1 | /* |
2 | * The copyright in this software is being made available under the 2-clauses |
3 | * BSD License, included below. This software may be subject to other third |
4 | * party and contributor rights, including patent rights, and no such rights |
5 | * are granted under this license. |
6 | * |
7 | * Copyright (c) 2016, Even Rouault |
8 | * All rights reserved. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
20 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
23 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | #include <assert.h> |
33 | |
34 | #ifdef MUTEX_win32 |
35 | |
36 | /* Some versions of x86_64-w64-mingw32-gc -m32 resolve InterlockedCompareExchange() */ |
37 | /* as __sync_val_compare_and_swap_4 but fails to link it. As this protects against */ |
38 | /* a rather unlikely race, skip it */ |
39 | #if !(defined(__MINGW32__) && defined(__i386__)) |
40 | #define HAVE_INTERLOCKED_COMPARE_EXCHANGE 1 |
41 | #endif |
42 | |
43 | #include <windows.h> |
44 | #include <process.h> |
45 | |
46 | #include "opj_includes.h" |
47 | |
48 | OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
49 | { |
50 | return OPJ_TRUE; |
51 | } |
52 | |
53 | int OPJ_CALLCONV opj_get_num_cpus(void) |
54 | { |
55 | SYSTEM_INFO info; |
56 | DWORD dwNum; |
57 | GetSystemInfo(&info); |
58 | dwNum = info.dwNumberOfProcessors; |
59 | if (dwNum < 1) { |
60 | return 1; |
61 | } |
62 | return (int)dwNum; |
63 | } |
64 | |
65 | struct opj_mutex_t { |
66 | CRITICAL_SECTION cs; |
67 | }; |
68 | |
69 | opj_mutex_t* opj_mutex_create(void) |
70 | { |
71 | opj_mutex_t* mutex = (opj_mutex_t*) opj_malloc(sizeof(opj_mutex_t)); |
72 | if (!mutex) { |
73 | return NULL; |
74 | } |
75 | InitializeCriticalSectionAndSpinCount(&(mutex->cs), 4000); |
76 | return mutex; |
77 | } |
78 | |
79 | void opj_mutex_lock(opj_mutex_t* mutex) |
80 | { |
81 | EnterCriticalSection(&(mutex->cs)); |
82 | } |
83 | |
84 | void opj_mutex_unlock(opj_mutex_t* mutex) |
85 | { |
86 | LeaveCriticalSection(&(mutex->cs)); |
87 | } |
88 | |
89 | void opj_mutex_destroy(opj_mutex_t* mutex) |
90 | { |
91 | if (!mutex) { |
92 | return; |
93 | } |
94 | DeleteCriticalSection(&(mutex->cs)); |
95 | opj_free(mutex); |
96 | } |
97 | |
98 | struct opj_cond_waiter_list_t { |
99 | HANDLE hEvent; |
100 | struct opj_cond_waiter_list_t* next; |
101 | }; |
102 | typedef struct opj_cond_waiter_list_t opj_cond_waiter_list_t; |
103 | |
104 | struct opj_cond_t { |
105 | opj_mutex_t *internal_mutex; |
106 | opj_cond_waiter_list_t *waiter_list; |
107 | }; |
108 | |
109 | static DWORD TLSKey = 0; |
110 | static volatile LONG inTLSLockedSection = 0; |
111 | static volatile int TLSKeyInit = OPJ_FALSE; |
112 | |
113 | opj_cond_t* opj_cond_create(void) |
114 | { |
115 | opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t)); |
116 | if (!cond) { |
117 | return NULL; |
118 | } |
119 | |
120 | /* Make sure that the TLS key is allocated in a thread-safe way */ |
121 | /* We cannot use a global mutex/critical section since its creation itself would not be */ |
122 | /* thread-safe, so use InterlockedCompareExchange trick */ |
123 | while (OPJ_TRUE) { |
124 | |
125 | #if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
126 | if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0) |
127 | #endif |
128 | { |
129 | if (!TLSKeyInit) { |
