1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_SOLVERBASE_H |
11 | #define EIGEN_SOLVERBASE_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | |
17 | |
18 | |
19 | } // end namespace internal |
20 | |
21 | /** \class SolverBase |
22 | * \brief A base class for matrix decomposition and solvers |
23 | * |
24 | * \tparam Derived the actual type of the decomposition/solver. |
25 | * |
26 | * Any matrix decomposition inheriting this base class provide the following API: |
27 | * |
28 | * \code |
29 | * MatrixType A, b, x; |
30 | * DecompositionType dec(A); |
31 | * x = dec.solve(b); // solve A * x = b |
32 | * x = dec.transpose().solve(b); // solve A^T * x = b |
33 | * x = dec.adjoint().solve(b); // solve A' * x = b |
34 | * \endcode |
35 | * |
36 | * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. |
37 | * |
38 | * \sa class PartialPivLU, class FullPivLU |
39 | */ |
40 | template<typename Derived> |
41 | class SolverBase : public EigenBase<Derived> |
42 | { |
43 | public: |
44 | |
45 | typedef EigenBase<Derived> Base; |
46 | typedef typename internal::traits<Derived>::Scalar Scalar; |
47 | typedef Scalar CoeffReturnType; |
48 | |
49 | enum { |
50 | RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, |
51 | ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, |
52 | SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, |
53 | internal::traits<Derived>::ColsAtCompileTime>::ret), |
54 | MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, |
55 | MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, |
56 | MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime, |
57 | internal::traits<Derived>::MaxColsAtCompileTime>::ret), |
58 | IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1 |
59 | || internal::traits<Derived>::MaxColsAtCompileTime == 1 |
60 | }; |
61 | |
62 | /** Default constructor */ |
63 | SolverBase() |
64 | {} |
65 | |
66 | ~SolverBase() |
67 | {} |
68 | |
69 | using Base::derived; |
70 | |
71 | /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. |
72 | */ |
73 | template<typename Rhs> |
74 | inline const Solve<Derived, Rhs> |
75 | solve(const MatrixBase<Rhs>& b) const |
76 | { |
77 | eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b" ); |
78 | return Solve<Derived, Rhs>(derived(), b.derived()); |
79 | } |
80 | |
81 | /** \internal the return type of transpose() */ |
82 | typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType; |
83 | /** \returns an expression of the transposed of the factored matrix. |
84 | * |
85 | * A typical usage is to solve for the transposed problem A^T x = b: |
86 | * \code x = dec.transpose().solve(b); \endcode |
87 | * |
88 | * \sa adjoint(), solve() |
89 | */ |
90 | inline ConstTransposeReturnType transpose() const |
91 | { |
92 | return ConstTransposeReturnType(derived()); |
93 | } |
94 | |
95 | /** \internal the return type of adjoint() */ |
96 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
97 | CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, |
98 | ConstTransposeReturnType |
99 | >::type AdjointReturnType; |
100 | /** \returns an expression of the adjoint of the factored matrix |
101 | * |
102 | * A typical usage is to solve for the adjoint problem A' x = b: |
103 | * \code x = dec.adjoint().solve(b); \endcode |
104 | * |
105 | * For real scalar types, this function is equivalent to transpose(). |
106 | * |
107 | * \sa transpose(), solve() |
108 | */ |
109 | inline AdjointReturnType adjoint() const |
110 | { |
111 | return AdjointReturnType(derived().transpose()); |
112 | } |
113 | |
114 | protected: |
115 | }; |
116 | |
117 | namespace internal { |
118 | |
119 | template<typename Derived> |
120 | struct generic_xpr_base<Derived, MatrixXpr, SolverStorage> |
121 | { |
122 | typedef SolverBase<Derived> type; |
123 | |
124 | }; |
125 | |
126 | } // end namespace internal |
127 | |
128 | } // end namespace Eigen |
129 | |
130 | #endif // EIGEN_SOLVERBASE_H |
131 | |