| 1 | //--------------------------------------------------------------------------------- |
| 2 | // |
| 3 | // Little Color Management System |
| 4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 5 | // |
| 6 | // Permission is hereby granted, free of charge, to any person obtaining |
| 7 | // a copy of this software and associated documentation files (the "Software"), |
| 8 | // to deal in the Software without restriction, including without limitation |
| 9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 11 | // is furnished to do so, subject to the following conditions: |
| 12 | // |
| 13 | // The above copyright notice and this permission notice shall be included in |
| 14 | // all copies or substantial portions of the Software. |
| 15 | // |
| 16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | // |
| 24 | //--------------------------------------------------------------------------------- |
| 25 | // |
| 26 | |
| 27 | #include "lcms2_internal.h" |
| 28 | |
| 29 | |
| 30 | // D50 - Widely used |
| 31 | const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(cmsContext ContextID) |
| 32 | { |
| 33 | static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; |
| 34 | cmsUNUSED_PARAMETER(ContextID); |
| 35 | |
| 36 | return &D50XYZ; |
| 37 | } |
| 38 | |
| 39 | const cmsCIExyY* CMSEXPORT cmsD50_xyY(cmsContext ContextID) |
| 40 | { |
| 41 | static cmsCIExyY D50xyY; |
| 42 | |
| 43 | cmsXYZ2xyY(ContextID, &D50xyY, cmsD50_XYZ(ContextID)); |
| 44 | |
| 45 | return &D50xyY; |
| 46 | } |
| 47 | |
| 48 | // Obtains WhitePoint from Temperature |
| 49 | cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsContext ContextID, cmsCIExyY* WhitePoint, cmsFloat64Number TempK) |
| 50 | { |
| 51 | cmsFloat64Number x, y; |
| 52 | cmsFloat64Number T, T2, T3; |
| 53 | // cmsFloat64Number M1, M2; |
| 54 | cmsUNUSED_PARAMETER(ContextID); |
| 55 | |
| 56 | _cmsAssert(WhitePoint != NULL); |
| 57 | |
| 58 | T = TempK; |
| 59 | T2 = T*T; // Square |
| 60 | T3 = T2*T; // Cube |
| 61 | |
| 62 | // For correlated color temperature (T) between 4000K and 7000K: |
| 63 | |
| 64 | if (T >= 4000. && T <= 7000.) |
| 65 | { |
| 66 | x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; |
| 67 | } |
| 68 | else |
| 69 | // or for correlated color temperature (T) between 7000K and 25000K: |
| 70 | |
| 71 | if (T > 7000.0 && T <= 25000.0) |
| 72 | { |
| 73 | x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; |
| 74 | } |
| 75 | else { |
| 76 | cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp" ); |
| 77 | return FALSE; |
| 78 | } |
| 79 | |
| 80 | // Obtain y(x) |
| 81 | y = -3.000*(x*x) + 2.870*x - 0.275; |
| 82 | |
| 83 | // wave factors (not used, but here for futures extensions) |
| 84 | |
| 85 | // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); |
| 86 | // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); |
| 87 | |
| 88 | WhitePoint -> x = x; |
| 89 | WhitePoint -> y = y; |
| 90 | WhitePoint -> Y = 1.0; |
| 91 | |
| 92 | return TRUE; |
| 93 | } |
| 94 | |
| 95 | |
| 96 | |
| 97 | typedef struct { |
| 98 | |
| 99 | cmsFloat64Number mirek; // temp (in microreciprocal kelvin) |
