1 | //--------------------------------------------------------------------------------- |
2 | // |
3 | // Little Color Management System |
4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining |
7 | // a copy of this software and associated documentation files (the "Software"), |
8 | // to deal in the Software without restriction, including without limitation |
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | // is furnished to do so, subject to the following conditions: |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in |
14 | // all copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | // |
24 | //--------------------------------------------------------------------------------- |
25 | // |
26 | |
27 | #include "lcms2_internal.h" |
28 | |
29 | |
30 | // Link several profiles to obtain a single LUT modelling the whole color transform. Intents, Black point |
31 | // compensation and Adaptation parameters may vary across profiles. BPC and Adaptation refers to the PCS |
32 | // after the profile. I.e, BPC[0] refers to connexion between profile(0) and profile(1) |
33 | cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, |
34 | cmsUInt32Number nProfiles, |
35 | cmsUInt32Number Intents[], |
36 | cmsHPROFILE hProfiles[], |
37 | cmsBool BPC[], |
38 | cmsFloat64Number AdaptationStates[], |
39 | cmsUInt32Number dwFlags); |
40 | |
41 | //--------------------------------------------------------------------------------- |
42 | |
43 | // This is the default routine for ICC-style intents. A user may decide to override it by using a plugin. |
44 | // Supported intents are perceptual, relative colorimetric, saturation and ICC-absolute colorimetric |
45 | static |
46 | cmsPipeline* DefaultICCintents(cmsContext ContextID, |
47 | cmsUInt32Number nProfiles, |
48 | cmsUInt32Number Intents[], |
49 | cmsHPROFILE hProfiles[], |
50 | cmsBool BPC[], |
51 | cmsFloat64Number AdaptationStates[], |
52 | cmsUInt32Number dwFlags); |
53 | |
54 | //--------------------------------------------------------------------------------- |
55 | |
56 | // This is the entry for black-preserving K-only intents, which are non-ICC. Last profile have to be a output profile |
57 | // to do the trick (no devicelinks allowed at that position) |
58 | static |
59 | cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, |
60 | cmsUInt32Number nProfiles, |
61 | cmsUInt32Number Intents[], |
62 | cmsHPROFILE hProfiles[], |
63 | cmsBool BPC[], |
64 | cmsFloat64Number AdaptationStates[], |
65 | cmsUInt32Number dwFlags); |
66 | |
67 | //--------------------------------------------------------------------------------- |
68 | |
69 | // This is the entry for black-plane preserving, which are non-ICC. Again, Last profile have to be a output profile |
70 | // to do the trick (no devicelinks allowed at that position) |
71 | static |
72 | cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, |
73 | cmsUInt32Number nProfiles, |
74 | cmsUInt32Number Intents[], |
75 | cmsHPROFILE hProfiles[], |
76 | cmsBool BPC[], |
77 | cmsFloat64Number AdaptationStates[], |
78 | cmsUInt32Number dwFlags); |
79 | |
80 | //--------------------------------------------------------------------------------- |
81 | |
82 | |
83 | // This is a structure holding implementations for all supported intents. |
84 | typedef struct _cms_intents_list { |
85 | |
86 | cmsUInt32Number Intent; |
87 | char Description[256]; |
88 | cmsIntentFn Link; |
89 | struct _cms_intents_list* Next; |
90 | |
91 | } cmsIntentsList; |
92 | |
93 | |
94 | // Built-in intents |
95 | static cmsIntentsList DefaultIntents[] = { |
96 | |
97 | { INTENT_PERCEPTUAL, "Perceptual" , DefaultICCintents, &DefaultIntents[1] }, |
98 | { INTENT_RELATIVE_COLORIMETRIC, "Relative colorimetric" , DefaultICCintents, &DefaultIntents[2] }, |
99 | { INTENT_SATURATION, "Saturation" , DefaultICCintents, &DefaultIntents[3] }, |
100 | { INTENT_ABSOLUTE_COLORIMETRIC, "Absolute colorimetric" , DefaultICCintents, &DefaultIntents[4] }, |
101 | { INTENT_PRESERVE_K_ONLY_PERCEPTUAL, "Perceptual preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[5] }, |
102 | { INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC, "Relative colorimetric preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[6] }, |
103 | { INTENT_PRESERVE_K_ONLY_SATURATION, "Saturation preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[7] }, |
104 | { INTENT_PRESERVE_K_PLANE_PERCEPTUAL, "Perceptual preserving black plane" , BlackPreservingKPlaneIntents, &DefaultIntents[8] }, |
105 | { INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC,"Relative colorimetric preserving black plane" , BlackPreservingKPlaneIntents, &DefaultIntents[9] }, |
106 | { INTENT_PRESERVE_K_PLANE_SATURATION, "Saturation preserving black plane" , BlackPreservingKPlaneIntents, NULL } |
107 | }; |
108 | |
109 | |
110 | // A pointer to the beginning of the list |
111 | _cmsIntentsPluginChunkType _cmsIntentsPluginChunk = { NULL }; |
112 | |
113 | // Duplicates the zone of memory used by the plug-in in the new context |
114 | static |
115 | void DupPluginIntentsList(struct _cmsContext_struct* ctx, |
116 | const struct _cmsContext_struct* src) |
117 | { |
118 | _cmsIntentsPluginChunkType newHead = { NULL }; |
119 | cmsIntentsList* entry; |
120 | cmsIntentsList* Anterior = NULL; |
121 | _cmsIntentsPluginChunkType* head = (_cmsIntentsPluginChunkType*) src->chunks[IntentPlugin]; |
122 | |
