| 1 | //---------------------------------------------------------------------------------
|
| 2 | //
|
| 3 | // Little Color Management System
|
| 4 | // Copyright (c) 1998-2017 Marti Maria Saguer
|
| 5 | //
|
| 6 | // Permission is hereby granted, free of charge, to any person obtaining
|
| 7 | // a copy of this software and associated documentation files (the "Software"),
|
| 8 | // to deal in the Software without restriction, including without limitation
|
| 9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
| 10 | // and/or sell copies of the Software, and to permit persons to whom the Software
|
| 11 | // is furnished to do so, subject to the following conditions:
|
| 12 | //
|
| 13 | // The above copyright notice and this permission notice shall be included in
|
| 14 | // all copies or substantial portions of the Software.
|
| 15 | //
|
| 16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
| 17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
| 18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
| 19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
| 20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
| 21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
| 22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 23 | //
|
| 24 | //---------------------------------------------------------------------------------
|
| 25 | //
|
| 26 |
|
| 27 | #include "lcms2_internal.h"
|
| 28 |
|
| 29 |
|
| 30 | // Auxiliary: append a Lab identity after the given sequence of profiles
|
| 31 | // and return the transform. Lab profile is closed, rest of profiles are kept open.
|
| 32 | cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID,
|
| 33 | cmsUInt32Number nProfiles,
|
| 34 | cmsUInt32Number InputFormat,
|
| 35 | cmsUInt32Number OutputFormat,
|
| 36 | const cmsUInt32Number Intents[],
|
| 37 | const cmsHPROFILE hProfiles[],
|
| 38 | const cmsBool BPC[],
|
| 39 | const cmsFloat64Number AdaptationStates[],
|
| 40 | cmsUInt32Number dwFlags)
|
| 41 | {
|
| 42 | cmsHTRANSFORM xform;
|
| 43 | cmsHPROFILE hLab;
|
| 44 | cmsHPROFILE ProfileList[256];
|
| 45 | cmsBool BPCList[256];
|
| 46 | cmsFloat64Number AdaptationList[256];
|
| 47 | cmsUInt32Number IntentList[256];
|
| 48 | cmsUInt32Number i;
|
| 49 |
|
| 50 | // This is a rather big number and there is no need of dynamic memory
|
| 51 | // since we are adding a profile, 254 + 1 = 255 and this is the limit
|
| 52 | if (nProfiles > 254) return NULL;
|
| 53 |
|
| 54 | // The output space
|
| 55 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
| 56 | if (hLab == NULL) return NULL;
|
| 57 |
|
| 58 | // Create a copy of parameters
|
| 59 | for (i=0; i < nProfiles; i++) {
|
| 60 |
|
| 61 | ProfileList[i] = hProfiles[i];
|
| 62 | BPCList[i] = BPC[i];
|
| 63 | AdaptationList[i] = AdaptationStates[i];
|
| 64 | IntentList[i] = Intents[i];
|
| 65 | }
|
| 66 |
|
| 67 | // Place Lab identity at chain's end.
|
| 68 | ProfileList[nProfiles] = hLab;
|
| 69 | BPCList[nProfiles] = 0;
|
| 70 | AdaptationList[nProfiles] = 1.0;
|
| 71 | IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC;
|
| 72 |
|
| 73 | // Create the transform
|
| 74 | xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
|
| 75 | BPCList,
|
| 76 | IntentList,
|
| 77 | AdaptationList,
|
| 78 | NULL, 0,
|
| 79 | InputFormat,
|
| 80 | OutputFormat,
|
| 81 | dwFlags);
|
| 82 |
|
| 83 | cmsCloseProfile(ContextID, hLab);
|
| 84 |
|
| 85 | return xform;
|
| 86 | }
|
| 87 |
|
| 88 |
|
| 89 | // Compute K -> L* relationship. Flags may include black point compensation. In this case,
|
| 90 | // the relationship is assumed from the profile with BPC to a black point zero.
