1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com> |
7 | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
8 | // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org> |
9 | // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com> |
10 | // |
11 | // This Source Code Form is subject to the terms of the Mozilla |
12 | // Public License v. 2.0. If a copy of the MPL was not distributed |
13 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
14 | |
15 | |
16 | /***************************************************************************** |
17 | *** Platform checks for aligned malloc functions *** |
18 | *****************************************************************************/ |
19 | |
20 | #ifndef EIGEN_MEMORY_H |
21 | #define EIGEN_MEMORY_H |
22 | |
23 | #ifndef EIGEN_MALLOC_ALREADY_ALIGNED |
24 | |
25 | // Try to determine automatically if malloc is already aligned. |
26 | |
27 | // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: |
28 | // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html |
29 | // This is true at least since glibc 2.8. |
30 | // This leaves the question how to detect 64-bit. According to this document, |
31 | // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf |
32 | // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed |
33 | // quite safe, at least within the context of glibc, to equate 64-bit with LP64. |
34 | #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ |
35 | && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
36 | #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 |
37 | #else |
38 | #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 |
39 | #endif |
40 | |
41 | // FreeBSD 6 seems to have 16-byte aligned malloc |
42 | // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup |
43 | // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures |
44 | // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup |
45 | #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
46 | #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 |
47 | #else |
48 | #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 |
49 | #endif |
50 | |
51 | #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
52 | || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
53 | || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ |
54 | || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED |
55 | #define EIGEN_MALLOC_ALREADY_ALIGNED 1 |
56 | #else |
57 | #define EIGEN_MALLOC_ALREADY_ALIGNED 0 |
58 | #endif |
59 | |
60 | #endif |
61 | |
62 | namespace Eigen { |
63 | |
64 | namespace internal { |
65 | |
66 | EIGEN_DEVICE_FUNC |
67 | inline void throw_std_bad_alloc() |
68 | { |
69 | #ifdef EIGEN_EXCEPTIONS |
70 | throw std::bad_alloc(); |
71 | #else |
72 | std::size_t huge = static_cast<std::size_t>(-1); |
73 | ::operator new(huge); |
74 | #endif |
75 | } |
76 | |
77 | /***************************************************************************** |
78 | *** Implementation of handmade aligned functions *** |
79 | *****************************************************************************/ |
80 | |
81 | /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ |
82 | |
83 | /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. |
84 | * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. |
85 | */ |
86 | inline void* handmade_aligned_malloc(std::size_t size) |
87 | { |
88 | void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES); |
89 | if (original == 0) return 0; |
90 | void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); |
91 | *(reinterpret_cast<void**>(aligned) - 1) = original; |
92 | return aligned; |
93 | } |
94 | |
95 | /** \internal Frees memory allocated with handmade_aligned_malloc */ |
96 | inline void handmade_aligned_free(void *ptr) |
97 | { |
98 | if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1)); |
99 | } |
100 | |
101 | /** \internal |
102 | * \brief Reallocates aligned memory. |
103 | * Since we know that our handmade version is based on std::malloc |
104 | * we can use std::realloc to implement efficient reallocation. |
105 | */ |
106 | inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) |
107 | { |
108 | if (ptr == 0) return handmade_aligned_malloc(size); |
109 | void *original = *(reinterpret_cast<void**>(ptr) - 1); |
110 | std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); |
111 | original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES); |
112 | if (original == 0) return 0; |
113 | void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); |
114 | void *previous_aligned = static_cast<char *>(original)+previous_offset; |
115 | if(aligned!=previous_aligned) |
116 | std::memmove(aligned, previous_aligned, size); |
117 | |
118 | *(reinterpret_cast<void**>(aligned) - 1) = original; |
119 | return aligned; |
120 | } |
121 | |
122 | /***************************************************************************** |
123 | *** Implementation of portable aligned versions of malloc/free/realloc *** |
124 | *****************************************************************************/ |
125 | |
126 | #ifdef EIGEN_NO_MALLOC |
127 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
128 | { |
129 | eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)" ); |
130 | } |
131 | #elif defined EIGEN_RUNTIME_NO_MALLOC |
