1 | /* |
2 | * The copyright in this software is being made available under the 2-clauses |
3 | * BSD License, included below. This software may be subject to other third |
4 | * party and contributor rights, including patent rights, and no such rights |
5 | * are granted under this license. |
6 | * |
7 | * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr> |
8 | * All rights reserved. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
20 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
23 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | #include "opj_includes.h" |
33 | |
34 | /** |
35 | * LUP decomposition |
36 | */ |
37 | static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix, |
38 | OPJ_UINT32 * permutations, |
39 | OPJ_FLOAT32 * p_swap_area, |
40 | OPJ_UINT32 nb_compo); |
41 | /** |
42 | * LUP solving |
43 | */ |
44 | static void opj_lupSolve(OPJ_FLOAT32 * pResult, |
45 | OPJ_FLOAT32* pMatrix, |
46 | OPJ_FLOAT32* pVector, |
47 | OPJ_UINT32* pPermutations, |
48 | OPJ_UINT32 nb_compo, |
49 | OPJ_FLOAT32 * p_intermediate_data); |
50 | |
51 | /** |
52 | *LUP inversion (call with the result of lupDecompose) |
53 | */ |
54 | static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix, |
55 | OPJ_FLOAT32 * pDestMatrix, |
56 | OPJ_UINT32 nb_compo, |
57 | OPJ_UINT32 * pPermutations, |
58 | OPJ_FLOAT32 * p_src_temp, |
59 | OPJ_FLOAT32 * p_dest_temp, |
60 | OPJ_FLOAT32 * p_swap_area); |
61 | |
62 | /* |
63 | ========================================================== |
64 | Matric inversion interface |
65 | ========================================================== |
66 | */ |
67 | /** |
68 | * Matrix inversion. |
69 | */ |
70 | OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix, |
71 | OPJ_FLOAT32 * pDestMatrix, |
72 | OPJ_UINT32 nb_compo) |
73 | { |
74 | OPJ_BYTE * l_data = 00; |
75 | OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32); |
76 | OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
77 | OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size; |
78 | OPJ_UINT32 * lPermutations = 00; |
79 | OPJ_FLOAT32 * l_double_data = 00; |
80 | |
81 | l_data = (OPJ_BYTE *) opj_malloc(l_total_size); |
82 | if (l_data == 0) { |
83 | return OPJ_FALSE; |
84 | } |
85 | lPermutations = (OPJ_UINT32 *) l_data; |
86 | l_double_data = (OPJ_FLOAT32 *)(l_data + l_permutation_size); |
87 | memset(lPermutations, 0, l_permutation_size); |
88 | |
89 | if (! opj_lupDecompose(pSrcMatrix, lPermutations, l_double_data, nb_compo)) { |
90 | opj_free(l_data); |
91 | return OPJ_FALSE; |
92 | } |
93 | |
94 | opj_lupInvert(pSrcMatrix, pDestMatrix, nb_compo, lPermutations, l_double_data, |
95 | l_double_data + nb_compo, l_double_data + 2 * nb_compo); |
96 | opj_free(l_data); |
97 | |
98 | return OPJ_TRUE; |
99 | } |
100 | |
101 | |
102 | /* |
103 | ========================================================== |
104 | Local functions |
105 | ========================================================== |
106 | */ |
107 | static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix, |
108 | OPJ_UINT32 * permutations, |
109 | OPJ_FLOAT32 * p_swap_area, |
110 | OPJ_UINT32 nb_compo) |
111 | { |
112 | OPJ_UINT32 * tmpPermutations = permutations; |
113 | OPJ_UINT32 * dstPermutations; |
114 | OPJ_UINT32 k2 = 0, t; |
115 | OPJ_FLOAT32 temp; |
116 | OPJ_UINT32 i, j, k; |
117 | OPJ_FLOAT32 p; |
118 | OPJ_UINT32 lLastColum = nb_compo - 1; |
119 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
120 | OPJ_FLOAT32 * lTmpMatrix = matrix; |
121 | OPJ_FLOAT32 * lColumnMatrix, * lDestMatrix; |
122 | OPJ_UINT32 offset = 1; |
123 | OPJ_UINT32 lStride = nb_compo - 1; |
124 | |
125 | /*initialize permutations */ |
126 | for (i = 0; i < nb_compo; ++i) { |
127 | *tmpPermutations++ = i; |
128 | } |
129 | /* now make a pivot with column switch */ |
130 | tmpPermutations = permutations; |
131 | for (k = 0; k < lLastColum; ++k) { |
132 | p = 0.0; |
133 | |
134 | /* take the middle element */ |
135 | lColumnMatrix = lTmpMatrix + k; |
136 | |
137 | /* make permutation with the biggest value in the column */ |
138 | for (i = k; i < nb_compo; ++i) { |
139 | temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix)); |
140 | if (temp > p) { |
141 | p = temp; |
142 | k2 = i; |
143 | } |
144 | /* next line */ |
145 | lColumnMatrix += nb_compo; |
146 | } |
147 | |
148 | /* a whole rest of 0 -> non singular */ |
149 | if (p == 0.0) { |
150 | return OPJ_FALSE; |
151 | } |
152 | |
153 | /* should we permute ? */ |
154 | if (k2 != k) { |
155 | /*exchange of line */ |
156 | /* k2 > k */ |
157 | dstPermutations = tmpPermutations + k2 - k; |
158 | /* swap indices */ |
