1 | /* |
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | * |
5 | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | */ |
10 | |
11 | #ifndef HEADER_BN_H |
12 | # define |
13 | |
14 | # include <openssl/e_os2.h> |
15 | # ifndef OPENSSL_NO_STDIO |
16 | # include <stdio.h> |
17 | # endif |
18 | # include <openssl/opensslconf.h> |
19 | # include <openssl/ossl_typ.h> |
20 | # include <openssl/crypto.h> |
21 | # include <openssl/bnerr.h> |
22 | |
23 | #ifdef __cplusplus |
24 | extern "C" { |
25 | #endif |
26 | |
27 | /* |
28 | * 64-bit processor with LP64 ABI |
29 | */ |
30 | # ifdef SIXTY_FOUR_BIT_LONG |
31 | # define BN_ULONG unsigned long |
32 | # define BN_BYTES 8 |
33 | # endif |
34 | |
35 | /* |
36 | * 64-bit processor other than LP64 ABI |
37 | */ |
38 | # ifdef SIXTY_FOUR_BIT |
39 | # define BN_ULONG unsigned long long |
40 | # define BN_BYTES 8 |
41 | # endif |
42 | |
43 | # ifdef THIRTY_TWO_BIT |
44 | # define BN_ULONG unsigned int |
45 | # define BN_BYTES 4 |
46 | # endif |
47 | |
48 | # define BN_BITS2 (BN_BYTES * 8) |
49 | # define BN_BITS (BN_BITS2 * 2) |
50 | # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1)) |
51 | |
52 | # define BN_FLG_MALLOCED 0x01 |
53 | # define BN_FLG_STATIC_DATA 0x02 |
54 | |
55 | /* |
56 | * avoid leaking exponent information through timing, |
57 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, |
58 | * BN_div() will call BN_div_no_branch, |
59 | * BN_mod_inverse() will call BN_mod_inverse_no_branch. |
60 | */ |
61 | # define BN_FLG_CONSTTIME 0x04 |
62 | # define BN_FLG_SECURE 0x08 |
63 | |
64 | # if OPENSSL_API_COMPAT < 0x00908000L |
65 | /* deprecated name for the flag */ |
66 | # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME |
67 | # define BN_FLG_FREE 0x8000 /* used for debugging */ |
68 | # endif |
69 | |
70 | void BN_set_flags(BIGNUM *b, int n); |
71 | int BN_get_flags(const BIGNUM *b, int n); |
72 | |
73 | /* Values for |top| in BN_rand() */ |
74 | #define BN_RAND_TOP_ANY -1 |
75 | #define BN_RAND_TOP_ONE 0 |
76 | #define BN_RAND_TOP_TWO 1 |
77 | |
78 | /* Values for |bottom| in BN_rand() */ |
79 | #define BN_RAND_BOTTOM_ANY 0 |
80 | #define BN_RAND_BOTTOM_ODD 1 |
81 | |
82 | /* |
83 | * get a clone of a BIGNUM with changed flags, for *temporary* use only (the |
84 | * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The |
85 | * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that |
86 | * has not been otherwise initialised or used. |
87 | */ |
88 | void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); |
89 | |
90 | /* Wrapper function to make using BN_GENCB easier */ |
91 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); |
92 | |
93 | BN_GENCB *BN_GENCB_new(void); |
94 | void BN_GENCB_free(BN_GENCB *cb); |
95 | |
96 | /* Populate a BN_GENCB structure with an "old"-style callback */ |
97 | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), |
98 | void *cb_arg); |
99 | |
100 | /* Populate a BN_GENCB structure with a "new"-style callback */ |
101 | void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), |
102 | void *cb_arg); |
103 | |
104 | void *BN_GENCB_get_arg(BN_GENCB *cb); |
105 | |
106 | # define BN_prime_checks 0 /* default: select number of iterations based |
107 | * on the size of the number */ |
108 | |
109 | /* |
110 | * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations |
111 | * that will be done for checking that a random number is probably prime. The |
112 | * error rate for accepting a composite number as prime depends on the size of |
113 | * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, |
114 | * and so the level is what you would expect for a key of double the size of the |
115 | * prime. |
116 | * |
117 | * This table is generated using the algorithm of FIPS PUB 186-4 |
118 | * Digital Signature Standard (DSS), section F.1, page 117. |
119 | * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) |
120 | * |
121 | * The following magma script was used to generate the output: |
122 | * securitybits:=125; |
123 | * k:=1024; |
124 | * for t:=1 to 65 do |
125 | * for M:=3 to Floor(2*Sqrt(k-1)-1) do |
126 | * S:=0; |
127 | * // Sum over m |
128 | * for m:=3 to M do |
129 | * s:=0; |
130 | * // Sum over j |
131 | * for j:=2 to m do |
132 | * s+:=(RealField(32)!2)^-(j+(k-1)/j); |
133 | * end for; |
