1 | //--------------------------------------------------------------------------------- |
2 | // |
3 | // Little Color Management System |
4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining |
7 | // a copy of this software and associated documentation files (the "Software"), |
8 | // to deal in the Software without restriction, including without limitation |
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | // is furnished to do so, subject to the following conditions: |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in |
14 | // all copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | // |
24 | //--------------------------------------------------------------------------------- |
25 | // |
26 | |
27 | #include "lcms2_internal.h" |
28 | |
29 | |
30 | // D50 - Widely used |
31 | const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(cmsContext ContextID) |
32 | { |
33 | static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; |
34 | cmsUNUSED_PARAMETER(ContextID); |
35 | |
36 | return &D50XYZ; |
37 | } |
38 | |
39 | const cmsCIExyY* CMSEXPORT cmsD50_xyY(cmsContext ContextID) |
40 | { |
41 | static cmsCIExyY D50xyY; |
42 | |
43 | cmsXYZ2xyY(ContextID, &D50xyY, cmsD50_XYZ(ContextID)); |
44 | |
45 | return &D50xyY; |
46 | } |
47 | |
48 | // Obtains WhitePoint from Temperature |
49 | cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsContext ContextID, cmsCIExyY* WhitePoint, cmsFloat64Number TempK) |
50 | { |
51 | cmsFloat64Number x, y; |
52 | cmsFloat64Number T, T2, T3; |
53 | // cmsFloat64Number M1, M2; |
54 | cmsUNUSED_PARAMETER(ContextID); |
55 | |
56 | _cmsAssert(WhitePoint != NULL); |
57 | |
58 | T = TempK; |
59 | T2 = T*T; // Square |
60 | T3 = T2*T; // Cube |
61 | |
62 | // For correlated color temperature (T) between 4000K and 7000K: |
63 | |
64 | if (T >= 4000. && T <= 7000.) |
65 | { |
66 | x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; |
67 | } |
68 | else |
69 | // or for correlated color temperature (T) between 7000K and 25000K: |
70 | |
71 | if (T > 7000.0 && T <= 25000.0) |
72 | { |
73 | x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; |
74 | } |
75 | else { |
76 | cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp" ); |
77 | return FALSE; |
78 | } |
79 | |
80 | // Obtain y(x) |
81 | y = -3.000*(x*x) + 2.870*x - 0.275; |
82 | |
83 | // wave factors (not used, but here for futures extensions) |
84 | |
85 | // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); |
86 | // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); |
87 | |
88 | WhitePoint -> x = x; |
89 | WhitePoint -> y = y; |
90 | WhitePoint -> Y = 1.0; |
91 | |
92 | return TRUE; |
93 | } |
94 | |
95 | |
96 | |
97 | typedef struct { |
98 | |
99 | cmsFloat64Number mirek; // temp (in microreciprocal kelvin) |
100 | cmsFloat64Number ut; // u coord of intersection w/ blackbody locus |
101 | cmsFloat64Number vt; // v coord of intersection w/ blackbody locus |
102 | cmsFloat64Number tt; // slope of ISOTEMPERATURE. line |
103 | |
104 | } ISOTEMPERATURE; |
105 | |
106 | static const ISOTEMPERATURE isotempdata[] = { |
107 | // {Mirek, Ut, Vt, Tt } |
108 | {0, 0.18006, 0.26352, -0.24341}, |
109 | {10, 0.18066, 0.26589, -0.25479}, |
110 | {20, 0.18133, 0.26846, -0.26876}, |
111 | {30, 0.18208, 0.27119, -0.28539}, |
112 | {40, 0.18293, 0.27407, -0.30470}, |
113 | {50, 0.18388, 0.27709, -0.32675}, |
114 | {60, 0.18494, 0.28021, -0.35156}, |
115 | {70, 0.18611, 0.28342, -0.37915}, |
116 | {80, 0.18740, 0.28668, -0.40955}, |
117 | {90, 0.18880, 0.28997, -0.44278}, |
118 | {100, 0.19032, 0.29326, -0.47888}, |
119 | {125, 0.19462, 0.30141, -0.58204}, |
120 | {150, 0.19962, 0.30921, -0.70471}, |
121 | {175, 0.20525, 0.31647, -0.84901}, |
122 | {200, 0.21142, 0.32312, -1.0182 }, |
123 | {225, 0.21807, 0.32909, -1.2168 }, |
124 | {250, 0.22511, 0.33439, -1.4512 }, |
125 | {275, 0.23247, 0.33904, -1.7298 }, |
126 | {300, 0.24010, 0.34308, -2.0637 }, |