|
| 91 | static
|
| 92 | cmsToneCurve* ComputeKToLstar(cmsContext ContextID,
|
| 93 | cmsUInt32Number nPoints,
|
| 94 | cmsUInt32Number nProfiles,
|
| 95 | const cmsUInt32Number Intents[],
|
| 96 | const cmsHPROFILE hProfiles[],
|
| 97 | const cmsBool BPC[],
|
| 98 | const cmsFloat64Number AdaptationStates[],
|
| 99 | cmsUInt32Number dwFlags)
|
| 100 | {
|
| 101 | cmsToneCurve* out = NULL;
|
| 102 | cmsUInt32Number i;
|
| 103 | cmsHTRANSFORM xform;
|
| 104 | cmsCIELab Lab;
|
| 105 | cmsFloat32Number cmyk[4];
|
| 106 | cmsFloat32Number* SampledPoints;
|
| 107 |
|
| 108 | xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
|
| 109 | if (xform == NULL) return NULL;
|
| 110 |
|
| 111 | SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
|
| 112 | if (SampledPoints == NULL) goto Error;
|
| 113 |
|
| 114 | for (i=0; i < nPoints; i++) {
|
| 115 |
|
| 116 | cmyk[0] = 0;
|
| 117 | cmyk[1] = 0;
|
| 118 | cmyk[2] = 0;
|
| 119 | cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
|
| 120 |
|
| 121 | cmsDoTransform(ContextID, xform, cmyk, &Lab, 1);
|
| 122 | SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
|
| 123 | }
|
| 124 |
|
| 125 | out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
|
| 126 |
|
| 127 | Error:
|
| 128 |
|
| 129 | cmsDeleteTransform(ContextID, xform);
|
| 130 | if (SampledPoints) _cmsFree(ContextID, SampledPoints);
|
| 131 |
|
| 132 | return out;
|
| 133 | }
|
| 134 |
|
| 135 |
|
| 136 | // Compute Black tone curve on a CMYK -> CMYK transform. This is done by
|
| 137 | // using the proof direction on both profiles to find K->L* relationship
|
| 138 | // then joining both curves. dwFlags may include black point compensation.
|
| 139 | cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID,
|
| 140 | cmsUInt32Number nPoints,
|
| 141 | cmsUInt32Number nProfiles,
|
| 142 | const cmsUInt32Number Intents[],
|
| 143 | const cmsHPROFILE hProfiles[],
|
| 144 | const cmsBool BPC[],
|
| 145 | const cmsFloat64Number AdaptationStates[],
|
| 146 | cmsUInt32Number dwFlags)
|
| 147 | {
|
| 148 | cmsToneCurve *in, *out, *KTone;
|
| 149 |
|
| 150 | // Make sure CMYK -> CMYK
|
| 151 | if (cmsGetColorSpace(ContextID, hProfiles[0]) != cmsSigCmykData ||
|
| 152 | cmsGetColorSpace(ContextID, hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
|
| 153 |
|
| 154 |
|
| 155 | // Make sure last is an output profile
|
| 156 | if (cmsGetDeviceClass(ContextID, hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
|
| 157 |
|
| 158 | // Create individual curves. BPC works also as each K to L* is
|
| 159 | // computed as a BPC to zero black point in case of L*
|
| 160 | in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
|
| 161 | if (in == NULL) return NULL;
|
| 162 |
|
| 163 | out = ComputeKToLstar(ContextID, nPoints, 1,
|
| 164 | Intents + (nProfiles - 1),
|
| 165 | &hProfiles [nProfiles - 1],
|
| 166 | BPC + (nProfiles - 1),
|
| 167 | AdaptationStates + (nProfiles - 1),
|
| 168 | dwFlags);
|
| 169 | if (out == NULL) {
|
| 170 | cmsFreeToneCurve(ContextID, in);
|
| 171 | return NULL;
|
| 172 | }
|
| 173 |
|
| 174 | // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
|
| 175 | // since this is used on black-preserving LUTs, we are not losing accuracy in any case
|
| 176 | KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
|
| 177 |
|
| 178 | // Get rid of components
|
| 179 | cmsFreeToneCurve(ContextID, in); cmsFreeToneCurve(ContextID, out);
|
| 180 |
|
| 181 | // Something went wrong...
|
| 182 | if (KTone == NULL) return NULL;
|
| 183 |
|
| 184 | // Make sure it is monotonic
|
| 185 | if (!cmsIsToneCurveMonotonic(ContextID, KTone)) {
|
| 186 | cmsFreeToneCurve(ContextID, KTone);
|
| 187 | return NULL;
|
| 188 | }
|
| 189 |
|
| 190 | return KTone;
|
| 191 | }
|
| 192 |
|
| 193 |
|
| 194 | // Gamut LUT Creation -----------------------------------------------------------------------------------------
|
| 195 |
|
| 196 | // Used by gamut & softproofing
|
| 197 |
|
| 198 | typedef struct {
|
| 199 |
|
| 200 | cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL
|
| 201 | cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
|
| 202 | cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut
|
| 203 |
|
| 204 | } GAMUTCHAIN;
|
| 205 |
|
| 206 | // This sampler does compute gamut boundaries by comparing original
|
| 207 | // values with a transform going back and forth. Values above ERR_THERESHOLD
|
| 208 | // of maximum are considered out of gamut.
