1 | //--------------------------------------------------------------------------------- |
2 | // |
3 | // Little Color Management System |
4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining |
7 | // a copy of this software and associated documentation files (the "Software"), |
8 | // to deal in the Software without restriction, including without limitation |
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | // is furnished to do so, subject to the following conditions: |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in |
14 | // all copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | // |
24 | //--------------------------------------------------------------------------------- |
25 | // |
26 | |
27 | #include "lcms2_internal.h" |
28 | |
29 | |
30 | // ------------------------------------------------------------------------ |
31 | |
32 | // Gamut boundary description by using Jan Morovic's Segment maxima method |
33 | // Many thanks to Jan for allowing me to use his algorithm. |
34 | |
35 | // r = C* |
36 | // alpha = Hab |
37 | // theta = L* |
38 | |
39 | #define SECTORS 16 // number of divisions in alpha and theta |
40 | |
41 | // Spherical coordinates |
42 | typedef struct { |
43 | |
44 | cmsFloat64Number r; |
45 | cmsFloat64Number alpha; |
46 | cmsFloat64Number theta; |
47 | |
48 | } cmsSpherical; |
49 | |
50 | typedef enum { |
51 | GP_EMPTY, |
52 | GP_SPECIFIED, |
53 | GP_MODELED |
54 | |
55 | } GDBPointType; |
56 | |
57 | |
58 | typedef struct { |
59 | |
60 | GDBPointType Type; |
61 | cmsSpherical p; // Keep also alpha & theta of maximum |
62 | |
63 | } cmsGDBPoint; |
64 | |
65 | |
66 | typedef struct { |
67 | |
68 | cmsGDBPoint Gamut[SECTORS][SECTORS]; |
69 | |
70 | } cmsGDB; |
71 | |
72 | |
73 | // A line using the parametric form |
74 | // P = a + t*u |
75 | typedef struct { |
76 | |
77 | cmsVEC3 a; |
78 | cmsVEC3 u; |
79 | |
80 | } cmsLine; |
81 | |
82 | |
83 | // A plane using the parametric form |
84 | // Q = b + r*v + s*w |
85 | typedef struct { |
86 | |
87 | cmsVEC3 b; |
88 | cmsVEC3 v; |
89 | cmsVEC3 w; |
90 | |
91 | } cmsPlane; |
92 | |
93 | |
94 | |
95 | // -------------------------------------------------------------------------------------------- |
96 | |
97 | // ATAN2() which always returns degree positive numbers |
98 | |
99 | static |
100 | cmsFloat64Number _cmsAtan2(cmsFloat64Number y, cmsFloat64Number x) |
101 | { |
102 | cmsFloat64Number a; |
103 | |
104 | // Deal with undefined case |
105 | if (x == 0.0 && y == 0.0) return 0; |
106 | |
107 | a = (atan2(y, x) * 180.0) / M_PI; |
108 | |
109 | while (a < 0) { |
110 | a += 360; |
111 | } |
112 | |
113 | return a; |
114 | } |
115 | |
116 | // Convert to spherical coordinates |
117 | static |
118 | void ToSpherical(cmsSpherical* sp, const cmsVEC3* v) |
119 | { |
120 | |
121 | cmsFloat64Number L, a, b; |
122 | |
123 | L = v ->n[VX]; |
124 | a = v ->n[VY]; |
125 | b = v ->n[VZ]; |
126 | |
127 | sp ->r = sqrt( L*L + a*a + b*b ); |
128 | |
129 | if (sp ->r == 0) { |
130 | sp ->alpha = sp ->theta = 0; |
131 | return; |
132 | } |
133 | |
134 | sp ->alpha = _cmsAtan2(a, b); |
