1//---------------------------------------------------------------------------------
2//
3// Little Color Management System
4// Copyright (c) 1998-2017 Marti Maria Saguer
5//
6// Permission is hereby granted, free of charge, to any person obtaining
7// a copy of this software and associated documentation files (the "Software"),
8// to deal in the Software without restriction, including without limitation
9// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10// and/or sell copies of the Software, and to permit persons to whom the Software
11// is furnished to do so, subject to the following conditions:
12//
13// The above copyright notice and this permission notice shall be included in
14// all copies or substantial portions of the Software.
15//
16// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23//
24//---------------------------------------------------------------------------------
25//
26
27#include "lcms2_internal.h"
28
29
30// Auxiliary: append a Lab identity after the given sequence of profiles
31// and return the transform. Lab profile is closed, rest of profiles are kept open.
32cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID,
33 cmsUInt32Number nProfiles,
34 cmsUInt32Number InputFormat,
35 cmsUInt32Number OutputFormat,
36 const cmsUInt32Number Intents[],
37 const cmsHPROFILE hProfiles[],
38 const cmsBool BPC[],
39 const cmsFloat64Number AdaptationStates[],
40 cmsUInt32Number dwFlags)
41{
42 cmsHTRANSFORM xform;
43 cmsHPROFILE hLab;
44 cmsHPROFILE ProfileList[256];
45 cmsBool BPCList[256];
46 cmsFloat64Number AdaptationList[256];
47 cmsUInt32Number IntentList[256];
48 cmsUInt32Number i;
49
50 // This is a rather big number and there is no need of dynamic memory
51 // since we are adding a profile, 254 + 1 = 255 and this is the limit
52 if (nProfiles > 254) return NULL;
53
54 // The output space
55 hLab = cmsCreateLab4Profile(ContextID, NULL);
56 if (hLab == NULL) return NULL;
57
58 // Create a copy of parameters
59 for (i=0; i < nProfiles; i++) {
60
61 ProfileList[i] = hProfiles[i];
62 BPCList[i] = BPC[i];
63 AdaptationList[i] = AdaptationStates[i];
64 IntentList[i] = Intents[i];
65 }
66
67 // Place Lab identity at chain's end.
68 ProfileList[nProfiles] = hLab;
69 BPCList[nProfiles] = 0;
70 AdaptationList[nProfiles] = 1.0;
71 IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC;
72
73 // Create the transform
74 xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
75 BPCList,
76 IntentList,
77 AdaptationList,
78 NULL, 0,
79 InputFormat,
80 OutputFormat,
81 dwFlags);
82
83 cmsCloseProfile(ContextID, hLab);
84
85 return xform;
86}
87
88
89// Compute K -> L* relationship. Flags may include black point compensation. In this case,
90// the relationship is assumed from the profile with BPC to a black point zero.
91static
92cmsToneCurve* ComputeKToLstar(cmsContext ContextID,
93 cmsUInt32Number nPoints,
94 cmsUInt32Number nProfiles,
95 const cmsUInt32Number Intents[],
96 const cmsHPROFILE hProfiles[],
97 const cmsBool BPC[],
98 const cmsFloat64Number AdaptationStates[],
99 cmsUInt32Number dwFlags)
100{
101 cmsToneCurve* out = NULL;
102 cmsUInt32Number i;
103 cmsHTRANSFORM xform;
104 cmsCIELab Lab;
105 cmsFloat32Number cmyk[4];
106 cmsFloat32Number* SampledPoints;
107
108 xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
109 if (xform == NULL) return NULL;
110
111 SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
112 if (SampledPoints == NULL) goto Error;
113
114 for (i=0; i < nPoints; i++) {
115
116 cmyk[0] = 0;
117 cmyk[1] = 0;
118 cmyk[2] = 0;
119 cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
120
121 cmsDoTransform(ContextID, xform, cmyk, &Lab, 1);
122 SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
123 }
124
125 out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
126
127Error:
128
129 cmsDeleteTransform(ContextID, xform);
130 if (SampledPoints) _cmsFree(ContextID, SampledPoints);
131
132 return out;
133}
134
135
136// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
137// using the proof direction on both profiles to find K->L* relationship
138// then joining both curves. dwFlags may include black point compensation.
139cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID,
140 cmsUInt32Number nPoints,
141 cmsUInt32Number nProfiles,
142 const cmsUInt32Number Intents[],
143 const cmsHPROFILE hProfiles[],
144 const cmsBool BPC[],
145 const cmsFloat64Number AdaptationStates[],
146 cmsUInt32Number dwFlags)
147{
148 cmsToneCurve *in, *out, *KTone;
149
150 // Make sure CMYK -> CMYK
151 if (cmsGetColorSpace(ContextID, hProfiles[0]) != cmsSigCmykData ||
152 cmsGetColorSpace(ContextID, hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
153
154
155 // Make sure last is an output profile
156 if (cmsGetDeviceClass(ContextID, hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
157
158 // Create individual curves. BPC works also as each K to L* is
159 // computed as a BPC to zero black point in case of L*
160 in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
161 if (in == NULL) return NULL;
162
163 out = ComputeKToLstar(ContextID, nPoints, 1,
164 Intents + (nProfiles - 1),
165 &hProfiles [nProfiles - 1],
166 BPC + (nProfiles - 1),
167 AdaptationStates + (nProfiles - 1),
168 dwFlags);
169 if (out == NULL) {
170 cmsFreeToneCurve(ContextID, in);
171 return NULL;
172 }
173
174 // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
175 // since this is used on black-preserving LUTs, we are not losing accuracy in any case
176 KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
177
178 // Get rid of components
179 cmsFreeToneCurve(ContextID, in); cmsFreeToneCurve(ContextID, out);
180
181 // Something went wrong...
182 if (KTone == NULL) return NULL;
183
184 // Make sure it is monotonic
185 if (!cmsIsToneCurveMonotonic(ContextID, KTone)) {
186 cmsFreeToneCurve(ContextID, KTone);
187 return NULL;
188 }
189
190 return KTone;
191}
192
193
194// Gamut LUT Creation -----------------------------------------------------------------------------------------
195
196// Used by gamut & softproofing
197
198typedef struct {
199
200 cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL
201 cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
202 cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut
203
204 } GAMUTCHAIN;
205
206// This sampler does compute gamut boundaries by comparing original
207// values with a transform going back and forth. Values above ERR_THERESHOLD
208// of maximum are considered out of gamut.
209
210#define ERR_THERESHOLD 5
211
212
213static
214int GamutSampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
215{
216 GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo;
217 cmsCIELab LabIn1, LabOut1;
218 cmsCIELab LabIn2, LabOut2;
219 cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
220 cmsFloat64Number dE1, dE2, ErrorRatio;
221
222 // Assume in-gamut by default.
223 ErrorRatio = 1.0;
224
225 // Convert input to Lab
226 cmsDoTransform(ContextID, t -> hInput, In, &LabIn1, 1);
227
228 // converts from PCS to colorant. This always
229 // does return in-gamut values,
230 cmsDoTransform(ContextID, t -> hForward, &LabIn1, Proof, 1);
231
232 // Now, do the inverse, from colorant to PCS.
233 cmsDoTransform(ContextID, t -> hReverse, Proof, &LabOut1, 1);
234
235 memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
236
237 // Try again, but this time taking Check as input
238 cmsDoTransform(ContextID, t -> hForward, &LabOut1, Proof2, 1);
239 cmsDoTransform(ContextID, t -> hReverse, Proof2, &LabOut2, 1);
240
241 // Take difference of direct value
242 dE1 = cmsDeltaE(ContextID, &LabIn1, &LabOut1);
243
244 // Take difference of converted value
245 dE2 = cmsDeltaE(ContextID, &LabIn2, &LabOut2);
246
247
248 // if dE1 is small and dE2 is small, value is likely to be in gamut
249 if (dE1 < t->Thereshold && dE2 < t->Thereshold)
250 Out[0] = 0;
251 else {
252
253 // if dE1 is small and dE2 is big, undefined. Assume in gamut
254 if (dE1 < t->Thereshold && dE2 > t->Thereshold)
255 Out[0] = 0;
256 else
257 // dE1 is big and dE2 is small, clearly out of gamut
258 if (dE1 > t->Thereshold && dE2 < t->Thereshold)
259 Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
260 else {
261
262 // dE1 is big and dE2 is also big, could be due to perceptual mapping
263 // so take error ratio
264 if (dE2 == 0.0)
265 ErrorRatio = dE1;
266 else
267 ErrorRatio = dE1 / dE2;
268
269 if (ErrorRatio > t->Thereshold)
270 Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
271 else
272 Out[0] = 0;
273 }
274 }
275
276
277 return TRUE;
278}
279
280// Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
281// the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
282// and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
283//
284// **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
285// of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
286
287cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
288 cmsHPROFILE hProfiles[],
289 cmsBool BPC[],
290 cmsUInt32Number Intents[],
291 cmsFloat64Number AdaptationStates[],
292 cmsUInt32Number nGamutPCSposition,
293 cmsHPROFILE hGamut)
294{
295 cmsHPROFILE hLab;
296 cmsPipeline* Gamut;
297 cmsStage* CLUT;
298 cmsUInt32Number dwFormat;
299 GAMUTCHAIN Chain;
300 cmsUInt32Number nChannels, nGridpoints;
301 cmsColorSpaceSignature ColorSpace;
302 cmsUInt32Number i;
303 cmsHPROFILE ProfileList[256];
304 cmsBool BPCList[256];
305 cmsFloat64Number AdaptationList[256];
306 cmsUInt32Number IntentList[256];
307
308 memset(&Chain, 0, sizeof(GAMUTCHAIN));
309
310
311 if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
312 cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
313 return NULL;
314 }
315
316 hLab = cmsCreateLab4Profile(ContextID, NULL);
317 if (hLab == NULL) return NULL;
318
319
320 // The figure of merit. On matrix-shaper profiles, should be almost zero as
321 // the conversion is pretty exact. On LUT based profiles, different resolutions
322 // of input and output CLUT may result in differences.
