1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com) |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_CONDITIONESTIMATOR_H |
11 | #define EIGEN_CONDITIONESTIMATOR_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | |
17 | template <typename Vector, typename RealVector, bool IsComplex> |
18 | struct rcond_compute_sign { |
19 | static inline Vector run(const Vector& v) { |
20 | const RealVector v_abs = v.cwiseAbs(); |
21 | return (v_abs.array() == static_cast<typename Vector::RealScalar>(0)) |
22 | .select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs)); |
23 | } |
24 | }; |
25 | |
26 | // Partial specialization to avoid elementwise division for real vectors. |
27 | template <typename Vector> |
28 | struct rcond_compute_sign<Vector, Vector, false> { |
29 | static inline Vector run(const Vector& v) { |
30 | return (v.array() < static_cast<typename Vector::RealScalar>(0)) |
31 | .select(-Vector::Ones(v.size()), Vector::Ones(v.size())); |
32 | } |
33 | }; |
34 | |
35 | /** |
36 | * \returns an estimate of ||inv(matrix)||_1 given a decomposition of |
37 | * \a matrix that implements .solve() and .adjoint().solve() methods. |
38 | * |
39 | * This function implements Algorithms 4.1 and 5.1 from |
40 | * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf |
41 | * which also forms the basis for the condition number estimators in |
42 | * LAPACK. Since at most 10 calls to the solve method of dec are |
43 | * performed, the total cost is O(dims^2), as opposed to O(dims^3) |
44 | * needed to compute the inverse matrix explicitly. |
45 | * |
46 | * The most common usage is in estimating the condition number |
47 | * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be |
48 | * computed directly in O(n^2) operations. |
49 | * |
50 | * Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and |
51 | * LLT. |
52 | * |
53 | * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
54 | */ |
55 | template <typename Decomposition> |
56 | typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec) |
57 | { |
58 | typedef typename Decomposition::MatrixType MatrixType; |
59 | typedef typename Decomposition::Scalar Scalar; |
60 | typedef typename Decomposition::RealScalar RealScalar; |
61 | typedef typename internal::plain_col_type<MatrixType>::type Vector; |
62 | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector; |
63 | const bool is_complex = (NumTraits<Scalar>::IsComplex != 0); |
64 | |
65 | eigen_assert(dec.rows() == dec.cols()); |
66 | const Index n = dec.rows(); |
67 | if (n == 0) |
68 | return 0; |
69 | |
70 | // Disable Index to float conversion warning |
71 | #ifdef __INTEL_COMPILER |
72 | #pragma warning push |
73 | #pragma warning ( disable : 2259 ) |
74 | #endif |
75 | Vector v = dec.solve(Vector::Ones(n) / Scalar(n)); |
76 | #ifdef __INTEL_COMPILER |
77 | #pragma warning pop |
78 | #endif |
79 | |
80 | // lower_bound is a lower bound on |
81 | // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1 |
82 | // and is the objective maximized by the ("super-") gradient ascent |
83 | // algorithm below. |
84 | RealScalar lower_bound = v.template lpNorm<1>(); |
85 | if (n == 1) |
86 | return lower_bound; |
87 | |
88 | // Gradient ascent algorithm follows: We know that the optimum is achieved at |
89 | // one of the simplices v = e_i, so in each iteration we follow a |
90 | // super-gradient to move towards the optimal one. |
91 | RealScalar old_lower_bound = lower_bound; |
92 | Vector sign_vector(n); |
93 | Vector old_sign_vector; |
94 | Index v_max_abs_index = -1; |
95 | Index old_v_max_abs_index = v_max_abs_index; |
96 | for (int k = 0; k < 4; ++k) |
97 | { |
98 | sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v); |
99 | if (k > 0 && !is_complex && sign_vector == old_sign_vector) { |
100 | // Break if the solution stagnated. |
101 | break; |
102 | } |
103 | // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )| |
104 | v = dec.adjoint().solve(sign_vector); |
105 | v.real().cwiseAbs().maxCoeff(&v_max_abs_index); |
106 | if (v_max_abs_index == old_v_max_abs_index) { |
107 | // Break if the solution stagnated. |
108 | break; |
109 | } |
110 | // Move to the new simplex e_j, where j = v_max_abs_index. |
111 | v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j. |
112 | lower_bound = v.template lpNorm<1>(); |
113 | if (lower_bound <= old_lower_bound) { |
114 | // Break if the gradient step did not increase the lower_bound. |
115 | break; |
116 | } |
117 | if (!is_complex) { |
118 | old_sign_vector = sign_vector; |
119 | } |
120 | old_v_max_abs_index = v_max_abs_index; |
121 | old_lower_bound = lower_bound; |
122 | } |
123 | // The following calculates an independent estimate of ||matrix||_1 by |
124 | // multiplying matrix by a vector with entries of slowly increasing |
125 | // magnitude and alternating sign: |
126 | // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. |
127 | // This improvement to Hager's algorithm above is due to Higham. It was |
128 | // added to make the algorithm more robust in certain corner cases where |
129 | // large elements in the matrix might otherwise escape detection due to |
130 | // exact cancellation (especially when op and op_adjoint correspond to a |
131 | // sequence of backsubstitutions and permutations), which could cause |
132 | // Hager's algorithm to vastly underestimate ||matrix||_1. |
133 | Scalar alternating_sign(RealScalar(1)); |
134 | for (Index i = 0; i < n; ++i) { |
135 | // The static_cast is needed when Scalar is a complex and RealScalar implements expression templates |
136 | v[i] = alternating_sign * static_cast<RealScalar>(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1)))); |
137 | alternating_sign = -alternating_sign; |
138 | } |
139 | v = dec.solve(v); |
140 | const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n)); |
141 | return numext::maxi(lower_bound, alternate_lower_bound); |
142 | } |
143 | |
144 | /** \brief Reciprocal condition number estimator. |
145 | * |
146 | * Computing a decomposition of a dense matrix takes O(n^3) operations, while |
147 | * this method estimates the condition number quickly and reliably in O(n^2) |
148 | * operations. |
149 | * |
150 | * \returns an estimate of the reciprocal condition number |
151 | * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and |
152 | * its decomposition. Supports the following decompositions: FullPivLU, |
153 | * PartialPivLU, LDLT, and LLT. |
154 | * |
155 | * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
156 | */ |
157 | template <typename Decomposition> |
158 | typename Decomposition::RealScalar |
159 | rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) |
160 | { |
161 | typedef typename Decomposition::RealScalar RealScalar; |
162 | eigen_assert(dec.rows() == dec.cols()); |
163 | if (dec.rows() == 0) return NumTraits<RealScalar>::infinity(); |
164 | if (matrix_norm == RealScalar(0)) return RealScalar(0); |
165 | if (dec.rows() == 1) return RealScalar(1); |
166 | const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec); |
167 | return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0) |
168 | : (RealScalar(1) / inverse_matrix_norm) / matrix_norm); |
169 | } |
170 | |
171 | } // namespace internal |
172 | |
173 | } // namespace Eigen |
174 | |
175 | #endif |
176 | |