1 | //---------------------------------------------------------------------------------
|
2 | //
|
3 | // Little Color Management System
|
4 | // Copyright (c) 1998-2017 Marti Maria Saguer
|
5 | //
|
6 | // Permission is hereby granted, free of charge, to any person obtaining
|
7 | // a copy of this software and associated documentation files (the "Software"),
|
8 | // to deal in the Software without restriction, including without limitation
|
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
10 | // and/or sell copies of the Software, and to permit persons to whom the Software
|
11 | // is furnished to do so, subject to the following conditions:
|
12 | //
|
13 | // The above copyright notice and this permission notice shall be included in
|
14 | // all copies or substantial portions of the Software.
|
15 | //
|
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
23 | //
|
24 | //---------------------------------------------------------------------------------
|
25 | //
|
26 |
|
27 | #include "lcms2_internal.h"
|
28 |
|
29 |
|
30 | // Auxiliary: append a Lab identity after the given sequence of profiles
|
31 | // and return the transform. Lab profile is closed, rest of profiles are kept open.
|
32 | cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID,
|
33 | cmsUInt32Number nProfiles,
|
34 | cmsUInt32Number InputFormat,
|
35 | cmsUInt32Number OutputFormat,
|
36 | const cmsUInt32Number Intents[],
|
37 | const cmsHPROFILE hProfiles[],
|
38 | const cmsBool BPC[],
|
39 | const cmsFloat64Number AdaptationStates[],
|
40 | cmsUInt32Number dwFlags)
|
41 | {
|
42 | cmsHTRANSFORM xform;
|
43 | cmsHPROFILE hLab;
|
44 | cmsHPROFILE ProfileList[256];
|
45 | cmsBool BPCList[256];
|
46 | cmsFloat64Number AdaptationList[256];
|
47 | cmsUInt32Number IntentList[256];
|
48 | cmsUInt32Number i;
|
49 |
|
50 | // This is a rather big number and there is no need of dynamic memory
|
51 | // since we are adding a profile, 254 + 1 = 255 and this is the limit
|
52 | if (nProfiles > 254) return NULL;
|
53 |
|
54 | // The output space
|
55 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
56 | if (hLab == NULL) return NULL;
|
57 |
|
58 | // Create a copy of parameters
|
59 | for (i=0; i < nProfiles; i++) {
|
60 |
|
61 | ProfileList[i] = hProfiles[i];
|
62 | BPCList[i] = BPC[i];
|
63 | AdaptationList[i] = AdaptationStates[i];
|
64 | IntentList[i] = Intents[i];
|
65 | }
|
66 |
|
67 | // Place Lab identity at chain's end.
|
68 | ProfileList[nProfiles] = hLab;
|
69 | BPCList[nProfiles] = 0;
|
70 | AdaptationList[nProfiles] = 1.0;
|
71 | IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC;
|
72 |
|
73 | // Create the transform
|
74 | xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
|
75 | BPCList,
|
76 | IntentList,
|
77 | AdaptationList,
|
78 | NULL, 0,
|
79 | InputFormat,
|
80 | OutputFormat,
|
81 | dwFlags);
|
82 |
|
83 | cmsCloseProfile(ContextID, hLab);
|
84 |
|
85 | return xform;
|
86 | }
|
87 |
|
88 |
|
89 | // Compute K -> L* relationship. Flags may include black point compensation. In this case,
|
90 | // the relationship is assumed from the profile with BPC to a black point zero.
