| 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream | 
|---|
| 2 | * Copyright (C) 1995-2011, 2016 Mark Adler | 
|---|
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h | 
|---|
| 4 | */ | 
|---|
| 5 |  | 
|---|
| 6 | /* @(#) $Id$ */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "zutil.h" | 
|---|
| 9 |  | 
|---|
| 10 | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); | 
|---|
| 11 |  | 
|---|
| 12 | #define BASE 65521U     /* largest prime smaller than 65536 */ | 
|---|
| 13 | #define NMAX 5552 | 
|---|
| 14 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | 
|---|
| 15 |  | 
|---|
| 16 | #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;} | 
|---|
| 17 | #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1); | 
|---|
| 18 | #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2); | 
|---|
| 19 | #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4); | 
|---|
| 20 | #define DO16(buf)   DO8(buf,0); DO8(buf,8); | 
|---|
| 21 |  | 
|---|
| 22 | /* use NO_DIVIDE if your processor does not do division in hardware -- | 
|---|
| 23 | try it both ways to see which is faster */ | 
|---|
| 24 | #ifdef NO_DIVIDE | 
|---|
| 25 | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 | 
|---|
| 26 | (thank you to John Reiser for pointing this out) */ | 
|---|
| 27 | #  define CHOP(a) \ | 
|---|
| 28 | do { \ | 
|---|
| 29 | unsigned long tmp = a >> 16; \ | 
|---|
| 30 | a &= 0xffffUL; \ | 
|---|
| 31 | a += (tmp << 4) - tmp; \ | 
|---|
| 32 | } while (0) | 
|---|
| 33 | #  define MOD28(a) \ | 
|---|
| 34 | do { \ | 
|---|
| 35 | CHOP(a); \ | 
|---|
| 36 | if (a >= BASE) a -= BASE; \ | 
|---|
| 37 | } while (0) | 
|---|
| 38 | #  define MOD(a) \ | 
|---|
| 39 | do { \ | 
|---|
| 40 | CHOP(a); \ | 
|---|
| 41 | MOD28(a); \ | 
|---|
| 42 | } while (0) | 
|---|
| 43 | #  define MOD63(a) \ | 
|---|
| 44 | do { /* this assumes a is not negative */ \ | 
|---|
| 45 | z_off64_t tmp = a >> 32; \ | 
|---|
| 46 | a &= 0xffffffffL; \ | 
|---|
| 47 | a += (tmp << 8) - (tmp << 5) + tmp; \ | 
|---|
| 48 | tmp = a >> 16; \ | 
|---|
| 49 | a &= 0xffffL; \ | 
|---|
| 50 | a += (tmp << 4) - tmp; \ | 
|---|
| 51 | tmp = a >> 16; \ | 
|---|
| 52 | a &= 0xffffL; \ | 
|---|
| 53 | a += (tmp << 4) - tmp; \ | 
|---|
| 54 | if (a >= BASE) a -= BASE; \ | 
|---|
| 55 | } while (0) | 
|---|
| 56 | #else | 
|---|
| 57 | #  define MOD(a) a %= BASE | 
|---|
| 58 | #  define MOD28(a) a %= BASE | 
|---|
| 59 | #  define MOD63(a) a %= BASE | 
|---|
| 60 | #endif | 
|---|
| 61 |  | 
|---|
| 62 | /* ========================================================================= */ | 
|---|
| 63 | uLong ZEXPORT adler32_z(adler, buf, len) | 
|---|
| 64 | uLong adler; | 
|---|
| 65 | const Bytef *buf; | 
|---|
| 66 | z_size_t len; | 
|---|
| 67 | { | 
|---|
| 68 | unsigned long sum2; | 
|---|
| 69 | unsigned n; | 
|---|
| 70 |  | 
|---|
| 71 | /* split Adler-32 into component sums */ | 
|---|
| 72 | sum2 = (adler >> 16) & 0xffff; | 
|---|
| 73 | adler &= 0xffff; | 
|---|
| 74 |  | 
|---|
| 75 | /* in case user likes doing a byte at a time, keep it fast */ | 
|---|
| 76 | if (len == 1) { | 
|---|
| 77 | adler += buf[0]; | 
|---|
| 78 | if (adler >= BASE) | 
|---|
| 79 | adler -= BASE; | 
|---|
| 80 | sum2 += adler; | 
|---|
| 81 | if (sum2 >= BASE) | 
|---|
| 82 | sum2 -= BASE; | 
|---|
| 83 | return adler | (sum2 << 16); | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | /* initial Adler-32 value (deferred check for len == 1 speed) */ | 
|---|
| 87 | if (buf == Z_NULL) | 
|---|
| 88 | return 1L; | 
|---|
| 89 |  | 
|---|
| 90 | /* in case short lengths are provided, keep it somewhat fast */ | 
|---|
| 91 | if (len < 16) { | 
|---|
| 92 | while (len--) { | 
|---|
| 93 | adler += *buf++; | 
