1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9// Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10//
11// This Source Code Form is subject to the terms of the Mozilla
12// Public License v. 2.0. If a copy of the MPL was not distributed
13// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14
15
16/*****************************************************************************
17*** Platform checks for aligned malloc functions ***
18*****************************************************************************/
19
20#ifndef EIGEN_MEMORY_H
21#define EIGEN_MEMORY_H
22
23#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
24
25// Try to determine automatically if malloc is already aligned.
26
27// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
28// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
29// This is true at least since glibc 2.8.
30// This leaves the question how to detect 64-bit. According to this document,
31// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
32// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
33// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
34#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
35 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
36 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
37#else
38 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
39#endif
40
41// FreeBSD 6 seems to have 16-byte aligned malloc
42// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
43// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
44// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
45#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
46 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
47#else
48 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
49#endif
50
51#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
52 || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
53 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
54 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
55 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
56#else
57 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
58#endif
59
60#endif
61
62namespace Eigen {
63
64namespace internal {
65
66EIGEN_DEVICE_FUNC
67inline void throw_std_bad_alloc()
68{
69 #ifdef EIGEN_EXCEPTIONS
70 throw std::bad_alloc();
71 #else
72 std::size_t huge = static_cast<std::size_t>(-1);
73 ::operator new(huge);
74 #endif
75}
76
77/*****************************************************************************
78*** Implementation of handmade aligned functions ***
79*****************************************************************************/
80
81/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
82
83/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
84 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
85 */
86inline void* handmade_aligned_malloc(std::size_t size)
87{
88 void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES);
89 if (original == 0) return 0;
90 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
91 *(reinterpret_cast<void**>(aligned) - 1) = original;
92 return aligned;
93}
94
95/** \internal Frees memory allocated with handmade_aligned_malloc */
96inline void handmade_aligned_free(void *ptr)
97{
98 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
99}
100
101/** \internal
102 * \brief Reallocates aligned memory.
103 * Since we know that our handmade version is based on std::malloc
104 * we can use std::realloc to implement efficient reallocation.
105 */
106inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
107{
108 if (ptr == 0) return handmade_aligned_malloc(size);
109 void *original = *(reinterpret_cast<void**>(ptr) - 1);
110 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
111 original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
112 if (original == 0) return 0;
113 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
114 void *previous_aligned = static_cast<char *>(original)+previous_offset;
115 if(aligned!=previous_aligned)
116 std::memmove(aligned, previous_aligned, size);
117
118 *(reinterpret_cast<void**>(aligned) - 1) = original;
119 return aligned;
120}
121
122/*****************************************************************************
123*** Implementation of portable aligned versions of malloc/free/realloc ***
124*****************************************************************************/
125
126#ifdef EIGEN_NO_MALLOC
127EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
128{
129 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
130}
131#elif defined EIGEN_RUNTIME_NO_MALLOC
132EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
133{
134 static bool value = true;
135 if (update == 1)
136 value = new_value;
137 return value;
138}
139EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
140EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
141EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
142{
143 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
144}
145#else
146EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
147{}
148#endif
149
150/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements.
151 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
152 */
153EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
154{
155 check_that_malloc_is_allowed();
156
157 void *result;
158 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
159 result = std::malloc(size);
160 #if EIGEN_DEFAULT_ALIGN_BYTES==16
161 eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator.");
162 #endif
163 #else
164 result = handmade_aligned_malloc(size);
165 #endif
166
167 if(!result && size)
168 throw_std_bad_alloc();
169
170 return result;
171}
172
173/** \internal Frees memory allocated with aligned_malloc. */
174EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
175{
176 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
177 std::free(ptr);
178 #else
179 handmade_aligned_free(ptr);
180 #endif
181}
182
183/**
184 * \internal
185 * \brief Reallocates an aligned block of memory.
186 * \throws std::bad_alloc on allocation failure
187 */
188inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
189{
190 EIGEN_UNUSED_VARIABLE(old_size);
191
192 void *result;
193#if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
194 result = std::realloc(ptr,new_size);
195#else
196 result = handmade_aligned_realloc(ptr,new_size,old_size);
197#endif
198
199 if (!result && new_size)
200 throw_std_bad_alloc();
201
202 return result;
203}
204
205/*****************************************************************************
206*** Implementation of conditionally aligned functions ***
207*****************************************************************************/
208
209/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
210 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
211 */
212template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
213{
214 return aligned_malloc(size);
215}
216
217template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
218{
219 check_that_malloc_is_allowed();
220
221 void *result = std::malloc(size);
222 if(!result && size)
223 throw_std_bad_alloc();
224 return result;
225}
226
227/** \internal Frees memory allocated with conditional_aligned_malloc */
228template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
229{
230 aligned_free(ptr);
231}
232
233template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
234{
235 std::free(ptr);
236}
237
238template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
239{
240 return aligned_realloc(ptr, new_size, old_size);
241}
242
243template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
244{
245 return std::realloc(ptr, new_size);
246}
247
248/*****************************************************************************
249*** Construction/destruction of array elements ***
250*****************************************************************************/
251
252/** \internal Destructs the elements of an array.
