1/*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37#ifndef OPJ_INTMATH_H
38#define OPJ_INTMATH_H
39/**
40@file opj_intmath.h
41@brief Implementation of operations on integers (INT)
42
43The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
44*/
45
46/** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
47/*@{*/
48
49/** @name Exported functions (see also openjpeg.h) */
50/*@{*/
51/* ----------------------------------------------------------------------- */
52/**
53Get the minimum of two integers
54@return Returns a if a < b else b
55*/
56static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b)
57{
58 return a < b ? a : b;
59}
60
61/**
62Get the minimum of two integers
63@return Returns a if a < b else b
64*/
65static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b)
66{
67 return a < b ? a : b;
68}
69
70/**
71Get the maximum of two integers
72@return Returns a if a > b else b
73*/
74static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b)
75{
76 return (a > b) ? a : b;
77}
78
79/**
80Get the maximum of two integers
81@return Returns a if a > b else b
82*/
83static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b)
84{
85 return (a > b) ? a : b;
86}
87
88/**
89 Get the saturated sum of two unsigned integers
90 @return Returns saturated sum of a+b
91 */
92static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b)
93{
94 OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
95 return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
96}
97
98/**
99 Get the saturated difference of two unsigned integers
100 @return Returns saturated sum of a-b
101 */
102static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b)
103{
104 return (a >= b) ? a - b : 0;
105}
106
107/**
108Clamp an integer inside an interval
109@return
110<ul>
111<li>Returns a if (min < a < max)
112<li>Returns max if (a > max)
113<li>Returns min if (a < min)
114</ul>
115*/
116static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min,
117 OPJ_INT32 max)
118{
119 if (a < min) {
120 return min;
121 }
122 if (a > max) {
123 return max;
124 }
125 return a;
126}
127
128/**
129Clamp an integer inside an interval
130@return
131<ul>
132<li>Returns a if (min < a < max)
133<li>Returns max if (a > max)
134<li>Returns min if (a < min)
135</ul>
136*/
137static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min,
138 OPJ_INT64 max)
139{
140 if (a < min) {
141 return min;
142 }
143 if (a > max) {
144 return max;
145 }
146 return a;
147}
148
149/**
150@return Get absolute value of integer
151*/
152static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a)
153{
154 return a < 0 ? -a : a;
155}
156/**
157Divide an integer and round upwards
158@return Returns a divided by b
159*/
160static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b)
161{
162 assert(b);
163 return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b);
164}
165
166/**
167Divide an integer and round upwards
168@return Returns a divided by b
169*/
170static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b)
171{
172 assert(b);
173 return (a + b - 1) / b;
174}
175
176/**
177Divide an integer by a power of 2 and round upwards
178@return Returns a divided by 2^b
179*/
180static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b)
181{
182 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
183}
184
185/**
186 Divide a 64bits integer by a power of 2 and round upwards
187 @return Returns a divided by 2^b
188 */
189static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b)
190{
191 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
192}
193
194/**
195 Divide an integer by a power of 2 and round upwards
196 @return Returns a divided by 2^b
197 */
198static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
199{
200 return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
201}
202
203/**
204Divide an integer by a power of 2 and round downwards
205@return Returns a divided by 2^b
206*/
207static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b)
208{
209 return a >> b;
210}
211/**
212Get logarithm of an integer and round downwards
213@return Returns log2(a)
214*/
215static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a)
216{
217 OPJ_INT32 l;
218 for (l = 0; a > 1; l++) {
219 a >>= 1;
220 }
221 return l;
222}
223/**
224Get logarithm of an integer and round downwards
225@return Returns log2(a)
226*/
227static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a)
228{
229 OPJ_UINT32 l;
230 for (l = 0; a > 1; ++l) {
231 a >>= 1;
232 }
233 return l;
234}
235
236/**
237Multiply two fixed-precision rational numbers.
238@param a
239@param b
240@return Returns a * b
241*/
242static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b)
243{
244#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
245 OPJ_INT64 temp = __emul(a, b);
246#else
247 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
248#endif
249 temp += 4096;
250 assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
251 assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
252 return (OPJ_INT32)(temp >> 13);
253}
254
255static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b)
256{
257#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
258 OPJ_INT64 temp = __emul(a, b);
259#else
260 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
261#endif
262 temp += 4096;
263 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
264 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF -
265 (OPJ_INT64)1));
266 return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
267}
268
269/* ----------------------------------------------------------------------- */
270/*@}*/
271
272/*@}*/
273
274#endif /* OPJ_INTMATH_H */
275