| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SOLVERBASE_H |
| 11 | #define EIGEN_SOLVERBASE_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | |
| 18 | |
| 19 | } // end namespace internal |
| 20 | |
| 21 | /** \class SolverBase |
| 22 | * \brief A base class for matrix decomposition and solvers |
| 23 | * |
| 24 | * \tparam Derived the actual type of the decomposition/solver. |
| 25 | * |
| 26 | * Any matrix decomposition inheriting this base class provide the following API: |
| 27 | * |
| 28 | * \code |
| 29 | * MatrixType A, b, x; |
| 30 | * DecompositionType dec(A); |
| 31 | * x = dec.solve(b); // solve A * x = b |
| 32 | * x = dec.transpose().solve(b); // solve A^T * x = b |
| 33 | * x = dec.adjoint().solve(b); // solve A' * x = b |
| 34 | * \endcode |
| 35 | * |
| 36 | * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. |
| 37 | * |
| 38 | * \sa class PartialPivLU, class FullPivLU |
| 39 | */ |
| 40 | template<typename Derived> |
| 41 | class SolverBase : public EigenBase<Derived> |
| 42 | { |
| 43 | public: |
| 44 | |
| 45 | typedef EigenBase<Derived> Base; |
| 46 | typedef typename internal::traits<Derived>::Scalar Scalar; |
| 47 | typedef Scalar CoeffReturnType; |
| 48 | |
| 49 | enum { |
| 50 | RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, |
| 51 | ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, |
| 52 | SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, |
| 53 | internal::traits<Derived>::ColsAtCompileTime>::ret), |
| 54 | MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, |
| 55 | MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, |
| 56 | MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime, |
| 57 | internal::traits<Derived>::MaxColsAtCompileTime>::ret), |
| 58 | IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1 |
| 59 | || internal::traits<Derived>::MaxColsAtCompileTime == 1 |
| 60 | }; |
| 61 | |
| 62 | /** Default constructor */ |
| 63 | SolverBase() |
| 64 | {} |
| 65 | |
| 66 | ~SolverBase() |
| 67 | {} |
| 68 | |
| 69 | using Base::derived; |
| 70 | |
| 71 | /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| 72 | */ |
| 73 | template<typename Rhs> |
| 74 | inline const Solve<Derived, Rhs> |
| 75 | solve(const MatrixBase<Rhs>& b) const |
| 76 | { |
| 77 | eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b" ); |
| 78 | return Solve<Derived, Rhs>(derived(), b.derived()); |
| 79 | } |
| 80 | |
| 81 | /** \internal the return type of transpose() */ |
| 82 | typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType; |
| 83 | /** \returns an expression of the transposed of the factored matrix. |
| 84 | * |
| 85 | * A typical usage is to solve for the transposed problem A^T x = b: |
| 86 | * \code x = dec.transpose().solve(b); \endcode |
| 87 | * |
| 88 | * \sa adjoint(), solve() |
| 89 | */ |
| 90 | inline ConstTransposeReturnType transpose() const |
| 91 | { |
| 92 | return ConstTransposeReturnType(derived()); |
| 93 | } |
| 94 | |
| 95 | /** \internal the return type of adjoint() */ |
| 96 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| 97 | CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, |
| 98 | ConstTransposeReturnType |
| 99 | >::type AdjointReturnType; |
| 100 | /** \returns an expression of the adjoint of the factored matrix |
| 101 | * |
| 102 | * A typical usage is to solve for the adjoint problem A' x = b: |
| 103 | * \code x = dec.adjoint().solve(b); \endcode |
| 104 | * |
| 105 | * For real scalar types, this function is equivalent to transpose(). |
| 106 | * |
| 107 | * \sa transpose(), solve() |
| 108 | */ |
| 109 | inline AdjointReturnType adjoint() const |
| 110 | { |
| 111 | return AdjointReturnType(derived().transpose()); |
| 112 | } |
| 113 | |
| 114 | protected: |
| 115 | }; |
| 116 | |
| 117 | namespace internal { |
| 118 | |
| 119 | template<typename Derived> |
| 120 | struct generic_xpr_base<Derived, MatrixXpr, SolverStorage> |
| 121 | { |
| 122 | typedef SolverBase<Derived> type; |
| 123 | |
| 124 | }; |
| 125 | |
| 126 | } // end namespace internal |
| 127 | |
| 128 | } // end namespace Eigen |
| 129 | |
| 130 | #endif // EIGEN_SOLVERBASE_H |
| 131 | |