1 | //--------------------------------------------------------------------------------- |
2 | // |
3 | // Little Color Management System |
4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining |
7 | // a copy of this software and associated documentation files (the "Software"), |
8 | // to deal in the Software without restriction, including without limitation |
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | // is furnished to do so, subject to the following conditions: |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in |
14 | // all copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | // |
24 | //--------------------------------------------------------------------------------- |
25 | // |
26 | |
27 | #include "lcms2_internal.h" |
28 | |
29 | |
30 | // Allocates an empty multi profile element |
31 | cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, |
32 | cmsStageSignature Type, |
33 | cmsUInt32Number InputChannels, |
34 | cmsUInt32Number OutputChannels, |
35 | _cmsStageEvalFn EvalPtr, |
36 | _cmsStageDupElemFn DupElemPtr, |
37 | _cmsStageFreeElemFn FreePtr, |
38 | void* Data) |
39 | { |
40 | cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); |
41 | |
42 | if (ph == NULL) return NULL; |
43 | |
44 | ph ->Type = Type; |
45 | ph ->Implements = Type; // By default, no clue on what is implementing |
46 | |
47 | ph ->InputChannels = InputChannels; |
48 | ph ->OutputChannels = OutputChannels; |
49 | ph ->EvalPtr = EvalPtr; |
50 | ph ->DupElemPtr = DupElemPtr; |
51 | ph ->FreePtr = FreePtr; |
52 | ph ->Data = Data; |
53 | |
54 | return ph; |
55 | } |
56 | |
57 | |
58 | static |
59 | void EvaluateIdentity(cmsContext ContextID, const cmsFloat32Number In[], |
60 | cmsFloat32Number Out[], |
61 | const cmsStage *mpe) |
62 | { |
63 | cmsUNUSED_PARAMETER(ContextID); |
64 | memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); |
65 | } |
66 | |
67 | |
68 | cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) |
69 | { |
70 | return _cmsStageAllocPlaceholder(ContextID, |
71 | cmsSigIdentityElemType, |
72 | nChannels, nChannels, |
73 | EvaluateIdentity, |
74 | NULL, |
75 | NULL, |
76 | NULL); |
77 | } |
78 | |
79 | // Conversion functions. From floating point to 16 bits |
80 | static |
81 | void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) |
82 | { |
83 | cmsUInt32Number i; |
84 | |
85 | for (i=0; i < n; i++) { |
86 | Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); |
87 | } |
88 | } |
89 | |
90 | // From 16 bits to floating point |
91 | static |
92 | void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) |
93 | { |
94 | cmsUInt32Number i; |
95 | |
96 | for (i=0; i < n; i++) { |
97 | Out[i] = (cmsFloat32Number) In[i] / 65535.0F; |
98 | } |
99 | } |
100 | |
101 | |
102 | // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements |
103 | // that conform the LUT. It should be called with the LUT, the number of expected elements and |
104 | // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If |
105 | // the function founds a match with current pipeline, it fills the pointers and returns TRUE |
106 | // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass |
107 | // the storage process. |
108 | cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(cmsContext ContextID, const cmsPipeline* Lut, cmsUInt32Number n, ...) |
109 | { |
110 | va_list args; |
111 | cmsUInt32Number i; |
112 | cmsStage* mpe; |
113 | cmsStageSignature Type; |
114 | void** ElemPtr; |
115 | |
116 | // Make sure same number of elements |
117 | if (cmsPipelineStageCount(ContextID, Lut) != n) return FALSE; |
118 | |
119 | va_start(args, n); |
120 | |
121 | // Iterate across asked types |
122 | mpe = Lut ->Elements; |
123 | for (i=0; i < n; i++) { |
124 | |
125 | // Get asked type. cmsStageSignature is promoted to int by compiler |
126 | Type = (cmsStageSignature)va_arg(args, int); |
127 | if (mpe ->Type != Type) { |
128 | |
129 | va_end(args); // Mismatch. We are done. |
130 | return FALSE; |
131 | } |
132 | mpe = mpe ->Next; |
133 | } |
134 | |
135 | // Found a combination, fill pointers if not NULL |
136 | mpe = Lut ->Elements; |
137 | for (i=0; i < n; i++) { |
138 | |
139 | ElemPtr = va_arg(args, void**); |
140 | if (ElemPtr != NULL) |
141 | *ElemPtr = mpe; |
142 | |
143 | mpe = mpe ->Next; |
144 | } |
145 | |
146 | va_end(args); |
147 | return TRUE; |
148 | } |
149 | |
150 | // Below there are implementations for several types of elements. Each type may be implemented by a |
151 | // evaluation function, a duplication function, a function to free resources and a constructor. |
152 | |
153 | // ************************************************************************************************* |
154 | // Type cmsSigCurveSetElemType (curves) |
155 | // ************************************************************************************************* |
156 | |
157 | cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) |
158 | { |
159 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
160 | |
161 | return Data ->TheCurves; |
162 | } |
163 | |
164 | static |
165 | void EvaluateCurves(cmsContext ContextID, const cmsFloat32Number In[], |
166 | cmsFloat32Number Out[], |
167 | const cmsStage *mpe) |
168 | { |
169 | _cmsStageToneCurvesData* Data; |
170 | cmsUInt32Number i; |
171 | |
172 | _cmsAssert(mpe != NULL); |
173 | |
174 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
175 | if (Data == NULL) return; |
176 | |
177 | if (Data ->TheCurves == NULL) return; |
178 | |
179 | for (i=0; i < Data ->nCurves; i++) { |
180 | Out[i] = cmsEvalToneCurveFloat(ContextID, Data ->TheCurves[i], In[i]); |
181 | } |
182 | } |
183 | |
184 | static |
185 | void CurveSetElemTypeFree(cmsContext ContextID, cmsStage* mpe) |
186 | { |
187 | _cmsStageToneCurvesData* Data; |
188 | cmsUInt32Number i; |
189 | |
190 | _cmsAssert(mpe != NULL); |
191 | |
192 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
193 | if (Data == NULL) return; |
194 | |
195 | if (Data ->TheCurves != NULL) { |
196 | for (i=0; i < Data ->nCurves; i++) { |
197 | if (Data ->TheCurves[i] != NULL) |
198 | cmsFreeToneCurve(ContextID, Data ->TheCurves[i]); |
199 | } |
200 | } |
201 | _cmsFree(ContextID, Data ->TheCurves); |
202 | _cmsFree(ContextID, Data); |
203 | } |
204 | |
205 | |
206 | static |
207 | void* CurveSetDup(cmsContext ContextID, cmsStage* mpe) |
208 | { |
209 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
210 | _cmsStageToneCurvesData* NewElem; |
211 | cmsUInt32Number i; |
212 | |
213 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); |
214 | if (NewElem == NULL) return NULL; |
215 | |
216 | NewElem ->nCurves = Data ->nCurves; |
217 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); |
218 | |
219 | if (NewElem ->TheCurves == NULL) goto Error; |
220 | |
221 | for (i=0; i < NewElem ->nCurves; i++) { |
222 | |
223 | // Duplicate each curve. It may fail. |
224 | NewElem ->TheCurves[i] = cmsDupToneCurve(ContextID, Data ->TheCurves[i]); |
225 | if (NewElem ->TheCurves[i] == NULL) goto Error; |
226 | |
227 | |
228 | } |
