| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_TRANSPOSITIONS_H |
| 11 | #define EIGEN_TRANSPOSITIONS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | template<typename Derived> |
| 16 | class TranspositionsBase |
| 17 | { |
| 18 | typedef internal::traits<Derived> Traits; |
| 19 | |
| 20 | public: |
| 21 | |
| 22 | typedef typename Traits::IndicesType IndicesType; |
| 23 | typedef typename IndicesType::Scalar StorageIndex; |
| 24 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| 25 | |
| 26 | Derived& derived() { return *static_cast<Derived*>(this); } |
| 27 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| 28 | |
| 29 | /** Copies the \a other transpositions into \c *this */ |
| 30 | template<typename OtherDerived> |
| 31 | Derived& operator=(const TranspositionsBase<OtherDerived>& other) |
| 32 | { |
| 33 | indices() = other.indices(); |
| 34 | return derived(); |
| 35 | } |
| 36 | |
| 37 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 38 | /** This is a special case of the templated operator=. Its purpose is to |
| 39 | * prevent a default operator= from hiding the templated operator=. |
| 40 | */ |
| 41 | Derived& operator=(const TranspositionsBase& other) |
| 42 | { |
| 43 | indices() = other.indices(); |
| 44 | return derived(); |
| 45 | } |
| 46 | #endif |
| 47 | |
| 48 | /** \returns the number of transpositions */ |
| 49 | Index size() const { return indices().size(); } |
| 50 | /** \returns the number of rows of the equivalent permutation matrix */ |
| 51 | Index rows() const { return indices().size(); } |
| 52 | /** \returns the number of columns of the equivalent permutation matrix */ |
| 53 | Index cols() const { return indices().size(); } |
| 54 | |
| 55 | /** Direct access to the underlying index vector */ |
| 56 | inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } |
| 57 | /** Direct access to the underlying index vector */ |
| 58 | inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } |
| 59 | /** Direct access to the underlying index vector */ |
| 60 | inline const StorageIndex& operator()(Index i) const { return indices()(i); } |
| 61 | /** Direct access to the underlying index vector */ |
| 62 | inline StorageIndex& operator()(Index i) { return indices()(i); } |
| 63 | /** Direct access to the underlying index vector */ |
| 64 | inline const StorageIndex& operator[](Index i) const { return indices()(i); } |
| 65 | /** Direct access to the underlying index vector */ |
| 66 | inline StorageIndex& operator[](Index i) { return indices()(i); } |
| 67 | |
| 68 | /** const version of indices(). */ |
| 69 | const IndicesType& indices() const { return derived().indices(); } |
| 70 | /** \returns a reference to the stored array representing the transpositions. */ |
| 71 | IndicesType& indices() { return derived().indices(); } |
| 72 | |
| 73 | /** Resizes to given size. */ |
| 74 | inline void resize(Index newSize) |
| 75 | { |
| 76 | indices().resize(newSize); |
| 77 | } |
| 78 | |
| 79 | /** Sets \c *this to represents an identity transformation */ |
| 80 | void setIdentity() |
| 81 | { |
| 82 | for(StorageIndex i = 0; i < indices().size(); ++i) |
| 83 | coeffRef(i) = i; |
| 84 | } |
| 85 | |
| 86 | // FIXME: do we want such methods ? |
| 87 | // might be usefull when the target matrix expression is complex, e.g.: |
| 88 | // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); |
| 89 | /* |
| 90 | template<typename MatrixType> |
| 91 | void applyForwardToRows(MatrixType& mat) const |
| 92 | { |
| 93 | for(Index k=0 ; k<size() ; ++k) |
| 94 | if(m_indices(k)!=k) |
| 95 | mat.row(k).swap(mat.row(m_indices(k))); |
| 96 | } |
| 97 | |
| 98 | template<typename MatrixType> |
| 99 | void applyBackwardToRows(MatrixType& mat) const |
| 100 | { |
| 101 | for(Index k=size()-1 ; k>=0 ; --k) |
| 102 | if(m_indices(k)!=k) |
| 103 | mat.row(k).swap(mat.row(m_indices(k))); |
| 104 | } |
| 105 | */ |
| 106 | |
| 107 | /** \returns the inverse transformation */ |
| 108 | inline Transpose<TranspositionsBase> inverse() const |
| 109 | { return Transpose<TranspositionsBase>(derived()); } |
| 110 | |
| 111 | /** \returns the tranpose transformation */ |
| 112 | inline Transpose<TranspositionsBase> transpose() const |
| 113 | { return Transpose<TranspositionsBase>(derived()); } |
| 114 | |
| 115 | protected: |
| 116 | }; |
| 117 | |
| 118 | namespace internal { |
| 119 | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex> |
| 120 | struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
| 121 | : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
| 122 | { |
| 123 | typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; |
| 124 | typedef TranspositionsStorage StorageKind; |
| 125 | }; |
| 126 | } |
| 127 | |
| 128 | /** \class Transpositions |
| 129 | * \ingroup Core_Module |
| 130 | * |
| 131 | * \brief Represents a sequence of transpositions (row/column interchange) |
| 132 | * |
| 133 | * \tparam SizeAtCompileTime the number of transpositions, or Dynamic |
| 134 | * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. |
| 135 | * |
| 136 | * This class represents a permutation transformation as a sequence of \em n transpositions |
| 137 | * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. |
| 138 | * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges |
| 139 | * the rows \c i and \c indices[i] of the matrix \c M. |
| 140 | * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. |
| 141 | * |
| 142 | * Compared to the class PermutationMatrix, such a sequence of transpositions is what is |
| 143 | * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. |
| 144 | * |
| 145 | * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: |
| 146 | * \code |
| 147 | * Transpositions tr; |
| 148 | * MatrixXf mat; |
| 149 | * mat = tr * mat; |
| 150 | * \endcode |
| 151 | * In this example, we detect that the matrix appears on both side, and so the transpositions |
| 152 | * are applied in-place without any temporary or extra copy. |
| 153 | * |
| 154 | * \sa class PermutationMatrix |
| 155 | */ |
| 156 | |
| 157 | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex> |
| 158 | class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
| 159 | { |
| 160 | typedef internal::traits<Transpositions> Traits; |
| 161 | public: |
| 162 | |
| 163 | typedef TranspositionsBase<Transpositions> Base; |
| 164 | typedef typename Traits::IndicesType IndicesType; |
| 165 | typedef typename IndicesType::Scalar StorageIndex; |
| 166 | |
| 167 | inline Transpositions() {} |
| 168 | |
| 169 | /** Copy constructor. */ |
| 170 | template<typename OtherDerived> |
| 171 | inline Transpositions(const TranspositionsBase<OtherDerived>& other) |
| 172 | : m_indices(other.indices()) {} |
| 173 | |
| 174 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 175 | /** Standard copy constructor. Defined only to prevent a default copy constructor |
| 176 | * from hiding the other templated constructor */ |
| 177 | inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {} |
| 178 | #endif |
| 179 | |
| 180 | /** Generic constructor from expression of the transposition indices. */ |
| 181 | template<typename Other> |
| 182 | explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices) |
| 183 | {} |
| 184 | |
| 185 | /** Copies the \a other transpositions into \c *this */ |
| 186 | template<typename OtherDerived> |
| 187 | Transpositions& operator=(const TranspositionsBase<OtherDerived>& other) |
| 188 | { |
| 189 | return Base::operator=(other); |
| 190 | } |
| 191 | |
| 192 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 193 | /** This is a special case of the templated operator=. Its purpose is to |
| 194 | * prevent a default operator= from hiding the templated operator=. |
| 195 | */ |
| 196 | Transpositions& operator=(const Transpositions& other) |
| 197 | { |
| 198 | m_indices = other.m_indices; |