130 | TLSKey = TlsAlloc(); |
131 | TLSKeyInit = OPJ_TRUE; |
132 | } |
133 | #if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
134 | InterlockedCompareExchange(&inTLSLockedSection, 0, 1); |
135 | #endif |
136 | break; |
137 | } |
138 | } |
139 | |
140 | if (TLSKey == TLS_OUT_OF_INDEXES) { |
141 | opj_free(cond); |
142 | return NULL; |
143 | } |
144 | cond->internal_mutex = opj_mutex_create(); |
145 | if (cond->internal_mutex == NULL) { |
146 | opj_free(cond); |
147 | return NULL; |
148 | } |
149 | cond->waiter_list = NULL; |
150 | return cond; |
151 | } |
152 | |
153 | void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
154 | { |
155 | opj_cond_waiter_list_t* item; |
156 | HANDLE hEvent = (HANDLE) TlsGetValue(TLSKey); |
157 | if (hEvent == NULL) { |
158 | hEvent = CreateEvent(NULL, /* security attributes */ |
159 | 0, /* manual reset = no */ |
160 | 0, /* initial state = unsignaled */ |
161 | NULL /* no name */); |
162 | assert(hEvent); |
163 | |
164 | TlsSetValue(TLSKey, hEvent); |
165 | } |
166 | |
167 | /* Insert the waiter into the waiter list of the condition */ |
168 | opj_mutex_lock(cond->internal_mutex); |
169 | |
170 | item = (opj_cond_waiter_list_t*)opj_malloc(sizeof(opj_cond_waiter_list_t)); |
171 | assert(item != NULL); |
172 | |
173 | item->hEvent = hEvent; |
174 | item->next = cond->waiter_list; |
175 | |
176 | cond->waiter_list = item; |
177 | |
178 | opj_mutex_unlock(cond->internal_mutex); |
179 | |
180 | /* Release the client mutex before waiting for the event being signaled */ |
181 | opj_mutex_unlock(mutex); |
182 | |
183 | /* Ideally we would check that we do not get WAIT_FAILED but it is hard */ |
184 | /* to report a failure. */ |
185 | WaitForSingleObject(hEvent, INFINITE); |
186 | |
187 | /* Reacquire the client mutex */ |
188 | opj_mutex_lock(mutex); |
189 | } |
190 | |
191 | void opj_cond_signal(opj_cond_t* cond) |
192 | { |
193 | opj_cond_waiter_list_t* psIter; |
194 | |
195 | /* Signal the first registered event, and remove it from the list */ |
196 | opj_mutex_lock(cond->internal_mutex); |
197 | |
198 | psIter = cond->waiter_list; |
199 | if (psIter != NULL) { |
200 | SetEvent(psIter->hEvent); |
201 | cond->waiter_list = psIter->next; |
202 | opj_free(psIter); |
203 | } |
204 | |
205 | opj_mutex_unlock(cond->internal_mutex); |
206 | } |
207 | |
208 | void opj_cond_destroy(opj_cond_t* cond) |
209 | { |
210 | if (!cond) { |
211 | return; |
212 | } |
213 | opj_mutex_destroy(cond->internal_mutex); |
214 | assert(cond->waiter_list == NULL); |
215 | opj_free(cond); |
216 | } |
217 | |
218 | struct opj_thread_t { |
219 | opj_thread_fn thread_fn; |
220 | void* user_data; |
221 | HANDLE hThread; |
222 | }; |
223 | |
224 | unsigned int __stdcall opj_thread_callback_adapter(void *info) |
225 | { |
226 | opj_thread_t* thread = (opj_thread_t*) info; |
227 | HANDLE hEvent = NULL; |
228 | |
229 | thread->thread_fn(thread->user_data); |
230 | |
231 | /* Free the handle possible allocated by a cond */ |
232 | while (OPJ_TRUE) { |
233 | /* Make sure TLSKey is not being created just at that moment... */ |
234 | #if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
235 | if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0) |
236 | #endif |
237 | { |
238 | if (TLSKeyInit) { |
239 | hEvent = (HANDLE) TlsGetValue(TLSKey); |
