| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_COMPLEX_CUDA_H |
| 11 | #define EIGEN_COMPLEX_CUDA_H |
| 12 | |
| 13 | // clang-format off |
| 14 | |
| 15 | namespace Eigen { |
| 16 | |
| 17 | namespace internal { |
| 18 | |
| 19 | #if defined(__CUDACC__) && defined(EIGEN_USE_GPU) |
| 20 | |
| 21 | // Many std::complex methods such as operator+, operator-, operator* and |
| 22 | // operator/ are not constexpr. Due to this, clang does not treat them as device |
| 23 | // functions and thus Eigen functors making use of these operators fail to |
| 24 | // compile. Here, we manually specialize these functors for complex types when |
| 25 | // building for CUDA to avoid non-constexpr methods. |
| 26 | |
| 27 | // Sum |
| 28 | template<typename T> struct scalar_sum_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > { |
| 29 | typedef typename std::complex<T> result_type; |
| 30 | |
| 31 | EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) |
| 32 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const { |
| 33 | return std::complex<T>(numext::real(a) + numext::real(b), |
| 34 | numext::imag(a) + numext::imag(b)); |
| 35 | } |
| 36 | }; |
| 37 | |
| 38 | template<typename T> struct scalar_sum_op<std::complex<T>, std::complex<T> > : scalar_sum_op<const std::complex<T>, const std::complex<T> > {}; |
| 39 | |
| 40 | |
| 41 | // Difference |
| 42 | template<typename T> struct scalar_difference_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > { |
| 43 | typedef typename std::complex<T> result_type; |
| 44 | |
| 45 | EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) |
| 46 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const { |
| 47 | return std::complex<T>(numext::real(a) - numext::real(b), |
| 48 | numext::imag(a) - numext::imag(b)); |
| 49 | } |
| 50 | }; |
| 51 | |
| 52 | template<typename T> struct scalar_difference_op<std::complex<T>, std::complex<T> > : scalar_difference_op<const std::complex<T>, const std::complex<T> > {}; |
| 53 | |
| 54 | |
| 55 | // Product |
| 56 | template<typename T> struct scalar_product_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > { |
| 57 | enum { |
| 58 | Vectorizable = packet_traits<std::complex<T>>::HasMul |
| 59 | }; |
| 60 | typedef typename std::complex<T> result_type; |
| 61 | |
| 62 | EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) |
| 63 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const { |
| 64 | const T a_real = numext::real(a); |
| 65 | const T a_imag = numext::imag(a); |
| 66 | const T b_real = numext::real(b); |
| 67 | const T b_imag = numext::imag(b); |
| 68 | return std::complex<T>(a_real * b_real - a_imag * b_imag, |
| 69 | a_real * b_imag + a_imag * b_real); |
| 70 | } |
| 71 | }; |
| 72 | |
| 73 | template<typename T> struct scalar_product_op<std::complex<T>, std::complex<T> > : scalar_product_op<const std::complex<T>, const std::complex<T> > {}; |
| 74 | |
| 75 | |
| 76 | // Quotient |
| 77 | template<typename T> struct scalar_quotient_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > { |
| 78 | enum { |
| 79 | Vectorizable = packet_traits<std::complex<T>>::HasDiv |
| 80 | }; |
| 81 | typedef typename std::complex<T> result_type; |
| 82 | |
| 83 | EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) |
| 84 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const { |
| 85 | const T a_real = numext::real(a); |
| 86 | const T a_imag = numext::imag(a); |
| 87 | const T b_real = numext::real(b); |
| 88 | const T b_imag = numext::imag(b); |
| 89 | const T norm = T(1) / (b_real * b_real + b_imag * b_imag); |
| 90 | return std::complex<T>((a_real * b_real + a_imag * b_imag) * norm, |
| 91 | (a_imag * b_real - a_real * b_imag) * norm); |
| 92 | } |
| 93 | }; |
| 94 | |
| 95 | template<typename T> struct scalar_quotient_op<std::complex<T>, std::complex<T> > : scalar_quotient_op<const std::complex<T>, const std::complex<T> > {}; |
| 96 | |
| 97 | #endif |
| 98 | |
| 99 | } // end namespace internal |
| 100 | |
| 101 | } // end namespace Eigen |
| 102 | |
| 103 | #endif // EIGEN_COMPLEX_CUDA_H |
| 104 | |