159 | t = *tmpPermutations; |
160 | *tmpPermutations = *dstPermutations; |
161 | *dstPermutations = t; |
162 | |
163 | /* and swap entire line. */ |
164 | lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo; |
165 | memcpy(p_swap_area, lColumnMatrix, lSwapSize); |
166 | memcpy(lColumnMatrix, lTmpMatrix, lSwapSize); |
167 | memcpy(lTmpMatrix, p_swap_area, lSwapSize); |
168 | } |
169 | |
170 | /* now update data in the rest of the line and line after */ |
171 | lDestMatrix = lTmpMatrix + k; |
172 | lColumnMatrix = lDestMatrix + nb_compo; |
173 | /* take the middle element */ |
174 | temp = *(lDestMatrix++); |
175 | |
176 | /* now compute up data (i.e. coeff up of the diagonal). */ |
177 | for (i = offset; i < nb_compo; ++i) { |
178 | /*lColumnMatrix; */ |
179 | /* divide the lower column elements by the diagonal value */ |
180 | |
181 | /* matrix[i][k] /= matrix[k][k]; */ |
182 | /* p = matrix[i][k] */ |
183 | p = *lColumnMatrix / temp; |
184 | *(lColumnMatrix++) = p; |
185 | |
186 | for (j = /* k + 1 */ offset; j < nb_compo; ++j) { |
187 | /* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */ |
188 | *(lColumnMatrix++) -= p * (*(lDestMatrix++)); |
189 | } |
190 | /* come back to the k+1th element */ |
191 | lDestMatrix -= lStride; |
192 | /* go to kth element of the next line */ |
193 | lColumnMatrix += k; |
194 | } |
195 | |
196 | /* offset is now k+2 */ |
197 | ++offset; |
198 | /* 1 element less for stride */ |
199 | --lStride; |
200 | /* next line */ |
201 | lTmpMatrix += nb_compo; |
202 | /* next permutation element */ |
203 | ++tmpPermutations; |
204 | } |
205 | return OPJ_TRUE; |
206 | } |
207 | |
208 | static void opj_lupSolve(OPJ_FLOAT32 * pResult, |
209 | OPJ_FLOAT32 * pMatrix, |
210 | OPJ_FLOAT32 * pVector, |
211 | OPJ_UINT32* pPermutations, |
212 | OPJ_UINT32 nb_compo, OPJ_FLOAT32 * p_intermediate_data) |
213 | { |
214 | OPJ_INT32 k; |
215 | OPJ_UINT32 i, j; |
216 | OPJ_FLOAT32 sum; |
217 | OPJ_FLOAT32 u; |
218 | OPJ_UINT32 lStride = nb_compo + 1; |
219 | OPJ_FLOAT32 * lCurrentPtr; |
220 | OPJ_FLOAT32 * lIntermediatePtr; |
221 | OPJ_FLOAT32 * lDestPtr; |
222 | OPJ_FLOAT32 * lTmpMatrix; |
223 | OPJ_FLOAT32 * lLineMatrix = pMatrix; |
224 | OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1; |
225 | OPJ_FLOAT32 * lGeneratedData; |
226 | OPJ_UINT32 * lCurrentPermutationPtr = pPermutations; |
227 | |
228 | |
229 | lIntermediatePtr = p_intermediate_data; |
230 | lGeneratedData = p_intermediate_data + nb_compo - 1; |
231 | |
232 | for (i = 0; i < nb_compo; ++i) { |
233 | sum = 0.0; |
234 | lCurrentPtr = p_intermediate_data; |
235 | lTmpMatrix = lLineMatrix; |
236 | for (j = 1; j <= i; ++j) { |
237 | /* sum += matrix[i][j-1] * y[j-1]; */ |
238 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
239 | } |
240 | /*y[i] = pVector[pPermutations[i]] - sum; */ |
241 | *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum; |
242 | lLineMatrix += nb_compo; |
243 | } |
244 | |
245 | /* we take the last point of the matrix */ |
246 | lLineMatrix = pMatrix + nb_compo * nb_compo - 1; |
247 | |
248 | /* and we take after the last point of the destination vector */ |
249 | lDestPtr = pResult + nb_compo; |
250 | |
251 | |
252 | assert(nb_compo != 0); |
253 | for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) { |
254 | sum = 0.0; |
255 | lTmpMatrix = lLineMatrix; |
256 | u = *(lTmpMatrix++); |
257 | lCurrentPtr = lDestPtr--; |
258 | for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) { |
259 | /* sum += matrix[k][j] * x[j] */ |
260 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
261 | } |
262 | /*x[k] = (y[k] - sum) / u; */ |
263 | *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u; |
264 | lLineMatrix -= lStride; |
265 | } |
266 | } |
267 | |
268 | |
269 | static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix, |
270 | OPJ_FLOAT32 * pDestMatrix, |
271 | OPJ_UINT32 nb_compo, |
272 | OPJ_UINT32 * pPermutations, |
273 | OPJ_FLOAT32 * p_src_temp, |
274 | OPJ_FLOAT32 * p_dest_temp, |
275 | OPJ_FLOAT32 * p_swap_area) |
276 | { |
277 | OPJ_UINT32 j, i; |
278 | OPJ_FLOAT32 * lCurrentPtr; |
279 | OPJ_FLOAT32 * lLineMatrix = pDestMatrix; |
280 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
281 | |
282 | for (j = 0; j < nb_compo; ++j) { |
283 | lCurrentPtr = lLineMatrix++; |
284 | memset(p_src_temp, 0, lSwapSize); |
285 | p_src_temp[j] = 1.0; |
286 | opj_lupSolve(p_dest_temp, pSrcMatrix, p_src_temp, pPermutations, nb_compo, |
287 | p_swap_area); |
288 | |
289 | for (i = 0; i < nb_compo; ++i) { |
290 | *(lCurrentPtr) = p_dest_temp[i]; |
291 | lCurrentPtr += nb_compo; |
292 | } |
293 | } |
294 | } |
295 | |
296 | |