323
324 if (cmsIsMatrixShaper(ContextID, hGamut)) {
325
326 Chain.Thereshold = 1.0;
327 }
328 else {
329 Chain.Thereshold = ERR_THERESHOLD;
330 }
331
332
333 // Create a copy of parameters
334 for (i=0; i < nGamutPCSposition; i++) {
335 ProfileList[i] = hProfiles[i];
336 BPCList[i] = BPC[i];
337 AdaptationList[i] = AdaptationStates[i];
338 IntentList[i] = Intents[i];
339 }
340
341 // Fill Lab identity
342 ProfileList[nGamutPCSposition] = hLab;
343 BPCList[nGamutPCSposition] = 0;
344 AdaptationList[nGamutPCSposition] = 1.0;
345 IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
346
347
348 ColorSpace = cmsGetColorSpace(ContextID, hGamut);
349
350 nChannels = cmsChannelsOf(ContextID, ColorSpace);
351 nGridpoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, cmsFLAGS_HIGHRESPRECALC);
352 dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
353
354 // 16 bits to Lab double
355 Chain.hInput = cmsCreateExtendedTransform(ContextID,
356 nGamutPCSposition + 1,
357 ProfileList,
358 BPCList,
359 IntentList,
360 AdaptationList,
361 NULL, 0,
362 dwFormat, TYPE_Lab_DBL,
363 cmsFLAGS_NOCACHE);
364
365
366 // Does create the forward step. Lab double to device
367 dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
368 Chain.hForward = cmsCreateTransform(ContextID,
369 hLab, TYPE_Lab_DBL,
370 hGamut, dwFormat,
371 INTENT_RELATIVE_COLORIMETRIC,
372 cmsFLAGS_NOCACHE);
373
374 // Does create the backwards step
375 Chain.hReverse = cmsCreateTransform(ContextID, hGamut, dwFormat,
376 hLab, TYPE_Lab_DBL,
377 INTENT_RELATIVE_COLORIMETRIC,
378 cmsFLAGS_NOCACHE);
379
380
381 // All ok?
382 if (Chain.hInput && Chain.hForward && Chain.hReverse) {
383
384 // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
385 // dE when doing a transform back and forth on the colorimetric intent.
386
387 Gamut = cmsPipelineAlloc(ContextID, 3, 1);
388 if (Gamut != NULL) {
389
390 CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
391 if (!cmsPipelineInsertStage(ContextID, Gamut, cmsAT_BEGIN, CLUT)) {
392 cmsPipelineFree(ContextID, Gamut);
393 Gamut = NULL;
394 }
395 else {
396 cmsStageSampleCLut16bit(ContextID, CLUT, GamutSampler, (void*) &Chain, 0);
397 }
398 }
399 }
400 else
401 Gamut = NULL; // Didn't work...
402
403 // Free all needed stuff.
404 if (Chain.hInput) cmsDeleteTransform(ContextID, Chain.hInput);
405 if (Chain.hForward) cmsDeleteTransform(ContextID, Chain.hForward);
406 if (Chain.hReverse) cmsDeleteTransform(ContextID, Chain.hReverse);
407 if (hLab) cmsCloseProfile(ContextID, hLab);
408
409 // And return computed hull
410 return Gamut;
411}
412
413// Total Area Coverage estimation ----------------------------------------------------------------
414
415typedef struct {
416 cmsUInt32Number nOutputChans;
417 cmsHTRANSFORM hRoundTrip;
418 cmsFloat32Number MaxTAC;
419 cmsFloat32Number MaxInput[cmsMAXCHANNELS];
420
421} cmsTACestimator;
422
423
424// This callback just accounts the maximum ink dropped in the given node. It does not populate any
425// memory, as the destination table is NULL. Its only purpose it to know the global maximum.