134 | * S+:=2^(m-(m-1)*t)*s; |
135 | * end for; |
136 | * A:=2^(k-2-M*t); |
137 | * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; |
138 | * pkt:=2.00743*Log(2)*k*2^-k*(A+B); |
139 | * seclevel:=Floor(-Log(2,pkt)); |
140 | * if seclevel ge securitybits then |
141 | * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; |
142 | * break; |
143 | * end if; |
144 | * end for; |
145 | * if seclevel ge securitybits then break; end if; |
146 | * end for; |
147 | * |
148 | * It can be run online at: |
149 | * http://magma.maths.usyd.edu.au/calc |
150 | * |
151 | * And will output: |
152 | * k: 1024, security: 129 bits (t: 6, M: 23) |
153 | * |
154 | * k is the number of bits of the prime, securitybits is the level we want to |
155 | * reach. |
156 | * |
157 | * prime length | RSA key size | # MR tests | security level |
158 | * -------------+--------------|------------+--------------- |
159 | * (b) >= 6394 | >= 12788 | 3 | 256 bit |
160 | * (b) >= 3747 | >= 7494 | 3 | 192 bit |
161 | * (b) >= 1345 | >= 2690 | 4 | 128 bit |
162 | * (b) >= 1080 | >= 2160 | 5 | 128 bit |
163 | * (b) >= 852 | >= 1704 | 5 | 112 bit |
164 | * (b) >= 476 | >= 952 | 5 | 80 bit |
165 | * (b) >= 400 | >= 800 | 6 | 80 bit |
166 | * (b) >= 347 | >= 694 | 7 | 80 bit |
167 | * (b) >= 308 | >= 616 | 8 | 80 bit |
168 | * (b) >= 55 | >= 110 | 27 | 64 bit |
169 | * (b) >= 6 | >= 12 | 34 | 64 bit |
170 | */ |
171 | |
172 | # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ |
173 | (b) >= 1345 ? 4 : \ |
174 | (b) >= 476 ? 5 : \ |
175 | (b) >= 400 ? 6 : \ |
176 | (b) >= 347 ? 7 : \ |
177 | (b) >= 308 ? 8 : \ |
178 | (b) >= 55 ? 27 : \ |
179 | /* b >= 6 */ 34) |
180 | |
181 | # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) |
182 | |
183 | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); |
184 | int BN_is_zero(const BIGNUM *a); |
185 | int BN_is_one(const BIGNUM *a); |
186 | int BN_is_word(const BIGNUM *a, const BN_ULONG w); |
187 | int BN_is_odd(const BIGNUM *a); |
188 | |
189 | # define BN_one(a) (BN_set_word((a),1)) |
190 | |
191 | void BN_zero_ex(BIGNUM *a); |
192 | |
193 | # if OPENSSL_API_COMPAT >= 0x00908000L |
194 | # define BN_zero(a) BN_zero_ex(a) |
195 | # else |
196 | # define BN_zero(a) (BN_set_word((a),0)) |
197 | # endif |
198 | |
199 | const BIGNUM *BN_value_one(void); |
200 | char *BN_options(void); |
201 | BN_CTX *BN_CTX_new(void); |
202 | BN_CTX *BN_CTX_secure_new(void); |
203 | void BN_CTX_free(BN_CTX *c); |
204 | void BN_CTX_start(BN_CTX *ctx); |
205 | BIGNUM *BN_CTX_get(BN_CTX *ctx); |
206 | void BN_CTX_end(BN_CTX *ctx); |
207 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); |
208 | int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); |
209 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); |
210 | int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); |
211 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); |
212 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); |
213 | int BN_num_bits(const BIGNUM *a); |
214 | int BN_num_bits_word(BN_ULONG l); |
215 | int BN_security_bits(int L, int N); |
216 | BIGNUM *BN_new(void); |
217 | BIGNUM *BN_secure_new(void); |
218 | void BN_clear_free(BIGNUM *a); |
219 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); |
220 | void BN_swap(BIGNUM *a, BIGNUM *b); |
221 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); |
222 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); |
223 | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); |
224 | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); |
225 | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); |
226 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); |
227 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); |
228 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
229 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
230 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
231 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
232 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
233 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
234 | /** BN_set_negative sets sign of a BIGNUM |
235 | * \param b pointer to the BIGNUM object |
236 | * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise |
237 | */ |
238 | void BN_set_negative(BIGNUM *b, int n); |