240 | } |
241 | #if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
242 | InterlockedCompareExchange(&inTLSLockedSection, 0, 1); |
243 | #endif |
244 | break; |
245 | } |
246 | } |
247 | if (hEvent) { |
248 | CloseHandle(hEvent); |
249 | } |
250 | |
251 | return 0; |
252 | } |
253 | |
254 | opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
255 | { |
256 | opj_thread_t* thread; |
257 | |
258 | assert(thread_fn); |
259 | |
260 | thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t)); |
261 | if (!thread) { |
262 | return NULL; |
263 | } |
264 | thread->thread_fn = thread_fn; |
265 | thread->user_data = user_data; |
266 | |
267 | thread->hThread = (HANDLE)_beginthreadex(NULL, 0, |
268 | opj_thread_callback_adapter, thread, 0, NULL); |
269 | |
270 | if (thread->hThread == NULL) { |
271 | opj_free(thread); |
272 | return NULL; |
273 | } |
274 | return thread; |
275 | } |
276 | |
277 | void opj_thread_join(opj_thread_t* thread) |
278 | { |
279 | WaitForSingleObject(thread->hThread, INFINITE); |
280 | CloseHandle(thread->hThread); |
281 | |
282 | opj_free(thread); |
283 | } |
284 | |
285 | #elif MUTEX_pthread |
286 | |
287 | #include <pthread.h> |
288 | #include <stdlib.h> |
289 | #include <unistd.h> |
290 | |
291 | /* Moved after all system includes, and in particular pthread.h, so as to */ |
292 | /* avoid poisoning issuing with malloc() use in pthread.h with ulibc (#1013) */ |
293 | #include "opj_includes.h" |
294 | |
295 | OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
296 | { |
297 | return OPJ_TRUE; |
298 | } |
299 | |
300 | int OPJ_CALLCONV opj_get_num_cpus(void) |
301 | { |
302 | #ifdef _SC_NPROCESSORS_ONLN |
303 | return (int)sysconf(_SC_NPROCESSORS_ONLN); |
304 | #else |
305 | return 1; |
306 | #endif |
307 | } |
308 | |
309 | struct opj_mutex_t { |
310 | pthread_mutex_t mutex; |
311 | }; |
312 | |
313 | opj_mutex_t* opj_mutex_create(void) |
314 | { |
315 | opj_mutex_t* mutex = (opj_mutex_t*) opj_calloc(1U, sizeof(opj_mutex_t)); |
316 | if (mutex != NULL) { |
317 | if (pthread_mutex_init(&mutex->mutex, NULL) != 0) { |
318 | opj_free(mutex); |
319 | mutex = NULL; |
320 | } |
321 | } |
322 | return mutex; |
323 | } |
324 | |
325 | void opj_mutex_lock(opj_mutex_t* mutex) |
326 | { |
327 | pthread_mutex_lock(&(mutex->mutex)); |
328 | } |
329 | |
330 | void opj_mutex_unlock(opj_mutex_t* mutex) |
331 | { |
332 | pthread_mutex_unlock(&(mutex->mutex)); |
333 | } |
334 | |
335 | void opj_mutex_destroy(opj_mutex_t* mutex) |
336 | { |
337 | if (!mutex) { |
338 | return; |
339 | } |
340 | pthread_mutex_destroy(&(mutex->mutex)); |
341 | opj_free(mutex); |
342 | } |
343 | |
344 | struct opj_cond_t { |
345 | pthread_cond_t cond; |
346 | }; |
347 | |
348 | opj_cond_t* opj_cond_create(void) |
349 | { |
350 | opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t)); |
351 | if (!cond) { |
352 | return NULL; |
353 | } |
354 | if (pthread_cond_init(&(cond->cond), NULL) != 0) { |
355 | opj_free(cond); |
356 | return NULL; |
357 | } |
358 | return cond; |
359 | } |
360 | |
361 | void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
362 | { |
363 | pthread_cond_wait(&(cond->cond), &(mutex->mutex)); |
364 | } |
365 | |
366 | void opj_cond_signal(opj_cond_t* cond) |
367 | { |
368 | int ret = pthread_cond_signal(&(cond->cond)); |