135 | sp ->theta = _cmsAtan2(sqrt(a*a + b*b), L); |
136 | } |
137 | |
138 | |
139 | // Convert to cartesian from spherical |
140 | static |
141 | void ToCartesian(cmsVEC3* v, const cmsSpherical* sp) |
142 | { |
143 | cmsFloat64Number sin_alpha; |
144 | cmsFloat64Number cos_alpha; |
145 | cmsFloat64Number sin_theta; |
146 | cmsFloat64Number cos_theta; |
147 | cmsFloat64Number L, a, b; |
148 | |
149 | sin_alpha = sin((M_PI * sp ->alpha) / 180.0); |
150 | cos_alpha = cos((M_PI * sp ->alpha) / 180.0); |
151 | sin_theta = sin((M_PI * sp ->theta) / 180.0); |
152 | cos_theta = cos((M_PI * sp ->theta) / 180.0); |
153 | |
154 | a = sp ->r * sin_theta * sin_alpha; |
155 | b = sp ->r * sin_theta * cos_alpha; |
156 | L = sp ->r * cos_theta; |
157 | |
158 | v ->n[VX] = L; |
159 | v ->n[VY] = a; |
160 | v ->n[VZ] = b; |
161 | } |
162 | |
163 | |
164 | // Quantize sector of a spherical coordinate. Saturate 360, 180 to last sector |
165 | // The limits are the centers of each sector, so |
166 | static |
167 | void QuantizeToSector(const cmsSpherical* sp, int* alpha, int* theta) |
168 | { |
169 | *alpha = (int) floor(((sp->alpha * (SECTORS)) / 360.0) ); |
170 | *theta = (int) floor(((sp->theta * (SECTORS)) / 180.0) ); |
171 | |
172 | if (*alpha >= SECTORS) |
173 | *alpha = SECTORS-1; |
174 | if (*theta >= SECTORS) |
175 | *theta = SECTORS-1; |
176 | } |
177 | |
178 | |
179 | // Line determined by 2 points |
180 | static |
181 | void LineOf2Points(cmsContext ContextID, cmsLine* line, cmsVEC3* a, cmsVEC3* b) |
182 | { |
183 | |
184 | _cmsVEC3init(ContextID, &line ->a, a ->n[VX], a ->n[VY], a ->n[VZ]); |
185 | _cmsVEC3init(ContextID, &line ->u, b ->n[VX] - a ->n[VX], |
186 | b ->n[VY] - a ->n[VY], |
187 | b ->n[VZ] - a ->n[VZ]); |
188 | } |
189 | |
190 | |
191 | // Evaluate parametric line |
192 | static |
193 | void GetPointOfLine(cmsVEC3* p, const cmsLine* line, cmsFloat64Number t) |
194 | { |
195 | p ->n[VX] = line ->a.n[VX] + t * line->u.n[VX]; |
196 | p ->n[VY] = line ->a.n[VY] + t * line->u.n[VY]; |
197 | p ->n[VZ] = line ->a.n[VZ] + t * line->u.n[VZ]; |
198 | } |
199 | |
200 | |
201 | |
202 | /* |
203 | Closest point in sector line1 to sector line2 (both are defined as 0 <=t <= 1) |
204 | http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm |
205 | |
206 | Copyright 2001, softSurfer (www.softsurfer.com) |
207 | This code may be freely used and modified for any purpose |
208 | providing that this copyright notice is included with it. |
209 | SoftSurfer makes no warranty for this code, and cannot be held |
210 | liable for any real or imagined damage resulting from its use. |
211 | Users of this code must verify correctness for their application. |
212 | |
213 | */ |
214 | |
215 | static |
216 | cmsBool ClosestLineToLine(cmsContext ContextID, cmsVEC3* r, const cmsLine* line1, const cmsLine* line2) |
217 | { |
218 | cmsFloat64Number a, b, c, d, e, D; |
219 | cmsFloat64Number sc, sN, sD; |
220 | //cmsFloat64Number tc; // left for future use |
221 | cmsFloat64Number tN, tD; |
222 | cmsVEC3 w0; |
223 | |
224 | _cmsVEC3minus(ContextID, &w0, &line1 ->a, &line2 ->a); |