229 | return (void*) NewElem; |
230 | |
231 | Error: |
232 | |
233 | if (NewElem ->TheCurves != NULL) { |
234 | for (i=0; i < NewElem ->nCurves; i++) { |
235 | if (NewElem ->TheCurves[i]) |
236 | cmsFreeToneCurve(ContextID, NewElem ->TheCurves[i]); |
237 | } |
238 | } |
239 | _cmsFree(ContextID, NewElem ->TheCurves); |
240 | _cmsFree(ContextID, NewElem); |
241 | return NULL; |
242 | } |
243 | |
244 | |
245 | // Curves == NULL forces identity curves |
246 | cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) |
247 | { |
248 | cmsUInt32Number i; |
249 | _cmsStageToneCurvesData* NewElem; |
250 | cmsStage* NewMPE; |
251 | |
252 | |
253 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, |
254 | EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL ); |
255 | if (NewMPE == NULL) return NULL; |
256 | |
257 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); |
258 | if (NewElem == NULL) { |
259 | cmsStageFree(ContextID, NewMPE); |
260 | return NULL; |
261 | } |
262 | |
263 | NewMPE ->Data = (void*) NewElem; |
264 | |
265 | NewElem ->nCurves = nChannels; |
266 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); |
267 | if (NewElem ->TheCurves == NULL) { |
268 | cmsStageFree(ContextID, NewMPE); |
269 | return NULL; |
270 | } |
271 | |
272 | for (i=0; i < nChannels; i++) { |
273 | |
274 | if (Curves == NULL) { |
275 | NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); |
276 | } |
277 | else { |
278 | NewElem ->TheCurves[i] = cmsDupToneCurve(ContextID, Curves[i]); |
279 | } |
280 | |
281 | if (NewElem ->TheCurves[i] == NULL) { |
282 | cmsStageFree(ContextID, NewMPE); |
283 | return NULL; |
284 | } |
285 | |
286 | } |
287 | |
288 | return NewMPE; |
289 | } |
290 | |
291 | |
292 | // Create a bunch of identity curves |
293 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels) |
294 | { |
295 | cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL); |
296 | |
297 | if (mpe == NULL) return NULL; |
298 | mpe ->Implements = cmsSigIdentityElemType; |
299 | return mpe; |
300 | } |
301 | |
302 | |
303 | // ************************************************************************************************* |
304 | // Type cmsSigMatrixElemType (Matrices) |
305 | // ************************************************************************************************* |
306 | |
307 | |
308 | // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used |
309 | static |
310 | void EvaluateMatrix(cmsContext ContextID, const cmsFloat32Number In[], |
311 | cmsFloat32Number Out[], |
312 | const cmsStage *mpe) |
313 | { |
314 | cmsUInt32Number i, j; |
315 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
316 | cmsFloat64Number Tmp; |
317 | cmsUNUSED_PARAMETER(ContextID); |
318 | |
319 | // Input is already in 0..1.0 notation |
320 | for (i=0; i < mpe ->OutputChannels; i++) { |
321 | |
322 | Tmp = 0; |
323 | for (j=0; j < mpe->InputChannels; j++) { |
324 | Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; |
325 | } |
326 | |
327 | if (Data ->Offset != NULL) |
328 | Tmp += Data->Offset[i]; |
329 | |
330 | Out[i] = (cmsFloat32Number) Tmp; |
331 | } |
332 | |
333 | |
334 | // Output in 0..1.0 domain |
335 | } |
336 | |
337 | |
338 | // Duplicate a yet-existing matrix element |
339 | static |
340 | void* MatrixElemDup(cmsContext ContextID, cmsStage* mpe) |
341 | { |
342 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
343 | _cmsStageMatrixData* NewElem; |
344 | cmsUInt32Number sz; |
345 | |
346 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); |
347 | if (NewElem == NULL) return NULL; |
348 | |
349 | sz = mpe ->InputChannels * mpe ->OutputChannels; |
350 | |
351 | NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; |
352 | |
353 | if (Data ->Offset) |
354 | NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(ContextID, |
355 | Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; |
356 | |
357 | return (void*) NewElem; |
358 | } |
359 | |
360 | |
361 | static |
362 | void MatrixElemTypeFree(cmsContext ContextID, cmsStage* mpe) |
363 | { |
364 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
365 | if (Data == NULL) |
366 | return; |
367 | if (Data ->Double) |
368 | _cmsFree(ContextID, Data ->Double); |
369 | |
370 | if (Data ->Offset) |
371 | _cmsFree(ContextID, Data ->Offset); |
372 | |
373 | _cmsFree(ContextID, mpe ->Data); |
374 | } |
375 | |
376 | |
377 | |
378 | cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, |
379 | const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) |
380 | { |
381 | cmsUInt32Number i, n; |
382 | _cmsStageMatrixData* NewElem; |
383 | cmsStage* NewMPE; |
384 | |
385 | n = Rows * Cols; |
386 | |
387 | // Check for overflow |
388 | if (n == 0) return NULL; |
389 | if (n >= UINT_MAX / Cols) return NULL; |
390 | if (n >= UINT_MAX / Rows) return NULL; |
391 | if (n < Rows || n < Cols) return NULL; |
392 | |
393 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, |
394 | EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL ); |
395 | if (NewMPE == NULL) return NULL; |
396 | |
397 | |
398 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); |
399 | if (NewElem == NULL) goto Error; |
400 | NewMPE ->Data = (void*) NewElem; |
401 | |
402 | |
403 | NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); |
404 | if (NewElem->Double == NULL) goto Error; |
405 | |
406 | for (i=0; i < n; i++) { |
407 | NewElem ->Double[i] = Matrix[i]; |
408 | } |
409 | |
410 | |
411 | if (Offset != NULL) { |
412 | |
413 | NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number)); |
414 | if (NewElem->Offset == NULL) goto Error; |
415 | |
416 | for (i=0; i < Rows; i++) { |
417 | NewElem ->Offset[i] = Offset[i]; |
418 | } |
419 | |
420 | } |
421 | |
422 | return NewMPE; |
423 | |
424 | Error: |
425 | cmsStageFree(ContextID, NewMPE); |
426 | return NULL; |
427 | } |
428 | |
429 | |
430 | // ************************************************************************************************* |
431 | // Type cmsSigCLutElemType |
432 | // ************************************************************************************************* |
433 | |
434 | |
435 | // Evaluate in true floating point |
436 | static |
437 | void EvaluateCLUTfloat(cmsContext ContextID, const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
438 | { |
439 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
440 | |
441 | Data -> Params ->Interpolation.LerpFloat(ContextID, In, Out, Data->Params); |
442 | } |
443 | |
444 | |
445 | // Convert to 16 bits, evaluate, and back to floating point |
446 | static |
447 | void EvaluateCLUTfloatIn16(cmsContext ContextID, const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
448 | { |
449 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
450 | cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS]; |
451 | |
452 | _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS); |
453 | _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS); |
454 | |
455 | FromFloatTo16(In, In16, mpe ->InputChannels); |
456 | Data -> Params ->Interpolation.Lerp16(ContextID, In16, Out16, Data->Params); |