239 | /** BN_is_negative returns 1 if the BIGNUM is negative |
240 | * \param b pointer to the BIGNUM object |
241 | * \return 1 if a < 0 and 0 otherwise |
242 | */ |
243 | int BN_is_negative(const BIGNUM *b); |
244 | |
245 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
246 | BN_CTX *ctx); |
247 | # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) |
248 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); |
249 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
250 | BN_CTX *ctx); |
251 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
252 | const BIGNUM *m); |
253 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
254 | BN_CTX *ctx); |
255 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
256 | const BIGNUM *m); |
257 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
258 | BN_CTX *ctx); |
259 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
260 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
261 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); |
262 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
263 | BN_CTX *ctx); |
264 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); |
265 | |
266 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); |
267 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); |
268 | int BN_mul_word(BIGNUM *a, BN_ULONG w); |
269 | int BN_add_word(BIGNUM *a, BN_ULONG w); |
270 | int BN_sub_word(BIGNUM *a, BN_ULONG w); |
271 | int BN_set_word(BIGNUM *a, BN_ULONG w); |
272 | BN_ULONG BN_get_word(const BIGNUM *a); |
273 | |
274 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); |
275 | void BN_free(BIGNUM *a); |
276 | int BN_is_bit_set(const BIGNUM *a, int n); |
277 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); |
278 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); |
279 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
280 | |
281 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
282 | const BIGNUM *m, BN_CTX *ctx); |
283 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
284 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
285 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
286 | const BIGNUM *m, BN_CTX *ctx, |
287 | BN_MONT_CTX *in_mont); |
288 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, |
289 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
290 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, |
291 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
292 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
293 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
294 | const BIGNUM *m, BN_CTX *ctx); |
295 | |
296 | int BN_mask_bits(BIGNUM *a, int n); |
297 | # ifndef OPENSSL_NO_STDIO |
298 | int BN_print_fp(FILE *fp, const BIGNUM *a); |
299 | # endif |
300 | int BN_print(BIO *bio, const BIGNUM *a); |
301 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); |
302 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); |
303 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); |
304 | void BN_clear(BIGNUM *a); |
305 | BIGNUM *BN_dup(const BIGNUM *a); |
306 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); |
307 | int BN_set_bit(BIGNUM *a, int n); |
308 | int BN_clear_bit(BIGNUM *a, int n); |
309 | char *BN_bn2hex(const BIGNUM *a); |
310 | char *BN_bn2dec(const BIGNUM *a); |
311 | int BN_hex2bn(BIGNUM **a, const char *str); |
312 | int BN_dec2bn(BIGNUM **a, const char *str); |
313 | int BN_asc2bn(BIGNUM **a, const char *str); |
314 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
315 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns |
316 | * -2 for |
317 | * error */ |
318 | BIGNUM *BN_mod_inverse(BIGNUM *ret, |
319 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
320 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, |
321 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
322 | |
323 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); |
324 | |
325 | /* Deprecated versions */ |
326 | DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, |
327 | const BIGNUM *add, |
328 | const BIGNUM *rem, |
329 | void (*callback) (int, int, |
330 | void *), |
331 | void *cb_arg)) |
332 | DEPRECATEDIN_0_9_8(int |
333 | BN_is_prime(const BIGNUM *p, int nchecks, |
334 | void (*callback) (int, int, void *), |
335 | BN_CTX *ctx, void *cb_arg)) |