225 | |
226 | a = _cmsVEC3dot(ContextID, &line1 ->u, &line1 ->u); |
227 | b = _cmsVEC3dot(ContextID, &line1 ->u, &line2 ->u); |
228 | c = _cmsVEC3dot(ContextID, &line2 ->u, &line2 ->u); |
229 | d = _cmsVEC3dot(ContextID, &line1 ->u, &w0); |
230 | e = _cmsVEC3dot(ContextID, &line2 ->u, &w0); |
231 | |
232 | D = a*c - b * b; // Denominator |
233 | sD = tD = D; // default sD = D >= 0 |
234 | |
235 | if (D < MATRIX_DET_TOLERANCE) { // the lines are almost parallel |
236 | |
237 | sN = 0.0; // force using point P0 on segment S1 |
238 | sD = 1.0; // to prevent possible division by 0.0 later |
239 | tN = e; |
240 | tD = c; |
241 | } |
242 | else { // get the closest points on the infinite lines |
243 | |
244 | sN = (b*e - c*d); |
245 | tN = (a*e - b*d); |
246 | |
247 | if (sN < 0.0) { // sc < 0 => the s=0 edge is visible |
248 | |
249 | sN = 0.0; |
250 | tN = e; |
251 | tD = c; |
252 | } |
253 | else if (sN > sD) { // sc > 1 => the s=1 edge is visible |
254 | sN = sD; |
255 | tN = e + b; |
256 | tD = c; |
257 | } |
258 | } |
259 | |
260 | if (tN < 0.0) { // tc < 0 => the t=0 edge is visible |
261 | |
262 | tN = 0.0; |
263 | // recompute sc for this edge |
264 | if (-d < 0.0) |
265 | sN = 0.0; |
266 | else if (-d > a) |
267 | sN = sD; |
268 | else { |
269 | sN = -d; |
270 | sD = a; |
271 | } |
272 | } |
273 | else if (tN > tD) { // tc > 1 => the t=1 edge is visible |
274 | |
275 | tN = tD; |
276 | |
277 | // recompute sc for this edge |
278 | if ((-d + b) < 0.0) |
279 | sN = 0; |
280 | else if ((-d + b) > a) |
281 | sN = sD; |
282 | else { |
283 | sN = (-d + b); |
284 | sD = a; |
285 | } |
286 | } |
287 | // finally do the division to get sc and tc |
288 | sc = (fabs(sN) < MATRIX_DET_TOLERANCE ? 0.0 : sN / sD); |
289 | //tc = (fabs(tN) < MATRIX_DET_TOLERANCE ? 0.0 : tN / tD); // left for future use. |
290 | |
291 | GetPointOfLine(r, line1, sc); |
292 | return TRUE; |
293 | } |
294 | |
295 | |
296 | |
297 | // ------------------------------------------------------------------ Wrapper |
298 | |
299 | |
300 | // Allocate & free structure |
301 | cmsHANDLE CMSEXPORT cmsGBDAlloc(cmsContext ContextID) |
302 | { |
303 | cmsGDB* gbd = (cmsGDB*) _cmsMallocZero(ContextID, sizeof(cmsGDB)); |
304 | if (gbd == NULL) return NULL; |
305 | |
306 | return (cmsHANDLE) gbd; |
307 | } |
308 | |
309 | |
310 | void CMSEXPORT cmsGBDFree(cmsContext ContextID, cmsHANDLE hGBD) |
311 | { |
312 | cmsGDB* gbd = (cmsGDB*) hGBD; |
313 | if (hGBD != NULL) |
314 | _cmsFree(ContextID, (void*) gbd); |
315 | } |
316 | |
317 | |
318 | // Auxiliary to retrieve a pointer to the segmentr containing the Lab value |
319 | static |
320 | cmsGDBPoint* GetPoint(cmsContext ContextID, cmsGDB* gbd, const cmsCIELab* Lab, cmsSpherical* sp) |
321 | { |
322 | cmsVEC3 v; |
323 | int alpha, theta; |
324 | |
325 | // Housekeeping |
326 | _cmsAssert(gbd != NULL); |
327 | _cmsAssert(Lab != NULL); |
328 | _cmsAssert(sp != NULL); |
329 | |
330 | // Center L* by subtracting half of its domain, that's 50 |
331 | _cmsVEC3init(ContextID, &v, Lab ->L - 50.0, Lab ->a, Lab ->b); |
332 | |
333 | // Convert to spherical coordinates |