123 | // Walk the list copying all nodes |
124 | for (entry = head->Intents; |
125 | entry != NULL; |
126 | entry = entry ->Next) { |
127 | |
128 | cmsIntentsList *newEntry = ( cmsIntentsList *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(cmsIntentsList)); |
129 | |
130 | if (newEntry == NULL) |
131 | return; |
132 | |
133 | // We want to keep the linked list order, so this is a little bit tricky |
134 | newEntry -> Next = NULL; |
135 | if (Anterior) |
136 | Anterior -> Next = newEntry; |
137 | |
138 | Anterior = newEntry; |
139 | |
140 | if (newHead.Intents == NULL) |
141 | newHead.Intents = newEntry; |
142 | } |
143 | |
144 | ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsIntentsPluginChunkType)); |
145 | } |
146 | |
147 | void _cmsAllocIntentsPluginChunk(struct _cmsContext_struct* ctx, |
148 | const struct _cmsContext_struct* src) |
149 | { |
150 | if (src != NULL) { |
151 | |
152 | // Copy all linked list |
153 | DupPluginIntentsList(ctx, src); |
154 | } |
155 | else { |
156 | static _cmsIntentsPluginChunkType IntentsPluginChunkType = { NULL }; |
157 | ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx ->MemPool, &IntentsPluginChunkType, sizeof(_cmsIntentsPluginChunkType)); |
158 | } |
159 | } |
160 | |
161 | |
162 | // Search the list for a suitable intent. Returns NULL if not found |
163 | static |
164 | cmsIntentsList* SearchIntent(cmsContext ContextID, cmsUInt32Number Intent) |
165 | { |
166 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); |
167 | cmsIntentsList* pt; |
168 | |
169 | for (pt = ctx -> Intents; pt != NULL; pt = pt -> Next) |
170 | if (pt ->Intent == Intent) return pt; |
171 | |
172 | for (pt = DefaultIntents; pt != NULL; pt = pt -> Next) |
173 | if (pt ->Intent == Intent) return pt; |
174 | |
175 | return NULL; |
176 | } |
177 | |
178 | // Black point compensation. Implemented as a linear scaling in XYZ. Black points |
179 | // should come relative to the white point. Fills an matrix/offset element m |
180 | // which is organized as a 4x4 matrix. |
181 | static |
182 | void ComputeBlackPointCompensation(cmsContext ContextID, const cmsCIEXYZ* BlackPointIn, |
183 | const cmsCIEXYZ* BlackPointOut, |
184 | cmsMAT3* m, cmsVEC3* off) |
185 | { |
186 | cmsFloat64Number ax, ay, az, bx, by, bz, tx, ty, tz; |
187 | |
188 | // Now we need to compute a matrix plus an offset m and of such of |
189 | // [m]*bpin + off = bpout |
190 | // [m]*D50 + off = D50 |
191 | // |
192 | // This is a linear scaling in the form ax+b, where |
193 | // a = (bpout - D50) / (bpin - D50) |
194 | // b = - D50* (bpout - bpin) / (bpin - D50) |
195 | |
196 | tx = BlackPointIn->X - cmsD50_XYZ(ContextID)->X; |
197 | ty = BlackPointIn->Y - cmsD50_XYZ(ContextID)->Y; |
198 | tz = BlackPointIn->Z - cmsD50_XYZ(ContextID)->Z; |
199 | |
200 | ax = (BlackPointOut->X - cmsD50_XYZ(ContextID)->X) / tx; |
201 | ay = (BlackPointOut->Y - cmsD50_XYZ(ContextID)->Y) / ty; |
202 | az = (BlackPointOut->Z - cmsD50_XYZ(ContextID)->Z) / tz; |
203 | |
204 | bx = - cmsD50_XYZ(ContextID)-> X * (BlackPointOut->X - BlackPointIn->X) / tx; |
205 | by = - cmsD50_XYZ(ContextID)-> Y * (BlackPointOut->Y - BlackPointIn->Y) / ty; |
206 | bz = - cmsD50_XYZ(ContextID)-> Z * (BlackPointOut->Z - BlackPointIn->Z) / tz; |
207 | |
208 | _cmsVEC3init(ContextID, &m ->v[0], ax, 0, 0); |
209 | _cmsVEC3init(ContextID, &m ->v[1], 0, ay, 0); |
210 | _cmsVEC3init(ContextID, &m ->v[2], 0, 0, az); |
211 | _cmsVEC3init(ContextID, off, bx, by, bz); |
212 | |
213 | } |
214 | |
215 | |
216 | // Approximate a blackbody illuminant based on CHAD information |
217 | static |
218 | cmsFloat64Number CHAD2Temp(cmsContext ContextID, const cmsMAT3* Chad) |
219 | { |
220 | // Convert D50 across inverse CHAD to get the absolute white point |
221 | cmsVEC3 d, s; |
222 | cmsCIEXYZ Dest; |
223 | cmsCIExyY DestChromaticity; |
224 | cmsFloat64Number TempK; |
225 | cmsMAT3 m1, m2; |
226 | |
227 | m1 = *Chad; |
228 | if (!_cmsMAT3inverse(ContextID, &m1, &m2)) return FALSE; |
229 | |
230 | s.n[VX] = cmsD50_XYZ(ContextID) -> X; |
231 | s.n[VY] = cmsD50_XYZ(ContextID) -> Y; |
232 | s.n[VZ] = cmsD50_XYZ(ContextID) -> Z; |
233 | |
234 | _cmsMAT3eval(ContextID, &d, &m2, &s); |
235 | |
236 | Dest.X = d.n[VX]; |
237 | Dest.Y = d.n[VY]; |
238 | Dest.Z = d.n[VZ]; |
239 | |
240 | cmsXYZ2xyY(ContextID, &DestChromaticity, &Dest); |
241 | |
242 | if (!cmsTempFromWhitePoint(ContextID, &TempK, &DestChromaticity)) |
243 | return -1.0; |
244 | |
245 | return TempK; |
246 | } |
247 | |
248 | // Compute a CHAD based on a given temperature |
249 | static |
250 | void Temp2CHAD(cmsContext ContextID, cmsMAT3* Chad, cmsFloat64Number Temp) |
251 | { |
252 | cmsCIEXYZ White; |
253 | cmsCIExyY ChromaticityOfWhite; |
254 | |
255 | cmsWhitePointFromTemp(ContextID, &ChromaticityOfWhite, Temp); |
256 | cmsxyY2XYZ(ContextID,&White, &ChromaticityOfWhite); |
257 | _cmsAdaptationMatrix(ContextID, Chad, NULL, &White, cmsD50_XYZ(ContextID)); |
258 | } |
259 | |
260 | // Join scalings to obtain relative input to absolute and then to relative output. |
261 | // Result is stored in a 3x3 matrix |
262 | static |
263 | cmsBool ComputeAbsoluteIntent(cmsContext ContextID, cmsFloat64Number AdaptationState, |
264 | const cmsCIEXYZ* WhitePointIn, |
265 | const cmsMAT3* ChromaticAdaptationMatrixIn, |
266 | const cmsCIEXYZ* WhitePointOut, |
267 | const cmsMAT3* ChromaticAdaptationMatrixOut, |
268 | cmsMAT3* m) |
269 | { |