457 | From16ToFloat(Out16, Out, mpe ->OutputChannels); |
458 | } |
459 | |
460 | |
461 | // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes |
462 | static |
463 | cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) |
464 | { |
465 | cmsUInt32Number rv, dim; |
466 | |
467 | _cmsAssert(Dims != NULL); |
468 | |
469 | for (rv = 1; b > 0; b--) { |
470 | |
471 | dim = Dims[b-1]; |
472 | if (dim == 0) return 0; // Error |
473 | |
474 | rv *= dim; |
475 | |
476 | // Check for overflow |
477 | if (rv > UINT_MAX / dim) return 0; |
478 | } |
479 | |
480 | return rv; |
481 | } |
482 | |
483 | static |
484 | void* CLUTElemDup(cmsContext ContextID, cmsStage* mpe) |
485 | { |
486 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
487 | _cmsStageCLutData* NewElem; |
488 | |
489 | |
490 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
491 | if (NewElem == NULL) return NULL; |
492 | |
493 | NewElem ->nEntries = Data ->nEntries; |
494 | NewElem ->HasFloatValues = Data ->HasFloatValues; |
495 | |
496 | if (Data ->Tab.T) { |
497 | |
498 | if (Data ->HasFloatValues) { |
499 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); |
500 | if (NewElem ->Tab.TFloat == NULL) |
501 | goto Error; |
502 | } else { |
503 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); |
504 | if (NewElem ->Tab.T == NULL) |
505 | goto Error; |
506 | } |
507 | } |
508 | |
509 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, |
510 | Data ->Params ->nSamples, |
511 | Data ->Params ->nInputs, |
512 | Data ->Params ->nOutputs, |
513 | NewElem ->Tab.T, |
514 | Data ->Params ->dwFlags); |
515 | if (NewElem->Params != NULL) |
516 | return (void*) NewElem; |
517 | Error: |
518 | if (NewElem->Tab.T) |
519 | // This works for both types |
520 | _cmsFree(ContextID, NewElem -> Tab.T); |
521 | _cmsFree(ContextID, NewElem); |
522 | return NULL; |
523 | } |
524 | |
525 | |
526 | static |
527 | void CLutElemTypeFree(cmsContext ContextID, cmsStage* mpe) |
528 | { |
529 | |
530 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
531 | |
532 | // Already empty |
533 | if (Data == NULL) return; |
534 | |
535 | // This works for both types |
536 | if (Data -> Tab.T) |
537 | _cmsFree(ContextID, Data -> Tab.T); |
538 | |
539 | _cmsFreeInterpParams(ContextID, Data ->Params); |
540 | _cmsFree(ContextID, mpe ->Data); |
541 | } |
542 | |
543 | |
544 | // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different |
545 | // granularity on each dimension. |
546 | cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, |
547 | const cmsUInt32Number clutPoints[], |
548 | cmsUInt32Number inputChan, |
549 | cmsUInt32Number outputChan, |
550 | const cmsUInt16Number* Table) |
551 | { |
552 | cmsUInt32Number i, n; |
553 | _cmsStageCLutData* NewElem; |
554 | cmsStage* NewMPE; |
555 | |
556 | _cmsAssert(clutPoints != NULL); |
557 | |
558 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
559 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
560 | return NULL; |
561 | } |
562 | |
563 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
564 | EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL ); |
565 | |
566 | if (NewMPE == NULL) return NULL; |
567 | |
568 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
569 | if (NewElem == NULL) { |
570 | cmsStageFree(ContextID, NewMPE); |
571 | return NULL; |
572 | } |
573 | |
574 | NewMPE ->Data = (void*) NewElem; |
575 | |
576 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
577 | NewElem -> HasFloatValues = FALSE; |
578 | |
579 | if (n == 0) { |
580 | cmsStageFree(ContextID, NewMPE); |
581 | return NULL; |
582 | } |
583 | |
584 | |
585 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); |
586 | if (NewElem ->Tab.T == NULL) { |
587 | cmsStageFree(ContextID, NewMPE); |
588 | return NULL; |
589 | } |
590 | |
591 | if (Table != NULL) { |
592 | for (i=0; i < n; i++) { |
593 | NewElem ->Tab.T[i] = Table[i]; |
594 | } |
595 | } |
596 | |
597 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS); |
598 | if (NewElem ->Params == NULL) { |
599 | cmsStageFree(ContextID, NewMPE); |
600 | return NULL; |
601 | } |
602 | |
603 | return NewMPE; |
604 | } |
605 | |
606 | cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, |
607 | cmsUInt32Number nGridPoints, |
608 | cmsUInt32Number inputChan, |
609 | cmsUInt32Number outputChan, |
610 | const cmsUInt16Number* Table) |
611 | { |
612 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
613 | int i; |
614 | |
615 | // Our resulting LUT would be same gridpoints on all dimensions |
616 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
617 | Dimensions[i] = nGridPoints; |
618 | |
619 | return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
620 | } |
621 | |
622 | |
623 | cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, |
624 | cmsUInt32Number nGridPoints, |
625 | cmsUInt32Number inputChan, |
626 | cmsUInt32Number outputChan, |
627 | const cmsFloat32Number* Table) |
628 | { |
629 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
630 | int i; |
631 | |
632 | // Our resulting LUT would be same gridpoints on all dimensions |
633 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
634 | Dimensions[i] = nGridPoints; |
635 | |
636 | return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
637 | } |
638 | |
639 | |
640 | |
641 | cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) |
642 | { |
643 | cmsUInt32Number i, n; |
644 | _cmsStageCLutData* NewElem; |
645 | cmsStage* NewMPE; |
646 | |
647 | _cmsAssert(clutPoints != NULL); |
648 | |
649 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
650 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
651 | return NULL; |
652 | } |
653 | |
654 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
655 | EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL); |
656 | if (NewMPE == NULL) return NULL; |
657 | |
658 | |
659 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
660 | if (NewElem == NULL) { |
661 | cmsStageFree(ContextID, NewMPE); |
662 | return NULL; |
663 | } |
664 | |
665 | NewMPE ->Data = (void*) NewElem; |
666 | |
667 | // There is a potential integer overflow on conputing n and nEntries. |
668 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
669 | NewElem -> HasFloatValues = TRUE; |
670 | |
671 | if (n == 0) { |
672 | cmsStageFree(ContextID, NewMPE); |
673 | return NULL; |
674 | } |
675 | |
676 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); |
677 | if (NewElem ->Tab.TFloat == NULL) { |
678 | cmsStageFree(ContextID, NewMPE); |
679 | return NULL; |
680 | } |
681 | |
682 | if (Table != NULL) { |
683 | for (i=0; i < n; i++) { |
684 | NewElem ->Tab.TFloat[i] = Table[i]; |
685 | } |
686 | } |
687 | |
688 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT); |
689 | if (NewElem ->Params == NULL) { |
690 | cmsStageFree(ContextID, NewMPE); |
691 | return NULL; |
692 | } |
693 | |
694 | return NewMPE; |
695 | } |
696 | |
697 | |
698 | static |
699 | int IdentitySampler(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) |