127 | {325, 0.24702, 0.34655, -2.4681 }, |
128 | {350, 0.25591, 0.34951, -2.9641 }, |
129 | {375, 0.26400, 0.35200, -3.5814 }, |
130 | {400, 0.27218, 0.35407, -4.3633 }, |
131 | {425, 0.28039, 0.35577, -5.3762 }, |
132 | {450, 0.28863, 0.35714, -6.7262 }, |
133 | {475, 0.29685, 0.35823, -8.5955 }, |
134 | {500, 0.30505, 0.35907, -11.324 }, |
135 | {525, 0.31320, 0.35968, -15.628 }, |
136 | {550, 0.32129, 0.36011, -23.325 }, |
137 | {575, 0.32931, 0.36038, -40.770 }, |
138 | {600, 0.33724, 0.36051, -116.45 } |
139 | }; |
140 | |
141 | #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) |
142 | |
143 | |
144 | // Robertson's method |
145 | cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsContext ContextID, cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) |
146 | { |
147 | cmsUInt32Number j; |
148 | cmsFloat64Number us,vs; |
149 | cmsFloat64Number uj,vj,tj,di,dj,mi,mj; |
150 | cmsFloat64Number xs, ys; |
151 | cmsUNUSED_PARAMETER(ContextID); |
152 | |
153 | _cmsAssert(WhitePoint != NULL); |
154 | _cmsAssert(TempK != NULL); |
155 | |
156 | di = mi = 0; |
157 | xs = WhitePoint -> x; |
158 | ys = WhitePoint -> y; |
159 | |
160 | // convert (x,y) to CIE 1960 (u,WhitePoint) |
161 | |
162 | us = (2*xs) / (-xs + 6*ys + 1.5); |
163 | vs = (3*ys) / (-xs + 6*ys + 1.5); |
164 | |
165 | |
166 | for (j=0; j < NISO; j++) { |
167 | |
168 | uj = isotempdata[j].ut; |
169 | vj = isotempdata[j].vt; |
170 | tj = isotempdata[j].tt; |
171 | mj = isotempdata[j].mirek; |
172 | |
173 | dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); |
174 | |
175 | if ((j != 0) && (di/dj < 0.0)) { |
176 | |
177 | // Found a match |
178 | *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); |
179 | return TRUE; |
180 | } |
181 | |
182 | di = dj; |
183 | mi = mj; |
184 | } |
185 | |
186 | // Not found |
187 | return FALSE; |
188 | } |
189 | |
190 | |
191 | // Compute chromatic adaptation matrix using Chad as cone matrix |
192 | |
193 | static |
194 | cmsBool ComputeChromaticAdaptation(cmsContext ContextID, cmsMAT3* Conversion, |
195 | const cmsCIEXYZ* SourceWhitePoint, |
196 | const cmsCIEXYZ* DestWhitePoint, |
197 | const cmsMAT3* Chad) |
198 | |
199 | { |
200 | |
201 | cmsMAT3 Chad_Inv; |
202 | cmsVEC3 ConeSourceXYZ, ConeSourceRGB; |
203 | cmsVEC3 ConeDestXYZ, ConeDestRGB; |
204 | cmsMAT3 Cone, Tmp; |
205 | |
206 | |
207 | Tmp = *Chad; |
208 | if (!_cmsMAT3inverse(ContextID, &Tmp, &Chad_Inv)) return FALSE; |
209 | |
210 | _cmsVEC3init(ContextID, &ConeSourceXYZ, SourceWhitePoint -> X, |
211 | SourceWhitePoint -> Y, |
212 | SourceWhitePoint -> Z); |
213 | |
214 | _cmsVEC3init(ContextID, &ConeDestXYZ, DestWhitePoint -> X, |
215 | DestWhitePoint -> Y, |
216 | DestWhitePoint -> Z); |
217 | |
218 | _cmsMAT3eval(ContextID, &ConeSourceRGB, Chad, &ConeSourceXYZ); |
219 | _cmsMAT3eval(ContextID, &ConeDestRGB, Chad, &ConeDestXYZ); |
220 | |
221 | // Build matrix |
222 | _cmsVEC3init(ContextID, &Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0); |
223 | _cmsVEC3init(ContextID, &Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0); |
224 | _cmsVEC3init(ContextID, &Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]); |
225 | |
226 | |
227 | // Normalize |
228 | _cmsMAT3per(ContextID, &Tmp, &Cone, Chad); |
229 | _cmsMAT3per(ContextID, Conversion, &Chad_Inv, &Tmp); |
230 | |
231 | return TRUE; |
232 | } |
233 | |
234 | // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
235 | // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed |
236 | cmsBool _cmsAdaptationMatrix(cmsContext ContextID, cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) |
237 | { |
238 | cmsMAT3 LamRigg = {{ // Bradford matrix |
239 | {{ 0.8951, 0.2664, -0.1614 }}, |
240 | {{ -0.7502, 1.7135, 0.0367 }}, |
241 | {{ 0.0389, -0.0685, 1.0296 }} |
242 | }}; |
243 | |
244 | if (ConeMatrix == NULL) |
245 | ConeMatrix = &LamRigg; |
246 | |
247 | return ComputeChromaticAdaptation(ContextID, r, FromIll, ToIll, ConeMatrix); |