253 * The \a size parameters tells on how many objects to call the destructor of T.
254 */
255template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
256{
257 // always destruct an array starting from the end.
258 if(ptr)
259 while(size) ptr[--size].~T();
260}
261
262/** \internal Constructs the elements of an array.
263 * The \a size parameter tells on how many objects to call the constructor of T.
264 */
265template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
266{
267 std::size_t i;
268 EIGEN_TRY
269 {
270 for (i = 0; i < size; ++i) ::new (ptr + i) T;
271 return ptr;
272 }
273 EIGEN_CATCH(...)
274 {
275 destruct_elements_of_array(ptr, i);
276 EIGEN_THROW;
277 }
278 return NULL;
279}
280
281/*****************************************************************************
282*** Implementation of aligned new/delete-like functions ***
283*****************************************************************************/
284
285template<typename T>
286EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
287{
288 if(size > std::size_t(-1) / sizeof(T))
289 throw_std_bad_alloc();
290}
291
292/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
293 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
294 * The default constructor of T is called.
295 */
296template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
297{
298 check_size_for_overflow<T>(size);
299 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
300 EIGEN_TRY
301 {
302 return construct_elements_of_array(result, size);
303 }
304 EIGEN_CATCH(...)
305 {
306 aligned_free(result);
307 EIGEN_THROW;
308 }
309 return result;
310}
311
312template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
313{
314 check_size_for_overflow<T>(size);
315 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
316 EIGEN_TRY
317 {
318 return construct_elements_of_array(result, size);
319 }
320 EIGEN_CATCH(...)
321 {
322 conditional_aligned_free<Align>(result);
323 EIGEN_THROW;
324 }
325 return result;
326}
327
328/** \internal Deletes objects constructed with aligned_new
329 * The \a size parameters tells on how many objects to call the destructor of T.
330 */
331template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
332{
333 destruct_elements_of_array<T>(ptr, size);
334 aligned_free(ptr);
335}
336
337/** \internal Deletes objects constructed with conditional_aligned_new
338 * The \a size parameters tells on how many objects to call the destructor of T.
339 */
340template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
341{
342 destruct_elements_of_array<T>(ptr, size);
343 conditional_aligned_free<Align>(ptr);
344}
345
346template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
347{
348 check_size_for_overflow<T>(new_size);
349 check_size_for_overflow<T>(old_size);
350 if(new_size < old_size)
351 destruct_elements_of_array(pts+new_size, old_size-new_size);
352 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
353 if(new_size > old_size)
354 {
355 EIGEN_TRY
356 {
357 construct_elements_of_array(result+old_size, new_size-old_size);
358 }
359 EIGEN_CATCH(...)
360 {
361 conditional_aligned_free<Align>(result);
362 EIGEN_THROW;
363 }
364 }
365 return result;
366}
367
368
369template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
370{
371 if(size==0)
372 return 0; // short-cut. Also fixes Bug 884
373 check_size_for_overflow<T>(size);
374 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
375 if(NumTraits<T>::RequireInitialization)
376 {
377 EIGEN_TRY
378 {
379 construct_elements_of_array(result, size);
380 }
381 EIGEN_CATCH(...)
382 {
383 conditional_aligned_free<Align>(result);
384 EIGEN_THROW;
385 }
386 }
387 return result;
388}
389
390template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
391{
392 check_size_for_overflow<T>(new_size);
393 check_size_for_overflow<T>(old_size);
394 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
395 destruct_elements_of_array(pts+new_size, old_size-new_size);
396 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
397 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
398 {
399 EIGEN_TRY
400 {
401 construct_elements_of_array(result+old_size, new_size-old_size);
402 }
403 EIGEN_CATCH(...)
404 {
405 conditional_aligned_free<Align>(result);
406 EIGEN_THROW;
407 }
408 }
409 return result;
410}
411
412template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
413{
414 if(NumTraits<T>::RequireInitialization)
415 destruct_elements_of_array<T>(ptr, size);
416 conditional_aligned_free<Align>(ptr);
417}
418
419/****************************************************************************/
420
421/** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment.