700 | { |
701 | int nChan = *(int*) Cargo; |
702 | int i; |
703 | cmsUNUSED_PARAMETER(ContextID); |
704 | |
705 | for (i=0; i < nChan; i++) |
706 | Out[i] = In[i]; |
707 | |
708 | return 1; |
709 | } |
710 | |
711 | // Creates an MPE that just copies input to output |
712 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan) |
713 | { |
714 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
715 | cmsStage* mpe ; |
716 | int i; |
717 | |
718 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
719 | Dimensions[i] = 2; |
720 | |
721 | mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL); |
722 | if (mpe == NULL) return NULL; |
723 | |
724 | if (!cmsStageSampleCLut16bit(ContextID, mpe, IdentitySampler, &nChan, 0)) { |
725 | cmsStageFree(ContextID, mpe); |
726 | return NULL; |
727 | } |
728 | |
729 | mpe ->Implements = cmsSigIdentityElemType; |
730 | return mpe; |
731 | } |
732 | |
733 | |
734 | |
735 | // Quantize a value 0 <= i < MaxSamples to 0..0xffff |
736 | cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples) |
737 | { |
738 | cmsFloat64Number x; |
739 | |
740 | x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); |
741 | return _cmsQuickSaturateWord(x); |
742 | } |
743 | |
744 | |
745 | // This routine does a sweep on whole input space, and calls its callback |
746 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
747 | cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsContext ContextID, cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) |
748 | { |
749 | int i, t, index, rest; |
750 | cmsUInt32Number nTotalPoints; |
751 | cmsUInt32Number nInputs, nOutputs; |
752 | cmsUInt32Number* nSamples; |
753 | cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
754 | _cmsStageCLutData* clut; |
755 | |
756 | if (mpe == NULL) return FALSE; |
757 | |
758 | clut = (_cmsStageCLutData*) mpe->Data; |
759 | |
760 | if (clut == NULL) return FALSE; |
761 | |
762 | nSamples = clut->Params ->nSamples; |
763 | nInputs = clut->Params ->nInputs; |
764 | nOutputs = clut->Params ->nOutputs; |
765 | |
766 | if (nInputs <= 0) return FALSE; |
767 | if (nOutputs <= 0) return FALSE; |
768 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
769 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
770 | |
771 | memset(In, 0, sizeof(In)); |
772 | memset(Out, 0, sizeof(Out)); |
773 | |
774 | nTotalPoints = CubeSize(nSamples, nInputs); |
775 | if (nTotalPoints == 0) return FALSE; |
776 | |
777 | index = 0; |
778 | for (i = 0; i < (int) nTotalPoints; i++) { |
779 | |
780 | rest = i; |
781 | for (t = (int)nInputs - 1; t >= 0; --t) { |
782 | |
783 | cmsUInt32Number Colorant = rest % nSamples[t]; |
784 | |
785 | rest /= nSamples[t]; |
786 | |
787 | In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); |
788 | } |
789 | |
790 | if (clut ->Tab.T != NULL) { |
791 | for (t = 0; t < (int)nOutputs; t++) |
792 | Out[t] = clut->Tab.T[index + t]; |
793 | } |
794 | |
795 | if (!Sampler(ContextID, In, Out, Cargo)) |
796 | return FALSE; |
797 | |
798 | if (!(dwFlags & SAMPLER_INSPECT)) { |
799 | |
800 | if (clut ->Tab.T != NULL) { |
801 | for (t=0; t < (int) nOutputs; t++) |
802 | clut->Tab.T[index + t] = Out[t]; |
803 | } |
804 | } |
805 | |
806 | index += nOutputs; |
807 | } |
808 | |
809 | return TRUE; |
810 | } |
811 | |
812 | // Same as anterior, but for floating point |
813 | cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsContext ContextID, cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) |
814 | { |
815 | int i, t, index, rest; |
816 | cmsUInt32Number nTotalPoints; |
817 | cmsUInt32Number nInputs, nOutputs; |
818 | cmsUInt32Number* nSamples; |
819 | cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
820 | _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; |
821 | |
822 | nSamples = clut->Params ->nSamples; |
823 | nInputs = clut->Params ->nInputs; |
824 | nOutputs = clut->Params ->nOutputs; |
825 | |
826 | if (nInputs <= 0) return FALSE; |
827 | if (nOutputs <= 0) return FALSE; |
828 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
829 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
830 | |
831 | nTotalPoints = CubeSize(nSamples, nInputs); |
832 | if (nTotalPoints == 0) return FALSE; |
833 | |
834 | index = 0; |
835 | for (i = 0; i < (int)nTotalPoints; i++) { |
836 | |
837 | rest = i; |
838 | for (t = (int) nInputs-1; t >=0; --t) { |
839 | |
840 | cmsUInt32Number Colorant = rest % nSamples[t]; |
841 | |
842 | rest /= nSamples[t]; |
843 | |
844 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); |
845 | } |
846 | |
847 | if (clut ->Tab.TFloat != NULL) { |
848 | for (t=0; t < (int) nOutputs; t++) |
849 | Out[t] = clut->Tab.TFloat[index + t]; |
850 | } |
851 | |
852 | if (!Sampler(ContextID, In, Out, Cargo)) |
853 | return FALSE; |
854 | |
855 | if (!(dwFlags & SAMPLER_INSPECT)) { |
856 | |
857 | if (clut ->Tab.TFloat != NULL) { |
858 | for (t=0; t < (int) nOutputs; t++) |
859 | clut->Tab.TFloat[index + t] = Out[t]; |
860 | } |
861 | } |
862 | |
863 | index += nOutputs; |
864 | } |
865 | |
866 | return TRUE; |
867 | } |
868 | |
869 | |
870 | |
871 | // This routine does a sweep on whole input space, and calls its callback |
872 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
873 | cmsBool CMSEXPORT cmsSliceSpace16(cmsContext ContextID, cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
874 | cmsSAMPLER16 Sampler, void * Cargo) |
875 | { |
876 | int i, t, rest; |
877 | cmsUInt32Number nTotalPoints; |
878 | cmsUInt16Number In[cmsMAXCHANNELS]; |
879 | |
880 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
881 | |
882 | nTotalPoints = CubeSize(clutPoints, nInputs); |
883 | if (nTotalPoints == 0) return FALSE; |
884 | |
885 | for (i = 0; i < (int) nTotalPoints; i++) { |
886 | |
887 | rest = i; |
888 | for (t = (int) nInputs-1; t >=0; --t) { |
889 | |
890 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
891 | |
892 | rest /= clutPoints[t]; |
893 | In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); |
894 | |
895 | } |
896 | |
897 | if (!Sampler(ContextID, In, NULL, Cargo)) |
898 | return FALSE; |
899 | } |
900 | |
901 | return TRUE; |
902 | } |
903 | |
904 | cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsContext ContextID, cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
905 | cmsSAMPLERFLOAT Sampler, void * Cargo) |
906 | { |
907 | int i, t, rest; |
908 | cmsUInt32Number nTotalPoints; |
909 | cmsFloat32Number In[cmsMAXCHANNELS]; |
910 | |
911 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
912 | |
913 | nTotalPoints = CubeSize(clutPoints, nInputs); |
914 | if (nTotalPoints == 0) return FALSE; |
915 | |
916 | for (i = 0; i < (int) nTotalPoints; i++) { |
917 | |
918 | rest = i; |
919 | for (t = (int) nInputs-1; t >=0; --t) { |
920 | |
921 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
922 | |
923 | rest /= clutPoints[t]; |
924 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); |
925 | |
926 | } |
927 | |
928 | if (!Sampler(ContextID, In, NULL, Cargo)) |
929 | return FALSE; |
930 | } |
931 | |
932 | return TRUE; |
933 | } |