270 | cmsMAT3 Scale, m1, m2, m3, m4; |
271 | |
272 | // TODO: Follow Marc Mahy's recommendation to check if CHAD is same by using M1*M2 == M2*M1. If so, do nothing. |
273 | // TODO: Add support for ArgyllArts tag |
274 | |
275 | // Adaptation state |
276 | if (AdaptationState == 1.0) { |
277 | |
278 | // Observer is fully adapted. Keep chromatic adaptation. |
279 | // That is the standard V4 behaviour |
280 | _cmsVEC3init(ContextID, &m->v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); |
281 | _cmsVEC3init(ContextID, &m->v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); |
282 | _cmsVEC3init(ContextID, &m->v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); |
283 | |
284 | } |
285 | else { |
286 | |
287 | // Incomplete adaptation. This is an advanced feature. |
288 | _cmsVEC3init(ContextID, &Scale.v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); |
289 | _cmsVEC3init(ContextID, &Scale.v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); |
290 | _cmsVEC3init(ContextID, &Scale.v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); |
291 | |
292 | |
293 | if (AdaptationState == 0.0) { |
294 | |
295 | m1 = *ChromaticAdaptationMatrixOut; |
296 | _cmsMAT3per(ContextID, &m2, &m1, &Scale); |
297 | // m2 holds CHAD from output white to D50 times abs. col. scaling |
298 | |
299 | // Observer is not adapted, undo the chromatic adaptation |
300 | _cmsMAT3per(ContextID, m, &m2, ChromaticAdaptationMatrixOut); |
301 | |
302 | m3 = *ChromaticAdaptationMatrixIn; |
303 | if (!_cmsMAT3inverse(ContextID, &m3, &m4)) return FALSE; |
304 | _cmsMAT3per(ContextID, m, &m2, &m4); |
305 | |
306 | } else { |
307 | |
308 | cmsMAT3 MixedCHAD; |
309 | cmsFloat64Number TempSrc, TempDest, Temp; |
310 | |
311 | m1 = *ChromaticAdaptationMatrixIn; |
312 | if (!_cmsMAT3inverse(ContextID, &m1, &m2)) return FALSE; |
313 | _cmsMAT3per(ContextID, &m3, &m2, &Scale); |
314 | // m3 holds CHAD from input white to D50 times abs. col. scaling |
315 | |
316 | TempSrc = CHAD2Temp(ContextID, ChromaticAdaptationMatrixIn); |
317 | TempDest = CHAD2Temp(ContextID, ChromaticAdaptationMatrixOut); |
318 | |
319 | if (TempSrc < 0.0 || TempDest < 0.0) return FALSE; // Something went wrong |
320 | |
321 | if (_cmsMAT3isIdentity(ContextID, &Scale) && fabs(TempSrc - TempDest) < 0.01) { |
322 | |
323 | _cmsMAT3identity(ContextID, m); |
324 | return TRUE; |
325 | } |
326 | |
327 | Temp = (1.0 - AdaptationState) * TempDest + AdaptationState * TempSrc; |
328 | |
329 | // Get a CHAD from whatever output temperature to D50. This replaces output CHAD |
330 | Temp2CHAD(ContextID, &MixedCHAD, Temp); |
331 | |
332 | _cmsMAT3per(ContextID, m, &m3, &MixedCHAD); |
333 | } |
334 | |
335 | } |
336 | return TRUE; |
337 | |
338 | } |
339 | |
340 | // Just to see if m matrix should be applied |
341 | static |
342 | cmsBool IsEmptyLayer(cmsContext ContextID, cmsMAT3* m, cmsVEC3* off) |
343 | { |
344 | cmsFloat64Number diff = 0; |
345 | cmsMAT3 Ident; |
346 | int i; |
347 | |
348 | if (m == NULL && off == NULL) return TRUE; // NULL is allowed as an empty layer |
349 | if (m == NULL && off != NULL) return FALSE; // This is an internal error |
350 | |
351 | _cmsMAT3identity(ContextID, &Ident); |
352 | |
353 | for (i=0; i < 3*3; i++) |
354 | diff += fabs(((cmsFloat64Number*)m)[i] - ((cmsFloat64Number*)&Ident)[i]); |
355 | |
356 | for (i=0; i < 3; i++) |
357 | diff += fabs(((cmsFloat64Number*)off)[i]); |
358 | |
359 | |
360 | return (diff < 0.002); |
361 | } |
362 | |
363 | |
364 | // Compute the conversion layer |
365 | static |
366 | cmsBool ComputeConversion(cmsContext ContextID, |
367 | cmsUInt32Number i, |
368 | cmsHPROFILE hProfiles[], |
369 | cmsUInt32Number Intent, |
370 | cmsBool BPC, |
371 | cmsFloat64Number AdaptationState, |
372 | cmsMAT3* m, cmsVEC3* off) |
373 | { |
374 | |
375 | int k; |
376 | |
377 | // m and off are set to identity and this is detected latter on |
378 | _cmsMAT3identity(ContextID, m); |
379 | _cmsVEC3init(ContextID, off, 0, 0, 0); |
380 | |
381 | // If intent is abs. colorimetric, |
382 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) { |
383 | |
384 | cmsCIEXYZ WhitePointIn, WhitePointOut; |
385 | cmsMAT3 ChromaticAdaptationMatrixIn, ChromaticAdaptationMatrixOut; |
386 | |
387 | _cmsReadMediaWhitePoint(ContextID, &WhitePointIn, hProfiles[i-1]); |
388 | _cmsReadCHAD(ContextID, &ChromaticAdaptationMatrixIn, hProfiles[i-1]); |
389 | |
390 | _cmsReadMediaWhitePoint(ContextID, &WhitePointOut, hProfiles[i]); |
391 | _cmsReadCHAD(ContextID, &ChromaticAdaptationMatrixOut, hProfiles[i]); |
392 | |
393 | if (!ComputeAbsoluteIntent(ContextID, AdaptationState, |
394 | &WhitePointIn, &ChromaticAdaptationMatrixIn, |
395 | &WhitePointOut, &ChromaticAdaptationMatrixOut, m)) return FALSE; |
396 | |
397 | } |
398 | else { |
399 | // Rest of intents may apply BPC. |
400 | |
401 | if (BPC) { |
402 | |
403 | cmsCIEXYZ BlackPointIn, BlackPointOut; |
404 | |
405 | cmsDetectBlackPoint(ContextID, &BlackPointIn, hProfiles[i-1], Intent, 0); |
406 | cmsDetectDestinationBlackPoint(ContextID, &BlackPointOut, hProfiles[i], Intent, 0); |
407 | |
408 | // If black points are equal, then do nothing |
409 | if (BlackPointIn.X != BlackPointOut.X || |
410 | BlackPointIn.Y != BlackPointOut.Y || |
411 | BlackPointIn.Z != BlackPointOut.Z) |
412 | ComputeBlackPointCompensation(ContextID, &BlackPointIn, &BlackPointOut, m, off); |
413 | } |
414 | } |
415 | |