336 | DEPRECATEDIN_0_9_8(int |
337 | BN_is_prime_fasttest(const BIGNUM *p, int nchecks, |
338 | void (*callback) (int, int, void *), |
339 | BN_CTX *ctx, void *cb_arg, |
340 | int do_trial_division)) |
341 | |
342 | /* Newer versions */ |
343 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, |
344 | const BIGNUM *rem, BN_GENCB *cb); |
345 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); |
346 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, |
347 | int do_trial_division, BN_GENCB *cb); |
348 | |
349 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); |
350 | |
351 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
352 | const BIGNUM *Xp, const BIGNUM *Xp1, |
353 | const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
354 | BN_GENCB *cb); |
355 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, |
356 | BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, |
357 | BN_CTX *ctx, BN_GENCB *cb); |
358 | |
359 | BN_MONT_CTX *BN_MONT_CTX_new(void); |
360 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
361 | BN_MONT_CTX *mont, BN_CTX *ctx); |
362 | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
363 | BN_CTX *ctx); |
364 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
365 | BN_CTX *ctx); |
366 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); |
367 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); |
368 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); |
369 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, |
370 | const BIGNUM *mod, BN_CTX *ctx); |
371 | |
372 | /* BN_BLINDING flags */ |
373 | # define BN_BLINDING_NO_UPDATE 0x00000001 |
374 | # define BN_BLINDING_NO_RECREATE 0x00000002 |
375 | |
376 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); |
377 | void BN_BLINDING_free(BN_BLINDING *b); |
378 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); |
379 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
380 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
381 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); |
382 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, |
383 | BN_CTX *); |
384 | |
385 | int BN_BLINDING_is_current_thread(BN_BLINDING *b); |
386 | void BN_BLINDING_set_current_thread(BN_BLINDING *b); |
387 | int BN_BLINDING_lock(BN_BLINDING *b); |
388 | int BN_BLINDING_unlock(BN_BLINDING *b); |
389 | |
390 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); |
391 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); |
392 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, |
393 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, |
394 | int (*bn_mod_exp) (BIGNUM *r, |
395 | const BIGNUM *a, |
396 | const BIGNUM *p, |
397 | const BIGNUM *m, |
398 | BN_CTX *ctx, |
399 | BN_MONT_CTX *m_ctx), |
400 | BN_MONT_CTX *m_ctx); |
401 | |
402 | DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont)) |
403 | DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3 |
404 | * mont */ |
405 | |
406 | BN_RECP_CTX *BN_RECP_CTX_new(void); |
407 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); |
408 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); |
409 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
410 | BN_RECP_CTX *recp, BN_CTX *ctx); |
411 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
412 | const BIGNUM *m, BN_CTX *ctx); |
413 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
414 | BN_RECP_CTX *recp, BN_CTX *ctx); |
415 | |
416 | # ifndef OPENSSL_NO_EC2M |
417 | |
418 | /* |
419 | * Functions for arithmetic over binary polynomials represented by BIGNUMs. |
420 | * The BIGNUM::neg property of BIGNUMs representing binary polynomials is |
421 | * ignored. Note that input arguments are not const so that their bit arrays |
422 | * can be expanded to the appropriate size if needed. |
423 | */ |
424 | |
425 | /* |
426 | * r = a + b |
427 | */ |
428 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
429 | # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) |
430 | /* |
431 | * r=a mod p |
432 | */ |
433 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); |
434 | /* r = (a * b) mod p */ |
435 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
436 | const BIGNUM *p, BN_CTX *ctx); |
437 | /* r = (a * a) mod p */ |
438 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