422 *
423 * \tparam Alignment requested alignment in Bytes.
424 * \param array the address of the start of the array
425 * \param size the size of the array
426 *
427 * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
428 * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
429 * packet size for the given scalar type is 1, then everything is considered well-aligned.
430 *
431 * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
432 * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
433 * example with Scalar=double on certain 32-bit platforms, see bug #79.
434 *
435 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
436 * \sa first_default_aligned()
437 */
438template<int Alignment, typename Scalar, typename Index>
439EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
440{
441 const Index ScalarSize = sizeof(Scalar);
442 const Index AlignmentSize = Alignment / ScalarSize;
443 const Index AlignmentMask = AlignmentSize-1;
444
445 if(AlignmentSize<=1)
446 {
447 // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
448 // so that all elements of the array have the same alignment.
449 return 0;
450 }
451 else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
452 {
453 // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
454 // Consequently, no element of the array is well aligned.
455 return size;
456 }
457 else
458 {
459 Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
460 return (first < size) ? first : size;
461 }
462}
463
464/** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement.
465 * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
466template<typename Scalar, typename Index>
467EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
468{
469 typedef typename packet_traits<Scalar>::type DefaultPacketType;
470 return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
471}
472
473/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
474 */
475template<typename Index>
476inline Index first_multiple(Index size, Index base)
477{
478 return ((size+base-1)/base)*base;
479}
480
481// std::copy is much slower than memcpy, so let's introduce a smart_copy which
482// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
483template<typename T, bool UseMemcpy> struct smart_copy_helper;
484
485template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
486{
487 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
488}
489
490template<typename T> struct smart_copy_helper<T,true> {
491 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
492 {
493 IntPtr size = IntPtr(end)-IntPtr(start);
494 if(size==0) return;
495 eigen_internal_assert(start!=0 && end!=0 && target!=0);
496 std::memcpy(target, start, size);
497 }
498};
499
500template<typename T> struct smart_copy_helper<T,false> {
501 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
502 { std::copy(start, end, target); }
503};
504
505// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
506template<typename T, bool UseMemmove> struct smart_memmove_helper;
507
508template<typename T> void smart_memmove(const T* start, const T* end, T* target)
509{
510 smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
511}
512
513template<typename T> struct smart_memmove_helper<T,true> {
514 static inline void run(const T* start, const T* end, T* target)
515 {
516 IntPtr size = IntPtr(end)-IntPtr(start);
517 if(size==0) return;
518 eigen_internal_assert(start!=0 && end!=0 && target!=0);
519 std::memmove(target, start, size);
520 }
521};
522
523template<typename T> struct smart_memmove_helper<T,false> {
524 static inline void run(const T* start, const T* end, T* target)
525 {
526 if (UIntPtr(target) < UIntPtr(start))
527 {
528 std::copy(start, end, target);
529 }
530 else
531 {
532 std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
533 std::copy_backward(start, end, target + count);
534 }
535 }
536};
537
538
539/*****************************************************************************
540*** Implementation of runtime stack allocation (falling back to malloc) ***
541*****************************************************************************/
542
543// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
544// to the appropriate stack allocation function
545#ifndef EIGEN_ALLOCA
546 #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
547 #define EIGEN_ALLOCA alloca
548 #elif EIGEN_COMP_MSVC
549 #define EIGEN_ALLOCA _alloca
550 #endif
551#endif
552
553// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
554// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
555template<typename T> class aligned_stack_memory_handler : noncopyable
556{
557 public:
558 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
559 * Note that \a ptr can be 0 regardless of the other parameters.
560 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
561 * In this case, the buffer elements will also be destructed when this handler will be destructed.
562 * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
563 **/
564 aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
565 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
566 {
567 if(NumTraits<T>::RequireInitialization && m_ptr)
568 Eigen::internal::construct_elements_of_array(m_ptr, size);
569 }
570 ~aligned_stack_memory_handler()
571 {
572 if(NumTraits<T>::RequireInitialization && m_ptr)
573 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
574 if(m_deallocate)
575 Eigen::internal::aligned_free(m_ptr);
576 }
577 protected:
578 T* m_ptr;
579 std::size_t m_size;
580 bool m_deallocate;
581};
582
583template<typename T> class scoped_array : noncopyable
584{
585 T* m_ptr;
586public:
587 explicit scoped_array(std::ptrdiff_t size)
588 {
589 m_ptr = new T[size];
590 }
591 ~scoped_array()
592 {
593 delete[] m_ptr;
594 }
595 T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
596 const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
597 T* &ptr() { return m_ptr; }
598 const T* ptr() const { return m_ptr; }
599 operator const T*() const { return m_ptr; }
600};
601
602template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
603{
604 std::swap(a.ptr(),b.ptr());
605}
606
607} // end namespace internal
608
609/** \internal
610 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
611 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
612 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
613 * The allocated buffer is automatically deleted when exiting the scope of this declaration.