416 | // Offset should be adjusted because the encoding. We encode XYZ normalized to 0..1.0, |
417 | // to do that, we divide by MAX_ENCODEABLE_XZY. The conversion stage goes XYZ -> XYZ so |
418 | // we have first to convert from encoded to XYZ and then convert back to encoded. |
419 | // y = Mx + Off |
420 | // x = x'c |
421 | // y = M x'c + Off |
422 | // y = y'c; y' = y / c |
423 | // y' = (Mx'c + Off) /c = Mx' + (Off / c) |
424 | |
425 | for (k=0; k < 3; k++) { |
426 | off ->n[k] /= MAX_ENCODEABLE_XYZ; |
427 | } |
428 | |
429 | return TRUE; |
430 | } |
431 | |
432 | |
433 | // Add a conversion stage if needed. If a matrix/offset m is given, it applies to XYZ space |
434 | static |
435 | cmsBool AddConversion(cmsContext ContextID, cmsPipeline* Result, cmsColorSpaceSignature InPCS, cmsColorSpaceSignature OutPCS, cmsMAT3* m, cmsVEC3* off) |
436 | { |
437 | cmsFloat64Number* m_as_dbl = (cmsFloat64Number*) m; |
438 | cmsFloat64Number* off_as_dbl = (cmsFloat64Number*) off; |
439 | |
440 | // Handle PCS mismatches. A specialized stage is added to the LUT in such case |
441 | switch (InPCS) { |
442 | |
443 | case cmsSigXYZData: // Input profile operates in XYZ |
444 | |
445 | switch (OutPCS) { |
446 | |
447 | case cmsSigXYZData: // XYZ -> XYZ |
448 | if (!IsEmptyLayer(ContextID, m, off) && |
449 | !cmsPipelineInsertStage(ContextID, Result, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
450 | return FALSE; |
451 | break; |
452 | |
453 | case cmsSigLabData: // XYZ -> Lab |
454 | if (!IsEmptyLayer(ContextID, m, off) && |
455 | !cmsPipelineInsertStage(ContextID, Result, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
456 | return FALSE; |
457 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_END, _cmsStageAllocXYZ2Lab(ContextID))) |
458 | return FALSE; |
459 | break; |
460 | |
461 | default: |
462 | return FALSE; // Colorspace mismatch |
463 | } |
464 | break; |
465 | |
466 | case cmsSigLabData: // Input profile operates in Lab |
467 | |
468 | switch (OutPCS) { |
469 | |
470 | case cmsSigXYZData: // Lab -> XYZ |
471 | |
472 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_END, _cmsStageAllocLab2XYZ(ContextID))) |
473 | return FALSE; |
474 | if (!IsEmptyLayer(ContextID, m, off) && |
475 | !cmsPipelineInsertStage(ContextID, Result, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
476 | return FALSE; |
477 | break; |
478 | |
479 | case cmsSigLabData: // Lab -> Lab |
480 | |
481 | if (!IsEmptyLayer(ContextID, m, off)) { |
482 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_END, _cmsStageAllocLab2XYZ(ContextID)) || |
483 | !cmsPipelineInsertStage(ContextID, Result, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, m_as_dbl, off_as_dbl)) || |
484 | !cmsPipelineInsertStage(ContextID, Result, cmsAT_END, _cmsStageAllocXYZ2Lab(ContextID))) |
485 | return FALSE; |
486 | } |
487 | break; |
488 | |
489 | default: |
490 | return FALSE; // Mismatch |
491 | } |
492 | break; |
493 | |
494 | // On colorspaces other than PCS, check for same space |
495 | default: |
496 | if (InPCS != OutPCS) return FALSE; |
497 | break; |
498 | } |
499 | |
500 | return TRUE; |
501 | } |
502 | |
503 | |
504 | // Is a given space compatible with another? |
505 | static |
506 | cmsBool ColorSpaceIsCompatible(cmsColorSpaceSignature a, cmsColorSpaceSignature b) |
507 | { |
508 | // If they are same, they are compatible. |
509 | if (a == b) return TRUE; |
510 | |
511 | // Check for MCH4 substitution of CMYK |
512 | if ((a == cmsSig4colorData) && (b == cmsSigCmykData)) return TRUE; |
513 | if ((a == cmsSigCmykData) && (b == cmsSig4colorData)) return TRUE; |
514 | |
515 | // Check for XYZ/Lab. Those spaces are interchangeable as they can be computed one from other. |
516 | if ((a == cmsSigXYZData) && (b == cmsSigLabData)) return TRUE; |
517 | if ((a == cmsSigLabData) && (b == cmsSigXYZData)) return TRUE; |
518 | |
519 | return FALSE; |
520 | } |
521 | |
522 | |
523 | // Default handler for ICC-style intents |
524 | static |
525 | cmsPipeline* DefaultICCintents(cmsContext ContextID, |
526 | cmsUInt32Number nProfiles, |
527 | cmsUInt32Number TheIntents[], |
528 | cmsHPROFILE hProfiles[], |
529 | cmsBool BPC[], |
530 | cmsFloat64Number AdaptationStates[], |
531 | cmsUInt32Number dwFlags) |
532 | { |
533 | cmsPipeline* Lut = NULL; |
534 | cmsPipeline* Result; |
535 | cmsHPROFILE hProfile; |
536 | cmsMAT3 m; |
537 | cmsVEC3 off; |
538 | cmsColorSpaceSignature ColorSpaceIn, ColorSpaceOut = cmsSigLabData, CurrentColorSpace; |
539 | cmsProfileClassSignature ClassSig; |
540 | cmsUInt32Number i, Intent; |
541 | |
542 | // For safety |
543 | if (nProfiles == 0) return NULL; |
544 | |
545 | // Allocate an empty LUT for holding the result. 0 as channel count means 'undefined' |
546 | Result = cmsPipelineAlloc(ContextID, 0, 0); |
547 | if (Result == NULL) return NULL; |
548 | |
549 | CurrentColorSpace = cmsGetColorSpace(ContextID, hProfiles[0]); |
550 | |
551 | for (i=0; i < nProfiles; i++) { |
552 | |
553 | cmsBool lIsDeviceLink, lIsInput; |
554 | |
555 | hProfile = hProfiles[i]; |
556 | ClassSig = cmsGetDeviceClass(ContextID, hProfile); |
557 | lIsDeviceLink = (ClassSig == cmsSigLinkClass || ClassSig == cmsSigAbstractClass ); |
558 | |
559 | // First profile is used as input unless devicelink or abstract |
560 | if ((i == 0) && !lIsDeviceLink) { |
561 | lIsInput = TRUE; |
562 | } |
563 | else { |
564 | // Else use profile in the input direction if current space is not PCS |