| 100 | cmsFloat64Number ut; // u coord of intersection w/ blackbody locus |
| 101 | cmsFloat64Number vt; // v coord of intersection w/ blackbody locus |
| 102 | cmsFloat64Number tt; // slope of ISOTEMPERATURE. line |
| 103 | |
| 104 | } ISOTEMPERATURE; |
| 105 | |
| 106 | static const ISOTEMPERATURE isotempdata[] = { |
| 107 | // {Mirek, Ut, Vt, Tt } |
| 108 | {0, 0.18006, 0.26352, -0.24341}, |
| 109 | {10, 0.18066, 0.26589, -0.25479}, |
| 110 | {20, 0.18133, 0.26846, -0.26876}, |
| 111 | {30, 0.18208, 0.27119, -0.28539}, |
| 112 | {40, 0.18293, 0.27407, -0.30470}, |
| 113 | {50, 0.18388, 0.27709, -0.32675}, |
| 114 | {60, 0.18494, 0.28021, -0.35156}, |
| 115 | {70, 0.18611, 0.28342, -0.37915}, |
| 116 | {80, 0.18740, 0.28668, -0.40955}, |
| 117 | {90, 0.18880, 0.28997, -0.44278}, |
| 118 | {100, 0.19032, 0.29326, -0.47888}, |
| 119 | {125, 0.19462, 0.30141, -0.58204}, |
| 120 | {150, 0.19962, 0.30921, -0.70471}, |
| 121 | {175, 0.20525, 0.31647, -0.84901}, |
| 122 | {200, 0.21142, 0.32312, -1.0182 }, |
| 123 | {225, 0.21807, 0.32909, -1.2168 }, |
| 124 | {250, 0.22511, 0.33439, -1.4512 }, |
| 125 | {275, 0.23247, 0.33904, -1.7298 }, |
| 126 | {300, 0.24010, 0.34308, -2.0637 }, |
| 127 | {325, 0.24702, 0.34655, -2.4681 }, |
| 128 | {350, 0.25591, 0.34951, -2.9641 }, |
| 129 | {375, 0.26400, 0.35200, -3.5814 }, |
| 130 | {400, 0.27218, 0.35407, -4.3633 }, |
| 131 | {425, 0.28039, 0.35577, -5.3762 }, |
| 132 | {450, 0.28863, 0.35714, -6.7262 }, |
| 133 | {475, 0.29685, 0.35823, -8.5955 }, |
| 134 | {500, 0.30505, 0.35907, -11.324 }, |
| 135 | {525, 0.31320, 0.35968, -15.628 }, |
| 136 | {550, 0.32129, 0.36011, -23.325 }, |
| 137 | {575, 0.32931, 0.36038, -40.770 }, |
| 138 | {600, 0.33724, 0.36051, -116.45 } |
| 139 | }; |
| 140 | |
| 141 | #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) |
| 142 | |
| 143 | |
| 144 | // Robertson's method |
| 145 | cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsContext ContextID, cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) |
| 146 | { |
| 147 | cmsUInt32Number j; |
| 148 | cmsFloat64Number us,vs; |
| 149 | cmsFloat64Number uj,vj,tj,di,dj,mi,mj; |
| 150 | cmsFloat64Number xs, ys; |
| 151 | cmsUNUSED_PARAMETER(ContextID); |
| 152 | |
| 153 | _cmsAssert(WhitePoint != NULL); |
| 154 | _cmsAssert(TempK != NULL); |
| 155 | |
| 156 | di = mi = 0; |
| 157 | xs = WhitePoint -> x; |
| 158 | ys = WhitePoint -> y; |
| 159 | |
| 160 | // convert (x,y) to CIE 1960 (u,WhitePoint) |
| 161 | |
| 162 | us = (2*xs) / (-xs + 6*ys + 1.5); |
| 163 | vs = (3*ys) / (-xs + 6*ys + 1.5); |
| 164 | |
| 165 | |
| 166 | for (j=0; j < NISO; j++) { |
| 167 | |
| 168 | uj = isotempdata[j].ut; |
| 169 | vj = isotempdata[j].vt; |
| 170 | tj = isotempdata[j].tt; |
| 171 | mj = isotempdata[j].mirek; |
| 172 | |
| 173 | dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); |
| 174 | |
| 175 | if ((j != 0) && (di/dj < 0.0)) { |
| 176 | |
| 177 | // Found a match |
| 178 | *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); |
| 179 | return TRUE; |
| 180 | } |
| 181 | |
| 182 | di = dj; |
| 183 | mi = mj; |
| 184 | } |
| 185 | |
| 186 | // Not found |
| 187 | return FALSE; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | // Compute chromatic adaptation matrix using Chad as cone matrix |
| 192 | |
| 193 | static |
| 194 | cmsBool ComputeChromaticAdaptation(cmsContext ContextID, cmsMAT3* Conversion, |
| 195 | const cmsCIEXYZ* SourceWhitePoint, |
| 196 | const cmsCIEXYZ* DestWhitePoint, |
| 197 | const cmsMAT3* Chad) |
| 198 | |
| 199 | { |
| 200 | |
| 201 | cmsMAT3 Chad_Inv; |
| 202 | cmsVEC3 ConeSourceXYZ, ConeSourceRGB; |
| 203 | cmsVEC3 ConeDestXYZ, ConeDestRGB; |
| 204 | cmsMAT3 Cone, Tmp; |
| 205 | |
| 206 | |
| 207 | Tmp = *Chad; |
| 208 | if (!_cmsMAT3inverse(ContextID, &Tmp, &Chad_Inv)) return FALSE; |
| 209 | |
| 210 | _cmsVEC3init(ContextID, &ConeSourceXYZ, SourceWhitePoint -> X, |
| 211 | SourceWhitePoint -> Y, |
| 212 | SourceWhitePoint -> Z); |
| 213 | |
| 214 | _cmsVEC3init(ContextID, &ConeDestXYZ, DestWhitePoint -> X, |
| 215 | DestWhitePoint -> Y, |
| 216 | DestWhitePoint -> Z); |
| 217 | |
| 218 | _cmsMAT3eval(ContextID, &ConeSourceRGB, Chad, &ConeSourceXYZ); |
| 219 | _cmsMAT3eval(ContextID, &ConeDestRGB, Chad, &ConeDestXYZ); |
| 220 | |
| 221 | // Build matrix |
| 222 | _cmsVEC3init(ContextID, &Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0); |
| 223 | _cmsVEC3init(ContextID, &Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0); |
| 224 | _cmsVEC3init(ContextID, &Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]); |
| 225 | |
| 226 | |
| 227 | // Normalize |
| 228 | _cmsMAT3per(ContextID, &Tmp, &Cone, Chad); |
| 229 | _cmsMAT3per(ContextID, Conversion, &Chad_Inv, &Tmp); |
| 230 | |
| 231 | return TRUE; |
| 232 | } |
| 233 | |
| 234 | // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
| 235 | // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed |
| 236 | cmsBool _cmsAdaptationMatrix(cmsContext ContextID, cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) |
| 237 | { |
| 238 | cmsMAT3 LamRigg = {{ // Bradford matrix |
| 239 | {{ 0.8951, 0.2664, -0.1614 }}, |
| 240 | {{ -0.7502, 1.7135, 0.0367 }}, |
| 241 | {{ 0.0389, -0.0685, 1.0296 }} |
| 242 | }}; |
| 243 | |
| 244 | if (ConeMatrix == NULL) |
| 245 | ConeMatrix = &LamRigg; |
| 246 | |
| 247 | return ComputeChromaticAdaptation(ContextID, r, FromIll, ToIll, ConeMatrix); |
| 248 | } |
| 249 | |
| 250 | // Same as anterior, but assuming D50 destination. White point is given in xyY |
| 251 | static |
| 252 | cmsBool _cmsAdaptMatrixToD50(cmsContext ContextID, cmsMAT3* r, const cmsCIExyY* SourceWhitePt) |
| 253 | { |
| 254 | cmsCIEXYZ Dn; |
| 255 | cmsMAT3 Bradford; |
| 256 | cmsMAT3 Tmp; |
| 257 | |
| 258 | cmsxyY2XYZ(ContextID, &Dn, SourceWhitePt); |
| 259 | |
| 260 | if (!_cmsAdaptationMatrix(ContextID, &Bradford, NULL, &Dn, cmsD50_XYZ(ContextID))) return FALSE; |
| 261 | |
| 262 | Tmp = *r; |
| 263 | _cmsMAT3per(ContextID, r, &Bradford, &Tmp); |
| 264 | |
| 265 | return TRUE; |
| 266 | } |
| 267 | |
| 268 | // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
| 269 | // This is just an approximation, I am not handling all the non-linear |
| 270 | // aspects of the RGB to XYZ process, and assumming that the gamma correction |
| 271 | // has transitive property in the transformation chain. |
| 272 | // |