614 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
615 * Here is an example:
616 * \code
617 * {
618 * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
619 * // use data[0] to data[size-1]
620 * }
621 * \endcode
622 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
623 */
624#ifdef EIGEN_ALLOCA
625
626 #if EIGEN_DEFAULT_ALIGN_BYTES>0
627 // We always manually re-align the result of EIGEN_ALLOCA.
628 // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
629 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
630 #else
631 #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
632 #endif
633
634 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
635 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
636 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
637 : reinterpret_cast<TYPE*>( \
638 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
639 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
640 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
641
642#else
643
644 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
645 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
646 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
647 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
648
649#endif
650
651
652/*****************************************************************************
653*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
654*****************************************************************************/
655
656#if EIGEN_MAX_ALIGN_BYTES!=0
657 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
658 void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
659 EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
660 EIGEN_CATCH (...) { return 0; } \
661 }
662 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
663 void *operator new(std::size_t size) { \
664 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
665 } \
666 void *operator new[](std::size_t size) { \
667 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
668 } \
669 void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
670 void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
671 void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
672 void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
673 /* in-place new and delete. since (at least afaik) there is no actual */ \
674 /* memory allocated we can safely let the default implementation handle */ \
675 /* this particular case. */ \
676 static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
677 static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
678 void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
679 void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
680 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
681 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
682 void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
683 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
684 } \
685 typedef void eigen_aligned_operator_new_marker_type;
686#else
687 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
688#endif
689
690#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
691#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
692 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0)))
693
694/****************************************************************************/
695
696/** \class aligned_allocator
697* \ingroup Core_Module
698*
699* \brief STL compatible allocator to use with types requiring a non standrad alignment.
700*
701* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd.
702* By default, it will thus provide at least 16 bytes alignment and more in following cases:
703* - 32 bytes alignment if AVX is enabled.
704* - 64 bytes alignment if AVX512 is enabled.
705*
706* This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented
707* \link TopicPreprocessorDirectivesPerformance there \endlink.
708*
709* Example:
710* \code
711* // Matrix4f requires 16 bytes alignment:
712* std::map< int, Matrix4f, std::less<int>,
713* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
714* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
715* std::map< int, Vector3f > my_map_vec3;
716* \endcode
717*
718* \sa \blank \ref TopicStlContainers.
719*/
720template<class T>
721class aligned_allocator : public std::allocator<T>
722{
723public:
724 typedef std::size_t size_type;
725 typedef std::ptrdiff_t difference_type;
726 typedef T* pointer;
727 typedef const T* const_pointer;
728 typedef T& reference;
729 typedef const T& const_reference;
730 typedef T value_type;
731
732 template<class U>
733 struct rebind
734 {
735 typedef aligned_allocator<U> other;
736 };
737
738 aligned_allocator() : std::allocator<T>() {}
739
740 aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
741
742 template<class U>
743 aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
744
745 ~aligned_allocator() {}
746
747 pointer allocate(size_type num, const void* /*hint*/ = 0)
748 {
749 internal::check_size_for_overflow<T>(num);
750 size_type size = num * sizeof(T);
751#if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0)
752 // workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
753 // It triggered eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807
754 if(size>=std::size_t((std::numeric_limits<std::ptrdiff_t>::max)()))
755 return 0;
756 else
757#endif
758 return static_cast<pointer>( internal::aligned_malloc(size) );
759 }
760
761 void deallocate(pointer p, size_type /*num*/)
762 {
763 internal::aligned_free(p);
764 }
765};
766
767//---------- Cache sizes ----------
768
769#if !defined(EIGEN_NO_CPUID)
770# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
771# if defined(__PIC__) && EIGEN_ARCH_i386
772 // Case for x86 with PIC
773# define EIGEN_CPUID(abcd,func,id) \
774 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
775# elif defined(__PIC__) && EIGEN_ARCH_x86_64
776 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
777 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
778# define EIGEN_CPUID(abcd,func,id) \
779 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
780# else
781 // Case for x86_64 or x86 w/o PIC
782# define EIGEN_CPUID(abcd,func,id) \
783 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
784# endif
785# elif EIGEN_COMP_MSVC
786# if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
787# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
788# endif
789# endif
790#endif
791
792namespace internal {
793
794#ifdef EIGEN_CPUID
795
796inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
797{
798 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
799}
800
801inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
802{
803 int abcd[4];
804 l1 = l2 = l3 = 0;
805 int cache_id = 0;
806 int cache_type = 0;
807 do {
808 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
809 EIGEN_CPUID(abcd,0x4,cache_id);
810 cache_type = (abcd[0] & 0x0F) >> 0;