248 | } |
249 | |
250 | // Same as anterior, but assuming D50 destination. White point is given in xyY |
251 | static |
252 | cmsBool _cmsAdaptMatrixToD50(cmsContext ContextID, cmsMAT3* r, const cmsCIExyY* SourceWhitePt) |
253 | { |
254 | cmsCIEXYZ Dn; |
255 | cmsMAT3 Bradford; |
256 | cmsMAT3 Tmp; |
257 | |
258 | cmsxyY2XYZ(ContextID, &Dn, SourceWhitePt); |
259 | |
260 | if (!_cmsAdaptationMatrix(ContextID, &Bradford, NULL, &Dn, cmsD50_XYZ(ContextID))) return FALSE; |
261 | |
262 | Tmp = *r; |
263 | _cmsMAT3per(ContextID, r, &Bradford, &Tmp); |
264 | |
265 | return TRUE; |
266 | } |
267 | |
268 | // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
269 | // This is just an approximation, I am not handling all the non-linear |
270 | // aspects of the RGB to XYZ process, and assumming that the gamma correction |
271 | // has transitive property in the transformation chain. |
272 | // |
273 | // the alghoritm: |
274 | // |
275 | // - First I build the absolute conversion matrix using |
276 | // primaries in XYZ. This matrix is next inverted |
277 | // - Then I eval the source white point across this matrix |
278 | // obtaining the coeficients of the transformation |
279 | // - Then, I apply these coeficients to the original matrix |
280 | // |
281 | cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsContext ContextID, cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) |
282 | { |
283 | cmsVEC3 WhitePoint, Coef; |
284 | cmsMAT3 Result, Primaries; |
285 | cmsFloat64Number xn, yn; |
286 | cmsFloat64Number xr, yr; |
287 | cmsFloat64Number xg, yg; |
288 | cmsFloat64Number xb, yb; |
289 | |
290 | xn = WhitePt -> x; |
291 | yn = WhitePt -> y; |
292 | xr = Primrs -> Red.x; |
293 | yr = Primrs -> Red.y; |
294 | xg = Primrs -> Green.x; |
295 | yg = Primrs -> Green.y; |
296 | xb = Primrs -> Blue.x; |
297 | yb = Primrs -> Blue.y; |
298 | |
299 | // Build Primaries matrix |
300 | _cmsVEC3init(ContextID, &Primaries.v[0], xr, xg, xb); |
301 | _cmsVEC3init(ContextID, &Primaries.v[1], yr, yg, yb); |
302 | _cmsVEC3init(ContextID, &Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb)); |
303 | |
304 | |
305 | // Result = Primaries ^ (-1) inverse matrix |
306 | if (!_cmsMAT3inverse(ContextID, &Primaries, &Result)) |
307 | return FALSE; |
308 | |
309 | |
310 | _cmsVEC3init(ContextID, &WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); |
311 | |
312 | // Across inverse primaries ... |
313 | _cmsMAT3eval(ContextID, &Coef, &Result, &WhitePoint); |
314 | |
315 | // Give us the Coefs, then I build transformation matrix |
316 | _cmsVEC3init(ContextID, &r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb); |
317 | _cmsVEC3init(ContextID, &r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb); |
318 | _cmsVEC3init(ContextID, &r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); |
319 | |
320 | |
321 | return _cmsAdaptMatrixToD50(ContextID, r, WhitePt); |
322 | |
323 | } |
324 | |
325 | |
326 | // Adapts a color to a given illuminant. Original color is expected to have |
327 | // a SourceWhitePt white point. |
328 | cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsContext ContextID, cmsCIEXYZ* Result, |
329 | const cmsCIEXYZ* SourceWhitePt, |
330 | const cmsCIEXYZ* Illuminant, |
331 | const cmsCIEXYZ* Value) |
332 | { |
333 | cmsMAT3 Bradford; |
334 | cmsVEC3 In, Out; |
335 | |
336 | _cmsAssert(Result != NULL); |
337 | _cmsAssert(SourceWhitePt != NULL); |
338 | _cmsAssert(Illuminant != NULL); |
339 | _cmsAssert(Value != NULL); |
340 | |
341 | if (!_cmsAdaptationMatrix(ContextID, &Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; |
342 | |
343 | _cmsVEC3init(ContextID, &In, Value -> X, Value -> Y, Value -> Z); |
344 | _cmsMAT3eval(ContextID, &Out, &Bradford, &In); |
345 | |
346 | Result -> X = Out.n[0]; |
347 | Result -> Y = Out.n[1]; |
348 | Result -> Z = Out.n[2]; |
349 | |
350 | return TRUE; |
351 | } |
352 | |
353 | |
354 | |