934 | |
935 | // ******************************************************************************** |
936 | // Type cmsSigLab2XYZElemType |
937 | // ******************************************************************************** |
938 | |
939 | |
940 | static |
941 | void EvaluateLab2XYZ(cmsContext ContextID, const cmsFloat32Number In[], |
942 | cmsFloat32Number Out[], |
943 | const cmsStage *mpe) |
944 | { |
945 | cmsCIELab Lab; |
946 | cmsCIEXYZ XYZ; |
947 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
948 | |
949 | // V4 rules |
950 | Lab.L = In[0] * 100.0; |
951 | Lab.a = In[1] * 255.0 - 128.0; |
952 | Lab.b = In[2] * 255.0 - 128.0; |
953 | |
954 | cmsLab2XYZ(ContextID, NULL, &XYZ, &Lab); |
955 | |
956 | // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff |
957 | // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) |
958 | |
959 | Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); |
960 | Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); |
961 | Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); |
962 | return; |
963 | |
964 | cmsUNUSED_PARAMETER(mpe); |
965 | } |
966 | |
967 | |
968 | // No dup or free routines needed, as the structure has no pointers in it. |
969 | cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID) |
970 | { |
971 | return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL); |
972 | } |
973 | |
974 | // ******************************************************************************** |
975 | |
976 | // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable |
977 | // number of gridpoints that would make exact match. However, a prelinearization |
978 | // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. |
979 | // Almost all what we need but unfortunately, the rest of entries should be scaled by |
980 | // (255*257/256) and this is not exact. |
981 | |
982 | cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) |
983 | { |
984 | cmsStage* mpe; |
985 | cmsToneCurve* LabTable[3]; |
986 | int i, j; |
987 | |
988 | LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
989 | LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
990 | LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
991 | |
992 | for (j=0; j < 3; j++) { |
993 | |
994 | if (LabTable[j] == NULL) { |
995 | cmsFreeToneCurveTriple(ContextID, LabTable); |
996 | return NULL; |
997 | } |
998 | |
999 | // We need to map * (0xffff / 0xff00), that's same as (257 / 256) |
1000 | // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); |
1001 | for (i=0; i < 257; i++) { |
1002 | |
1003 | LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); |
1004 | } |
1005 | |
1006 | LabTable[j] ->Table16[257] = 0xffff; |
1007 | } |
1008 | |
1009 | mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); |
1010 | cmsFreeToneCurveTriple(ContextID, LabTable); |
1011 | |
1012 | if (mpe == NULL) return NULL; |
1013 | mpe ->Implements = cmsSigLabV2toV4; |
1014 | return mpe; |
1015 | } |
1016 | |
1017 | // ******************************************************************************** |
1018 | |
1019 | // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles |
1020 | cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID) |
1021 | { |
1022 | static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, |
1023 | 0, 65535.0/65280.0, 0, |
1024 | 0, 0, 65535.0/65280.0 |
1025 | }; |
1026 | |
1027 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL); |
1028 | |
1029 | if (mpe == NULL) return mpe; |
1030 | mpe ->Implements = cmsSigLabV2toV4; |
1031 | return mpe; |
1032 | } |
1033 | |
1034 | |
1035 | // Reverse direction |
1036 | cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID) |
1037 | { |
1038 | static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, |
1039 | 0, 65280.0/65535.0, 0, |
1040 | 0, 0, 65280.0/65535.0 |
1041 | }; |
1042 | |
1043 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL); |
1044 | |
1045 | if (mpe == NULL) return mpe; |
1046 | mpe ->Implements = cmsSigLabV4toV2; |
1047 | return mpe; |
1048 | } |
1049 | |
1050 | |
1051 | // To Lab to float. Note that the MPE gives numbers in normal Lab range |
1052 | // and we need 0..1.0 range for the formatters |
1053 | // L* : 0...100 => 0...1.0 (L* / 100) |
1054 | // ab* : -128..+127 to 0..1 ((ab* + 128) / 255) |
1055 | |
1056 | cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) |
1057 | { |
1058 | static const cmsFloat64Number a1[] = { |
1059 | 1.0/100.0, 0, 0, |
1060 | 0, 1.0/255.0, 0, |
1061 | 0, 0, 1.0/255.0 |
1062 | }; |
1063 | |
1064 | static const cmsFloat64Number o1[] = { |
1065 | 0, |
1066 | 128.0/255.0, |
1067 | 128.0/255.0 |
1068 | }; |
1069 | |
1070 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
1071 | |
1072 | if (mpe == NULL) return mpe; |
1073 | mpe ->Implements = cmsSigLab2FloatPCS; |
1074 | return mpe; |
1075 | } |
1076 | |
1077 | // Fom XYZ to floating point PCS |
1078 | cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) |
1079 | { |
1080 | #define n (32768.0/65535.0) |
1081 | static const cmsFloat64Number a1[] = { |
1082 | n, 0, 0, |
1083 | 0, n, 0, |
1084 | 0, 0, n |
1085 | }; |
1086 | #undef n |
1087 | |
1088 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
1089 | |
1090 | if (mpe == NULL) return mpe; |
1091 | mpe ->Implements = cmsSigXYZ2FloatPCS; |
1092 | return mpe; |
1093 | } |
1094 | |
1095 | cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) |
1096 | { |
1097 | static const cmsFloat64Number a1[] = { |
1098 | 100.0, 0, 0, |
1099 | 0, 255.0, 0, |
1100 | 0, 0, 255.0 |
1101 | }; |
1102 | |
1103 | static const cmsFloat64Number o1[] = { |
1104 | 0, |
1105 | -128.0, |
1106 | -128.0 |
1107 | }; |
1108 | |
1109 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
1110 | if (mpe == NULL) return mpe; |
1111 | mpe ->Implements = cmsSigFloatPCS2Lab; |
1112 | return mpe; |
1113 | } |
1114 | |
1115 | cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) |
1116 | { |
1117 | #define n (65535.0/32768.0) |
1118 | |
1119 | static const cmsFloat64Number a1[] = { |
1120 | n, 0, 0, |
1121 | 0, n, 0, |
1122 | 0, 0, n |
1123 | }; |
1124 | #undef n |
1125 | |
1126 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
1127 | if (mpe == NULL) return mpe; |
1128 | mpe ->Implements = cmsSigFloatPCS2XYZ; |
1129 | return mpe; |
1130 | } |
1131 | |
1132 | // Clips values smaller than zero |
1133 | static |
1134 | void Clipper(cmsContext ContextID, const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
1135 | { |
1136 | cmsUInt32Number i; |
1137 | cmsUNUSED_PARAMETER(ContextID); |
1138 | for (i = 0; i < mpe->InputChannels; i++) { |
1139 | |
1140 | cmsFloat32Number n = In[i]; |
1141 | Out[i] = n < 0 ? 0 : n; |
1142 | } |
1143 | } |
1144 | |
1145 | cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels) |
1146 | { |
1147 | return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType, |
1148 | nChannels, nChannels, Clipper, NULL, NULL, NULL); |
1149 | } |
1150 | |
1151 | // ******************************************************************************** |
1152 | // Type cmsSigXYZ2LabElemType |
