| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com) |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_CONDITIONESTIMATOR_H |
| 11 | #define EIGEN_CONDITIONESTIMATOR_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | template <typename Vector, typename RealVector, bool IsComplex> |
| 18 | struct rcond_compute_sign { |
| 19 | static inline Vector run(const Vector& v) { |
| 20 | const RealVector v_abs = v.cwiseAbs(); |
| 21 | return (v_abs.array() == static_cast<typename Vector::RealScalar>(0)) |
| 22 | .select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs)); |
| 23 | } |
| 24 | }; |
| 25 | |
| 26 | // Partial specialization to avoid elementwise division for real vectors. |
| 27 | template <typename Vector> |
| 28 | struct rcond_compute_sign<Vector, Vector, false> { |
| 29 | static inline Vector run(const Vector& v) { |
| 30 | return (v.array() < static_cast<typename Vector::RealScalar>(0)) |
| 31 | .select(-Vector::Ones(v.size()), Vector::Ones(v.size())); |
| 32 | } |
| 33 | }; |
| 34 | |
| 35 | /** |
| 36 | * \returns an estimate of ||inv(matrix)||_1 given a decomposition of |
| 37 | * \a matrix that implements .solve() and .adjoint().solve() methods. |
| 38 | * |
| 39 | * This function implements Algorithms 4.1 and 5.1 from |
| 40 | * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf |
| 41 | * which also forms the basis for the condition number estimators in |
| 42 | * LAPACK. Since at most 10 calls to the solve method of dec are |
| 43 | * performed, the total cost is O(dims^2), as opposed to O(dims^3) |
| 44 | * needed to compute the inverse matrix explicitly. |
| 45 | * |
| 46 | * The most common usage is in estimating the condition number |
| 47 | * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be |
| 48 | * computed directly in O(n^2) operations. |
| 49 | * |
| 50 | * Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and |
| 51 | * LLT. |
| 52 | * |
| 53 | * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
| 54 | */ |
| 55 | template <typename Decomposition> |
| 56 | typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec) |
| 57 | { |
| 58 | typedef typename Decomposition::MatrixType MatrixType; |
| 59 | typedef typename Decomposition::Scalar Scalar; |
| 60 | typedef typename Decomposition::RealScalar RealScalar; |
| 61 | typedef typename internal::plain_col_type<MatrixType>::type Vector; |
| 62 | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector; |
| 63 | const bool is_complex = (NumTraits<Scalar>::IsComplex != 0); |
| 64 | |
| 65 | eigen_assert(dec.rows() == dec.cols()); |
| 66 | const Index n = dec.rows(); |
| 67 | if (n == 0) |
| 68 | return 0; |
| 69 | |
| 70 | // Disable Index to float conversion warning |
| 71 | #ifdef __INTEL_COMPILER |
| 72 | #pragma warning push |
| 73 | #pragma warning ( disable : 2259 ) |
| 74 | #endif |
| 75 | Vector v = dec.solve(Vector::Ones(n) / Scalar(n)); |
| 76 | #ifdef __INTEL_COMPILER |
| 77 | #pragma warning pop |
| 78 | #endif |
| 79 | |
| 80 | // lower_bound is a lower bound on |
| 81 | // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1 |
| 82 | // and is the objective maximized by the ("super-") gradient ascent |
| 83 | // algorithm below. |
| 84 | RealScalar lower_bound = v.template lpNorm<1>(); |
| 85 | if (n == 1) |
| 86 | return lower_bound; |
| 87 | |
| 88 | // Gradient ascent algorithm follows: We know that the optimum is achieved at |
| 89 | // one of the simplices v = e_i, so in each iteration we follow a |
| 90 | // super-gradient to move towards the optimal one. |
| 91 | RealScalar old_lower_bound = lower_bound; |
| 92 | Vector sign_vector(n); |
| 93 | Vector old_sign_vector; |
| 94 | Index v_max_abs_index = -1; |
| 95 | Index old_v_max_abs_index = v_max_abs_index; |
| 96 | for (int k = 0; k < 4; ++k) |
| 97 | { |
| 98 | sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v); |
| 99 | if (k > 0 && !is_complex && sign_vector == old_sign_vector) { |
| 100 | // Break if the solution stagnated. |
| 101 | break; |
| 102 | } |
| 103 | // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )| |
| 104 | v = dec.adjoint().solve(sign_vector); |
| 105 | v.real().cwiseAbs().maxCoeff(&v_max_abs_index); |
| 106 | if (v_max_abs_index == old_v_max_abs_index) { |
| 107 | // Break if the solution stagnated. |
| 108 | break; |
| 109 | } |
| 110 | // Move to the new simplex e_j, where j = v_max_abs_index. |
| 111 | v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j. |
| 112 | lower_bound = v.template lpNorm<1>(); |
| 113 | if (lower_bound <= old_lower_bound) { |
| 114 | // Break if the gradient step did not increase the lower_bound. |
| 115 | break; |
| 116 | } |
| 117 | if (!is_complex) { |
| 118 | old_sign_vector = sign_vector; |
| 119 | } |
| 120 | old_v_max_abs_index = v_max_abs_index; |
| 121 | old_lower_bound = lower_bound; |
| 122 | } |
| 123 | // The following calculates an independent estimate of ||matrix||_1 by |
| 124 | // multiplying matrix by a vector with entries of slowly increasing |
| 125 | // magnitude and alternating sign: |
| 126 | // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. |
| 127 | // This improvement to Hager's algorithm above is due to Higham. It was |
| 128 | // added to make the algorithm more robust in certain corner cases where |
| 129 | // large elements in the matrix might otherwise escape detection due to |
| 130 | // exact cancellation (especially when op and op_adjoint correspond to a |
| 131 | // sequence of backsubstitutions and permutations), which could cause |
| 132 | // Hager's algorithm to vastly underestimate ||matrix||_1. |
| 133 | Scalar alternating_sign(RealScalar(1)); |
| 134 | for (Index i = 0; i < n; ++i) { |
| 135 | // The static_cast is needed when Scalar is a complex and RealScalar implements expression templates |
| 136 | v[i] = alternating_sign * static_cast<RealScalar>(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1)))); |
| 137 | alternating_sign = -alternating_sign; |
| 138 | } |
| 139 | v = dec.solve(v); |
| 140 | const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n)); |
| 141 | return numext::maxi(lower_bound, alternate_lower_bound); |
| 142 | } |
| 143 | |
| 144 | /** \brief Reciprocal condition number estimator. |
| 145 | * |
| 146 | * Computing a decomposition of a dense matrix takes O(n^3) operations, while |
| 147 | * this method estimates the condition number quickly and reliably in O(n^2) |
| 148 | * operations. |
| 149 | * |
| 150 | * \returns an estimate of the reciprocal condition number |
| 151 | * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and |
| 152 | * its decomposition. Supports the following decompositions: FullPivLU, |
| 153 | * PartialPivLU, LDLT, and LLT. |
| 154 | * |
| 155 | * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
| 156 | */ |
| 157 | template <typename Decomposition> |
| 158 | typename Decomposition::RealScalar |
| 159 | rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) |
| 160 | { |
| 161 | typedef typename Decomposition::RealScalar RealScalar; |
| 162 | eigen_assert(dec.rows() == dec.cols()); |
| 163 | if (dec.rows() == 0) return NumTraits<RealScalar>::infinity(); |
| 164 | if (matrix_norm == RealScalar(0)) return RealScalar(0); |
| 165 | if (dec.rows() == 1) return RealScalar(1); |
| 166 | const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec); |
| 167 | return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0) |
| 168 | : (RealScalar(1) / inverse_matrix_norm) / matrix_norm); |
| 169 | } |
| 170 | |
| 171 | } // namespace internal |
| 172 | |
| 173 | } // namespace Eigen |
| 174 | |
| 175 | #endif |
| 176 | |