369 | (void)ret; |
370 | assert(ret == 0); |
371 | } |
372 | |
373 | void opj_cond_destroy(opj_cond_t* cond) |
374 | { |
375 | if (!cond) { |
376 | return; |
377 | } |
378 | pthread_cond_destroy(&(cond->cond)); |
379 | opj_free(cond); |
380 | } |
381 | |
382 | |
383 | struct opj_thread_t { |
384 | opj_thread_fn thread_fn; |
385 | void* user_data; |
386 | pthread_t thread; |
387 | }; |
388 | |
389 | static void* opj_thread_callback_adapter(void* info) |
390 | { |
391 | opj_thread_t* thread = (opj_thread_t*) info; |
392 | thread->thread_fn(thread->user_data); |
393 | return NULL; |
394 | } |
395 | |
396 | opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
397 | { |
398 | pthread_attr_t attr; |
399 | opj_thread_t* thread; |
400 | |
401 | assert(thread_fn); |
402 | |
403 | thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t)); |
404 | if (!thread) { |
405 | return NULL; |
406 | } |
407 | thread->thread_fn = thread_fn; |
408 | thread->user_data = user_data; |
409 | |
410 | pthread_attr_init(&attr); |
411 | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); |
412 | if (pthread_create(&(thread->thread), &attr, |
413 | opj_thread_callback_adapter, (void *) thread) != 0) { |
414 | opj_free(thread); |
415 | return NULL; |
416 | } |
417 | return thread; |
418 | } |
419 | |
420 | void opj_thread_join(opj_thread_t* thread) |
421 | { |
422 | void* status; |
423 | pthread_join(thread->thread, &status); |
424 | |
425 | opj_free(thread); |
426 | } |
427 | |
428 | #else |
429 | /* Stub implementation */ |
430 | |
431 | #include "opj_includes.h" |
432 | |
433 | OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
434 | { |
435 | return OPJ_FALSE; |
436 | } |
437 | |
438 | int OPJ_CALLCONV opj_get_num_cpus(void) |
439 | { |
440 | return 1; |
441 | } |
442 | |
443 | opj_mutex_t* opj_mutex_create(void) |
444 | { |
445 | return NULL; |
446 | } |
447 | |
448 | void opj_mutex_lock(opj_mutex_t* mutex) |
449 | { |
450 | (void) mutex; |
451 | } |
452 | |
453 | void opj_mutex_unlock(opj_mutex_t* mutex) |
454 | { |
455 | (void) mutex; |
456 | } |
457 | |
458 | void opj_mutex_destroy(opj_mutex_t* mutex) |
459 | { |
460 | (void) mutex; |
461 | } |
462 | |
463 | opj_cond_t* opj_cond_create(void) |
464 | { |
465 | return NULL; |
466 | } |
467 | |
468 | void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
469 | { |
470 | (void) cond; |
471 | (void) mutex; |
472 | } |
473 | |
474 | void opj_cond_signal(opj_cond_t* cond) |
475 | { |
476 | (void) cond; |
477 | } |
478 | |
479 | void opj_cond_destroy(opj_cond_t* cond) |
480 | { |
481 | (void) cond; |
482 | } |
483 | |
484 | opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
485 | { |
486 | (void) thread_fn; |
487 | (void) user_data; |
488 | return NULL; |
489 | } |
490 | |
491 | void opj_thread_join(opj_thread_t* thread) |
492 | { |
493 | (void) thread; |
494 | } |
495 | |
496 | #endif |
497 | |
498 | typedef struct { |
499 | int key; |
500 | void* value; |
501 | opj_tls_free_func opj_free_func; |
502 | } opj_tls_key_val_t; |
503 | |
504 | struct opj_tls_t { |
505 | opj_tls_key_val_t* key_val; |
506 | int key_val_count; |
507 | }; |
508 | |
509 | static opj_tls_t* opj_tls_new(void) |
510 | { |
511 | return (opj_tls_t*) opj_calloc(1, sizeof(opj_tls_t)); |
512 | } |
513 | |
514 | static void opj_tls_destroy(opj_tls_t* tls) |