|
91 | static
|
92 | cmsToneCurve* ComputeKToLstar(cmsContext ContextID,
|
93 | cmsUInt32Number nPoints,
|
94 | cmsUInt32Number nProfiles,
|
95 | const cmsUInt32Number Intents[],
|
96 | const cmsHPROFILE hProfiles[],
|
97 | const cmsBool BPC[],
|
98 | const cmsFloat64Number AdaptationStates[],
|
99 | cmsUInt32Number dwFlags)
|
100 | {
|
101 | cmsToneCurve* out = NULL;
|
102 | cmsUInt32Number i;
|
103 | cmsHTRANSFORM xform;
|
104 | cmsCIELab Lab;
|
105 | cmsFloat32Number cmyk[4];
|
106 | cmsFloat32Number* SampledPoints;
|
107 |
|
108 | xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
|
109 | if (xform == NULL) return NULL;
|
110 |
|
111 | SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
|
112 | if (SampledPoints == NULL) goto Error;
|
113 |
|
114 | for (i=0; i < nPoints; i++) {
|
115 |
|
116 | cmyk[0] = 0;
|
117 | cmyk[1] = 0;
|
118 | cmyk[2] = 0;
|
119 | cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
|
120 |
|
121 | cmsDoTransform(ContextID, xform, cmyk, &Lab, 1);
|
122 | SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
|
123 | }
|
124 |
|
125 | out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
|
126 |
|
127 | Error:
|
128 |
|
129 | cmsDeleteTransform(ContextID, xform);
|
130 | if (SampledPoints) _cmsFree(ContextID, SampledPoints);
|
131 |
|
132 | return out;
|
133 | }
|
134 |
|
135 |
|
136 | // Compute Black tone curve on a CMYK -> CMYK transform. This is done by
|
137 | // using the proof direction on both profiles to find K->L* relationship
|
138 | // then joining both curves. dwFlags may include black point compensation.
|
139 | cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID,
|
140 | cmsUInt32Number nPoints,
|
141 | cmsUInt32Number nProfiles,
|
142 | const cmsUInt32Number Intents[],
|
143 | const cmsHPROFILE hProfiles[],
|
144 | const cmsBool BPC[],
|
145 | const cmsFloat64Number AdaptationStates[],
|
146 | cmsUInt32Number dwFlags)
|
147 | {
|
148 | cmsToneCurve *in, *out, *KTone;
|
149 |
|
150 | // Make sure CMYK -> CMYK
|
151 | if (cmsGetColorSpace(ContextID, hProfiles[0]) != cmsSigCmykData ||
|
152 | cmsGetColorSpace(ContextID, hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
|
153 |
|
154 |
|
155 | // Make sure last is an output profile
|
156 | if (cmsGetDeviceClass(ContextID, hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
|
157 |
|
158 | // Create individual curves. BPC works also as each K to L* is
|
159 | // computed as a BPC to zero black point in case of L*
|
160 | in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
|
161 | if (in == NULL) return NULL;
|
162 |
|
163 | out = ComputeKToLstar(ContextID, nPoints, 1,
|
164 | Intents + (nProfiles - 1),
|
165 | &hProfiles [nProfiles - 1],
|
166 | BPC + (nProfiles - 1),
|
167 | AdaptationStates + (nProfiles - 1),
|
168 | dwFlags);
|
169 | if (out == NULL) {
|
170 | cmsFreeToneCurve(ContextID, in);
|
171 | return NULL;
|
172 | }
|
173 |
|
174 | // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
|
175 | // since this is used on black-preserving LUTs, we are not losing accuracy in any case
|
176 | KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
|
177 |
|
178 | // Get rid of components
|
179 | cmsFreeToneCurve(ContextID, in); cmsFreeToneCurve(ContextID, out);
|
180 |
|
181 | // Something went wrong...
|
182 | if (KTone == NULL) return NULL;
|
183 |
|
184 | // Make sure it is monotonic
|
185 | if (!cmsIsToneCurveMonotonic(ContextID, KTone)) {
|
186 | cmsFreeToneCurve(ContextID, KTone);
|
187 | return NULL;
|
188 | }
|
189 |
|
190 | return KTone;
|
191 | }
|
192 |
|
193 |
|
194 | // Gamut LUT Creation -----------------------------------------------------------------------------------------
|
195 |
|
196 | // Used by gamut & softproofing
|
197 |
|
198 | typedef struct {
|
199 |
|
200 | cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL
|
201 | cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
|
202 | cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut
|
203 |
|
204 | } GAMUTCHAIN;
|
205 |
|
206 | // This sampler does compute gamut boundaries by comparing original
|
207 | // values with a transform going back and forth. Values above ERR_THERESHOLD
|
208 | // of maximum are considered out of gamut.