565 | lIsInput = (CurrentColorSpace != cmsSigXYZData) && |
566 | (CurrentColorSpace != cmsSigLabData); |
567 | } |
568 | |
569 | Intent = TheIntents[i]; |
570 | |
571 | if (lIsInput || lIsDeviceLink) { |
572 | |
573 | ColorSpaceIn = cmsGetColorSpace(ContextID, hProfile); |
574 | ColorSpaceOut = cmsGetPCS(ContextID, hProfile); |
575 | } |
576 | else { |
577 | |
578 | ColorSpaceIn = cmsGetPCS(ContextID, hProfile); |
579 | ColorSpaceOut = cmsGetColorSpace(ContextID, hProfile); |
580 | } |
581 | |
582 | if (!ColorSpaceIsCompatible(ColorSpaceIn, CurrentColorSpace)) { |
583 | |
584 | cmsSignalError(ContextID, cmsERROR_COLORSPACE_CHECK, "ColorSpace mismatch" ); |
585 | goto Error; |
586 | } |
587 | |
588 | // If devicelink is found, then no custom intent is allowed and we can |
589 | // read the LUT to be applied. Settings don't apply here. |
590 | if (lIsDeviceLink || ((ClassSig == cmsSigNamedColorClass) && (nProfiles == 1))) { |
591 | |
592 | // Get the involved LUT from the profile |
593 | Lut = _cmsReadDevicelinkLUT(ContextID, hProfile, Intent); |
594 | if (Lut == NULL) goto Error; |
595 | |
596 | // What about abstract profiles? |
597 | if (ClassSig == cmsSigAbstractClass && i > 0) { |
598 | if (!ComputeConversion(ContextID, i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; |
599 | } |
600 | else { |
601 | _cmsMAT3identity(ContextID, &m); |
602 | _cmsVEC3init(ContextID, &off, 0, 0, 0); |
603 | } |
604 | |
605 | |
606 | if (!AddConversion(ContextID, Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; |
607 | |
608 | } |
609 | else { |
610 | |
611 | if (lIsInput) { |
612 | // Input direction means non-pcs connection, so proceed like devicelinks |
613 | Lut = _cmsReadInputLUT(ContextID, hProfile, Intent); |
614 | if (Lut == NULL) goto Error; |
615 | } |
616 | else { |
617 | |
618 | // Output direction means PCS connection. Intent may apply here |
619 | Lut = _cmsReadOutputLUT(ContextID, hProfile, Intent); |
620 | if (Lut == NULL) goto Error; |
621 | |
622 | |
623 | if (!ComputeConversion(ContextID, i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; |
624 | if (!AddConversion(ContextID, Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; |
625 | |
626 | } |
627 | } |
628 | |
629 | // Concatenate to the output LUT |
630 | if (!cmsPipelineCat(ContextID, Result, Lut)) |
631 | goto Error; |
632 | |
633 | cmsPipelineFree(ContextID, Lut); |
634 | Lut = NULL; |
635 | |
636 | // Update current space |
637 | CurrentColorSpace = ColorSpaceOut; |
638 | } |
639 | |
640 | // Check for non-negatives clip |
641 | if (dwFlags & cmsFLAGS_NONEGATIVES) { |
642 | |
643 | if (ColorSpaceOut == cmsSigGrayData || |
644 | ColorSpaceOut == cmsSigRgbData || |
645 | ColorSpaceOut == cmsSigCmykData) { |
646 | |
647 | cmsStage* clip = _cmsStageClipNegatives(ContextID, cmsChannelsOf(ContextID, ColorSpaceOut)); |
648 | if (clip == NULL) goto Error; |
649 | |
650 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_END, clip)) |
651 | goto Error; |
652 | } |
653 | |
654 | } |
655 | |
656 | return Result; |
657 | |
658 | Error: |
659 | |
660 | if (Lut != NULL) cmsPipelineFree(ContextID, Lut); |
661 | if (Result != NULL) cmsPipelineFree(ContextID, Result); |
662 | return NULL; |
663 | |
664 | cmsUNUSED_PARAMETER(dwFlags); |
665 | } |
666 | |
667 | |
668 | // Wrapper for DLL calling convention |
669 | cmsPipeline* CMSEXPORT _cmsDefaultICCintents(cmsContext ContextID, |
670 | cmsUInt32Number nProfiles, |
671 | cmsUInt32Number TheIntents[], |
672 | cmsHPROFILE hProfiles[], |
673 | cmsBool BPC[], |
674 | cmsFloat64Number AdaptationStates[], |
675 | cmsUInt32Number dwFlags) |
676 | { |
677 | return DefaultICCintents(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
678 | } |
679 | |
680 | // Black preserving intents --------------------------------------------------------------------------------------------- |
681 | |
682 | // Translate black-preserving intents to ICC ones |
683 | static |
684 | cmsUInt32Number TranslateNonICCIntents(cmsUInt32Number Intent) |
685 | { |
686 | switch (Intent) { |
687 | case INTENT_PRESERVE_K_ONLY_PERCEPTUAL: |
688 | case INTENT_PRESERVE_K_PLANE_PERCEPTUAL: |
689 | return INTENT_PERCEPTUAL; |
690 | |
691 | case INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC: |
692 | case INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC: |
693 | return INTENT_RELATIVE_COLORIMETRIC; |
694 | |
695 | case INTENT_PRESERVE_K_ONLY_SATURATION: |
696 | case INTENT_PRESERVE_K_PLANE_SATURATION: |
697 | return INTENT_SATURATION; |
698 | |
699 | default: return Intent; |
700 | } |
701 | } |
702 | |
703 | // Sampler for Black-only preserving CMYK->CMYK transforms |
704 | |
705 | typedef struct { |
706 | cmsPipeline* cmyk2cmyk; // The original transform |
707 | cmsToneCurve* KTone; // Black-to-black tone curve |
708 | |
709 | } GrayOnlyParams; |
710 | |
711 | |
712 | // Preserve black only if that is the only ink used |
713 | static |
714 | int BlackPreservingGrayOnlySampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
715 | { |
716 | GrayOnlyParams* bp = (GrayOnlyParams*) Cargo; |
717 | |
718 | // If going across black only, keep black only |
719 | if (In[0] == 0 && In[1] == 0 && In[2] == 0) { |
720 | |
721 | // TAC does not apply because it is black ink! |
722 | Out[0] = Out[1] = Out[2] = 0; |
723 | Out[3] = cmsEvalToneCurve16(ContextID, bp->KTone, In[3]); |
724 | return TRUE; |
725 | } |
726 | |
727 | // Keep normal transform for other colors |
