| 1 | //--------------------------------------------------------------------------------- |
| 2 | // |
| 3 | // Little Color Management System |
| 4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 5 | // |
| 6 | // Permission is hereby granted, free of charge, to any person obtaining |
| 7 | // a copy of this software and associated documentation files (the "Software"), |
| 8 | // to deal in the Software without restriction, including without limitation |
| 9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 11 | // is furnished to do so, subject to the following conditions: |
| 12 | // |
| 13 | // The above copyright notice and this permission notice shall be included in |
| 14 | // all copies or substantial portions of the Software. |
| 15 | // |
| 16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | // |
| 24 | //--------------------------------------------------------------------------------- |
| 25 | // |
| 26 | |
| 27 | #include "lcms2_internal.h" |
| 28 | |
| 29 | |
| 30 | #define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;} |
| 31 | |
| 32 | |
| 33 | // Initiate a vector |
| 34 | void CMSEXPORT _cmsVEC3init(cmsContext ContextID, cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z) |
| 35 | { |
| 36 | cmsUNUSED_PARAMETER(ContextID); |
| 37 | r -> n[VX] = x; |
| 38 | r -> n[VY] = y; |
| 39 | r -> n[VZ] = z; |
| 40 | } |
| 41 | |
| 42 | // Vector subtraction |
| 43 | void CMSEXPORT _cmsVEC3minus(cmsContext ContextID, cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b) |
| 44 | { |
| 45 | cmsUNUSED_PARAMETER(ContextID); |
| 46 | r -> n[VX] = a -> n[VX] - b -> n[VX]; |
| 47 | r -> n[VY] = a -> n[VY] - b -> n[VY]; |
| 48 | r -> n[VZ] = a -> n[VZ] - b -> n[VZ]; |
| 49 | } |
| 50 | |
| 51 | // Vector cross product |
| 52 | void CMSEXPORT _cmsVEC3cross(cmsContext ContextID, cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v) |
| 53 | { |
| 54 | cmsUNUSED_PARAMETER(ContextID); |
| 55 | r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ]; |
| 56 | r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX]; |
| 57 | r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY]; |
| 58 | } |
| 59 | |
| 60 | // Vector dot product |
| 61 | cmsFloat64Number CMSEXPORT _cmsVEC3dot(cmsContext ContextID, const cmsVEC3* u, const cmsVEC3* v) |
| 62 | { |
| 63 | cmsUNUSED_PARAMETER(ContextID); |
| 64 | return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ]; |
| 65 | } |
| 66 | |
| 67 | // Euclidean length |
| 68 | cmsFloat64Number CMSEXPORT _cmsVEC3length(cmsContext ContextID, const cmsVEC3* a) |
| 69 | { |
| 70 | cmsUNUSED_PARAMETER(ContextID); |
| 71 | return sqrt(a ->n[VX] * a ->n[VX] + |
| 72 | a ->n[VY] * a ->n[VY] + |
| 73 | a ->n[VZ] * a ->n[VZ]); |
| 74 | } |
| 75 | |
| 76 | // Euclidean distance |
| 77 | cmsFloat64Number CMSEXPORT _cmsVEC3distance(cmsContext ContextID, const cmsVEC3* a, const cmsVEC3* b) |
| 78 | { |
| 79 | cmsFloat64Number d1 = a ->n[VX] - b ->n[VX]; |
| 80 | cmsFloat64Number d2 = a ->n[VY] - b ->n[VY]; |
| 81 | cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ]; |
| 82 | |
| 83 | cmsUNUSED_PARAMETER(ContextID); |
| 84 | |
| 85 | return sqrt(d1*d1 + d2*d2 + d3*d3); |
| 86 | } |
| 87 | |
| 88 | |
| 89 | |
| 90 | // 3x3 Identity |
| 91 | void CMSEXPORT _cmsMAT3identity(cmsContext ContextID, cmsMAT3* a) |
| 92 | { |
| 93 | _cmsVEC3init(ContextID, &a-> v[0], 1.0, 0.0, 0.0); |
| 94 | _cmsVEC3init(ContextID, &a-> v[1], 0.0, 1.0, 0.0); |
| 95 | _cmsVEC3init(ContextID, &a-> v[2], 0.0, 0.0, 1.0); |
| 96 | } |
| 97 | |
| 98 | static |
| 99 | cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b) |
| 100 | { |
| 101 | return fabs(b - a) < (1.0 / 65535.0); |
| 102 | } |
| 103 | |
| 104 | |
| 105 | cmsBool CMSEXPORT _cmsMAT3isIdentity(cmsContext ContextID, const cmsMAT3* a) |
| 106 | { |
| 107 | cmsMAT3 Identity; |
| 108 | int i, j; |
| 109 | |
| 110 | _cmsMAT3identity(ContextID, &Identity); |
| 111 | |
| 112 | for (i=0; i < 3; i++) |
| 113 | for (j=0; j < 3; j++) |
| 114 | if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE; |
| 115 | |
| 116 | return TRUE; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | // Multiply two matrices |
| 121 | void CMSEXPORT _cmsMAT3per(cmsContext ContextID, cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b) |
| 122 | { |
| 123 | #define ROWCOL(i, j) \ |
| 124 | a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j] |
| 125 | |
| 126 | _cmsVEC3init(ContextID, &r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)); |
| 127 | _cmsVEC3init(ContextID, &r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)); |
| 128 | _cmsVEC3init(ContextID, &r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)); |
| 129 | |
| 130 | #undef ROWCOL //(i, j) |
| 131 | } |
| 132 | |
| 133 | |
| 134 | |
| 135 | // Inverse of a matrix b = a^(-1) |
| 136 | cmsBool CMSEXPORT _cmsMAT3inverse(cmsContext ContextID, const cmsMAT3* a, cmsMAT3* b) |
| 137 | { |
| 138 | cmsFloat64Number det, c0, c1, c2; |
| 139 | cmsUNUSED_PARAMETER(ContextID); |
| 140 | |
| 141 | c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1]; |
| 142 | c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0]; |
| 143 | c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0]; |
| 144 | |
| 145 | det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2; |
| 146 | |
| 147 | if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert |
| 148 | |
| 149 | b -> v[0].n[0] = c0/det; |
| 150 | b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det; |
| 151 | b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det; |
| 152 | b -> v[1].n[0] = c1/det; |
| 153 | b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det; |
| 154 | b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det; |
| 155 | b -> v[2].n[0] = c2/det; |
| 156 | b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det; |
| 157 | b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det; |
| 158 | |
| 159 | return TRUE; |
| 160 | } |
| 161 | |
| 162 | |
| 163 | // Solve a system in the form Ax = b |
| 164 | cmsBool CMSEXPORT _cmsMAT3solve(cmsContext ContextID, cmsVEC3* x, cmsMAT3* a, cmsVEC3* b) |
| 165 | { |
| 166 | cmsMAT3 m, a_1; |
| 167 | |
| 168 | memmove(&m, a, sizeof(cmsMAT3)); |
| 169 | |
| 170 | if (!_cmsMAT3inverse(ContextID, &m, &a_1)) return FALSE; // Singular matrix |
| 171 | |
| 172 | _cmsMAT3eval(ContextID, x, &a_1, b); |
| 173 | return TRUE; |
| 174 | } |
| 175 | |
| 176 | // Evaluate a vector across a matrix |
| 177 | void CMSEXPORT _cmsMAT3eval(cmsContext ContextID, cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v) |
| 178 | { |
| 179 | cmsUNUSED_PARAMETER(ContextID); |
| 180 | |
| 181 | r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ]; |
| 182 | r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ]; |
| 183 | r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ]; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | |