| 1 | /* |
| 2 | * The copyright in this software is being made available under the 2-clauses |
| 3 | * BSD License, included below. This software may be subject to other third |
| 4 | * party and contributor rights, including patent rights, and no such rights |
| 5 | * are granted under this license. |
| 6 | * |
| 7 | * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr> |
| 8 | * All rights reserved. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
| 20 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 23 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 29 | * POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | #include "opj_includes.h" |
| 33 | |
| 34 | /** |
| 35 | * LUP decomposition |
| 36 | */ |
| 37 | static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix, |
| 38 | OPJ_UINT32 * permutations, |
| 39 | OPJ_FLOAT32 * p_swap_area, |
| 40 | OPJ_UINT32 nb_compo); |
| 41 | /** |
| 42 | * LUP solving |
| 43 | */ |
| 44 | static void opj_lupSolve(OPJ_FLOAT32 * pResult, |
| 45 | OPJ_FLOAT32* pMatrix, |
| 46 | OPJ_FLOAT32* pVector, |
| 47 | OPJ_UINT32* pPermutations, |
| 48 | OPJ_UINT32 nb_compo, |
| 49 | OPJ_FLOAT32 * p_intermediate_data); |
| 50 | |
| 51 | /** |
| 52 | *LUP inversion (call with the result of lupDecompose) |
| 53 | */ |
| 54 | static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix, |
| 55 | OPJ_FLOAT32 * pDestMatrix, |
| 56 | OPJ_UINT32 nb_compo, |
| 57 | OPJ_UINT32 * pPermutations, |
| 58 | OPJ_FLOAT32 * p_src_temp, |
| 59 | OPJ_FLOAT32 * p_dest_temp, |
| 60 | OPJ_FLOAT32 * p_swap_area); |
| 61 | |
| 62 | /* |
| 63 | ========================================================== |
| 64 | Matric inversion interface |
| 65 | ========================================================== |
| 66 | */ |
| 67 | /** |
| 68 | * Matrix inversion. |
| 69 | */ |
| 70 | OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix, |
| 71 | OPJ_FLOAT32 * pDestMatrix, |
| 72 | OPJ_UINT32 nb_compo) |
| 73 | { |
| 74 | OPJ_BYTE * l_data = 00; |
| 75 | OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32); |
| 76 | OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
| 77 | OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size; |
| 78 | OPJ_UINT32 * lPermutations = 00; |
| 79 | OPJ_FLOAT32 * l_double_data = 00; |
| 80 | |
| 81 | l_data = (OPJ_BYTE *) opj_malloc(l_total_size); |
| 82 | if (l_data == 0) { |
| 83 | return OPJ_FALSE; |
| 84 | } |
| 85 | lPermutations = (OPJ_UINT32 *) l_data; |
| 86 | l_double_data = (OPJ_FLOAT32 *)(l_data + l_permutation_size); |
| 87 | memset(lPermutations, 0, l_permutation_size); |
| 88 | |
| 89 | if (! opj_lupDecompose(pSrcMatrix, lPermutations, l_double_data, nb_compo)) { |
| 90 | opj_free(l_data); |
| 91 | return OPJ_FALSE; |
| 92 | } |
| 93 | |
| 94 | opj_lupInvert(pSrcMatrix, pDestMatrix, nb_compo, lPermutations, l_double_data, |
| 95 | l_double_data + nb_compo, l_double_data + 2 * nb_compo); |
| 96 | opj_free(l_data); |
| 97 | |
| 98 | return OPJ_TRUE; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | ========================================================== |
| 104 | Local functions |
| 105 | ========================================================== |
| 106 | */ |
| 107 | static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix, |