|
| 209 |
|
| 210 | #define ERR_THERESHOLD 5
|
| 211 |
|
| 212 |
|
| 213 | static
|
| 214 | int GamutSampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
|
| 215 | {
|
| 216 | GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo;
|
| 217 | cmsCIELab LabIn1, LabOut1;
|
| 218 | cmsCIELab LabIn2, LabOut2;
|
| 219 | cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
|
| 220 | cmsFloat64Number dE1, dE2, ErrorRatio;
|
| 221 |
|
| 222 | // Assume in-gamut by default.
|
| 223 | ErrorRatio = 1.0;
|
| 224 |
|
| 225 | // Convert input to Lab
|
| 226 | cmsDoTransform(ContextID, t -> hInput, In, &LabIn1, 1);
|
| 227 |
|
| 228 | // converts from PCS to colorant. This always
|
| 229 | // does return in-gamut values,
|
| 230 | cmsDoTransform(ContextID, t -> hForward, &LabIn1, Proof, 1);
|
| 231 |
|
| 232 | // Now, do the inverse, from colorant to PCS.
|
| 233 | cmsDoTransform(ContextID, t -> hReverse, Proof, &LabOut1, 1);
|
| 234 |
|
| 235 | memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
|
| 236 |
|
| 237 | // Try again, but this time taking Check as input
|
| 238 | cmsDoTransform(ContextID, t -> hForward, &LabOut1, Proof2, 1);
|
| 239 | cmsDoTransform(ContextID, t -> hReverse, Proof2, &LabOut2, 1);
|
| 240 |
|
| 241 | // Take difference of direct value
|
| 242 | dE1 = cmsDeltaE(ContextID, &LabIn1, &LabOut1);
|
| 243 |
|
| 244 | // Take difference of converted value
|
| 245 | dE2 = cmsDeltaE(ContextID, &LabIn2, &LabOut2);
|
| 246 |
|
| 247 |
|
| 248 | // if dE1 is small and dE2 is small, value is likely to be in gamut
|
| 249 | if (dE1 < t->Thereshold && dE2 < t->Thereshold)
|
| 250 | Out[0] = 0;
|
| 251 | else {
|
| 252 |
|
| 253 | // if dE1 is small and dE2 is big, undefined. Assume in gamut
|
| 254 | if (dE1 < t->Thereshold && dE2 > t->Thereshold)
|
| 255 | Out[0] = 0;
|
| 256 | else
|
| 257 | // dE1 is big and dE2 is small, clearly out of gamut
|
| 258 | if (dE1 > t->Thereshold && dE2 < t->Thereshold)
|
| 259 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
|
| 260 | else {
|
| 261 |
|
| 262 | // dE1 is big and dE2 is also big, could be due to perceptual mapping
|
| 263 | // so take error ratio
|
| 264 | if (dE2 == 0.0)
|
| 265 | ErrorRatio = dE1;
|
| 266 | else
|
| 267 | ErrorRatio = dE1 / dE2;
|
| 268 |
|
| 269 | if (ErrorRatio > t->Thereshold)
|
| 270 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
|
| 271 | else
|
| 272 | Out[0] = 0;
|
| 273 | }
|
| 274 | }
|
| 275 |
|
| 276 |
|
| 277 | return TRUE;
|
| 278 | }
|
| 279 |
|
| 280 | // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
|
| 281 | // the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
|
| 282 | // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
|
| 283 | //
|
| 284 | // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
|
| 285 | // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
|
| 286 |
|
| 287 | cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
|
| 288 | cmsHPROFILE hProfiles[],
|
| 289 | cmsBool BPC[],
|
| 290 | cmsUInt32Number Intents[],
|
| 291 | cmsFloat64Number AdaptationStates[],
|
| 292 | cmsUInt32Number nGamutPCSposition,
|
| 293 | cmsHPROFILE hGamut)
|
| 294 | {
|
| 295 | cmsHPROFILE hLab;
|
| 296 | cmsPipeline* Gamut;
|
| 297 | cmsStage* CLUT;
|
| 298 | cmsUInt32Number dwFormat;
|
| 299 | GAMUTCHAIN Chain;
|
| 300 | cmsUInt32Number nChannels, nGridpoints;
|
| 301 | cmsColorSpaceSignature ColorSpace;
|
| 302 | cmsUInt32Number i;
|
| 303 | cmsHPROFILE ProfileList[256];
|
| 304 | cmsBool BPCList[256];
|
| 305 | cmsFloat64Number AdaptationList[256];
|
| 306 | cmsUInt32Number IntentList[256];
|
| 307 |
|
| 308 | memset(&Chain, 0, sizeof(GAMUTCHAIN));
|
| 309 |
|
| 310 |
|
| 311 | if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
|
| 312 | cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found." , nGamutPCSposition);
|
| 313 | return NULL;
|
| 314 | }
|
| 315 |
|
| 316 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
| 317 | if (hLab == NULL) return NULL;
|
| 318 |
|
| 319 |
|
| 320 | // The figure of merit. On matrix-shaper profiles, should be almost zero as
|
| 321 | // the conversion is pretty exact. On LUT based profiles, different resolutions
|
| 322 | // of input and output CLUT may result in differences.