|
209 |
|
210 | #define ERR_THERESHOLD 5
|
211 |
|
212 |
|
213 | static
|
214 | int GamutSampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
|
215 | {
|
216 | GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo;
|
217 | cmsCIELab LabIn1, LabOut1;
|
218 | cmsCIELab LabIn2, LabOut2;
|
219 | cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
|
220 | cmsFloat64Number dE1, dE2, ErrorRatio;
|
221 |
|
222 | // Assume in-gamut by default.
|
223 | ErrorRatio = 1.0;
|
224 |
|
225 | // Convert input to Lab
|
226 | cmsDoTransform(ContextID, t -> hInput, In, &LabIn1, 1);
|
227 |
|
228 | // converts from PCS to colorant. This always
|
229 | // does return in-gamut values,
|
230 | cmsDoTransform(ContextID, t -> hForward, &LabIn1, Proof, 1);
|
231 |
|
232 | // Now, do the inverse, from colorant to PCS.
|
233 | cmsDoTransform(ContextID, t -> hReverse, Proof, &LabOut1, 1);
|
234 |
|
235 | memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
|
236 |
|
237 | // Try again, but this time taking Check as input
|
238 | cmsDoTransform(ContextID, t -> hForward, &LabOut1, Proof2, 1);
|
239 | cmsDoTransform(ContextID, t -> hReverse, Proof2, &LabOut2, 1);
|
240 |
|
241 | // Take difference of direct value
|
242 | dE1 = cmsDeltaE(ContextID, &LabIn1, &LabOut1);
|
243 |
|
244 | // Take difference of converted value
|
245 | dE2 = cmsDeltaE(ContextID, &LabIn2, &LabOut2);
|
246 |
|
247 |
|
248 | // if dE1 is small and dE2 is small, value is likely to be in gamut
|
249 | if (dE1 < t->Thereshold && dE2 < t->Thereshold)
|
250 | Out[0] = 0;
|
251 | else {
|
252 |
|
253 | // if dE1 is small and dE2 is big, undefined. Assume in gamut
|
254 | if (dE1 < t->Thereshold && dE2 > t->Thereshold)
|
255 | Out[0] = 0;
|
256 | else
|
257 | // dE1 is big and dE2 is small, clearly out of gamut
|
258 | if (dE1 > t->Thereshold && dE2 < t->Thereshold)
|
259 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
|
260 | else {
|
261 |
|
262 | // dE1 is big and dE2 is also big, could be due to perceptual mapping
|
263 | // so take error ratio
|
264 | if (dE2 == 0.0)
|
265 | ErrorRatio = dE1;
|
266 | else
|
267 | ErrorRatio = dE1 / dE2;
|
268 |
|
269 | if (ErrorRatio > t->Thereshold)
|
270 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
|
271 | else
|
272 | Out[0] = 0;
|
273 | }
|
274 | }
|
275 |
|
276 |
|
277 | return TRUE;
|
278 | }
|
279 |
|
280 | // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
|
281 | // the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
|
282 | // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
|
283 | //
|
284 | // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
|
285 | // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
|
286 |
|
287 | cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
|
288 | cmsHPROFILE hProfiles[],
|
289 | cmsBool BPC[],
|
290 | cmsUInt32Number Intents[],
|
291 | cmsFloat64Number AdaptationStates[],
|
292 | cmsUInt32Number nGamutPCSposition,
|
293 | cmsHPROFILE hGamut)
|
294 | {
|
295 | cmsHPROFILE hLab;
|
296 | cmsPipeline* Gamut;
|
297 | cmsStage* CLUT;
|
298 | cmsUInt32Number dwFormat;
|
299 | GAMUTCHAIN Chain;
|
300 | cmsUInt32Number nChannels, nGridpoints;
|
301 | cmsColorSpaceSignature ColorSpace;
|
302 | cmsUInt32Number i;
|
303 | cmsHPROFILE ProfileList[256];
|
304 | cmsBool BPCList[256];
|
305 | cmsFloat64Number AdaptationList[256];
|
306 | cmsUInt32Number IntentList[256];
|
307 |
|
308 | memset(&Chain, 0, sizeof(GAMUTCHAIN));
|
309 |
|
310 |
|
311 | if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
|
312 | cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found." , nGamutPCSposition);
|
313 | return NULL;
|
314 | }
|
315 |
|
316 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
317 | if (hLab == NULL) return NULL;
|
318 |
|
319 |
|
320 | // The figure of merit. On matrix-shaper profiles, should be almost zero as
|
321 | // the conversion is pretty exact. On LUT based profiles, different resolutions
|
322 | // of input and output CLUT may result in differences.