334 | ToSpherical(sp, &v); |
335 | |
336 | if (sp ->r < 0 || sp ->alpha < 0 || sp->theta < 0) { |
337 | cmsSignalError(ContextID, cmsERROR_RANGE, "spherical value out of range" ); |
338 | return NULL; |
339 | } |
340 | |
341 | // On which sector it falls? |
342 | QuantizeToSector(sp, &alpha, &theta); |
343 | |
344 | if (alpha < 0 || theta < 0 || alpha >= SECTORS || theta >= SECTORS) { |
345 | cmsSignalError(ContextID, cmsERROR_RANGE, " quadrant out of range" ); |
346 | return NULL; |
347 | } |
348 | |
349 | // Get pointer to the sector |
350 | return &gbd ->Gamut[theta][alpha]; |
351 | } |
352 | |
353 | // Add a point to gamut descriptor. Point to add is in Lab color space. |
354 | // GBD is centered on a=b=0 and L*=50 |
355 | cmsBool CMSEXPORT cmsGDBAddPoint(cmsContext ContextID, cmsHANDLE hGBD, const cmsCIELab* Lab) |
356 | { |
357 | cmsGDB* gbd = (cmsGDB*) hGBD; |
358 | cmsGDBPoint* ptr; |
359 | cmsSpherical sp; |
360 | |
361 | |
362 | // Get pointer to the sector |
363 | ptr = GetPoint(ContextID, gbd, Lab, &sp); |
364 | if (ptr == NULL) return FALSE; |
365 | |
366 | // If no samples at this sector, add it |
367 | if (ptr ->Type == GP_EMPTY) { |
368 | |
369 | ptr -> Type = GP_SPECIFIED; |
370 | ptr -> p = sp; |
371 | } |
372 | else { |
373 | |
374 | |
375 | // Substitute only if radius is greater |
376 | if (sp.r > ptr -> p.r) { |
377 | |
378 | ptr -> Type = GP_SPECIFIED; |
379 | ptr -> p = sp; |
380 | } |
381 | } |
382 | |
383 | return TRUE; |
384 | } |
385 | |
386 | // Check if a given point falls inside gamut |
387 | cmsBool CMSEXPORT cmsGDBCheckPoint(cmsContext ContextID, cmsHANDLE hGBD, const cmsCIELab* Lab) |
388 | { |
389 | cmsGDB* gbd = (cmsGDB*) hGBD; |
390 | cmsGDBPoint* ptr; |
391 | cmsSpherical sp; |
392 | |
393 | // Get pointer to the sector |
394 | ptr = GetPoint(ContextID, gbd, Lab, &sp); |
395 | if (ptr == NULL) return FALSE; |
396 | |
397 | // If no samples at this sector, return no data |
398 | if (ptr ->Type == GP_EMPTY) return FALSE; |
399 | |
400 | // In gamut only if radius is greater |
401 | |
402 | return (sp.r <= ptr -> p.r); |
403 | } |
404 | |
405 | // ----------------------------------------------------------------------------------------------------------------------- |
406 | |
407 | // Find near sectors. The list of sectors found is returned on Close[]. |
408 | // The function returns the number of sectors as well. |
409 | |
410 | // 24 9 10 11 12 |
411 | // 23 8 1 2 13 |
412 | // 22 7 * 3 14 |
413 | // 21 6 5 4 15 |
414 | // 20 19 18 17 16 |
415 | // |
416 | // Those are the relative movements |
417 | // {-2,-2}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
418 | // {-2,-1}, {-1, -1}, {0, -1}, {+1, -1}, {+2, -1}, |
419 | // {-2, 0}, {-1, 0}, {0, 0}, {+1, 0}, {+2, 0}, |
420 | // {-2,+1}, {-1, +1}, {0, +1}, {+1, +1}, {+2, +1}, |
421 | // {-2,+2}, {-1, +2}, {0, +2}, {+1, +2}, {+2, +2}}; |
422 | |
423 | |
424 | static |
425 | const struct _spiral { |
426 | |
427 | int AdvX, AdvY; |
428 | |
429 | } Spiral[] = { {0, -1}, {+1, -1}, {+1, 0}, {+1, +1}, {0, +1}, {-1, +1}, |
430 | {-1, 0}, {-1, -1}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