515 | { |
516 | int i; |
517 | if (!tls) { |
518 | return; |
519 | } |
520 | for (i = 0; i < tls->key_val_count; i++) { |
521 | if (tls->key_val[i].opj_free_func) { |
522 | tls->key_val[i].opj_free_func(tls->key_val[i].value); |
523 | } |
524 | } |
525 | opj_free(tls->key_val); |
526 | opj_free(tls); |
527 | } |
528 | |
529 | void* opj_tls_get(opj_tls_t* tls, int key) |
530 | { |
531 | int i; |
532 | for (i = 0; i < tls->key_val_count; i++) { |
533 | if (tls->key_val[i].key == key) { |
534 | return tls->key_val[i].value; |
535 | } |
536 | } |
537 | return NULL; |
538 | } |
539 | |
540 | OPJ_BOOL opj_tls_set(opj_tls_t* tls, int key, void* value, |
541 | opj_tls_free_func opj_free_func) |
542 | { |
543 | opj_tls_key_val_t* new_key_val; |
544 | int i; |
545 | |
546 | if (tls->key_val_count == INT_MAX) { |
547 | return OPJ_FALSE; |
548 | } |
549 | for (i = 0; i < tls->key_val_count; i++) { |
550 | if (tls->key_val[i].key == key) { |
551 | if (tls->key_val[i].opj_free_func) { |
552 | tls->key_val[i].opj_free_func(tls->key_val[i].value); |
553 | } |
554 | tls->key_val[i].value = value; |
555 | tls->key_val[i].opj_free_func = opj_free_func; |
556 | return OPJ_TRUE; |
557 | } |
558 | } |
559 | new_key_val = (opj_tls_key_val_t*) opj_realloc(tls->key_val, |
560 | ((size_t)tls->key_val_count + 1U) * sizeof(opj_tls_key_val_t)); |
561 | if (!new_key_val) { |
562 | return OPJ_FALSE; |
563 | } |
564 | tls->key_val = new_key_val; |
565 | new_key_val[tls->key_val_count].key = key; |
566 | new_key_val[tls->key_val_count].value = value; |
567 | new_key_val[tls->key_val_count].opj_free_func = opj_free_func; |
568 | tls->key_val_count ++; |
569 | return OPJ_TRUE; |
570 | } |
571 | |
572 | |
573 | typedef struct { |
574 | opj_job_fn job_fn; |
575 | void *user_data; |
576 | } opj_worker_thread_job_t; |
577 | |
578 | typedef struct { |
579 | opj_thread_pool_t *tp; |
580 | opj_thread_t *thread; |
581 | int marked_as_waiting; |
582 | |
583 | opj_mutex_t *mutex; |
584 | opj_cond_t *cond; |
585 | } opj_worker_thread_t; |
586 | |
587 | typedef enum { |
588 | OPJWTS_OK, |
589 | OPJWTS_STOP, |
590 | OPJWTS_ERROR |
591 | } opj_worker_thread_state; |
592 | |
593 | struct opj_job_list_t { |
594 | opj_worker_thread_job_t* job; |
595 | struct opj_job_list_t* next; |
596 | }; |
597 | typedef struct opj_job_list_t opj_job_list_t; |
598 | |
599 | struct opj_worker_thread_list_t { |
600 | opj_worker_thread_t* worker_thread; |
601 | struct opj_worker_thread_list_t* next; |
602 | }; |
603 | typedef struct opj_worker_thread_list_t opj_worker_thread_list_t; |
604 | |
605 | struct opj_thread_pool_t { |
606 | opj_worker_thread_t* worker_threads; |
607 | int worker_threads_count; |
608 | opj_cond_t* cond; |
609 | opj_mutex_t* mutex; |
610 | volatile opj_worker_thread_state state; |
611 | opj_job_list_t* job_queue; |
612 | volatile int pending_jobs_count; |
613 | opj_worker_thread_list_t* waiting_worker_thread_list; |
614 | int waiting_worker_thread_count; |
615 | opj_tls_t* tls; |
616 | int signaling_threshold; |
617 | }; |
618 | |
619 | static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads); |
620 | static opj_worker_thread_job_t* opj_thread_pool_get_next_job( |
621 | opj_thread_pool_t* tp, |
622 | opj_worker_thread_t* worker_thread, |
623 | OPJ_BOOL signal_job_finished); |