132 | EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) |
133 | { |
134 | static bool value = true; |
135 | if (update == 1) |
136 | value = new_value; |
137 | return value; |
138 | } |
139 | EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } |
140 | EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } |
141 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
142 | { |
143 | eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)" ); |
144 | } |
145 | #else |
146 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
147 | {} |
148 | #endif |
149 | |
150 | /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. |
151 | * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. |
152 | */ |
153 | EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) |
154 | { |
155 | check_that_malloc_is_allowed(); |
156 | |
157 | void *result; |
158 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
159 | result = std::malloc(size); |
160 | #if EIGEN_DEFAULT_ALIGN_BYTES==16 |
161 | eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator." ); |
162 | #endif |
163 | #else |
164 | result = handmade_aligned_malloc(size); |
165 | #endif |
166 | |
167 | if(!result && size) |
168 | throw_std_bad_alloc(); |
169 | |
170 | return result; |
171 | } |
172 | |
173 | /** \internal Frees memory allocated with aligned_malloc. */ |
174 | EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) |
175 | { |
176 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
177 | std::free(ptr); |
178 | #else |
179 | handmade_aligned_free(ptr); |
180 | #endif |
181 | } |
182 | |
183 | /** |
184 | * \internal |
185 | * \brief Reallocates an aligned block of memory. |
186 | * \throws std::bad_alloc on allocation failure |
187 | */ |
188 | inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) |
189 | { |
190 | EIGEN_UNUSED_VARIABLE(old_size); |
191 | |
192 | void *result; |
193 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
194 | result = std::realloc(ptr,new_size); |
195 | #else |
196 | result = handmade_aligned_realloc(ptr,new_size,old_size); |
197 | #endif |
198 | |
199 | if (!result && new_size) |
200 | throw_std_bad_alloc(); |
201 | |
202 | return result; |
203 | } |
204 | |
205 | /***************************************************************************** |
206 | *** Implementation of conditionally aligned functions *** |
207 | *****************************************************************************/ |
208 | |
209 | /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. |
210 | * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. |
211 | */ |
212 | template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) |
213 | { |
214 | return aligned_malloc(size); |
215 | } |
216 | |
217 | template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) |
218 | { |
219 | check_that_malloc_is_allowed(); |
220 | |
221 | void *result = std::malloc(size); |
222 | if(!result && size) |
223 | throw_std_bad_alloc(); |
224 | return result; |
225 | } |
226 | |
227 | /** \internal Frees memory allocated with conditional_aligned_malloc */ |
228 | template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) |
229 | { |
230 | aligned_free(ptr); |
231 | } |
232 | |
233 | template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr) |
234 | { |
235 | std::free(ptr); |
236 | } |
237 | |
238 | template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) |
239 | { |
240 | return aligned_realloc(ptr, new_size, old_size); |
241 | } |
242 | |
243 | template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t) |
244 | { |
245 | return std::realloc(ptr, new_size); |
246 | } |
247 | |
248 | /***************************************************************************** |
249 | *** Construction/destruction of array elements *** |
250 | *****************************************************************************/ |
251 | |
252 | /** \internal Destructs the elements of an array. |
253 | * The \a size parameters tells on how many objects to call the destructor of T. |
254 | */ |
255 | template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) |
256 | { |
257 | // always destruct an array starting from the end. |
258 | if(ptr) |
259 | while(size) ptr[--size].~T(); |
260 | } |
261 | |
262 | /** \internal Constructs the elements of an array. |
263 | * The \a size parameter tells on how many objects to call the constructor of T. |
264 | */ |
265 | template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size) |
266 | { |
267 | std::size_t i; |
268 | EIGEN_TRY |
269 | { |
270 | for (i = 0; i < size; ++i) ::new (ptr + i) T; |
271 | return ptr; |
272 | } |
273 | EIGEN_CATCH(...) |
274 | { |
275 | destruct_elements_of_array(ptr, i); |
276 | EIGEN_THROW; |
277 | } |
278 | return NULL; |
279 | } |
280 | |
281 | /***************************************************************************** |
282 | *** Implementation of aligned new/delete-like functions *** |
283 | *****************************************************************************/ |
284 | |
285 | template<typename T> |
286 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) |
287 | { |
288 | if(size > std::size_t(-1) / sizeof(T)) |
289 | throw_std_bad_alloc(); |
290 | } |
291 | |
292 | /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. |
293 | * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. |
294 | * The default constructor of T is called. |