431 | {+2, -1}, {+2, 0}, {+2, +1}, {+2, +2}, {+1, +2}, {0, +2}, |
432 | {-1, +2}, {-2, +2}, {-2, +1}, {-2, 0}, {-2, -1}, {-2, -2} }; |
433 | |
434 | #define NSTEPS (sizeof(Spiral) / sizeof(struct _spiral)) |
435 | |
436 | static |
437 | int FindNearSectors(cmsGDB* gbd, int alpha, int theta, cmsGDBPoint* Close[]) |
438 | { |
439 | int nSectors = 0; |
440 | int a, t; |
441 | cmsUInt32Number i; |
442 | cmsGDBPoint* pt; |
443 | |
444 | for (i=0; i < NSTEPS; i++) { |
445 | |
446 | a = alpha + Spiral[i].AdvX; |
447 | t = theta + Spiral[i].AdvY; |
448 | |
449 | // Cycle at the end |
450 | a %= SECTORS; |
451 | t %= SECTORS; |
452 | |
453 | // Cycle at the begin |
454 | if (a < 0) a = SECTORS + a; |
455 | if (t < 0) t = SECTORS + t; |
456 | |
457 | pt = &gbd ->Gamut[t][a]; |
458 | |
459 | if (pt -> Type != GP_EMPTY) { |
460 | |
461 | Close[nSectors++] = pt; |
462 | } |
463 | } |
464 | |
465 | return nSectors; |
466 | } |
467 | |
468 | |
469 | // Interpolate a missing sector. Method identifies whatever this is top, bottom or mid |
470 | static |
471 | cmsBool InterpolateMissingSector(cmsContext ContextID, cmsGDB* gbd, int alpha, int theta) |
472 | { |
473 | cmsSpherical sp; |
474 | cmsVEC3 Lab; |
475 | cmsVEC3 Centre; |
476 | cmsLine ray; |
477 | int nCloseSectors; |
478 | cmsGDBPoint* Close[NSTEPS + 1]; |
479 | cmsSpherical closel, templ; |
480 | cmsLine edge; |
481 | int k, m; |
482 | |
483 | // Is that point already specified? |
484 | if (gbd ->Gamut[theta][alpha].Type != GP_EMPTY) return TRUE; |
485 | |
486 | // Fill close points |
487 | nCloseSectors = FindNearSectors(gbd, alpha, theta, Close); |
488 | |
489 | |
490 | // Find a central point on the sector |
491 | sp.alpha = (cmsFloat64Number) ((alpha + 0.5) * 360.0) / (SECTORS); |
492 | sp.theta = (cmsFloat64Number) ((theta + 0.5) * 180.0) / (SECTORS); |
493 | sp.r = 50.0; |
494 | |
495 | // Convert to Cartesian |
496 | ToCartesian(&Lab, &sp); |
497 | |
498 | // Create a ray line from centre to this point |
499 | _cmsVEC3init(ContextID, &Centre, 50.0, 0, 0); |
500 | LineOf2Points(ContextID, &ray, &Lab, &Centre); |
501 | |
502 | // For all close sectors |
503 | closel.r = 0.0; |
504 | closel.alpha = 0; |
505 | closel.theta = 0; |
506 | |
507 | for (k=0; k < nCloseSectors; k++) { |
508 | |
509 | for(m = k+1; m < nCloseSectors; m++) { |
510 | |
511 | cmsVEC3 temp, a1, a2; |
512 | |
513 | // A line from sector to sector |
514 | ToCartesian(&a1, &Close[k]->p); |
515 | ToCartesian(&a2, &Close[m]->p); |
516 | |
517 | LineOf2Points(ContextID, &edge, &a1, &a2); |
518 | |
519 | // Find a line |
520 | ClosestLineToLine(ContextID, &temp, &ray, &edge); |
521 | |
522 | // Convert to spherical |
523 | ToSpherical(&templ, &temp); |
524 | |
525 | |
526 | if ( templ.r > closel.r && |
527 | templ.theta >= (theta*180.0/SECTORS) && |
528 | templ.theta <= ((theta+1)*180.0/SECTORS) && |
529 | templ.alpha >= (alpha*360.0/SECTORS) && |
530 | templ.alpha <= ((alpha+1)*360.0/SECTORS)) { |
531 | |
532 | closel = templ; |
533 | } |
534 | } |
535 | } |
536 | |
537 | gbd ->Gamut[theta][alpha].p = closel; |