624 | |
625 | opj_thread_pool_t* opj_thread_pool_create(int num_threads) |
626 | { |
627 | opj_thread_pool_t* tp; |
628 | |
629 | tp = (opj_thread_pool_t*) opj_calloc(1, sizeof(opj_thread_pool_t)); |
630 | if (!tp) { |
631 | return NULL; |
632 | } |
633 | tp->state = OPJWTS_OK; |
634 | |
635 | if (num_threads <= 0) { |
636 | tp->tls = opj_tls_new(); |
637 | if (!tp->tls) { |
638 | opj_free(tp); |
639 | tp = NULL; |
640 | } |
641 | return tp; |
642 | } |
643 | |
644 | tp->mutex = opj_mutex_create(); |
645 | if (!tp->mutex) { |
646 | opj_free(tp); |
647 | return NULL; |
648 | } |
649 | if (!opj_thread_pool_setup(tp, num_threads)) { |
650 | opj_thread_pool_destroy(tp); |
651 | return NULL; |
652 | } |
653 | return tp; |
654 | } |
655 | |
656 | static void opj_worker_thread_function(void* user_data) |
657 | { |
658 | opj_worker_thread_t* worker_thread; |
659 | opj_thread_pool_t* tp; |
660 | opj_tls_t* tls; |
661 | OPJ_BOOL job_finished = OPJ_FALSE; |
662 | |
663 | worker_thread = (opj_worker_thread_t*) user_data; |
664 | tp = worker_thread->tp; |
665 | tls = opj_tls_new(); |
666 | |
667 | while (OPJ_TRUE) { |
668 | opj_worker_thread_job_t* job = opj_thread_pool_get_next_job(tp, worker_thread, |
669 | job_finished); |
670 | if (job == NULL) { |
671 | break; |
672 | } |
673 | |
674 | if (job->job_fn) { |
675 | job->job_fn(job->user_data, tls); |
676 | } |
677 | opj_free(job); |
678 | job_finished = OPJ_TRUE; |
679 | } |
680 | |
681 | opj_tls_destroy(tls); |
682 | } |
683 | |
684 | static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads) |
685 | { |
686 | int i; |
687 | OPJ_BOOL bRet = OPJ_TRUE; |
688 | |
689 | assert(num_threads > 0); |
690 | |
691 | tp->cond = opj_cond_create(); |
692 | if (tp->cond == NULL) { |
693 | return OPJ_FALSE; |
694 | } |
695 | |
696 | tp->worker_threads = (opj_worker_thread_t*) opj_calloc((size_t)num_threads, |
697 | sizeof(opj_worker_thread_t)); |
698 | if (tp->worker_threads == NULL) { |
699 | return OPJ_FALSE; |
700 | } |
701 | tp->worker_threads_count = num_threads; |
702 | |
703 | for (i = 0; i < num_threads; i++) { |
704 | tp->worker_threads[i].tp = tp; |
705 | |
706 | tp->worker_threads[i].mutex = opj_mutex_create(); |
707 | if (tp->worker_threads[i].mutex == NULL) { |
708 | tp->worker_threads_count = i; |
709 | bRet = OPJ_FALSE; |
710 | break; |
711 | } |
712 | |
713 | tp->worker_threads[i].cond = opj_cond_create(); |
714 | if (tp->worker_threads[i].cond == NULL) { |
715 | opj_mutex_destroy(tp->worker_threads[i].mutex); |
716 | tp->worker_threads_count = i; |
717 | bRet = OPJ_FALSE; |
718 | break; |
719 | } |
720 | |
721 | tp->worker_threads[i].marked_as_waiting = OPJ_FALSE; |
722 | |
723 | tp->worker_threads[i].thread = opj_thread_create(opj_worker_thread_function, |
724 | &(tp->worker_threads[i])); |
725 | if (tp->worker_threads[i].thread == NULL) { |
726 | tp->worker_threads_count = i; |
727 | bRet = OPJ_FALSE; |
728 | break; |
729 | } |
730 | } |
731 | |
732 | /* Wait all threads to be started */ |
733 | /* printf("waiting for all threads to be started\n"); */ |
734 | opj_mutex_lock(tp->mutex); |
735 | while (tp->waiting_worker_thread_count < num_threads) { |
736 | opj_cond_wait(tp->cond, tp->mutex); |
737 | } |
738 | opj_mutex_unlock(tp->mutex); |
739 | /* printf("all threads started\n"); */ |