1153 | // ******************************************************************************** |
1154 | |
1155 | static |
1156 | void EvaluateXYZ2Lab(cmsContext ContextID, const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
1157 | { |
1158 | cmsCIELab Lab; |
1159 | cmsCIEXYZ XYZ; |
1160 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
1161 | |
1162 | // From 0..1.0 to XYZ |
1163 | |
1164 | XYZ.X = In[0] * XYZadj; |
1165 | XYZ.Y = In[1] * XYZadj; |
1166 | XYZ.Z = In[2] * XYZadj; |
1167 | |
1168 | cmsXYZ2Lab(ContextID, NULL, &Lab, &XYZ); |
1169 | |
1170 | // From V4 Lab to 0..1.0 |
1171 | |
1172 | Out[0] = (cmsFloat32Number) (Lab.L / 100.0); |
1173 | Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); |
1174 | Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); |
1175 | return; |
1176 | |
1177 | cmsUNUSED_PARAMETER(mpe); |
1178 | } |
1179 | |
1180 | cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID) |
1181 | { |
1182 | return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL); |
1183 | |
1184 | } |
1185 | |
1186 | // ******************************************************************************** |
1187 | |
1188 | // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray |
1189 | |
1190 | cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) |
1191 | { |
1192 | cmsToneCurve* LabTable[3]; |
1193 | cmsFloat64Number Params[1] = {2.4} ; |
1194 | |
1195 | LabTable[0] = cmsBuildGamma(ContextID, 1.0); |
1196 | LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
1197 | LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
1198 | |
1199 | return cmsStageAllocToneCurves(ContextID, 3, LabTable); |
1200 | } |
1201 | |
1202 | |
1203 | // Free a single MPE |
1204 | void CMSEXPORT cmsStageFree(cmsContext ContextID, cmsStage* mpe) |
1205 | { |
1206 | if (mpe ->FreePtr) |
1207 | mpe ->FreePtr(ContextID, mpe); |
1208 | |
1209 | _cmsFree(ContextID, mpe); |
1210 | } |
1211 | |
1212 | |
1213 | cmsUInt32Number CMSEXPORT cmsStageInputChannels(cmsContext ContextID, const cmsStage* mpe) |
1214 | { |
1215 | cmsUNUSED_PARAMETER(ContextID); |
1216 | return mpe ->InputChannels; |
1217 | } |
1218 | |
1219 | cmsUInt32Number CMSEXPORT cmsStageOutputChannels(cmsContext ContextID, const cmsStage* mpe) |
1220 | { |
1221 | cmsUNUSED_PARAMETER(ContextID); |
1222 | return mpe ->OutputChannels; |
1223 | } |
1224 | |
1225 | cmsStageSignature CMSEXPORT cmsStageType(cmsContext ContextID, const cmsStage* mpe) |
1226 | { |
1227 | cmsUNUSED_PARAMETER(ContextID); |
1228 | return mpe -> Type; |
1229 | } |
1230 | |
1231 | void* CMSEXPORT cmsStageData(cmsContext ContextID, const cmsStage* mpe) |
1232 | { |
1233 | cmsUNUSED_PARAMETER(ContextID); |
1234 | return mpe -> Data; |
1235 | } |
1236 | |
1237 | cmsStage* CMSEXPORT cmsStageNext(cmsContext ContextID, const cmsStage* mpe) |
1238 | { |
1239 | cmsUNUSED_PARAMETER(ContextID); |
1240 | return mpe -> Next; |
1241 | } |
1242 | |
1243 | |
1244 | // Duplicates an MPE |
1245 | cmsStage* CMSEXPORT cmsStageDup(cmsContext ContextID, cmsStage* mpe) |
1246 | { |
1247 | cmsStage* NewMPE; |
1248 | |
1249 | if (mpe == NULL) return NULL; |
1250 | NewMPE = _cmsStageAllocPlaceholder(ContextID, |
1251 | mpe ->Type, |
1252 | mpe ->InputChannels, |
1253 | mpe ->OutputChannels, |
1254 | mpe ->EvalPtr, |
1255 | mpe ->DupElemPtr, |
1256 | mpe ->FreePtr, |
1257 | NULL); |
1258 | if (NewMPE == NULL) return NULL; |
1259 | |
1260 | NewMPE ->Implements = mpe ->Implements; |
1261 | |
1262 | if (mpe ->DupElemPtr) { |
1263 | |
1264 | NewMPE ->Data = mpe ->DupElemPtr(ContextID, mpe); |
1265 | |
1266 | if (NewMPE->Data == NULL) { |
1267 | |
1268 | cmsStageFree(ContextID, NewMPE); |
1269 | return NULL; |
1270 | } |
1271 | |
1272 | } else { |
1273 | |
1274 | NewMPE ->Data = NULL; |
1275 | } |
1276 | |
1277 | return NewMPE; |
1278 | } |
1279 | |
1280 | |
1281 | // *********************************************************************************************************** |
1282 | |
1283 | // This function sets up the channel count |
1284 | static |
1285 | cmsBool BlessLUT(cmsContext ContextID, cmsPipeline* lut) |
1286 | { |
1287 | // We can set the input/output channels only if we have elements. |
1288 | if (lut ->Elements != NULL) { |
1289 | |
1290 | cmsStage* prev; |
1291 | cmsStage* next; |
1292 | cmsStage* First; |
1293 | cmsStage* Last; |
1294 | |
1295 | First = cmsPipelineGetPtrToFirstStage(ContextID, lut); |
1296 | Last = cmsPipelineGetPtrToLastStage(ContextID, lut); |
1297 | |
1298 | if (First == NULL || Last == NULL) return FALSE; |
1299 | |
1300 | lut->InputChannels = First->InputChannels; |
1301 | lut->OutputChannels = Last->OutputChannels; |
1302 | |
1303 | // Check chain consistency |
1304 | prev = First; |
1305 | next = prev->Next; |
1306 | |
1307 | while (next != NULL) |
1308 | { |
1309 | if (next->InputChannels != prev->OutputChannels) |
1310 | return FALSE; |
1311 | |
1312 | next = next->Next; |
1313 | prev = prev->Next; |
1314 | } |
1315 | } |
1316 | |
1317 | return TRUE; |
1318 | } |
1319 | |
1320 | |
1321 | // Default to evaluate the LUT on 16 bit-basis. Precision is retained. |
1322 | static |
1323 | void _LUTeval16(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D) |
1324 | { |
1325 | cmsPipeline* lut = (cmsPipeline*) D; |
1326 | cmsStage *mpe; |
1327 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
1328 | int Phase = 0, NextPhase; |
1329 | |
1330 | From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); |
1331 | |
1332 | for (mpe = lut ->Elements; |
1333 | mpe != NULL; |
1334 | mpe = mpe ->Next) { |
1335 | |
1336 | NextPhase = Phase ^ 1; |
1337 | mpe ->EvalPtr(ContextID, &Storage[Phase][0], &Storage[NextPhase][0], mpe); |
1338 | Phase = NextPhase; |
1339 | } |
1340 | |
1341 | |
1342 | FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); |
1343 | } |
1344 | |
1345 | |
1346 | |
1347 | // Does evaluate the LUT on cmsFloat32Number-basis. |
1348 | static |
1349 | void _LUTevalFloat(cmsContext ContextID, register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D) |
1350 | { |
1351 | cmsPipeline* lut = (cmsPipeline*) D; |
1352 | cmsStage *mpe; |
1353 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
1354 | int Phase = 0, NextPhase; |
1355 | |
1356 | memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); |
1357 | |
1358 | for (mpe = lut ->Elements; |
1359 | mpe != NULL; |
1360 | mpe = mpe ->Next) { |
1361 | |
1362 | NextPhase = Phase ^ 1; |
1363 | mpe ->EvalPtr(ContextID, &Storage[Phase][0], &Storage[NextPhase][0], mpe); |
1364 | Phase = NextPhase; |
1365 | } |
1366 | |
1367 | memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); |
1368 | } |
1369 | |
1370 | |
1371 | // LUT Creation & Destruction |
1372 | cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) |
1373 | { |
1374 | cmsPipeline* NewLUT; |
1375 | |
1376 | // A value of zero in channels is allowed as placeholder |
1377 | if (InputChannels >= cmsMAXCHANNELS || |
1378 | OutputChannels >= cmsMAXCHANNELS) return NULL; |
1379 | |
1380 | NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); |