|
323 |
|
324 | if (cmsIsMatrixShaper(ContextID, hGamut)) {
|
325 |
|
326 | Chain.Thereshold = 1.0;
|
327 | }
|
328 | else {
|
329 | Chain.Thereshold = ERR_THERESHOLD;
|
330 | }
|
331 |
|
332 |
|
333 | // Create a copy of parameters
|
334 | for (i=0; i < nGamutPCSposition; i++) {
|
335 | ProfileList[i] = hProfiles[i];
|
336 | BPCList[i] = BPC[i];
|
337 | AdaptationList[i] = AdaptationStates[i];
|
338 | IntentList[i] = Intents[i];
|
339 | }
|
340 |
|
341 | // Fill Lab identity
|
342 | ProfileList[nGamutPCSposition] = hLab;
|
343 | BPCList[nGamutPCSposition] = 0;
|
344 | AdaptationList[nGamutPCSposition] = 1.0;
|
345 | IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
|
346 |
|
347 |
|
348 | ColorSpace = cmsGetColorSpace(ContextID, hGamut);
|
349 |
|
350 | nChannels = cmsChannelsOf(ContextID, ColorSpace);
|
351 | nGridpoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, cmsFLAGS_HIGHRESPRECALC);
|
352 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
|
353 |
|
354 | // 16 bits to Lab double
|
355 | Chain.hInput = cmsCreateExtendedTransform(ContextID,
|
356 | nGamutPCSposition + 1,
|
357 | ProfileList,
|
358 | BPCList,
|
359 | IntentList,
|
360 | AdaptationList,
|
361 | NULL, 0,
|
362 | dwFormat, TYPE_Lab_DBL,
|
363 | cmsFLAGS_NOCACHE);
|
364 |
|
365 |
|
366 | // Does create the forward step. Lab double to device
|
367 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
|
368 | Chain.hForward = cmsCreateTransform(ContextID,
|
369 | hLab, TYPE_Lab_DBL,
|
370 | hGamut, dwFormat,
|
371 | INTENT_RELATIVE_COLORIMETRIC,
|
372 | cmsFLAGS_NOCACHE);
|
373 |
|
374 | // Does create the backwards step
|
375 | Chain.hReverse = cmsCreateTransform(ContextID, hGamut, dwFormat,
|
376 | hLab, TYPE_Lab_DBL,
|
377 | INTENT_RELATIVE_COLORIMETRIC,
|
378 | cmsFLAGS_NOCACHE);
|
379 |
|
380 |
|
381 | // All ok?
|
382 | if (Chain.hInput && Chain.hForward && Chain.hReverse) {
|
383 |
|
384 | // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
|
385 | // dE when doing a transform back and forth on the colorimetric intent.