| 108 | OPJ_UINT32 * permutations, |
| 109 | OPJ_FLOAT32 * p_swap_area, |
| 110 | OPJ_UINT32 nb_compo) |
| 111 | { |
| 112 | OPJ_UINT32 * tmpPermutations = permutations; |
| 113 | OPJ_UINT32 * dstPermutations; |
| 114 | OPJ_UINT32 k2 = 0, t; |
| 115 | OPJ_FLOAT32 temp; |
| 116 | OPJ_UINT32 i, j, k; |
| 117 | OPJ_FLOAT32 p; |
| 118 | OPJ_UINT32 lLastColum = nb_compo - 1; |
| 119 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
| 120 | OPJ_FLOAT32 * lTmpMatrix = matrix; |
| 121 | OPJ_FLOAT32 * lColumnMatrix, * lDestMatrix; |
| 122 | OPJ_UINT32 offset = 1; |
| 123 | OPJ_UINT32 lStride = nb_compo - 1; |
| 124 | |
| 125 | /*initialize permutations */ |
| 126 | for (i = 0; i < nb_compo; ++i) { |
| 127 | *tmpPermutations++ = i; |
| 128 | } |
| 129 | /* now make a pivot with column switch */ |
| 130 | tmpPermutations = permutations; |
| 131 | for (k = 0; k < lLastColum; ++k) { |
| 132 | p = 0.0; |
| 133 | |
| 134 | /* take the middle element */ |
| 135 | lColumnMatrix = lTmpMatrix + k; |
| 136 | |
| 137 | /* make permutation with the biggest value in the column */ |
| 138 | for (i = k; i < nb_compo; ++i) { |
| 139 | temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix)); |
| 140 | if (temp > p) { |
| 141 | p = temp; |
| 142 | k2 = i; |
| 143 | } |
| 144 | /* next line */ |
| 145 | lColumnMatrix += nb_compo; |
| 146 | } |
| 147 | |
| 148 | /* a whole rest of 0 -> non singular */ |
| 149 | if (p == 0.0) { |
| 150 | return OPJ_FALSE; |
| 151 | } |
| 152 | |
| 153 | /* should we permute ? */ |
| 154 | if (k2 != k) { |
| 155 | /*exchange of line */ |
| 156 | /* k2 > k */ |
| 157 | dstPermutations = tmpPermutations + k2 - k; |
| 158 | /* swap indices */ |
| 159 | t = *tmpPermutations; |
| 160 | *tmpPermutations = *dstPermutations; |
| 161 | *dstPermutations = t; |
| 162 | |
| 163 | /* and swap entire line. */ |
| 164 | lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo; |
| 165 | memcpy(p_swap_area, lColumnMatrix, lSwapSize); |
| 166 | memcpy(lColumnMatrix, lTmpMatrix, lSwapSize); |
| 167 | memcpy(lTmpMatrix, p_swap_area, lSwapSize); |
| 168 | } |
| 169 | |
| 170 | /* now update data in the rest of the line and line after */ |
| 171 | lDestMatrix = lTmpMatrix + k; |
| 172 | lColumnMatrix = lDestMatrix + nb_compo; |
| 173 | /* take the middle element */ |
| 174 | temp = *(lDestMatrix++); |
| 175 | |
| 176 | /* now compute up data (i.e. coeff up of the diagonal). */ |
| 177 | for (i = offset; i < nb_compo; ++i) { |
| 178 | /*lColumnMatrix; */ |
| 179 | /* divide the lower column elements by the diagonal value */ |
| 180 | |
| 181 | /* matrix[i][k] /= matrix[k][k]; */ |
| 182 | /* p = matrix[i][k] */ |
| 183 | p = *lColumnMatrix / temp; |
| 184 | *(lColumnMatrix++) = p; |
| 185 | |
| 186 | for (j = /* k + 1 */ offset; j < nb_compo; ++j) { |
| 187 | /* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */ |
| 188 | *(lColumnMatrix++) -= p * (*(lDestMatrix++)); |
| 189 | } |
| 190 | /* come back to the k+1th element */ |
| 191 | lDestMatrix -= lStride; |
| 192 | /* go to kth element of the next line */ |
| 193 | lColumnMatrix += k; |
| 194 | } |
| 195 | |
| 196 | /* offset is now k+2 */ |
| 197 | ++offset; |
| 198 | /* 1 element less for stride */ |
| 199 | --lStride; |
| 200 | /* next line */ |
| 201 | lTmpMatrix += nb_compo; |
| 202 | /* next permutation element */ |