1381 | if (NewLUT == NULL) return NULL; |
1382 | |
1383 | NewLUT -> InputChannels = InputChannels; |
1384 | NewLUT -> OutputChannels = OutputChannels; |
1385 | |
1386 | NewLUT ->Eval16Fn = _LUTeval16; |
1387 | NewLUT ->EvalFloatFn = _LUTevalFloat; |
1388 | NewLUT ->DupDataFn = NULL; |
1389 | NewLUT ->FreeDataFn = NULL; |
1390 | NewLUT ->Data = NewLUT; |
1391 | |
1392 | if (!BlessLUT(ContextID, NewLUT)) |
1393 | { |
1394 | _cmsFree(ContextID, NewLUT); |
1395 | return NULL; |
1396 | } |
1397 | |
1398 | return NewLUT; |
1399 | } |
1400 | |
1401 | cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(cmsContext ContextID, const cmsPipeline* lut) |
1402 | { |
1403 | cmsUNUSED_PARAMETER(ContextID); |
1404 | _cmsAssert(lut != NULL); |
1405 | return lut ->InputChannels; |
1406 | } |
1407 | |
1408 | cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(cmsContext ContextID, const cmsPipeline* lut) |
1409 | { |
1410 | cmsUNUSED_PARAMETER(ContextID); |
1411 | _cmsAssert(lut != NULL); |
1412 | return lut ->OutputChannels; |
1413 | } |
1414 | |
1415 | // Free a profile elements LUT |
1416 | void CMSEXPORT cmsPipelineFree(cmsContext ContextID, cmsPipeline* lut) |
1417 | { |
1418 | cmsStage *mpe, *Next; |
1419 | |
1420 | if (lut == NULL) return; |
1421 | |
1422 | for (mpe = lut ->Elements; |
1423 | mpe != NULL; |
1424 | mpe = Next) { |
1425 | |
1426 | Next = mpe ->Next; |
1427 | cmsStageFree(ContextID, mpe); |
1428 | } |
1429 | |
1430 | if (lut ->FreeDataFn) lut ->FreeDataFn(ContextID, lut ->Data); |
1431 | |
1432 | _cmsFree(ContextID, lut); |
1433 | } |
1434 | |
1435 | |
1436 | // Default to evaluate the LUT on 16 bit-basis. |
1437 | void CMSEXPORT cmsPipelineEval16(cmsContext ContextID, const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) |
1438 | { |
1439 | _cmsAssert(lut != NULL); |
1440 | lut ->Eval16Fn(ContextID, In, Out, lut->Data); |
1441 | } |
1442 | |
1443 | |
1444 | // Does evaluate the LUT on cmsFloat32Number-basis. |
1445 | void CMSEXPORT cmsPipelineEvalFloat(cmsContext ContextID, const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) |
1446 | { |
1447 | _cmsAssert(lut != NULL); |
1448 | lut ->EvalFloatFn(ContextID, In, Out, lut); |
1449 | } |
1450 | |
1451 | // Duplicates a LUT |
1452 | cmsPipeline* CMSEXPORT cmsPipelineDup(cmsContext ContextID, const cmsPipeline* lut) |
1453 | { |
1454 | cmsPipeline* NewLUT; |
1455 | cmsStage *NewMPE, *Anterior = NULL, *mpe; |
1456 | cmsBool First = TRUE; |
1457 | |
1458 | if (lut == NULL) return NULL; |
1459 | |
1460 | NewLUT = cmsPipelineAlloc(ContextID, lut ->InputChannels, lut ->OutputChannels); |
1461 | if (NewLUT == NULL) return NULL; |
1462 | |
1463 | for (mpe = lut ->Elements; |
1464 | mpe != NULL; |
1465 | mpe = mpe ->Next) { |
1466 | |
1467 | NewMPE = cmsStageDup(ContextID, mpe); |
1468 | |
1469 | if (NewMPE == NULL) { |
1470 | cmsPipelineFree(ContextID, NewLUT); |
1471 | return NULL; |
1472 | } |
1473 | |
1474 | if (First) { |
1475 | NewLUT ->Elements = NewMPE; |
1476 | First = FALSE; |
1477 | } |
1478 | else { |
1479 | if (Anterior != NULL) |
1480 | Anterior ->Next = NewMPE; |
1481 | } |
1482 | |
1483 | Anterior = NewMPE; |
1484 | } |
1485 | |
1486 | NewLUT ->Eval16Fn = lut ->Eval16Fn; |
1487 | NewLUT ->EvalFloatFn = lut ->EvalFloatFn; |
1488 | NewLUT ->DupDataFn = lut ->DupDataFn; |
1489 | NewLUT ->FreeDataFn = lut ->FreeDataFn; |
1490 | |
1491 | if (NewLUT ->DupDataFn != NULL) |
1492 | NewLUT ->Data = NewLUT ->DupDataFn(ContextID, lut->Data); |
1493 | |
1494 | |
1495 | NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; |
1496 | |
1497 | if (!BlessLUT(ContextID, NewLUT)) |
1498 | { |
1499 | _cmsFree(ContextID, NewLUT); |
1500 | return NULL; |
1501 | } |
1502 | |
1503 | return NewLUT; |
1504 | } |
1505 | |
1506 | |
1507 | int CMSEXPORT cmsPipelineInsertStage(cmsContext ContextID, cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) |
1508 | { |
1509 | cmsStage* Anterior = NULL, *pt; |
1510 | |
1511 | if (lut == NULL || mpe == NULL) |
1512 | return FALSE; |
1513 | |
1514 | switch (loc) { |
1515 | |
1516 | case cmsAT_BEGIN: |
1517 | mpe ->Next = lut ->Elements; |
1518 | lut ->Elements = mpe; |
1519 | break; |
1520 | |
1521 | case cmsAT_END: |
1522 | |
1523 | if (lut ->Elements == NULL) |
1524 | lut ->Elements = mpe; |
1525 | else { |
1526 | |
1527 | for (pt = lut ->Elements; |
1528 | pt != NULL; |
1529 | pt = pt -> Next) Anterior = pt; |
1530 | |
1531 | Anterior ->Next = mpe; |
1532 | mpe ->Next = NULL; |
1533 | } |
1534 | break; |
1535 | default:; |
1536 | return FALSE; |
1537 | } |
1538 | |
1539 | return BlessLUT(ContextID, lut); |
1540 | } |
1541 | |
1542 | // Unlink an element and return the pointer to it |
1543 | void CMSEXPORT cmsPipelineUnlinkStage(cmsContext ContextID, cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) |
1544 | { |
1545 | cmsStage *Anterior, *pt, *Last; |
1546 | cmsStage *Unlinked = NULL; |
1547 | |
1548 | |
1549 | // If empty LUT, there is nothing to remove |
1550 | if (lut ->Elements == NULL) { |
1551 | if (mpe) *mpe = NULL; |
1552 | return; |
1553 | } |
1554 | |
1555 | // On depending on the strategy... |
1556 | switch (loc) { |
1557 | |
1558 | case cmsAT_BEGIN: |
1559 | { |
1560 | cmsStage* elem = lut ->Elements; |
1561 | |
1562 | lut ->Elements = elem -> Next; |
1563 | elem ->Next = NULL; |
1564 | Unlinked = elem; |
1565 | |
1566 | } |
1567 | break; |
1568 | |
1569 | case cmsAT_END: |
1570 | Anterior = Last = NULL; |
1571 | for (pt = lut ->Elements; |
1572 | pt != NULL; |
1573 | pt = pt -> Next) { |
1574 | Anterior = Last; |
1575 | Last = pt; |
1576 | } |
1577 | |
1578 | Unlinked = Last; // Next already points to NULL |
1579 | |
1580 | // Truncate the chain |
1581 | if (Anterior) |
1582 | Anterior ->Next = NULL; |
1583 | else |
1584 | lut ->Elements = NULL; |
1585 | break; |
1586 | default:; |
1587 | } |
1588 | |
1589 | if (mpe) |
1590 | *mpe = Unlinked; |
1591 | else |
1592 | cmsStageFree(ContextID, Unlinked); |
1593 | |
1594 | // May fail, but we ignore it |
1595 | BlessLUT(ContextID, lut); |
1596 | } |
1597 | |
1598 | |
1599 | // Concatenate two LUT into a new single one |
1600 | cmsBool CMSEXPORT cmsPipelineCat(cmsContext ContextID, cmsPipeline* l1, const cmsPipeline* l2) |
1601 | { |
1602 | cmsStage* mpe; |
1603 | |
1604 | // If both LUTS does not have elements, we need to inherit |
1605 | // the number of channels |
1606 | if (l1 ->Elements == NULL && l2 ->Elements == NULL) { |
1607 | l1 ->InputChannels = l2 ->InputChannels; |
1608 | l1 ->OutputChannels = l2 ->OutputChannels; |
1609 | } |
1610 | |
1611 | // Cat second |
1612 | for (mpe = l2 ->Elements; |
1613 | mpe != NULL; |
1614 | mpe = mpe ->Next) { |
1615 | |
1616 | // We have to dup each element |
1617 | if (!cmsPipelineInsertStage(ContextID, l1, cmsAT_END, cmsStageDup(ContextID, mpe))) |
1618 | return FALSE; |
1619 | } |
1620 | |
1621 | return BlessLUT(ContextID, l1); |
1622 | } |
1623 | |
1624 | |
1625 | cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsContext ContextID, cmsPipeline* lut, cmsBool On) |
1626 | { |
1627 | cmsBool Anterior = lut ->SaveAs8Bits; |