538 | gbd ->Gamut[theta][alpha].Type = GP_MODELED; |
539 | |
540 | return TRUE; |
541 | |
542 | } |
543 | |
544 | |
545 | // Interpolate missing parts. The algorithm fist computes slices at |
546 | // theta=0 and theta=Max. |
547 | cmsBool CMSEXPORT cmsGDBCompute(cmsContext ContextID, cmsHANDLE hGBD, cmsUInt32Number dwFlags) |
548 | { |
549 | int alpha, theta; |
550 | cmsGDB* gbd = (cmsGDB*) hGBD; |
551 | |
552 | _cmsAssert(hGBD != NULL); |
553 | |
554 | // Interpolate black |
555 | for (alpha = 0; alpha < SECTORS; alpha++) { |
556 | |
557 | if (!InterpolateMissingSector(ContextID, gbd, alpha, 0)) return FALSE; |
558 | } |
559 | |
560 | // Interpolate white |
561 | for (alpha = 0; alpha < SECTORS; alpha++) { |
562 | |
563 | if (!InterpolateMissingSector(ContextID, gbd, alpha, SECTORS-1)) return FALSE; |
564 | } |
565 | |
566 | |
567 | // Interpolate Mid |
568 | for (theta = 1; theta < SECTORS; theta++) { |
569 | for (alpha = 0; alpha < SECTORS; alpha++) { |
570 | |
571 | if (!InterpolateMissingSector(ContextID, gbd, alpha, theta)) return FALSE; |
572 | } |
573 | } |
574 | |
575 | // Done |
576 | return TRUE; |
577 | |
578 | cmsUNUSED_PARAMETER(dwFlags); |
579 | } |
580 | |
581 | |
582 | |
583 | |
584 | // -------------------------------------------------------------------------------------------------------- |
585 | |
586 | // Great for debug, but not suitable for real use |
587 | |
588 | #if 0 |
589 | cmsBool cmsGBDdumpVRML(cmsHANDLE hGBD, const char* fname) |
590 | { |
591 | FILE* fp; |
592 | int i, j; |
593 | cmsGDB* gbd = (cmsGDB*) hGBD; |
594 | cmsGDBPoint* pt; |
595 | |
596 | fp = fopen (fname, "wt" ); |
597 | if (fp == NULL) |
598 | return FALSE; |
599 | |
600 | fprintf (fp, "#VRML V2.0 utf8\n" ); |
601 | |
602 | // set the viewing orientation and distance |
603 | fprintf (fp, "DEF CamTest Group {\n" ); |
604 | fprintf (fp, "\tchildren [\n" ); |
605 | fprintf (fp, "\t\tDEF Cameras Group {\n" ); |
606 | fprintf (fp, "\t\t\tchildren [\n" ); |
607 | fprintf (fp, "\t\t\t\tDEF DefaultView Viewpoint {\n" ); |
608 | fprintf (fp, "\t\t\t\t\tposition 0 0 340\n" ); |
609 | fprintf (fp, "\t\t\t\t\torientation 0 0 1 0\n" ); |
610 | fprintf (fp, "\t\t\t\t\tdescription \"default view\"\n" ); |
611 | fprintf (fp, "\t\t\t\t}\n" ); |
612 | fprintf (fp, "\t\t\t]\n" ); |
613 | fprintf (fp, "\t\t},\n" ); |
614 | fprintf (fp, "\t]\n" ); |
615 | fprintf (fp, "}\n" ); |
616 | |
617 | // Output the background stuff |
618 | fprintf (fp, "Background {\n" ); |
619 | fprintf (fp, "\tskyColor [\n" ); |
620 | fprintf (fp, "\t\t.5 .5 .5\n" ); |
621 | fprintf (fp, "\t]\n" ); |
622 | fprintf (fp, "}\n" ); |
623 | |
624 | // Output the shape stuff |
625 | fprintf (fp, "Transform {\n" ); |
626 | fprintf (fp, "\tscale .3 .3 .3\n" ); |
627 | fprintf (fp, "\tchildren [\n" ); |
628 | |
629 | // Draw the axes as a shape: |
630 | fprintf (fp, "\t\tShape {\n" ); |
631 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
632 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
633 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
634 | fprintf (fp, "\t\t\t\t\temissiveColor 1.0 1.0 1.0\n" ); |