295 | */ |
296 | template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) |
297 | { |
298 | check_size_for_overflow<T>(size); |
299 | T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); |
300 | EIGEN_TRY |
301 | { |
302 | return construct_elements_of_array(result, size); |
303 | } |
304 | EIGEN_CATCH(...) |
305 | { |
306 | aligned_free(result); |
307 | EIGEN_THROW; |
308 | } |
309 | return result; |
310 | } |
311 | |
312 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) |
313 | { |
314 | check_size_for_overflow<T>(size); |
315 | T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
316 | EIGEN_TRY |
317 | { |
318 | return construct_elements_of_array(result, size); |
319 | } |
320 | EIGEN_CATCH(...) |
321 | { |
322 | conditional_aligned_free<Align>(result); |
323 | EIGEN_THROW; |
324 | } |
325 | return result; |
326 | } |
327 | |
328 | /** \internal Deletes objects constructed with aligned_new |
329 | * The \a size parameters tells on how many objects to call the destructor of T. |
330 | */ |
331 | template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) |
332 | { |
333 | destruct_elements_of_array<T>(ptr, size); |
334 | aligned_free(ptr); |
335 | } |
336 | |
337 | /** \internal Deletes objects constructed with conditional_aligned_new |
338 | * The \a size parameters tells on how many objects to call the destructor of T. |
339 | */ |
340 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) |
341 | { |
342 | destruct_elements_of_array<T>(ptr, size); |
343 | conditional_aligned_free<Align>(ptr); |
344 | } |
345 | |
346 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) |
347 | { |
348 | check_size_for_overflow<T>(new_size); |
349 | check_size_for_overflow<T>(old_size); |
350 | if(new_size < old_size) |
351 | destruct_elements_of_array(pts+new_size, old_size-new_size); |
352 | T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
353 | if(new_size > old_size) |
354 | { |
355 | EIGEN_TRY |
356 | { |
357 | construct_elements_of_array(result+old_size, new_size-old_size); |
358 | } |
359 | EIGEN_CATCH(...) |
360 | { |
361 | conditional_aligned_free<Align>(result); |
362 | EIGEN_THROW; |
363 | } |
364 | } |
365 | return result; |
366 | } |
367 | |
368 | |
369 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) |
370 | { |
371 | if(size==0) |
372 | return 0; // short-cut. Also fixes Bug 884 |
373 | check_size_for_overflow<T>(size); |
374 | T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
375 | if(NumTraits<T>::RequireInitialization) |
376 | { |
377 | EIGEN_TRY |
378 | { |
379 | construct_elements_of_array(result, size); |
380 | } |
381 | EIGEN_CATCH(...) |
382 | { |
383 | conditional_aligned_free<Align>(result); |
384 | EIGEN_THROW; |
385 | } |
386 | } |
387 | return result; |
388 | } |
389 | |
390 | template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) |
391 | { |
392 | check_size_for_overflow<T>(new_size); |
393 | check_size_for_overflow<T>(old_size); |
394 | if(NumTraits<T>::RequireInitialization && (new_size < old_size)) |
395 | destruct_elements_of_array(pts+new_size, old_size-new_size); |
396 | T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
397 | if(NumTraits<T>::RequireInitialization && (new_size > old_size)) |
398 | { |
399 | EIGEN_TRY |
400 | { |
401 | construct_elements_of_array(result+old_size, new_size-old_size); |
402 | } |
403 | EIGEN_CATCH(...) |
404 | { |
405 | conditional_aligned_free<Align>(result); |
406 | EIGEN_THROW; |
407 | } |
408 | } |
409 | return result; |
410 | } |
411 | |
412 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) |
413 | { |
414 | if(NumTraits<T>::RequireInitialization) |
415 | destruct_elements_of_array<T>(ptr, size); |
416 | conditional_aligned_free<Align>(ptr); |
417 | } |
418 | |
419 | /****************************************************************************/ |
420 | |
421 | /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. |
422 | * |
423 | * \tparam Alignment requested alignment in Bytes. |
424 | * \param array the address of the start of the array |
425 | * \param size the size of the array |
426 | * |
427 | * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, |
428 | * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If |
429 | * packet size for the given scalar type is 1, then everything is considered well-aligned. |
430 | * |
431 | * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a |
432 | * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for |
433 | * example with Scalar=double on certain 32-bit platforms, see bug #79. |
434 | * |
435 | * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. |
436 | * \sa first_default_aligned() |
437 | */ |
438 | template<int Alignment, typename Scalar, typename Index> |
439 | EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) |
440 | { |
441 | const Index ScalarSize = sizeof(Scalar); |
442 | const Index AlignmentSize = Alignment / ScalarSize; |
443 | const Index AlignmentMask = AlignmentSize-1; |
444 | |
445 | if(AlignmentSize<=1) |
446 | { |
447 | // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar |
448 | // so that all elements of the array have the same alignment. |
449 | return 0; |
450 | } |
451 | else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) |
452 | { |
453 | // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. |