740 | |
741 | if (tp->state == OPJWTS_ERROR) { |
742 | bRet = OPJ_FALSE; |
743 | } |
744 | |
745 | return bRet; |
746 | } |
747 | |
748 | /* |
749 | void opj_waiting() |
750 | { |
751 | printf("waiting!\n"); |
752 | } |
753 | */ |
754 | |
755 | static opj_worker_thread_job_t* opj_thread_pool_get_next_job( |
756 | opj_thread_pool_t* tp, |
757 | opj_worker_thread_t* worker_thread, |
758 | OPJ_BOOL signal_job_finished) |
759 | { |
760 | while (OPJ_TRUE) { |
761 | opj_job_list_t* top_job_iter; |
762 | |
763 | opj_mutex_lock(tp->mutex); |
764 | |
765 | if (signal_job_finished) { |
766 | signal_job_finished = OPJ_FALSE; |
767 | tp->pending_jobs_count --; |
768 | /*printf("tp=%p, remaining jobs: %d\n", tp, tp->pending_jobs_count);*/ |
769 | if (tp->pending_jobs_count <= tp->signaling_threshold) { |
770 | opj_cond_signal(tp->cond); |
771 | } |
772 | } |
773 | |
774 | if (tp->state == OPJWTS_STOP) { |
775 | opj_mutex_unlock(tp->mutex); |
776 | return NULL; |
777 | } |
778 | top_job_iter = tp->job_queue; |
779 | if (top_job_iter) { |
780 | opj_worker_thread_job_t* job; |
781 | tp->job_queue = top_job_iter->next; |
782 | |
783 | job = top_job_iter->job; |
784 | opj_mutex_unlock(tp->mutex); |
785 | opj_free(top_job_iter); |
786 | return job; |
787 | } |
788 | |
789 | /* opj_waiting(); */ |
790 | if (!worker_thread->marked_as_waiting) { |
791 | opj_worker_thread_list_t* item; |
792 | |
793 | worker_thread->marked_as_waiting = OPJ_TRUE; |
794 | tp->waiting_worker_thread_count ++; |
795 | assert(tp->waiting_worker_thread_count <= tp->worker_threads_count); |
796 | |
797 | item = (opj_worker_thread_list_t*) opj_malloc(sizeof(opj_worker_thread_list_t)); |
798 | if (item == NULL) { |
799 | tp->state = OPJWTS_ERROR; |
800 | opj_cond_signal(tp->cond); |
801 | |
802 | opj_mutex_unlock(tp->mutex); |
803 | return NULL; |
804 | } |
805 | |
806 | item->worker_thread = worker_thread; |
807 | item->next = tp->waiting_worker_thread_list; |
808 | tp->waiting_worker_thread_list = item; |
809 | } |
810 | |
811 | /* printf("signaling that worker thread is ready\n"); */ |
812 | opj_cond_signal(tp->cond); |
813 | |
814 | opj_mutex_lock(worker_thread->mutex); |
815 | opj_mutex_unlock(tp->mutex); |
816 | |
817 | /* printf("waiting for job\n"); */ |
818 | opj_cond_wait(worker_thread->cond, worker_thread->mutex); |
819 | |
820 | opj_mutex_unlock(worker_thread->mutex); |
821 | /* printf("got job\n"); */ |
822 | } |
823 | } |
824 | |
825 | OPJ_BOOL opj_thread_pool_submit_job(opj_thread_pool_t* tp, |
826 | opj_job_fn job_fn, |
827 | void* user_data) |
828 | { |
829 | opj_worker_thread_job_t* job; |
830 | opj_job_list_t* item; |
831 | |
832 | if (tp->mutex == NULL) { |
833 | job_fn(user_data, tp->tls); |
834 | return OPJ_TRUE; |
835 | } |
836 | |
837 | job = (opj_worker_thread_job_t*)opj_malloc(sizeof(opj_worker_thread_job_t)); |
838 | if (job == NULL) { |
839 | return OPJ_FALSE; |
840 | } |
841 | job->job_fn = job_fn; |
842 | job->user_data = user_data; |
843 | |
844 | item = (opj_job_list_t*) opj_malloc(sizeof(opj_job_list_t)); |
845 | if (item == NULL) { |
846 | opj_free(job); |
847 | return OPJ_FALSE; |
848 | } |
849 | item->job = job; |
850 | |
851 | opj_mutex_lock(tp->mutex); |
852 | |
853 | tp->signaling_threshold = 100 * tp->worker_threads_count; |