|
386 |
|
387 | Gamut = cmsPipelineAlloc(ContextID, 3, 1);
|
388 | if (Gamut != NULL) {
|
389 |
|
390 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
|
391 | if (!cmsPipelineInsertStage(ContextID, Gamut, cmsAT_BEGIN, CLUT)) {
|
392 | cmsPipelineFree(ContextID, Gamut);
|
393 | Gamut = NULL;
|
394 | }
|
395 | else {
|
396 | cmsStageSampleCLut16bit(ContextID, CLUT, GamutSampler, (void*) &Chain, 0);
|
397 | }
|
398 | }
|
399 | }
|
400 | else
|
401 | Gamut = NULL; // Didn't work...
|
402 |
|
403 | // Free all needed stuff.
|
404 | if (Chain.hInput) cmsDeleteTransform(ContextID, Chain.hInput);
|
405 | if (Chain.hForward) cmsDeleteTransform(ContextID, Chain.hForward);
|
406 | if (Chain.hReverse) cmsDeleteTransform(ContextID, Chain.hReverse);
|
407 | if (hLab) cmsCloseProfile(ContextID, hLab);
|
408 |
|
409 | // And return computed hull
|
410 | return Gamut;
|
411 | }
|
412 |
|
413 | // Total Area Coverage estimation ----------------------------------------------------------------
|
414 |
|
415 | typedef struct {
|
416 | cmsUInt32Number nOutputChans;
|
417 | cmsHTRANSFORM hRoundTrip;
|
418 | cmsFloat32Number MaxTAC;
|
419 | cmsFloat32Number MaxInput[cmsMAXCHANNELS];
|
420 |
|
421 | } cmsTACestimator;
|
422 |
|
423 |
|
424 | // This callback just accounts the maximum ink dropped in the given node. It does not populate any
|
425 | // memory, as the destination table is NULL. Its only purpose it to know the global maximum.
|
426 | static
|
427 | int EstimateTAC(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
|
428 | {
|
429 | cmsTACestimator* bp = (cmsTACestimator*) Cargo;
|
430 | cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
|
431 | cmsUInt32Number i;
|
432 | cmsFloat32Number Sum;
|
433 |
|
434 |
|
435 | // Evaluate the xform
|
436 | cmsDoTransform(ContextID, bp->hRoundTrip, In, RoundTrip, 1);
|
437 |
|
438 | // All all amounts of ink
|
439 | for (Sum=0, i=0; i < bp ->nOutputChans; i++)
|
440 | Sum += RoundTrip[i];
|
441 |
|
442 | // If above maximum, keep track of input values
|
443 | if (Sum > bp ->MaxTAC) {
|
444 |
|
445 | bp ->MaxTAC = Sum;
|
446 |
|
447 | for (i=0; i < bp ->nOutputChans; i++) {
|
448 | bp ->MaxInput[i] = In[i];
|
449 | }
|
450 | }
|
451 |
|
452 | return TRUE;
|
453 |
|
454 | cmsUNUSED_PARAMETER(Out);
|
455 | }
|
456 |
|
457 |
|
458 | // Detect Total area coverage of the profile
|
459 | cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsContext ContextID, cmsHPROFILE hProfile)
|
460 | {
|
461 | cmsTACestimator bp;
|
462 | cmsUInt32Number dwFormatter;
|
463 | cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
|
464 | cmsHPROFILE hLab;
|
465 |
|
466 | // TAC only works on output profiles
|
467 | if (cmsGetDeviceClass(ContextID, hProfile) != cmsSigOutputClass) {
|
468 | return 0;
|
469 | }
|
470 |
|
471 | // Create a fake formatter for result
|
472 | dwFormatter = cmsFormatterForColorspaceOfProfile(ContextID, hProfile, 4, TRUE);
|
473 |
|
474 | bp.nOutputChans = T_CHANNELS(dwFormatter);
|
475 | bp.MaxTAC = 0; // Initial TAC is 0
|
476 |
|
477 | // for safety
|
478 | if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
|
479 |
|
480 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
481 | if (hLab == NULL) return 0;
|
482 | // Setup a roundtrip on perceptual intent in output profile for TAC estimation
|
483 | bp.hRoundTrip = cmsCreateTransform(ContextID, hLab, TYPE_Lab_16,
|
484 | hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
|
485 |
|
486 | cmsCloseProfile(ContextID, hLab);
|
487 | if (bp.hRoundTrip == NULL) return 0;
|
488 |
|
489 | // For L* we only need black and white. For C* we need many points
|
490 | GridPoints[0] = 6;
|
491 | GridPoints[1] = 74;
|
492 | GridPoints[2] = 74;
|
493 |
|
494 |
|
495 | if (!cmsSliceSpace16(ContextID, 3, GridPoints, EstimateTAC, &bp)) {
|
496 | bp.MaxTAC = 0;
|
497 | }
|
498 |
|
499 | cmsDeleteTransform(ContextID, bp.hRoundTrip);
|
500 |
|
501 | // Results in %
|
502 | return bp.MaxTAC;
|
503 | }
|
504 |
|
505 |
|
506 | // Carefully, clamp on CIELab space.