426static
427int EstimateTAC(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
428{
429 cmsTACestimator* bp = (cmsTACestimator*) Cargo;
430 cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
431 cmsUInt32Number i;
432 cmsFloat32Number Sum;
433
434
435 // Evaluate the xform
436 cmsDoTransform(ContextID, bp->hRoundTrip, In, RoundTrip, 1);
437
438 // All all amounts of ink
439 for (Sum=0, i=0; i < bp ->nOutputChans; i++)
440 Sum += RoundTrip[i];
441
442 // If above maximum, keep track of input values
443 if (Sum > bp ->MaxTAC) {
444
445 bp ->MaxTAC = Sum;
446
447 for (i=0; i < bp ->nOutputChans; i++) {
448 bp ->MaxInput[i] = In[i];
449 }
450 }
451
452 return TRUE;
453
454 cmsUNUSED_PARAMETER(Out);
455}
456
457
458// Detect Total area coverage of the profile
459cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsContext ContextID, cmsHPROFILE hProfile)
460{
461 cmsTACestimator bp;
462 cmsUInt32Number dwFormatter;
463 cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
464 cmsHPROFILE hLab;
465
466 // TAC only works on output profiles
467 if (cmsGetDeviceClass(ContextID, hProfile) != cmsSigOutputClass) {
468 return 0;
469 }
470
471 // Create a fake formatter for result
472 dwFormatter = cmsFormatterForColorspaceOfProfile(ContextID, hProfile, 4, TRUE);
473
474 bp.nOutputChans = T_CHANNELS(dwFormatter);
475 bp.MaxTAC = 0; // Initial TAC is 0
476
477 // for safety
478 if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
479
480 hLab = cmsCreateLab4Profile(ContextID, NULL);
481 if (hLab == NULL) return 0;
482 // Setup a roundtrip on perceptual intent in output profile for TAC estimation
483 bp.hRoundTrip = cmsCreateTransform(ContextID, hLab, TYPE_Lab_16,
484 hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
485
486 cmsCloseProfile(ContextID, hLab);
487 if (bp.hRoundTrip == NULL) return 0;
488
489 // For L* we only need black and white. For C* we need many points
490 GridPoints[0] = 6;
491 GridPoints[1] = 74;
492 GridPoints[2] = 74;
493
494
495 if (!cmsSliceSpace16(ContextID, 3, GridPoints, EstimateTAC, &bp)) {
496 bp.MaxTAC = 0;
497 }
498
499 cmsDeleteTransform(ContextID, bp.hRoundTrip);
500
501 // Results in %
502 return bp.MaxTAC;
503}
504
505
506// Carefully, clamp on CIELab space.
507
508cmsBool CMSEXPORT cmsDesaturateLab(cmsContext ContextID, cmsCIELab* Lab,
509 double amax, double amin,
510 double bmax, double bmin)
511{
512
513 // Whole Luma surface to zero
514
515 if (Lab -> L < 0) {
516
517 Lab-> L = Lab->a = Lab-> b = 0.0;
518 return FALSE;
519 }
520
521 // Clamp white, DISCARD HIGHLIGHTS. This is done
522 // in such way because icc spec doesn't allow the
523 // use of L>100 as a highlight means.
524
525 if (Lab->L > 100)
526 Lab -> L = 100;
527
528 // Check out gamut prism, on a, b faces
529
530 if (Lab -> a < amin || Lab->a > amax||
531 Lab -> b < bmin || Lab->b > bmax) {
532
533 cmsCIELCh LCh;
534 double h, slope;
535
536 // Falls outside a, b limits. Transports to LCh space,
537 // and then do the clipping
538
539
540 if (Lab -> a == 0.0) { // Is hue exactly 90?
541
542 // atan will not work, so clamp here
543 Lab -> b = Lab->b < 0 ? bmin : bmax;
544 return TRUE;
545 }
546
547 cmsLab2LCh(ContextID, &LCh, Lab);
548
549 slope = Lab -> b / Lab -> a;
550 h = LCh.h;
551
552 // There are 4 zones
553
554 if ((h >= 0. && h < 45.) ||
555 (h >= 315 && h <= 360.)) {
556
557 // clip by amax
558 Lab -> a = amax;
559 Lab -> b = amax * slope;
560 }
561 else
562 if (h >= 45. && h < 135.)
563 {
564 // clip by bmax
565 Lab -> b = bmax;
566 Lab -> a = bmax / slope;
567 }
568 else
569 if (h >= 135. && h < 225.) {
570 // clip by amin
571 Lab -> a = amin;
572 Lab -> b = amin * slope;
573
574 }
575 else
576 if (h >= 225. && h < 315.) {
577 // clip by bmin
578 Lab -> b = bmin;
579 Lab -> a = bmin / slope;
580 }
581 else {
582 cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
583 return FALSE;
584 }
585
586 }
587
588 return TRUE;
589}
590