| 199 | return *this; |
| 200 | } |
| 201 | #endif |
| 202 | |
| 203 | /** Constructs an uninitialized permutation matrix of given size. |
| 204 | */ |
| 205 | inline Transpositions(Index size) : m_indices(size) |
| 206 | {} |
| 207 | |
| 208 | /** const version of indices(). */ |
| 209 | const IndicesType& indices() const { return m_indices; } |
| 210 | /** \returns a reference to the stored array representing the transpositions. */ |
| 211 | IndicesType& indices() { return m_indices; } |
| 212 | |
| 213 | protected: |
| 214 | |
| 215 | IndicesType m_indices; |
| 216 | }; |
| 217 | |
| 218 | |
| 219 | namespace internal { |
| 220 | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess> |
| 221 | struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> > |
| 222 | : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> > |
| 223 | { |
| 224 | typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType; |
| 225 | typedef _StorageIndex StorageIndex; |
| 226 | typedef TranspositionsStorage StorageKind; |
| 227 | }; |
| 228 | } |
| 229 | |
| 230 | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess> |
| 231 | class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> |
| 232 | : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> > |
| 233 | { |
| 234 | typedef internal::traits<Map> Traits; |
| 235 | public: |
| 236 | |
| 237 | typedef TranspositionsBase<Map> Base; |
| 238 | typedef typename Traits::IndicesType IndicesType; |
| 239 | typedef typename IndicesType::Scalar StorageIndex; |
| 240 | |
| 241 | explicit inline Map(const StorageIndex* indicesPtr) |
| 242 | : m_indices(indicesPtr) |
| 243 | {} |
| 244 | |
| 245 | inline Map(const StorageIndex* indicesPtr, Index size) |
| 246 | : m_indices(indicesPtr,size) |
| 247 | {} |
| 248 | |
| 249 | /** Copies the \a other transpositions into \c *this */ |
| 250 | template<typename OtherDerived> |
| 251 | Map& operator=(const TranspositionsBase<OtherDerived>& other) |
| 252 | { |
| 253 | return Base::operator=(other); |
| 254 | } |
| 255 | |
| 256 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 257 | /** This is a special case of the templated operator=. Its purpose is to |
| 258 | * prevent a default operator= from hiding the templated operator=. |
| 259 | */ |
| 260 | Map& operator=(const Map& other) |
| 261 | { |
| 262 | m_indices = other.m_indices; |
| 263 | return *this; |
| 264 | } |
| 265 | #endif |
| 266 | |
| 267 | /** const version of indices(). */ |
| 268 | const IndicesType& indices() const { return m_indices; } |
| 269 | |
| 270 | /** \returns a reference to the stored array representing the transpositions. */ |
| 271 | IndicesType& indices() { return m_indices; } |
| 272 | |
| 273 | protected: |
| 274 | |
| 275 | IndicesType m_indices; |
| 276 | }; |
| 277 | |
| 278 | namespace internal { |
| 279 | template<typename _IndicesType> |
| 280 | struct traits<TranspositionsWrapper<_IndicesType> > |
| 281 | : traits<PermutationWrapper<_IndicesType> > |
| 282 | { |
| 283 | typedef TranspositionsStorage StorageKind; |
| 284 | }; |
| 285 | } |
| 286 | |
| 287 | template<typename _IndicesType> |
| 288 | class TranspositionsWrapper |
| 289 | : public TranspositionsBase<TranspositionsWrapper<_IndicesType> > |
| 290 | { |
| 291 | typedef internal::traits<TranspositionsWrapper> Traits; |
| 292 | public: |
| 293 | |
| 294 | typedef TranspositionsBase<TranspositionsWrapper> Base; |
| 295 | typedef typename Traits::IndicesType IndicesType; |
| 296 | typedef typename IndicesType::Scalar StorageIndex; |
| 297 | |
| 298 | explicit inline TranspositionsWrapper(IndicesType& indices) |
| 299 | : m_indices(indices) |
| 300 | {} |
| 301 | |
| 302 | /** Copies the \a other transpositions into \c *this */ |
| 303 | template<typename OtherDerived> |
| 304 | TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other) |
| 305 | { |
| 306 | return Base::operator=(other); |
| 307 | } |
| 308 | |