1628 | cmsUNUSED_PARAMETER(ContextID); |
1629 | |
1630 | lut ->SaveAs8Bits = On; |
1631 | return Anterior; |
1632 | } |
1633 | |
1634 | |
1635 | cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(cmsContext ContextID, const cmsPipeline* lut) |
1636 | { |
1637 | cmsUNUSED_PARAMETER(ContextID); |
1638 | return lut ->Elements; |
1639 | } |
1640 | |
1641 | cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(cmsContext ContextID, const cmsPipeline* lut) |
1642 | { |
1643 | cmsStage *mpe, *Anterior = NULL; |
1644 | cmsUNUSED_PARAMETER(ContextID); |
1645 | |
1646 | for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
1647 | Anterior = mpe; |
1648 | |
1649 | return Anterior; |
1650 | } |
1651 | |
1652 | cmsUInt32Number CMSEXPORT cmsPipelineStageCount(cmsContext ContextID, const cmsPipeline* lut) |
1653 | { |
1654 | cmsStage *mpe; |
1655 | cmsUInt32Number n; |
1656 | cmsUNUSED_PARAMETER(ContextID); |
1657 | |
1658 | for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
1659 | n++; |
1660 | |
1661 | return n; |
1662 | } |
1663 | |
1664 | // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional |
1665 | // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. |
1666 | void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsContext ContextID, cmsPipeline* Lut, |
1667 | _cmsOPTeval16Fn Eval16, |
1668 | void* PrivateData, |
1669 | _cmsFreeUserDataFn FreePrivateDataFn, |
1670 | _cmsDupUserDataFn DupPrivateDataFn) |
1671 | { |
1672 | cmsUNUSED_PARAMETER(ContextID); |
1673 | |
1674 | Lut ->Eval16Fn = Eval16; |
1675 | Lut ->DupDataFn = DupPrivateDataFn; |
1676 | Lut ->FreeDataFn = FreePrivateDataFn; |
1677 | Lut ->Data = PrivateData; |
1678 | } |
1679 | |
1680 | |
1681 | // ----------------------------------------------------------- Reverse interpolation |
1682 | // Here's how it goes. The derivative Df(x) of the function f is the linear |
1683 | // transformation that best approximates f near the point x. It can be represented |
1684 | // by a matrix A whose entries are the partial derivatives of the components of f |
1685 | // with respect to all the coordinates. This is know as the Jacobian |
1686 | // |
1687 | // The best linear approximation to f is given by the matrix equation: |
1688 | // |
1689 | // y-y0 = A (x-x0) |
1690 | // |
1691 | // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this |
1692 | // linear approximation will give a "better guess" for the zero of f. Thus let y=0, |
1693 | // and since y0=f(x0) one can solve the above equation for x. This leads to the |
1694 | // Newton's method formula: |
1695 | // |
1696 | // xn+1 = xn - A-1 f(xn) |
1697 | // |
1698 | // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the |
1699 | // fashion described above. Iterating this will give better and better approximations |
1700 | // if you have a "good enough" initial guess. |
1701 | |
1702 | |
1703 | #define JACOBIAN_EPSILON 0.001f |
1704 | #define INVERSION_MAX_ITERATIONS 30 |
1705 | |
1706 | // Increment with reflexion on boundary |
1707 | static |
1708 | void IncDelta(cmsFloat32Number *Val) |
1709 | { |
1710 | if (*Val < (1.0 - JACOBIAN_EPSILON)) |
1711 | |
1712 | *Val += JACOBIAN_EPSILON; |
1713 | |
1714 | else |
1715 | *Val -= JACOBIAN_EPSILON; |
1716 | |
1717 | } |
1718 | |
1719 | |
1720 | |
1721 | // Euclidean distance between two vectors of n elements each one |
1722 | static |
1723 | cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) |
1724 | { |
1725 | cmsFloat32Number sum = 0; |
1726 | int i; |
1727 | |
1728 | for (i=0; i < n; i++) { |
1729 | cmsFloat32Number dif = b[i] - a[i]; |
1730 | sum += dif * dif; |
1731 | } |
1732 | |
1733 | return sqrtf(sum); |
1734 | } |
1735 | |
1736 | |
1737 | // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method |
1738 | // |
1739 | // x1 <- x - [J(x)]^-1 * f(x) |
1740 | // |
1741 | // lut: The LUT on where to do the search |
1742 | // Target: LabK, 3 values of Lab plus destination K which is fixed |
1743 | // Result: The obtained CMYK |
1744 | // Hint: Location where begin the search |
1745 | |
1746 | cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsContext ContextID, |
1747 | cmsFloat32Number Target[], |
1748 | cmsFloat32Number Result[], |
1749 | cmsFloat32Number Hint[], |
1750 | const cmsPipeline* lut) |
1751 | { |
1752 | cmsUInt32Number i, j; |
1753 | cmsFloat64Number error, LastError = 1E20; |
1754 | cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; |
1755 | cmsVEC3 tmp, tmp2; |
1756 | cmsMAT3 Jacobian; |
1757 | |
1758 | // Only 3->3 and 4->3 are supported |
1759 | if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE; |
1760 | if (lut ->OutputChannels != 3) return FALSE; |
1761 | |
1762 | // Take the hint as starting point if specified |
1763 | if (Hint == NULL) { |
1764 | |
1765 | // Begin at any point, we choose 1/3 of CMY axis |
1766 | x[0] = x[1] = x[2] = 0.3f; |
1767 | } |
1768 | else { |
1769 | |
1770 | // Only copy 3 channels from hint... |
1771 | for (j=0; j < 3; j++) |
1772 | x[j] = Hint[j]; |
1773 | } |
1774 | |
1775 | // If Lut is 4-dimensions, then grab target[3], which is fixed |
1776 | if (lut ->InputChannels == 4) { |
1777 | x[3] = Target[3]; |
1778 | } |
1779 | else x[3] = 0; // To keep lint happy |
1780 | |
1781 | |
1782 | // Iterate |
1783 | for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) { |
1784 | |
1785 | // Get beginning fx |
1786 | cmsPipelineEvalFloat(ContextID, x, fx, lut); |
1787 | |
1788 | // Compute error |
1789 | error = EuclideanDistance(fx, Target, 3); |
1790 | |
1791 | // If not convergent, return last safe value |
1792 | if (error >= LastError) |
1793 | break; |
1794 | |
1795 | // Keep latest values |
1796 | LastError = error; |
1797 | for (j=0; j < lut ->InputChannels; j++) |
1798 | Result[j] = x[j]; |
1799 | |
1800 | // Found an exact match? |
1801 | if (error <= 0) |
1802 | break; |
1803 | |
1804 | // Obtain slope (the Jacobian) |
1805 | for (j = 0; j < 3; j++) { |
1806 | |
1807 | xd[0] = x[0]; |
1808 | xd[1] = x[1]; |
1809 | xd[2] = x[2]; |
1810 | xd[3] = x[3]; // Keep fixed channel |
1811 | |
1812 | IncDelta(&xd[j]); |
1813 | |
1814 | cmsPipelineEvalFloat(ContextID, xd, fxd, lut); |
1815 | |
1816 | Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); |
1817 | Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); |
1818 | Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); |
1819 | } |
1820 | |
1821 | // Solve system |
1822 | tmp2.n[0] = fx[0] - Target[0]; |
1823 | tmp2.n[1] = fx[1] - Target[1]; |
1824 | tmp2.n[2] = fx[2] - Target[2]; |
1825 | |
1826 | if (!_cmsMAT3solve(ContextID, &tmp, &Jacobian, &tmp2)) |
1827 | return FALSE; |
1828 | |
1829 | // Move our guess |
1830 | x[0] -= (cmsFloat32Number) tmp.n[0]; |
1831 | x[1] -= (cmsFloat32Number) tmp.n[1]; |
1832 | x[2] -= (cmsFloat32Number) tmp.n[2]; |
1833 | |
1834 | // Some clipping.... |
1835 | for (j=0; j < 3; j++) { |
1836 | if (x[j] < 0) x[j] = 0; |
1837 | else |
1838 | if (x[j] > 1.0) x[j] = 1.0; |
1839 | } |
1840 | } |
1841 | |
1842 | return TRUE; |
1843 | } |
1844 | |
1845 | |
1846 | |