811 if(cache_type==1||cache_type==3) // data or unified cache
812 {
813 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
814 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
815 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
816 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
817 int sets = (abcd[2]); // C[31:0]
818
819 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
820
821 switch(cache_level)
822 {
823 case 1: l1 = cache_size; break;
824 case 2: l2 = cache_size; break;
825 case 3: l3 = cache_size; break;
826 default: break;
827 }
828 }
829 cache_id++;
830 } while(cache_type>0 && cache_id<16);
831}
832
833inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
834{
835 int abcd[4];
836 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
837 l1 = l2 = l3 = 0;
838 EIGEN_CPUID(abcd,0x00000002,0);
839 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
840 bool check_for_p2_core2 = false;
841 for(int i=0; i<14; ++i)
842 {
843 switch(bytes[i])
844 {
845 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
846 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
847 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
848 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
849 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
850 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
851 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
852 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
853 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
854 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
855 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
856 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
857 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
858 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
859 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
860 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
861 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
862 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
863 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
864 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
865 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
866 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
867 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
868 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
869 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
870 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
871 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
872 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
873 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
874 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
875 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
876 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
877 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
878 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
879 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
880 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
881 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
882 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
883 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
884 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
885 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
886 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
887 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
888 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
889 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
890 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
891 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
892 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
893 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
894 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
895 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
896 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
897 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
898 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
899 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
900 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
901 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
902
903 default: break;
904 }
905 }
906 if(check_for_p2_core2 && l2 == l3)
907 l3 = 0;
908 l1 *= 1024;
909 l2 *= 1024;
910 l3 *= 1024;
911}
912
913inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
914{
915 if(max_std_funcs>=4)
916 queryCacheSizes_intel_direct(l1,l2,l3);
917 else
918 queryCacheSizes_intel_codes(l1,l2,l3);
919}
920
921inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
922{
923 int abcd[4];
924 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
925 EIGEN_CPUID(abcd,0x80000005,0);
926 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
927 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
928 EIGEN_CPUID(abcd,0x80000006,0);
929 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
930 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
931}
932#endif
933
934/** \internal
935 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
936inline void queryCacheSizes(int& l1, int& l2, int& l3)
937{
938 #ifdef EIGEN_CPUID
939 int abcd[4];
940 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
941 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
942 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
943
944 // identify the CPU vendor
945 EIGEN_CPUID(abcd,0x0,0);
946 int max_std_funcs = abcd[1];
947 if(cpuid_is_vendor(abcd,GenuineIntel))
948 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
949 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
950 queryCacheSizes_amd(l1,l2,l3);
951 else
952 // by default let's use Intel's API
953 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
954
955 // here is the list of other vendors:
956// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
957// ||cpuid_is_vendor(abcd,"CyrixInstead")
958// ||cpuid_is_vendor(abcd,"CentaurHauls")
959// ||cpuid_is_vendor(abcd,"GenuineTMx86")
960// ||cpuid_is_vendor(abcd,"TransmetaCPU")
961// ||cpuid_is_vendor(abcd,"RiseRiseRise")
962// ||cpuid_is_vendor(abcd,"Geode by NSC")
963// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
964// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
965// ||cpuid_is_vendor(abcd,"NexGenDriven")
966 #else
967 l1 = l2 = l3 = -1;
968 #endif
969}
970
971/** \internal
972 * \returns the size in Bytes of the L1 data cache */
973inline int queryL1CacheSize()
974{
975 int l1(-1), l2, l3;
976 queryCacheSizes(l1,l2,l3);
977 return l1;
978}
979
980/** \internal
981 * \returns the size in Bytes of the L2 or L3 cache if this later is present */
982inline int queryTopLevelCacheSize()
983{
984 int l1, l2(-1), l3(-1);
985 queryCacheSizes(l1,l2,l3);
986 return (std::max)(l2,l3);
987}
988
989} // end namespace internal
990
991} // end namespace Eigen
992
993#endif // EIGEN_MEMORY_H
994