439 | /* r = (1 / b) mod p */ |
440 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); |
441 | /* r = (a / b) mod p */ |
442 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
443 | const BIGNUM *p, BN_CTX *ctx); |
444 | /* r = (a ^ b) mod p */ |
445 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
446 | const BIGNUM *p, BN_CTX *ctx); |
447 | /* r = sqrt(a) mod p */ |
448 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
449 | BN_CTX *ctx); |
450 | /* r^2 + r = a mod p */ |
451 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
452 | BN_CTX *ctx); |
453 | # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) |
454 | /*- |
455 | * Some functions allow for representation of the irreducible polynomials |
456 | * as an unsigned int[], say p. The irreducible f(t) is then of the form: |
457 | * t^p[0] + t^p[1] + ... + t^p[k] |
458 | * where m = p[0] > p[1] > ... > p[k] = 0. |
459 | */ |
460 | /* r = a mod p */ |
461 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); |
462 | /* r = (a * b) mod p */ |
463 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
464 | const int p[], BN_CTX *ctx); |
465 | /* r = (a * a) mod p */ |
466 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
467 | BN_CTX *ctx); |
468 | /* r = (1 / b) mod p */ |
469 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], |
470 | BN_CTX *ctx); |
471 | /* r = (a / b) mod p */ |
472 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
473 | const int p[], BN_CTX *ctx); |
474 | /* r = (a ^ b) mod p */ |
475 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
476 | const int p[], BN_CTX *ctx); |
477 | /* r = sqrt(a) mod p */ |
478 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, |
479 | const int p[], BN_CTX *ctx); |
480 | /* r^2 + r = a mod p */ |
481 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, |
482 | const int p[], BN_CTX *ctx); |
483 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); |
484 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); |
485 | |
486 | # endif |
487 | |
488 | /* |
489 | * faster mod functions for the 'NIST primes' 0 <= a < p^2 |
490 | */ |
491 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
492 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
493 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
494 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
495 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
496 | |
497 | const BIGNUM *BN_get0_nist_prime_192(void); |
498 | const BIGNUM *BN_get0_nist_prime_224(void); |
499 | const BIGNUM *BN_get0_nist_prime_256(void); |
500 | const BIGNUM *BN_get0_nist_prime_384(void); |
501 | const BIGNUM *BN_get0_nist_prime_521(void); |
502 | |
503 | int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, |
504 | const BIGNUM *field, BN_CTX *ctx); |
505 | |
506 | int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, |
507 | const BIGNUM *priv, const unsigned char *message, |
508 | size_t message_len, BN_CTX *ctx); |
509 | |
510 | /* Primes from RFC 2409 */ |
511 | BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); |
512 | BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); |
513 | |
514 | /* Primes from RFC 3526 */ |
515 | BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); |
516 | BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); |
517 | BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); |
518 | BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); |
519 | BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); |
520 | BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); |
521 | |
522 | # if OPENSSL_API_COMPAT < 0x10100000L |
523 | # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 |
524 | # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 |
525 | # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 |
526 | # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 |
527 | # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 |
528 | # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 |
529 | # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 |
530 | # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 |
531 | # endif |
532 | |
533 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); |
534 | |
535 | |
536 | # ifdef __cplusplus |
537 | } |
538 | # endif |
539 | #endif |
540 | |