|
| 323 |
|
| 324 | if (cmsIsMatrixShaper(ContextID, hGamut)) {
|
| 325 |
|
| 326 | Chain.Thereshold = 1.0;
|
| 327 | }
|
| 328 | else {
|
| 329 | Chain.Thereshold = ERR_THERESHOLD;
|
| 330 | }
|
| 331 |
|
| 332 |
|
| 333 | // Create a copy of parameters
|
| 334 | for (i=0; i < nGamutPCSposition; i++) {
|
| 335 | ProfileList[i] = hProfiles[i];
|
| 336 | BPCList[i] = BPC[i];
|
| 337 | AdaptationList[i] = AdaptationStates[i];
|
| 338 | IntentList[i] = Intents[i];
|
| 339 | }
|
| 340 |
|
| 341 | // Fill Lab identity
|
| 342 | ProfileList[nGamutPCSposition] = hLab;
|
| 343 | BPCList[nGamutPCSposition] = 0;
|
| 344 | AdaptationList[nGamutPCSposition] = 1.0;
|
| 345 | IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
|
| 346 |
|
| 347 |
|
| 348 | ColorSpace = cmsGetColorSpace(ContextID, hGamut);
|
| 349 |
|
| 350 | nChannels = cmsChannelsOf(ContextID, ColorSpace);
|
| 351 | nGridpoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, cmsFLAGS_HIGHRESPRECALC);
|
| 352 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
|
| 353 |
|
| 354 | // 16 bits to Lab double
|
| 355 | Chain.hInput = cmsCreateExtendedTransform(ContextID,
|
| 356 | nGamutPCSposition + 1,
|
| 357 | ProfileList,
|
| 358 | BPCList,
|
| 359 | IntentList,
|
| 360 | AdaptationList,
|
| 361 | NULL, 0,
|
| 362 | dwFormat, TYPE_Lab_DBL,
|
| 363 | cmsFLAGS_NOCACHE);
|
| 364 |
|
| 365 |
|
| 366 | // Does create the forward step. Lab double to device
|
| 367 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
|
| 368 | Chain.hForward = cmsCreateTransform(ContextID,
|
| 369 | hLab, TYPE_Lab_DBL,
|
| 370 | hGamut, dwFormat,
|
| 371 | INTENT_RELATIVE_COLORIMETRIC,
|
| 372 | cmsFLAGS_NOCACHE);
|
| 373 |
|
| 374 | // Does create the backwards step
|
| 375 | Chain.hReverse = cmsCreateTransform(ContextID, hGamut, dwFormat,
|
| 376 | hLab, TYPE_Lab_DBL,
|
| 377 | INTENT_RELATIVE_COLORIMETRIC,
|
| 378 | cmsFLAGS_NOCACHE);
|
| 379 |
|
| 380 |
|
| 381 | // All ok?
|
| 382 | if (Chain.hInput && Chain.hForward && Chain.hReverse) {
|
| 383 |
|
| 384 | // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
|
| 385 | // dE when doing a transform back and forth on the colorimetric intent.