|---|
| 94 | sum2 += adler; | 
|---|
| 95 | } | 
|---|
| 96 | if (adler >= BASE) | 
|---|
| 97 | adler -= BASE; | 
|---|
| 98 | MOD28(sum2);            /* only added so many BASE's */ | 
|---|
| 99 | return adler | (sum2 << 16); | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | /* do length NMAX blocks -- requires just one modulo operation */ | 
|---|
| 103 | while (len >= NMAX) { | 
|---|
| 104 | len -= NMAX; | 
|---|
| 105 | n = NMAX / 16;          /* NMAX is divisible by 16 */ | 
|---|
| 106 | do { | 
|---|
| 107 | DO16(buf);          /* 16 sums unrolled */ | 
|---|
| 108 | buf += 16; | 
|---|
| 109 | } while (--n); | 
|---|
| 110 | MOD(adler); | 
|---|
| 111 | MOD(sum2); | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | /* do remaining bytes (less than NMAX, still just one modulo) */ | 
|---|
| 115 | if (len) {                  /* avoid modulos if none remaining */ | 
|---|
| 116 | while (len >= 16) { | 
|---|
| 117 | len -= 16; | 
|---|
| 118 | DO16(buf); | 
|---|
| 119 | buf += 16; | 
|---|
| 120 | } | 
|---|
| 121 | while (len--) { | 
|---|
| 122 | adler += *buf++; | 
|---|
| 123 | sum2 += adler; | 
|---|
| 124 | } | 
|---|
| 125 | MOD(adler); | 
|---|
| 126 | MOD(sum2); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | /* return recombined sums */ | 
|---|
| 130 | return adler | (sum2 << 16); | 
|---|
| 131 | } | 
|---|
| 132 |  | 
|---|
| 133 | /* ========================================================================= */ | 
|---|
| 134 | uLong ZEXPORT adler32(adler, buf, len) | 
|---|
| 135 | uLong adler; | 
|---|
| 136 | const Bytef *buf; | 
|---|
| 137 | uInt len; | 
|---|
| 138 | { | 
|---|
| 139 | return adler32_z(adler, buf, len); | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | /* ========================================================================= */ | 
|---|
| 143 | local uLong adler32_combine_(adler1, adler2, len2) | 
|---|
| 144 | uLong adler1; | 
|---|
| 145 | uLong adler2; | 
|---|
| 146 | z_off64_t len2; | 
|---|
| 147 | { | 
|---|
| 148 | unsigned long sum1; | 
|---|
| 149 | unsigned long sum2; | 
|---|
| 150 | unsigned rem; | 
|---|
| 151 |  | 
|---|
| 152 | /* for negative len, return invalid adler32 as a clue for debugging */ | 
|---|
| 153 | if (len2 < 0) | 
|---|
| 154 | return 0xffffffffUL; | 
|---|
| 155 |  | 
|---|
| 156 | /* the derivation of this formula is left as an exercise for the reader */ | 
|---|
| 157 | MOD63(len2);                /* assumes len2 >= 0 */ | 
|---|
| 158 | rem = (unsigned)len2; | 
|---|
| 159 | sum1 = adler1 & 0xffff; | 
|---|
| 160 | sum2 = rem * sum1; | 
|---|
| 161 | MOD(sum2); | 
|---|
| 162 | sum1 += (adler2 & 0xffff) + BASE - 1; | 
|---|
| 163 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | 
|---|
| 164 | if (sum1 >= BASE) sum1 -= BASE; | 
|---|
| 165 | if (sum1 >= BASE) sum1 -= BASE; | 
|---|
| 166 | if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); | 
|---|
| 167 | if (sum2 >= BASE) sum2 -= BASE; | 
|---|
| 168 | return sum1 | (sum2 << 16); | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | /* ========================================================================= */ | 
|---|
| 172 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | 
|---|
| 173 | uLong adler1; | 
|---|
| 174 | uLong adler2; | 
|---|
| 175 | z_off_t len2; | 
|---|
| 176 | { | 
|---|
| 177 | return adler32_combine_(adler1, adler2, len2); | 
|---|
| 178 | } | 
|---|
| 179 |  | 
|---|
| 180 | uLong ZEXPORT adler32_combine64(adler1, adler2, len2) | 
|---|
| 181 | uLong adler1; | 
|---|
| 182 | uLong adler2; | 
|---|
| 183 | z_off64_t len2; | 
|---|
| 184 | { | 
|---|
| 185 | return adler32_combine_(adler1, adler2, len2); | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|