| 309 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 310 | /** This is a special case of the templated operator=. Its purpose is to |
| 311 | * prevent a default operator= from hiding the templated operator=. |
| 312 | */ |
| 313 | TranspositionsWrapper& operator=(const TranspositionsWrapper& other) |
| 314 | { |
| 315 | m_indices = other.m_indices; |
| 316 | return *this; |
| 317 | } |
| 318 | #endif |
| 319 | |
| 320 | /** const version of indices(). */ |
| 321 | const IndicesType& indices() const { return m_indices; } |
| 322 | |
| 323 | /** \returns a reference to the stored array representing the transpositions. */ |
| 324 | IndicesType& indices() { return m_indices; } |
| 325 | |
| 326 | protected: |
| 327 | |
| 328 | typename IndicesType::Nested m_indices; |
| 329 | }; |
| 330 | |
| 331 | |
| 332 | |
| 333 | /** \returns the \a matrix with the \a transpositions applied to the columns. |
| 334 | */ |
| 335 | template<typename MatrixDerived, typename TranspositionsDerived> |
| 336 | EIGEN_DEVICE_FUNC |
| 337 | const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> |
| 338 | operator*(const MatrixBase<MatrixDerived> &matrix, |
| 339 | const TranspositionsBase<TranspositionsDerived>& transpositions) |
| 340 | { |
| 341 | return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> |
| 342 | (matrix.derived(), transpositions.derived()); |
| 343 | } |
| 344 | |
| 345 | /** \returns the \a matrix with the \a transpositions applied to the rows. |
| 346 | */ |
| 347 | template<typename TranspositionsDerived, typename MatrixDerived> |
| 348 | EIGEN_DEVICE_FUNC |
| 349 | const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> |
| 350 | operator*(const TranspositionsBase<TranspositionsDerived> &transpositions, |
| 351 | const MatrixBase<MatrixDerived>& matrix) |
| 352 | { |
| 353 | return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> |
| 354 | (transpositions.derived(), matrix.derived()); |
| 355 | } |
| 356 | |
| 357 | // Template partial specialization for transposed/inverse transpositions |
| 358 | |
| 359 | namespace internal { |
| 360 | |
| 361 | template<typename Derived> |
| 362 | struct traits<Transpose<TranspositionsBase<Derived> > > |
| 363 | : traits<Derived> |
| 364 | {}; |
| 365 | |
| 366 | } // end namespace internal |
| 367 | |
| 368 | template<typename TranspositionsDerived> |
| 369 | class Transpose<TranspositionsBase<TranspositionsDerived> > |
| 370 | { |
| 371 | typedef TranspositionsDerived TranspositionType; |
| 372 | typedef typename TranspositionType::IndicesType IndicesType; |
| 373 | public: |
| 374 | |
| 375 | explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} |
| 376 | |
| 377 | Index size() const { return m_transpositions.size(); } |
| 378 | Index rows() const { return m_transpositions.size(); } |
| 379 | Index cols() const { return m_transpositions.size(); } |
| 380 | |
| 381 | /** \returns the \a matrix with the inverse transpositions applied to the columns. |
| 382 | */ |
| 383 | template<typename OtherDerived> friend |
| 384 | const Product<OtherDerived, Transpose, AliasFreeProduct> |
| 385 | operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt) |
| 386 | { |
| 387 | return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt); |
| 388 | } |
| 389 | |
| 390 | /** \returns the \a matrix with the inverse transpositions applied to the rows. |
| 391 | */ |
| 392 | template<typename OtherDerived> |
| 393 | const Product<Transpose, OtherDerived, AliasFreeProduct> |
| 394 | operator*(const MatrixBase<OtherDerived>& matrix) const |
| 395 | { |
| 396 | return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived()); |
| 397 | } |
| 398 | |
| 399 | const TranspositionType& nestedExpression() const { return m_transpositions; } |
| 400 | |
| 401 | protected: |
| 402 | const TranspositionType& m_transpositions; |
| 403 | }; |
| 404 | |
| 405 | } // end namespace Eigen |
| 406 | |
| 407 | #endif // EIGEN_TRANSPOSITIONS_H |
| 408 | |