|
| 386 |
|
| 387 | Gamut = cmsPipelineAlloc(ContextID, 3, 1);
|
| 388 | if (Gamut != NULL) {
|
| 389 |
|
| 390 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
|
| 391 | if (!cmsPipelineInsertStage(ContextID, Gamut, cmsAT_BEGIN, CLUT)) {
|
| 392 | cmsPipelineFree(ContextID, Gamut);
|
| 393 | Gamut = NULL;
|
| 394 | }
|
| 395 | else {
|
| 396 | cmsStageSampleCLut16bit(ContextID, CLUT, GamutSampler, (void*) &Chain, 0);
|
| 397 | }
|
| 398 | }
|
| 399 | }
|
| 400 | else
|
| 401 | Gamut = NULL; // Didn't work...
|
| 402 |
|
| 403 | // Free all needed stuff.
|
| 404 | if (Chain.hInput) cmsDeleteTransform(ContextID, Chain.hInput);
|
| 405 | if (Chain.hForward) cmsDeleteTransform(ContextID, Chain.hForward);
|
| 406 | if (Chain.hReverse) cmsDeleteTransform(ContextID, Chain.hReverse);
|
| 407 | if (hLab) cmsCloseProfile(ContextID, hLab);
|
| 408 |
|
| 409 | // And return computed hull
|
| 410 | return Gamut;
|
| 411 | }
|
| 412 |
|
| 413 | // Total Area Coverage estimation ----------------------------------------------------------------
|
| 414 |
|
| 415 | typedef struct {
|
| 416 | cmsUInt32Number nOutputChans;
|
| 417 | cmsHTRANSFORM hRoundTrip;
|
| 418 | cmsFloat32Number MaxTAC;
|
| 419 | cmsFloat32Number MaxInput[cmsMAXCHANNELS];
|
| 420 |
|
| 421 | } cmsTACestimator;
|
| 422 |
|
| 423 |
|
| 424 | // This callback just accounts the maximum ink dropped in the given node. It does not populate any
|
| 425 | // memory, as the destination table is NULL. Its only purpose it to know the global maximum.
|
| 426 | static
|
| 427 | int EstimateTAC(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
|
| 428 | {
|
| 429 | cmsTACestimator* bp = (cmsTACestimator*) Cargo;
|
| 430 | cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
|
| 431 | cmsUInt32Number i;
|
| 432 | cmsFloat32Number Sum;
|
| 433 |
|
| 434 |
|
| 435 | // Evaluate the xform
|
| 436 | cmsDoTransform(ContextID, bp->hRoundTrip, In, RoundTrip, 1);
|
| 437 |
|
| 438 | // All all amounts of ink
|
| 439 | for (Sum=0, i=0; i < bp ->nOutputChans; i++)
|
| 440 | Sum += RoundTrip[i];
|
| 441 |
|
| 442 | // If above maximum, keep track of input values
|
| 443 | if (Sum > bp ->MaxTAC) {
|
| 444 |
|
| 445 | bp ->MaxTAC = Sum;
|
| 446 |
|
| 447 | for (i=0; i < bp ->nOutputChans; i++) {
|
| 448 | bp ->MaxInput[i] = In[i];
|
| 449 | }
|
| 450 | }
|
| 451 |
|
| 452 | return TRUE;
|
| 453 |
|
| 454 | cmsUNUSED_PARAMETER(Out);
|
| 455 | }
|
| 456 |
|
| 457 |
|
| 458 | // Detect Total area coverage of the profile
|
| 459 | cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsContext ContextID, cmsHPROFILE hProfile)
|
| 460 | {
|
| 461 | cmsTACestimator bp;
|
| 462 | cmsUInt32Number dwFormatter;
|
| 463 | cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
|
| 464 | cmsHPROFILE hLab;
|
| 465 |
|
| 466 | // TAC only works on output profiles
|
| 467 | if (cmsGetDeviceClass(ContextID, hProfile) != cmsSigOutputClass) {
|
| 468 | return 0;
|
| 469 | }
|
| 470 |
|
| 471 | // Create a fake formatter for result
|
| 472 | dwFormatter = cmsFormatterForColorspaceOfProfile(ContextID, hProfile, 4, TRUE);
|
| 473 |
|
| 474 | bp.nOutputChans = T_CHANNELS(dwFormatter);
|
| 475 | bp.MaxTAC = 0; // Initial TAC is 0
|
| 476 |
|
| 477 | // for safety
|
| 478 | if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
|
| 479 |
|
| 480 | hLab = cmsCreateLab4Profile(ContextID, NULL);
|
| 481 | if (hLab == NULL) return 0;
|
| 482 | // Setup a roundtrip on perceptual intent in output profile for TAC estimation
|
| 483 | bp.hRoundTrip = cmsCreateTransform(ContextID, hLab, TYPE_Lab_16,
|
| 484 | hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
|
| 485 |
|
| 486 | cmsCloseProfile(ContextID, hLab);
|
| 487 | if (bp.hRoundTrip == NULL) return 0;
|
| 488 |
|
| 489 | // For L* we only need black and white. For C* we need many points
|
| 490 | GridPoints[0] = 6;
|
| 491 | GridPoints[1] = 74;
|
| 492 | GridPoints[2] = 74;
|
| 493 |
|
| 494 |
|
| 495 | if (!cmsSliceSpace16(ContextID, 3, GridPoints, EstimateTAC, &bp)) {
|
| 496 | bp.MaxTAC = 0;
|
| 497 | }
|
| 498 |
|
| 499 | cmsDeleteTransform(ContextID, bp.hRoundTrip);
|
| 500 |
|
| 501 | // Results in %
|
| 502 | return bp.MaxTAC;
|
| 503 | }
|
| 504 |
|
| 505 |
|
| 506 | // Carefully, clamp on CIELab space.