| 203 | ++tmpPermutations; |
| 204 | } |
| 205 | return OPJ_TRUE; |
| 206 | } |
| 207 | |
| 208 | static void opj_lupSolve(OPJ_FLOAT32 * pResult, |
| 209 | OPJ_FLOAT32 * pMatrix, |
| 210 | OPJ_FLOAT32 * pVector, |
| 211 | OPJ_UINT32* pPermutations, |
| 212 | OPJ_UINT32 nb_compo, OPJ_FLOAT32 * p_intermediate_data) |
| 213 | { |
| 214 | OPJ_INT32 k; |
| 215 | OPJ_UINT32 i, j; |
| 216 | OPJ_FLOAT32 sum; |
| 217 | OPJ_FLOAT32 u; |
| 218 | OPJ_UINT32 lStride = nb_compo + 1; |
| 219 | OPJ_FLOAT32 * lCurrentPtr; |
| 220 | OPJ_FLOAT32 * lIntermediatePtr; |
| 221 | OPJ_FLOAT32 * lDestPtr; |
| 222 | OPJ_FLOAT32 * lTmpMatrix; |
| 223 | OPJ_FLOAT32 * lLineMatrix = pMatrix; |
| 224 | OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1; |
| 225 | OPJ_FLOAT32 * lGeneratedData; |
| 226 | OPJ_UINT32 * lCurrentPermutationPtr = pPermutations; |
| 227 | |
| 228 | |
| 229 | lIntermediatePtr = p_intermediate_data; |
| 230 | lGeneratedData = p_intermediate_data + nb_compo - 1; |
| 231 | |
| 232 | for (i = 0; i < nb_compo; ++i) { |
| 233 | sum = 0.0; |
| 234 | lCurrentPtr = p_intermediate_data; |
| 235 | lTmpMatrix = lLineMatrix; |
| 236 | for (j = 1; j <= i; ++j) { |
| 237 | /* sum += matrix[i][j-1] * y[j-1]; */ |
| 238 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
| 239 | } |
| 240 | /*y[i] = pVector[pPermutations[i]] - sum; */ |
| 241 | *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum; |
| 242 | lLineMatrix += nb_compo; |
| 243 | } |
| 244 | |
| 245 | /* we take the last point of the matrix */ |
| 246 | lLineMatrix = pMatrix + nb_compo * nb_compo - 1; |
| 247 | |
| 248 | /* and we take after the last point of the destination vector */ |
| 249 | lDestPtr = pResult + nb_compo; |
| 250 | |
| 251 | |
| 252 | assert(nb_compo != 0); |
| 253 | for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) { |
| 254 | sum = 0.0; |
| 255 | lTmpMatrix = lLineMatrix; |
| 256 | u = *(lTmpMatrix++); |
| 257 | lCurrentPtr = lDestPtr--; |
| 258 | for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) { |
| 259 | /* sum += matrix[k][j] * x[j] */ |
| 260 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
| 261 | } |
| 262 | /*x[k] = (y[k] - sum) / u; */ |
| 263 | *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u; |
| 264 | lLineMatrix -= lStride; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | |
| 269 | static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix, |
| 270 | OPJ_FLOAT32 * pDestMatrix, |
| 271 | OPJ_UINT32 nb_compo, |
| 272 | OPJ_UINT32 * pPermutations, |
| 273 | OPJ_FLOAT32 * p_src_temp, |
| 274 | OPJ_FLOAT32 * p_dest_temp, |
| 275 | OPJ_FLOAT32 * p_swap_area) |
| 276 | { |
| 277 | OPJ_UINT32 j, i; |
| 278 | OPJ_FLOAT32 * lCurrentPtr; |
| 279 | OPJ_FLOAT32 * lLineMatrix = pDestMatrix; |
| 280 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
| 281 | |
| 282 | for (j = 0; j < nb_compo; ++j) { |
| 283 | lCurrentPtr = lLineMatrix++; |
| 284 | memset(p_src_temp, 0, lSwapSize); |
| 285 | p_src_temp[j] = 1.0; |
| 286 | opj_lupSolve(p_dest_temp, pSrcMatrix, p_src_temp, pPermutations, nb_compo, |
| 287 | p_swap_area); |
| 288 | |
| 289 | for (i = 0; i < nb_compo; ++i) { |
| 290 | *(lCurrentPtr) = p_dest_temp[i]; |
| 291 | lCurrentPtr += nb_compo; |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | |