| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) | 
|---|
| 5 | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 6 | // | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 10 |  | 
|---|
| 11 | #ifndef EIGEN_MATHFUNCTIONSIMPL_H | 
|---|
| 12 | #define EIGEN_MATHFUNCTIONSIMPL_H | 
|---|
| 13 |  | 
|---|
| 14 | namespace Eigen { | 
|---|
| 15 |  | 
|---|
| 16 | namespace internal { | 
|---|
| 17 |  | 
|---|
| 18 | /** \internal \returns the hyperbolic tan of \a a (coeff-wise) | 
|---|
| 19 | Doesn't do anything fancy, just a 13/6-degree rational interpolant which | 
|---|
| 20 | is accurate up to a couple of ulp in the range [-9, 9], outside of which | 
|---|
| 21 | the tanh(x) = +/-1. | 
|---|
| 22 |  | 
|---|
| 23 | This implementation works on both scalars and packets. | 
|---|
| 24 | */ | 
|---|
| 25 | template<typename T> | 
|---|
| 26 | T generic_fast_tanh_float(const T& a_x) | 
|---|
| 27 | { | 
|---|
| 28 | // Clamp the inputs to the range [-9, 9] since anything outside | 
|---|
| 29 | // this range is +/-1.0f in single-precision. | 
|---|
| 30 | const T plus_9 = pset1<T>(9.f); | 
|---|
| 31 | const T minus_9 = pset1<T>(-9.f); | 
|---|
| 32 | // NOTE GCC prior to 6.3 might improperly optimize this max/min | 
|---|
| 33 | //      step such that if a_x is nan, x will be either 9 or -9, | 
|---|
| 34 | //      and tanh will return 1 or -1 instead of nan. | 
|---|
| 35 | //      This is supposed to be fixed in gcc6.3, | 
|---|
| 36 | //      see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 | 
|---|
| 37 | const T x = pmax(minus_9,pmin(plus_9,a_x)); | 
|---|
| 38 | // The monomial coefficients of the numerator polynomial (odd). | 
|---|
| 39 | const T alpha_1 = pset1<T>(4.89352455891786e-03f); | 
|---|
| 40 | const T alpha_3 = pset1<T>(6.37261928875436e-04f); | 
|---|
| 41 | const T alpha_5 = pset1<T>(1.48572235717979e-05f); | 
|---|
| 42 | const T alpha_7 = pset1<T>(5.12229709037114e-08f); | 
|---|
| 43 | const T alpha_9 = pset1<T>(-8.60467152213735e-11f); | 
|---|
| 44 | const T alpha_11 = pset1<T>(2.00018790482477e-13f); | 
|---|
| 45 | const T alpha_13 = pset1<T>(-2.76076847742355e-16f); | 
|---|
| 46 |  | 
|---|
| 47 | // The monomial coefficients of the denominator polynomial (even). | 
|---|
| 48 | const T beta_0 = pset1<T>(4.89352518554385e-03f); | 
|---|
| 49 | const T beta_2 = pset1<T>(2.26843463243900e-03f); | 
|---|
| 50 | const T beta_4 = pset1<T>(1.18534705686654e-04f); | 
|---|
| 51 | const T beta_6 = pset1<T>(1.19825839466702e-06f); | 
|---|
| 52 |  | 
|---|
| 53 | // Since the polynomials are odd/even, we need x^2. | 
|---|
| 54 | const T x2 = pmul(x, x); | 
|---|
| 55 |  | 
|---|
| 56 | // Evaluate the numerator polynomial p. | 
|---|
| 57 | T p = pmadd(x2, alpha_13, alpha_11); | 
|---|
| 58 | p = pmadd(x2, p, alpha_9); | 
|---|
| 59 | p = pmadd(x2, p, alpha_7); | 
|---|
| 60 | p = pmadd(x2, p, alpha_5); | 
|---|
| 61 | p = pmadd(x2, p, alpha_3); | 
|---|
| 62 | p = pmadd(x2, p, alpha_1); | 
|---|
| 63 | p = pmul(x, p); | 
|---|
| 64 |  | 
|---|
| 65 | // Evaluate the denominator polynomial p. | 
|---|
| 66 | T q = pmadd(x2, beta_6, beta_4); | 
|---|
| 67 | q = pmadd(x2, q, beta_2); | 
|---|
| 68 | q = pmadd(x2, q, beta_0); | 
|---|
| 69 |  | 
|---|
| 70 | // Divide the numerator by the denominator. | 
|---|
| 71 | return pdiv(p, q); | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | template<typename RealScalar> | 
|---|
| 75 | EIGEN_STRONG_INLINE | 
|---|
| 76 | RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) | 
|---|
| 77 | { | 
|---|
| 78 | EIGEN_USING_STD_MATH(sqrt); | 
|---|
| 79 | RealScalar p, qp; | 
|---|
| 80 | p = numext::maxi(x,y); | 
|---|
| 81 | if(p==RealScalar(0)) return RealScalar(0); | 
|---|
| 82 | qp = numext::mini(y,x) / p; | 
|---|
| 83 | return p * sqrt(RealScalar(1) + qp*qp); | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | template<typename Scalar> | 
|---|
| 87 | struct hypot_impl | 
|---|
| 88 | { | 
|---|
| 89 | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|---|
| 90 | static inline RealScalar run(const Scalar& x, const Scalar& y) | 
|---|
| 91 | { | 
|---|
| 92 | EIGEN_USING_STD_MATH(abs); | 
|---|
| 93 | return positive_real_hypot<RealScalar>(abs(x), abs(y)); | 
|---|
| 94 | } | 
|---|
| 95 | }; | 
|---|
| 96 |  | 
|---|
| 97 | } // end namespace internal | 
|---|
| 98 |  | 
|---|
| 99 | } // end namespace Eigen | 
|---|
| 100 |  | 
|---|
| 101 | #endif // EIGEN_MATHFUNCTIONSIMPL_H | 
|---|
| 102 |  | 
|---|