728 | bp ->cmyk2cmyk ->Eval16Fn(ContextID, In, Out, bp ->cmyk2cmyk->Data); |
729 | return TRUE; |
730 | } |
731 | |
732 | // This is the entry for black-preserving K-only intents, which are non-ICC |
733 | static |
734 | cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, |
735 | cmsUInt32Number nProfiles, |
736 | cmsUInt32Number TheIntents[], |
737 | cmsHPROFILE hProfiles[], |
738 | cmsBool BPC[], |
739 | cmsFloat64Number AdaptationStates[], |
740 | cmsUInt32Number dwFlags) |
741 | { |
742 | GrayOnlyParams bp; |
743 | cmsPipeline* Result; |
744 | cmsUInt32Number ICCIntents[256]; |
745 | cmsStage* CLUT; |
746 | cmsUInt32Number i, nGridPoints; |
747 | |
748 | |
749 | // Sanity check |
750 | if (nProfiles < 1 || nProfiles > 255) return NULL; |
751 | |
752 | // Translate black-preserving intents to ICC ones |
753 | for (i=0; i < nProfiles; i++) |
754 | ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); |
755 | |
756 | // Check for non-cmyk profiles |
757 | if (cmsGetColorSpace(ContextID, hProfiles[0]) != cmsSigCmykData || |
758 | cmsGetColorSpace(ContextID, hProfiles[nProfiles-1]) != cmsSigCmykData) |
759 | return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
760 | |
761 | memset(&bp, 0, sizeof(bp)); |
762 | |
763 | // Allocate an empty LUT for holding the result |
764 | Result = cmsPipelineAlloc(ContextID, 4, 4); |
765 | if (Result == NULL) return NULL; |
766 | |
767 | // Create a LUT holding normal ICC transform |
768 | bp.cmyk2cmyk = DefaultICCintents(ContextID, |
769 | nProfiles, |
770 | ICCIntents, |
771 | hProfiles, |
772 | BPC, |
773 | AdaptationStates, |
774 | dwFlags); |
775 | |
776 | if (bp.cmyk2cmyk == NULL) goto Error; |
777 | |
778 | // Now, compute the tone curve |
779 | bp.KTone = _cmsBuildKToneCurve(ContextID, |
780 | 4096, |
781 | nProfiles, |
782 | ICCIntents, |
783 | hProfiles, |
784 | BPC, |
785 | AdaptationStates, |
786 | dwFlags); |
787 | |
788 | if (bp.KTone == NULL) goto Error; |
789 | |
790 | |
791 | // How many gridpoints are we going to use? |
792 | nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, cmsSigCmykData, dwFlags); |
793 | |
794 | // Create the CLUT. 16 bits |
795 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); |
796 | if (CLUT == NULL) goto Error; |
797 | |
798 | // This is the one and only MPE in this LUT |
799 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_BEGIN, CLUT)) |
800 | goto Error; |
801 | |
802 | // Sample it. We cannot afford pre/post linearization this time. |
803 | if (!cmsStageSampleCLut16bit(ContextID, CLUT, BlackPreservingGrayOnlySampler, (void*) &bp, 0)) |
804 | goto Error; |
805 | |
806 | // Get rid of xform and tone curve |
807 | cmsPipelineFree(ContextID, bp.cmyk2cmyk); |
808 | cmsFreeToneCurve(ContextID, bp.KTone); |
809 | |
810 | return Result; |
811 | |
812 | Error: |
813 | |
814 | if (bp.cmyk2cmyk != NULL) cmsPipelineFree(ContextID, bp.cmyk2cmyk); |
815 | if (bp.KTone != NULL) cmsFreeToneCurve(ContextID, bp.KTone); |
816 | if (Result != NULL) cmsPipelineFree(ContextID, Result); |
817 | return NULL; |
818 | |
819 | } |
820 | |
821 | // K Plane-preserving CMYK to CMYK ------------------------------------------------------------------------------------ |
822 | |
823 | typedef struct { |
824 | |
825 | cmsPipeline* cmyk2cmyk; // The original transform |
826 | cmsHTRANSFORM hProofOutput; // Output CMYK to Lab (last profile) |
827 | cmsHTRANSFORM cmyk2Lab; // The input chain |
828 | cmsToneCurve* KTone; // Black-to-black tone curve |
829 | cmsPipeline* LabK2cmyk; // The output profile |
830 | cmsFloat64Number MaxError; |
831 | |
832 | cmsHTRANSFORM hRoundTrip; |
833 | cmsFloat64Number MaxTAC; |
834 | |
835 | |
836 | } PreserveKPlaneParams; |
837 | |
838 | |
839 | // The CLUT will be stored at 16 bits, but calculations are performed at cmsFloat32Number precision |
840 | static |
841 | int BlackPreservingSampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
842 | { |
843 | int i; |
844 | cmsFloat32Number Inf[4], Outf[4]; |
845 | cmsFloat32Number LabK[4]; |
846 | cmsFloat64Number SumCMY, SumCMYK, Error, Ratio; |
847 | cmsCIELab ColorimetricLab, BlackPreservingLab; |
848 | PreserveKPlaneParams* bp = (PreserveKPlaneParams*) Cargo; |
849 | |
850 | // Convert from 16 bits to floating point |
851 | for (i=0; i < 4; i++) |
852 | Inf[i] = (cmsFloat32Number) (In[i] / 65535.0); |
853 | |
854 | // Get the K across Tone curve |
855 | LabK[3] = cmsEvalToneCurveFloat(ContextID, bp ->KTone, Inf[3]); |
856 | |
857 | // If going across black only, keep black only |
858 | if (In[0] == 0 && In[1] == 0 && In[2] == 0) { |
859 | |
860 | Out[0] = Out[1] = Out[2] = 0; |
861 | Out[3] = _cmsQuickSaturateWord(LabK[3] * 65535.0); |
862 | return TRUE; |
863 | } |
864 | |
865 | // Try the original transform, |
866 | cmsPipelineEvalFloat(ContextID, Inf, Outf, bp ->cmyk2cmyk); |
867 | |
868 | // Store a copy of the floating point result into 16-bit |
869 | for (i=0; i < 4; i++) |
870 | Out[i] = _cmsQuickSaturateWord(Outf[i] * 65535.0); |
871 | |
872 | // Maybe K is already ok (mostly on K=0) |
873 | if ( fabs(Outf[3] - LabK[3]) < (3.0 / 65535.0) ) { |
874 | return TRUE; |
875 | } |
876 | |
877 | // K differ, measure and keep Lab measurement for further usage |
878 | // this is done in relative colorimetric intent |
879 | cmsDoTransform(ContextID, bp->hProofOutput, Out, &ColorimetricLab, 1); |
880 | |
881 | // Is not black only and the transform doesn't keep black. |