|
507 |
|
508 | cmsBool CMSEXPORT cmsDesaturateLab(cmsContext ContextID, cmsCIELab* Lab,
|
509 | double amax, double amin,
|
510 | double bmax, double bmin)
|
511 | {
|
512 |
|
513 | // Whole Luma surface to zero
|
514 |
|
515 | if (Lab -> L < 0) {
|
516 |
|
517 | Lab-> L = Lab->a = Lab-> b = 0.0;
|
518 | return FALSE;
|
519 | }
|
520 |
|
521 | // Clamp white, DISCARD HIGHLIGHTS. This is done
|
522 | // in such way because icc spec doesn't allow the
|
523 | // use of L>100 as a highlight means.
|
524 |
|
525 | if (Lab->L > 100)
|
526 | Lab -> L = 100;
|
527 |
|
528 | // Check out gamut prism, on a, b faces
|
529 |
|
530 | if (Lab -> a < amin || Lab->a > amax||
|
531 | Lab -> b < bmin || Lab->b > bmax) {
|
532 |
|
533 | cmsCIELCh LCh;
|
534 | double h, slope;
|
535 |
|
536 | // Falls outside a, b limits. Transports to LCh space,
|
537 | // and then do the clipping
|
538 |
|
539 |
|
540 | if (Lab -> a == 0.0) { // Is hue exactly 90?
|
541 |
|
542 | // atan will not work, so clamp here
|
543 | Lab -> b = Lab->b < 0 ? bmin : bmax;
|
544 | return TRUE;
|
545 | }
|
546 |
|
547 | cmsLab2LCh(ContextID, &LCh, Lab);
|
548 |
|
549 | slope = Lab -> b / Lab -> a;
|
550 | h = LCh.h;
|
551 |
|
552 | // There are 4 zones
|
553 |
|
554 | if ((h >= 0. && h < 45.) ||
|
555 | (h >= 315 && h <= 360.)) {
|
556 |
|
557 | // clip by amax
|
558 | Lab -> a = amax;
|
559 | Lab -> b = amax * slope;
|
560 | }
|
561 | else
|
562 | if (h >= 45. && h < 135.)
|
563 | {
|
564 | // clip by bmax
|
565 | Lab -> b = bmax;
|
566 | Lab -> a = bmax / slope;
|
567 | }
|
568 | else
|
569 | if (h >= 135. && h < 225.) {
|
570 | // clip by amin
|
571 | Lab -> a = amin;
|
572 | Lab -> b = amin * slope;
|
573 |
|
574 | }
|
575 | else
|
576 | if (h >= 225. && h < 315.) {
|
577 | // clip by bmin
|
578 | Lab -> b = bmin;
|
579 | Lab -> a = bmin / slope;
|
580 | }
|
581 | else {
|
582 | cmsSignalError(0, cmsERROR_RANGE, "Invalid angle" );
|
583 | return FALSE;
|
584 | }
|
585 |
|
586 | }
|
587 |
|
588 | return TRUE;
|
589 | }
|
590 | |