| 273 | // the alghoritm: |
| 274 | // |
| 275 | // - First I build the absolute conversion matrix using |
| 276 | // primaries in XYZ. This matrix is next inverted |
| 277 | // - Then I eval the source white point across this matrix |
| 278 | // obtaining the coeficients of the transformation |
| 279 | // - Then, I apply these coeficients to the original matrix |
| 280 | // |
| 281 | cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsContext ContextID, cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) |
| 282 | { |
| 283 | cmsVEC3 WhitePoint, Coef; |
| 284 | cmsMAT3 Result, Primaries; |
| 285 | cmsFloat64Number xn, yn; |
| 286 | cmsFloat64Number xr, yr; |
| 287 | cmsFloat64Number xg, yg; |
| 288 | cmsFloat64Number xb, yb; |
| 289 | |
| 290 | xn = WhitePt -> x; |
| 291 | yn = WhitePt -> y; |
| 292 | xr = Primrs -> Red.x; |
| 293 | yr = Primrs -> Red.y; |
| 294 | xg = Primrs -> Green.x; |
| 295 | yg = Primrs -> Green.y; |
| 296 | xb = Primrs -> Blue.x; |
| 297 | yb = Primrs -> Blue.y; |
| 298 | |
| 299 | // Build Primaries matrix |
| 300 | _cmsVEC3init(ContextID, &Primaries.v[0], xr, xg, xb); |
| 301 | _cmsVEC3init(ContextID, &Primaries.v[1], yr, yg, yb); |
| 302 | _cmsVEC3init(ContextID, &Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb)); |
| 303 | |
| 304 | |
| 305 | // Result = Primaries ^ (-1) inverse matrix |
| 306 | if (!_cmsMAT3inverse(ContextID, &Primaries, &Result)) |
| 307 | return FALSE; |
| 308 | |
| 309 | |
| 310 | _cmsVEC3init(ContextID, &WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); |
| 311 | |
| 312 | // Across inverse primaries ... |
| 313 | _cmsMAT3eval(ContextID, &Coef, &Result, &WhitePoint); |
| 314 | |
| 315 | // Give us the Coefs, then I build transformation matrix |
| 316 | _cmsVEC3init(ContextID, &r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb); |
| 317 | _cmsVEC3init(ContextID, &r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb); |
| 318 | _cmsVEC3init(ContextID, &r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); |
| 319 | |
| 320 | |
| 321 | return _cmsAdaptMatrixToD50(ContextID, r, WhitePt); |
| 322 | |
| 323 | } |
| 324 | |
| 325 | |
| 326 | // Adapts a color to a given illuminant. Original color is expected to have |
| 327 | // a SourceWhitePt white point. |
| 328 | cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsContext ContextID, cmsCIEXYZ* Result, |
| 329 | const cmsCIEXYZ* SourceWhitePt, |
| 330 | const cmsCIEXYZ* Illuminant, |
| 331 | const cmsCIEXYZ* Value) |
| 332 | { |
| 333 | cmsMAT3 Bradford; |
| 334 | cmsVEC3 In, Out; |
| 335 | |
| 336 | _cmsAssert(Result != NULL); |
| 337 | _cmsAssert(SourceWhitePt != NULL); |
| 338 | _cmsAssert(Illuminant != NULL); |
| 339 | _cmsAssert(Value != NULL); |
| 340 | |
| 341 | if (!_cmsAdaptationMatrix(ContextID, &Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; |
| 342 | |
| 343 | _cmsVEC3init(ContextID, &In, Value -> X, Value -> Y, Value -> Z); |
| 344 | _cmsMAT3eval(ContextID, &Out, &Bradford, &In); |
| 345 | |
| 346 | Result -> X = Out.n[0]; |
| 347 | Result -> Y = Out.n[1]; |
| 348 | Result -> Z = Out.n[2]; |
| 349 | |
| 350 | return TRUE; |
| 351 | } |
| 352 | |
| 353 | |
| 354 | |