882 | // Obtain the Lab of output CMYK. After that we have Lab + K |
883 | cmsDoTransform(ContextID, bp ->cmyk2Lab, Outf, LabK, 1); |
884 | |
885 | // Obtain the corresponding CMY using reverse interpolation |
886 | // (K is fixed in LabK[3]) |
887 | if (!cmsPipelineEvalReverseFloat(ContextID, LabK, Outf, Outf, bp ->LabK2cmyk)) { |
888 | |
889 | // Cannot find a suitable value, so use colorimetric xform |
890 | // which is already stored in Out[] |
891 | return TRUE; |
892 | } |
893 | |
894 | // Make sure to pass through K (which now is fixed) |
895 | Outf[3] = LabK[3]; |
896 | |
897 | // Apply TAC if needed |
898 | SumCMY = Outf[0] + Outf[1] + Outf[2]; |
899 | SumCMYK = SumCMY + Outf[3]; |
900 | |
901 | if (SumCMYK > bp ->MaxTAC) { |
902 | |
903 | Ratio = 1 - ((SumCMYK - bp->MaxTAC) / SumCMY); |
904 | if (Ratio < 0) |
905 | Ratio = 0; |
906 | } |
907 | else |
908 | Ratio = 1.0; |
909 | |
910 | Out[0] = _cmsQuickSaturateWord(Outf[0] * Ratio * 65535.0); // C |
911 | Out[1] = _cmsQuickSaturateWord(Outf[1] * Ratio * 65535.0); // M |
912 | Out[2] = _cmsQuickSaturateWord(Outf[2] * Ratio * 65535.0); // Y |
913 | Out[3] = _cmsQuickSaturateWord(Outf[3] * 65535.0); |
914 | |
915 | // Estimate the error (this goes 16 bits to Lab DBL) |
916 | cmsDoTransform(ContextID, bp->hProofOutput, Out, &BlackPreservingLab, 1); |
917 | Error = cmsDeltaE(ContextID, &ColorimetricLab, &BlackPreservingLab); |
918 | if (Error > bp -> MaxError) |
919 | bp->MaxError = Error; |
920 | |
921 | return TRUE; |
922 | } |
923 | |
924 | // This is the entry for black-plane preserving, which are non-ICC |
925 | static |
926 | cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, |
927 | cmsUInt32Number nProfiles, |
928 | cmsUInt32Number TheIntents[], |
929 | cmsHPROFILE hProfiles[], |
930 | cmsBool BPC[], |
931 | cmsFloat64Number AdaptationStates[], |
932 | cmsUInt32Number dwFlags) |
933 | { |
934 | PreserveKPlaneParams bp; |
935 | cmsPipeline* Result = NULL; |
936 | cmsUInt32Number ICCIntents[256]; |
937 | cmsStage* CLUT; |
938 | cmsUInt32Number i, nGridPoints; |
939 | cmsHPROFILE hLab; |
940 | |
941 | // Sanity check |
942 | if (nProfiles < 1 || nProfiles > 255) return NULL; |
943 | |
944 | // Translate black-preserving intents to ICC ones |
945 | for (i=0; i < nProfiles; i++) |
946 | ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); |
947 | |
948 | // Check for non-cmyk profiles |
949 | if (cmsGetColorSpace(ContextID, hProfiles[0]) != cmsSigCmykData || |
950 | !(cmsGetColorSpace(ContextID, hProfiles[nProfiles-1]) == cmsSigCmykData || |
951 | cmsGetDeviceClass(ContextID, hProfiles[nProfiles-1]) == cmsSigOutputClass)) |
952 | return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
953 | |
954 | // Allocate an empty LUT for holding the result |
955 | Result = cmsPipelineAlloc(ContextID, 4, 4); |
956 | if (Result == NULL) return NULL; |
957 | |
958 | |
959 | memset(&bp, 0, sizeof(bp)); |
960 | |
961 | // We need the input LUT of the last profile, assuming this one is responsible of |
962 | // black generation. This LUT will be searched in inverse order. |
963 | bp.LabK2cmyk = _cmsReadInputLUT(ContextID, hProfiles[nProfiles-1], INTENT_RELATIVE_COLORIMETRIC); |
964 | if (bp.LabK2cmyk == NULL) goto Cleanup; |
965 | |
966 | // Get total area coverage (in 0..1 domain) |
967 | bp.MaxTAC = cmsDetectTAC(ContextID, hProfiles[nProfiles-1]) / 100.0; |
968 | if (bp.MaxTAC <= 0) goto Cleanup; |
969 | |
970 | |
971 | // Create a LUT holding normal ICC transform |
972 | bp.cmyk2cmyk = DefaultICCintents(ContextID, |
973 | nProfiles, |
974 | ICCIntents, |
975 | hProfiles, |
976 | BPC, |
977 | AdaptationStates, |
978 | dwFlags); |
979 | if (bp.cmyk2cmyk == NULL) goto Cleanup; |
980 | |
981 | // Now the tone curve |
982 | bp.KTone = _cmsBuildKToneCurve(ContextID, 4096, nProfiles, |
983 | ICCIntents, |
984 | hProfiles, |
985 | BPC, |
986 | AdaptationStates, |
987 | dwFlags); |
988 | if (bp.KTone == NULL) goto Cleanup; |
989 | |
990 | // To measure the output, Last profile to Lab |
991 | hLab = cmsCreateLab4Profile(ContextID, NULL); |
992 | bp.hProofOutput = cmsCreateTransform(ContextID, hProfiles[nProfiles-1], |
993 | CHANNELS_SH(4)|BYTES_SH(2), hLab, TYPE_Lab_DBL, |
994 | INTENT_RELATIVE_COLORIMETRIC, |
995 | cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); |
996 | if ( bp.hProofOutput == NULL) goto Cleanup; |
997 | |
998 | // Same as anterior, but lab in the 0..1 range |
999 | bp.cmyk2Lab = cmsCreateTransform(ContextID, hProfiles[nProfiles-1], |
1000 | FLOAT_SH(1)|CHANNELS_SH(4)|BYTES_SH(4), hLab, |
1001 | FLOAT_SH(1)|CHANNELS_SH(3)|BYTES_SH(4), |
1002 | INTENT_RELATIVE_COLORIMETRIC, |
1003 | cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); |
1004 | if (bp.cmyk2Lab == NULL) goto Cleanup; |
1005 | cmsCloseProfile(ContextID, hLab); |
1006 | |
1007 | // Error estimation (for debug only) |
1008 | bp.MaxError = 0; |
1009 | |
1010 | // How many gridpoints are we going to use? |
1011 | nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, cmsSigCmykData, dwFlags); |
1012 | |
1013 | |
1014 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); |
1015 | if (CLUT == NULL) goto Cleanup; |
1016 | |
1017 | if (!cmsPipelineInsertStage(ContextID, Result, cmsAT_BEGIN, CLUT)) |
1018 | goto Cleanup; |
1019 | |
1020 | cmsStageSampleCLut16bit(ContextID, CLUT, BlackPreservingSampler, (void*) &bp, 0); |
1021 | |
1022 | Cleanup: |
1023 | |