854 | while (tp->pending_jobs_count > tp->signaling_threshold) { |
855 | /* printf("%d jobs enqueued. Waiting\n", tp->pending_jobs_count); */ |
856 | opj_cond_wait(tp->cond, tp->mutex); |
857 | /* printf("...%d jobs enqueued.\n", tp->pending_jobs_count); */ |
858 | } |
859 | |
860 | item->next = tp->job_queue; |
861 | tp->job_queue = item; |
862 | tp->pending_jobs_count ++; |
863 | |
864 | if (tp->waiting_worker_thread_list) { |
865 | opj_worker_thread_t* worker_thread; |
866 | opj_worker_thread_list_t* next; |
867 | opj_worker_thread_list_t* to_opj_free; |
868 | |
869 | worker_thread = tp->waiting_worker_thread_list->worker_thread; |
870 | |
871 | assert(worker_thread->marked_as_waiting); |
872 | worker_thread->marked_as_waiting = OPJ_FALSE; |
873 | |
874 | next = tp->waiting_worker_thread_list->next; |
875 | to_opj_free = tp->waiting_worker_thread_list; |
876 | tp->waiting_worker_thread_list = next; |
877 | tp->waiting_worker_thread_count --; |
878 | |
879 | opj_mutex_lock(worker_thread->mutex); |
880 | opj_mutex_unlock(tp->mutex); |
881 | opj_cond_signal(worker_thread->cond); |
882 | opj_mutex_unlock(worker_thread->mutex); |
883 | |
884 | opj_free(to_opj_free); |
885 | } else { |
886 | opj_mutex_unlock(tp->mutex); |
887 | } |
888 | |
889 | return OPJ_TRUE; |
890 | } |
891 | |
892 | void opj_thread_pool_wait_completion(opj_thread_pool_t* tp, |
893 | int max_remaining_jobs) |
894 | { |
895 | if (tp->mutex == NULL) { |
896 | return; |
897 | } |
898 | |
899 | if (max_remaining_jobs < 0) { |
900 | max_remaining_jobs = 0; |
901 | } |
902 | opj_mutex_lock(tp->mutex); |
903 | tp->signaling_threshold = max_remaining_jobs; |
904 | while (tp->pending_jobs_count > max_remaining_jobs) { |
905 | /*printf("tp=%p, jobs before wait = %d, max_remaining_jobs = %d\n", tp, tp->pending_jobs_count, max_remaining_jobs);*/ |
906 | opj_cond_wait(tp->cond, tp->mutex); |
907 | /*printf("tp=%p, jobs after wait = %d\n", tp, tp->pending_jobs_count);*/ |
908 | } |
909 | opj_mutex_unlock(tp->mutex); |
910 | } |
911 | |
912 | int opj_thread_pool_get_thread_count(opj_thread_pool_t* tp) |
913 | { |
914 | return tp->worker_threads_count; |
915 | } |
916 | |
917 | void opj_thread_pool_destroy(opj_thread_pool_t* tp) |
918 | { |
919 | if (!tp) { |
920 | return; |
921 | } |
922 | if (tp->cond) { |
923 | int i; |
924 | opj_thread_pool_wait_completion(tp, 0); |
925 | |
926 | opj_mutex_lock(tp->mutex); |
927 | tp->state = OPJWTS_STOP; |
928 | opj_mutex_unlock(tp->mutex); |
929 | |
930 | for (i = 0; i < tp->worker_threads_count; i++) { |
931 | opj_mutex_lock(tp->worker_threads[i].mutex); |
932 | opj_cond_signal(tp->worker_threads[i].cond); |
933 | opj_mutex_unlock(tp->worker_threads[i].mutex); |
934 | opj_thread_join(tp->worker_threads[i].thread); |
935 | opj_cond_destroy(tp->worker_threads[i].cond); |
936 | opj_mutex_destroy(tp->worker_threads[i].mutex); |
937 | } |
938 | |
939 | opj_free(tp->worker_threads); |
940 | |
941 | while (tp->waiting_worker_thread_list != NULL) { |
942 | opj_worker_thread_list_t* next = tp->waiting_worker_thread_list->next; |
943 | opj_free(tp->waiting_worker_thread_list); |
944 | tp->waiting_worker_thread_list = next; |
945 | } |
946 | |
947 | opj_cond_destroy(tp->cond); |
948 | } |
949 | opj_mutex_destroy(tp->mutex); |
950 | opj_tls_destroy(tp->tls); |
951 | opj_free(tp); |
952 | } |
953 | |