454 | // Consequently, no element of the array is well aligned. |
455 | return size; |
456 | } |
457 | else |
458 | { |
459 | Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; |
460 | return (first < size) ? first : size; |
461 | } |
462 | } |
463 | |
464 | /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. |
465 | * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */ |
466 | template<typename Scalar, typename Index> |
467 | EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) |
468 | { |
469 | typedef typename packet_traits<Scalar>::type DefaultPacketType; |
470 | return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size); |
471 | } |
472 | |
473 | /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size |
474 | */ |
475 | template<typename Index> |
476 | inline Index first_multiple(Index size, Index base) |
477 | { |
478 | return ((size+base-1)/base)*base; |
479 | } |
480 | |
481 | // std::copy is much slower than memcpy, so let's introduce a smart_copy which |
482 | // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. |
483 | template<typename T, bool UseMemcpy> struct smart_copy_helper; |
484 | |
485 | template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) |
486 | { |
487 | smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
488 | } |
489 | |
490 | template<typename T> struct smart_copy_helper<T,true> { |
491 | EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
492 | { |
493 | IntPtr size = IntPtr(end)-IntPtr(start); |
494 | if(size==0) return; |
495 | eigen_internal_assert(start!=0 && end!=0 && target!=0); |
496 | std::memcpy(target, start, size); |
497 | } |
498 | }; |
499 | |
500 | template<typename T> struct smart_copy_helper<T,false> { |
501 | EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
502 | { std::copy(start, end, target); } |
503 | }; |
504 | |
505 | // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. |
506 | template<typename T, bool UseMemmove> struct smart_memmove_helper; |
507 | |
508 | template<typename T> void smart_memmove(const T* start, const T* end, T* target) |
509 | { |
510 | smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
511 | } |
512 | |
513 | template<typename T> struct smart_memmove_helper<T,true> { |
514 | static inline void run(const T* start, const T* end, T* target) |
515 | { |
516 | IntPtr size = IntPtr(end)-IntPtr(start); |
517 | if(size==0) return; |
518 | eigen_internal_assert(start!=0 && end!=0 && target!=0); |
519 | std::memmove(target, start, size); |
520 | } |
521 | }; |
522 | |
523 | template<typename T> struct smart_memmove_helper<T,false> { |
524 | static inline void run(const T* start, const T* end, T* target) |
525 | { |
526 | if (UIntPtr(target) < UIntPtr(start)) |
527 | { |
528 | std::copy(start, end, target); |
529 | } |
530 | else |
531 | { |
532 | std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); |
533 | std::copy_backward(start, end, target + count); |
534 | } |
535 | } |
536 | }; |
537 | |
538 | |
539 | /***************************************************************************** |
540 | *** Implementation of runtime stack allocation (falling back to malloc) *** |
541 | *****************************************************************************/ |
542 | |
543 | // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA |
544 | // to the appropriate stack allocation function |
545 | #ifndef EIGEN_ALLOCA |
546 | #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) |
547 | #define EIGEN_ALLOCA alloca |
548 | #elif EIGEN_COMP_MSVC |
549 | #define EIGEN_ALLOCA _alloca |
550 | #endif |
551 | #endif |
552 | |
553 | // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data |
554 | // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. |
555 | template<typename T> class aligned_stack_memory_handler : noncopyable |
556 | { |
557 | public: |
558 | /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. |
559 | * Note that \a ptr can be 0 regardless of the other parameters. |
560 | * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). |
561 | * In this case, the buffer elements will also be destructed when this handler will be destructed. |
562 | * Finally, if \a dealloc is true, then the pointer \a ptr is freed. |
563 | **/ |
564 | aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) |
565 | : m_ptr(ptr), m_size(size), m_deallocate(dealloc) |
566 | { |
567 | if(NumTraits<T>::RequireInitialization && m_ptr) |
568 | Eigen::internal::construct_elements_of_array(m_ptr, size); |
569 | } |
570 | ~aligned_stack_memory_handler() |
571 | { |
572 | if(NumTraits<T>::RequireInitialization && m_ptr) |
573 | Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); |
574 | if(m_deallocate) |
575 | Eigen::internal::aligned_free(m_ptr); |
576 | } |
577 | protected: |
578 | T* m_ptr; |
579 | std::size_t m_size; |
580 | bool m_deallocate; |
581 | }; |
582 | |
583 | template<typename T> class scoped_array : noncopyable |
584 | { |
585 | T* m_ptr; |
586 | public: |
587 | explicit scoped_array(std::ptrdiff_t size) |
588 | { |
589 | m_ptr = new T[size]; |
590 | } |
591 | ~scoped_array() |
592 | { |
593 | delete[] m_ptr; |
594 | } |
595 | T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } |
596 | const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } |
597 | T* &ptr() { return m_ptr; } |
598 | const T* ptr() const { return m_ptr; } |