1024 | if (bp.cmyk2cmyk) cmsPipelineFree(ContextID, bp.cmyk2cmyk); |
1025 | if (bp.cmyk2Lab) cmsDeleteTransform(ContextID, bp.cmyk2Lab); |
1026 | if (bp.hProofOutput) cmsDeleteTransform(ContextID, bp.hProofOutput); |
1027 | |
1028 | if (bp.KTone) cmsFreeToneCurve(ContextID, bp.KTone); |
1029 | if (bp.LabK2cmyk) cmsPipelineFree(ContextID, bp.LabK2cmyk); |
1030 | |
1031 | return Result; |
1032 | } |
1033 | |
1034 | // Link routines ------------------------------------------------------------------------------------------------------ |
1035 | |
1036 | // Chain several profiles into a single LUT. It just checks the parameters and then calls the handler |
1037 | // for the first intent in chain. The handler may be user-defined. Is up to the handler to deal with the |
1038 | // rest of intents in chain. A maximum of 255 profiles at time are supported, which is pretty reasonable. |
1039 | cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, |
1040 | cmsUInt32Number nProfiles, |
1041 | cmsUInt32Number TheIntents[], |
1042 | cmsHPROFILE hProfiles[], |
1043 | cmsBool BPC[], |
1044 | cmsFloat64Number AdaptationStates[], |
1045 | cmsUInt32Number dwFlags) |
1046 | { |
1047 | cmsUInt32Number i; |
1048 | cmsIntentsList* Intent; |
1049 | |
1050 | // Make sure a reasonable number of profiles is provided |
1051 | if (nProfiles <= 0 || nProfiles > 255) { |
1052 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't link '%d' profiles" , nProfiles); |
1053 | return NULL; |
1054 | } |
1055 | |
1056 | for (i=0; i < nProfiles; i++) { |
1057 | |
1058 | // Check if black point is really needed or allowed. Note that |
1059 | // following Adobe's document: |
1060 | // BPC does not apply to devicelink profiles, nor to abs colorimetric, |
1061 | // and applies always on V4 perceptual and saturation. |
1062 | |
1063 | if (TheIntents[i] == INTENT_ABSOLUTE_COLORIMETRIC) |
1064 | BPC[i] = FALSE; |
1065 | |
1066 | if (TheIntents[i] == INTENT_PERCEPTUAL || TheIntents[i] == INTENT_SATURATION) { |
1067 | |
1068 | // Force BPC for V4 profiles in perceptual and saturation |
1069 | if (cmsGetEncodedICCversion(ContextID, hProfiles[i]) >= 0x4000000) |
1070 | BPC[i] = TRUE; |
1071 | } |
1072 | } |
1073 | |
1074 | // Search for a handler. The first intent in the chain defines the handler. That would |
1075 | // prevent using multiple custom intents in a multiintent chain, but the behaviour of |
1076 | // this case would present some issues if the custom intent tries to do things like |
1077 | // preserve primaries. This solution is not perfect, but works well on most cases. |
1078 | |
1079 | Intent = SearchIntent(ContextID, TheIntents[0]); |
1080 | if (Intent == NULL) { |
1081 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported intent '%d'" , TheIntents[0]); |
1082 | return NULL; |
1083 | } |
1084 | |
1085 | // Call the handler |
1086 | return Intent ->Link(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
1087 | } |
1088 | |
1089 | // ------------------------------------------------------------------------------------------------- |
1090 | |
1091 | // Get information about available intents. nMax is the maximum space for the supplied "Codes" |
1092 | // and "Descriptions" the function returns the total number of intents, which may be greater |
1093 | // than nMax, although the matrices are not populated beyond this level. |
1094 | cmsUInt32Number CMSEXPORT cmsGetSupportedIntents(cmsContext ContextID, cmsUInt32Number nMax, cmsUInt32Number* Codes, char** Descriptions) |
1095 | { |
1096 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); |
1097 | cmsIntentsList* pt; |
1098 | cmsUInt32Number nIntents; |
1099 | |
1100 | |
1101 | for (nIntents=0, pt = ctx->Intents; pt != NULL; pt = pt -> Next) |
1102 | { |
1103 | if (nIntents < nMax) { |
1104 | if (Codes != NULL) |
1105 | Codes[nIntents] = pt ->Intent; |
1106 | |
1107 | if (Descriptions != NULL) |
1108 | Descriptions[nIntents] = pt ->Description; |
1109 | } |
1110 | |
1111 | nIntents++; |
1112 | } |
1113 | |
1114 | for (nIntents=0, pt = DefaultIntents; pt != NULL; pt = pt -> Next) |
1115 | { |
1116 | if (nIntents < nMax) { |
1117 | if (Codes != NULL) |
1118 | Codes[nIntents] = pt ->Intent; |
1119 | |
1120 | if (Descriptions != NULL) |
1121 | Descriptions[nIntents] = pt ->Description; |
1122 | } |
1123 | |
1124 | nIntents++; |
1125 | } |
1126 | return nIntents; |
1127 | } |
1128 | |
1129 | // The plug-in registration. User can add new intents or override default routines |
1130 | cmsBool _cmsRegisterRenderingIntentPlugin(cmsContext id, cmsPluginBase* Data) |
1131 | { |
1132 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(id, IntentPlugin); |
1133 | cmsPluginRenderingIntent* Plugin = (cmsPluginRenderingIntent*) Data; |
1134 | cmsIntentsList* fl; |
1135 | |
1136 | // Do we have to reset the custom intents? |
1137 | if (Data == NULL) { |
1138 | |
1139 | ctx->Intents = NULL; |
1140 | return TRUE; |
1141 | } |
1142 | |
1143 | fl = (cmsIntentsList*) _cmsPluginMalloc(id, sizeof(cmsIntentsList)); |
1144 | if (fl == NULL) return FALSE; |
1145 | |
1146 | |
1147 | fl ->Intent = Plugin ->Intent; |
1148 | strncpy(fl ->Description, Plugin ->Description, sizeof(fl ->Description)-1); |
1149 | fl ->Description[sizeof(fl ->Description)-1] = 0; |
1150 | |
1151 | fl ->Link = Plugin ->Link; |
1152 | |
1153 | fl ->Next = ctx ->Intents; |
1154 | ctx ->Intents = fl; |
1155 | |
1156 | return TRUE; |
1157 | } |
1158 | |