|
| 507 |
|
| 508 | cmsBool CMSEXPORT cmsDesaturateLab(cmsContext ContextID, cmsCIELab* Lab,
|
| 509 | double amax, double amin,
|
| 510 | double bmax, double bmin)
|
| 511 | {
|
| 512 |
|
| 513 | // Whole Luma surface to zero
|
| 514 |
|
| 515 | if (Lab -> L < 0) {
|
| 516 |
|
| 517 | Lab-> L = Lab->a = Lab-> b = 0.0;
|
| 518 | return FALSE;
|
| 519 | }
|
| 520 |
|
| 521 | // Clamp white, DISCARD HIGHLIGHTS. This is done
|
| 522 | // in such way because icc spec doesn't allow the
|
| 523 | // use of L>100 as a highlight means.
|
| 524 |
|
| 525 | if (Lab->L > 100)
|
| 526 | Lab -> L = 100;
|
| 527 |
|
| 528 | // Check out gamut prism, on a, b faces
|
| 529 |
|
| 530 | if (Lab -> a < amin || Lab->a > amax||
|
| 531 | Lab -> b < bmin || Lab->b > bmax) {
|
| 532 |
|
| 533 | cmsCIELCh LCh;
|
| 534 | double h, slope;
|
| 535 |
|
| 536 | // Falls outside a, b limits. Transports to LCh space,
|
| 537 | // and then do the clipping
|
| 538 |
|
| 539 |
|
| 540 | if (Lab -> a == 0.0) { // Is hue exactly 90?
|
| 541 |
|
| 542 | // atan will not work, so clamp here
|
| 543 | Lab -> b = Lab->b < 0 ? bmin : bmax;
|
| 544 | return TRUE;
|
| 545 | }
|
| 546 |
|
| 547 | cmsLab2LCh(ContextID, &LCh, Lab);
|
| 548 |
|
| 549 | slope = Lab -> b / Lab -> a;
|
| 550 | h = LCh.h;
|
| 551 |
|
| 552 | // There are 4 zones
|
| 553 |
|
| 554 | if ((h >= 0. && h < 45.) ||
|
| 555 | (h >= 315 && h <= 360.)) {
|
| 556 |
|
| 557 | // clip by amax
|
| 558 | Lab -> a = amax;
|
| 559 | Lab -> b = amax * slope;
|
| 560 | }
|
| 561 | else
|
| 562 | if (h >= 45. && h < 135.)
|
| 563 | {
|
| 564 | // clip by bmax
|
| 565 | Lab -> b = bmax;
|
| 566 | Lab -> a = bmax / slope;
|
| 567 | }
|
| 568 | else
|
| 569 | if (h >= 135. && h < 225.) {
|
| 570 | // clip by amin
|
| 571 | Lab -> a = amin;
|
| 572 | Lab -> b = amin * slope;
|
| 573 |
|
| 574 | }
|
| 575 | else
|
| 576 | if (h >= 225. && h < 315.) {
|
| 577 | // clip by bmin
|
| 578 | Lab -> b = bmin;
|
| 579 | Lab -> a = bmin / slope;
|
| 580 | }
|
| 581 | else {
|
| 582 | cmsSignalError(0, cmsERROR_RANGE, "Invalid angle" );
|
| 583 | return FALSE;
|
| 584 | }
|
| 585 |
|
| 586 | }
|
| 587 |
|
| 588 | return TRUE;
|
| 589 | }
|
| 590 | |