635 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
636 | fprintf (fp, "\t\t\t\t}\n" ); |
637 | fprintf (fp, "\t\t\t}\n" ); |
638 | fprintf (fp, "\t\t\tgeometry IndexedLineSet {\n" ); |
639 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
640 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
641 | fprintf (fp, "\t\t\t\t\t0.0 0.0 0.0,\n" ); |
642 | fprintf (fp, "\t\t\t\t\t%f 0.0 0.0,\n" , 255.0); |
643 | fprintf (fp, "\t\t\t\t\t0.0 %f 0.0,\n" , 255.0); |
644 | fprintf (fp, "\t\t\t\t\t0.0 0.0 %f]\n" , 255.0); |
645 | fprintf (fp, "\t\t\t\t}\n" ); |
646 | fprintf (fp, "\t\t\t\tcoordIndex [\n" ); |
647 | fprintf (fp, "\t\t\t\t\t0, 1, -1\n" ); |
648 | fprintf (fp, "\t\t\t\t\t0, 2, -1\n" ); |
649 | fprintf (fp, "\t\t\t\t\t0, 3, -1]\n" ); |
650 | fprintf (fp, "\t\t\t}\n" ); |
651 | fprintf (fp, "\t\t}\n" ); |
652 | |
653 | |
654 | fprintf (fp, "\t\tShape {\n" ); |
655 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
656 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
657 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
658 | fprintf (fp, "\t\t\t\t\temissiveColor 1 1 1\n" ); |
659 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
660 | fprintf (fp, "\t\t\t\t}\n" ); |
661 | fprintf (fp, "\t\t\t}\n" ); |
662 | fprintf (fp, "\t\t\tgeometry PointSet {\n" ); |
663 | |
664 | // fill in the points here |
665 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
666 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
667 | |
668 | // We need to transverse all gamut hull. |
669 | for (i=0; i < SECTORS; i++) |
670 | for (j=0; j < SECTORS; j++) { |
671 | |
672 | cmsVEC3 v; |
673 | |
674 | pt = &gbd ->Gamut[i][j]; |
675 | ToCartesian(&v, &pt ->p); |
676 | |
677 | fprintf (fp, "\t\t\t\t\t%g %g %g" , v.n[0]+50, v.n[1], v.n[2]); |
678 | |
679 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
680 | fprintf (fp, "]\n" ); |
681 | else |
682 | fprintf (fp, ",\n" ); |
683 | |
684 | } |
685 | |
686 | fprintf (fp, "\t\t\t\t}\n" ); |
687 | |
688 | |
689 | |
690 | // fill in the face colors |
691 | fprintf (fp, "\t\t\t\tcolor Color {\n" ); |
692 | fprintf (fp, "\t\t\t\t\tcolor [\n" ); |
693 | |
694 | for (i=0; i < SECTORS; i++) |
695 | for (j=0; j < SECTORS; j++) { |
696 | |
697 | cmsVEC3 v; |
698 | |
699 | pt = &gbd ->Gamut[i][j]; |
700 | |
701 | |
702 | ToCartesian(&v, &pt ->p); |
703 | |
704 | |
705 | if (pt ->Type == GP_EMPTY) |
706 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 0.0, 0.0, 0.0); |
707 | else |
708 | if (pt ->Type == GP_MODELED) |
709 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, .5, .5); |
710 | else { |
711 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, 1.0, 1.0); |
712 | |
713 | } |
714 | |
715 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
716 | fprintf (fp, "]\n" ); |
717 | else |
718 | fprintf (fp, ",\n" ); |
719 | } |
720 | fprintf (fp, "\t\t\t}\n" ); |
721 | |
722 | |
723 | fprintf (fp, "\t\t\t}\n" ); |
724 | fprintf (fp, "\t\t}\n" ); |
725 | fprintf (fp, "\t]\n" ); |
726 | fprintf (fp, "}\n" ); |
727 | |
728 | fclose (fp); |
729 | |
730 | return TRUE; |
731 | } |
732 | #endif |
733 | |
734 | |