ |
1930 | } |
1931 | |
1932 | |
1933 | FT_DEFINE_RASTER_FUNCS( |
1934 | ft_grays_raster, |
1935 | |
1936 | FT_GLYPH_FORMAT_OUTLINE, |
1937 | |
1938 | (FT_Raster_New_Func) gray_raster_new, /* raster_new */ |
1939 | (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */ |
1940 | (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */ |
1941 | (FT_Raster_Render_Func) gray_raster_render, /* raster_render */ |
1942 | (FT_Raster_Done_Func) gray_raster_done /* raster_done */ |
1943 | ) |
1944 | |
1945 | |
1946 | /* END */ |
1947 | |
1948 | |
1949 | /* Local Variables: */ |
1950 | /* coding: utf-8 */ |
1951 | /* End: */ |
1952 | |