599 | operator const T*() const { return m_ptr; } |
600 | }; |
601 | |
602 | template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b) |
603 | { |
604 | std::swap(a.ptr(),b.ptr()); |
605 | } |
606 | |
607 | } // end namespace internal |
608 | |
609 | /** \internal |
610 | * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack |
611 | * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform |
612 | * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. |
613 | * The allocated buffer is automatically deleted when exiting the scope of this declaration. |
614 | * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. |
615 | * Here is an example: |
616 | * \code |
617 | * { |
618 | * ei_declare_aligned_stack_constructed_variable(float,data,size,0); |
619 | * // use data[0] to data[size-1] |
620 | * } |
621 | * \endcode |
622 | * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. |
623 | */ |
624 | #ifdef EIGEN_ALLOCA |
625 | |
626 | #if EIGEN_DEFAULT_ALIGN_BYTES>0 |
627 | // We always manually re-align the result of EIGEN_ALLOCA. |
628 | // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. |
629 | #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) |
630 | #else |
631 | #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) |
632 | #endif |
633 | |
634 | #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
635 | Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
636 | TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ |
637 | : reinterpret_cast<TYPE*>( \ |
638 | (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ |
639 | : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ |
640 | Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) |
641 | |
642 | #else |
643 | |
644 | #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
645 | Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
646 | TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ |
647 | Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) |
648 | |
649 | #endif |
650 | |
651 | |
652 | /***************************************************************************** |
653 | *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** |
654 | *****************************************************************************/ |
655 | |
656 | #if EIGEN_MAX_ALIGN_BYTES!=0 |
657 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
658 | void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ |
659 | EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ |
660 | EIGEN_CATCH (...) { return 0; } \ |
661 | } |
662 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ |
663 | void *operator new(std::size_t size) { \ |
664 | return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
665 | } \ |
666 | void *operator new[](std::size_t size) { \ |
667 | return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
668 | } \ |
669 | void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
670 | void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
671 | void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
672 | void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
673 | /* in-place new and delete. since (at least afaik) there is no actual */ \ |
674 | /* memory allocated we can safely let the default implementation handle */ \ |
675 | /* this particular case. */ \ |
676 | static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ |
677 | static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ |
678 | void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ |
679 | void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ |
680 | /* nothrow-new (returns zero instead of std::bad_alloc) */ \ |
681 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
682 | void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ |
683 | Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ |
684 | } \ |
685 | typedef void eigen_aligned_operator_new_marker_type; |
686 | #else |
687 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
688 | #endif |
689 | |
690 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) |
691 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ |
692 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0))) |
693 | |
694 | /****************************************************************************/ |
695 | |
696 | /** \class aligned_allocator |
697 | * \ingroup Core_Module |
698 | * |
699 | * \brief STL compatible allocator to use with types requiring a non standrad alignment. |
700 | * |
701 | * The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. |
702 | * By default, it will thus provide at least 16 bytes alignment and more in following cases: |
703 | * - 32 bytes alignment if AVX is enabled. |
704 | * - 64 bytes alignment if AVX512 is enabled. |
705 | * |
706 | * This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented |
707 | * \link TopicPreprocessorDirectivesPerformance there \endlink. |
708 | * |
709 | * Example: |
710 | * \code |
711 | * // Matrix4f requires 16 bytes alignment: |
712 | * std::map< int, Matrix4f, std::less<int>, |
713 | * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; |
714 | * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
715 | * std::map< int, Vector3f > my_map_vec3; |
716 | * \endcode |
717 | * |
718 | * \sa \blank \ref TopicStlContainers. |
719 | */ |
720 | template<class T> |
721 | class aligned_allocator : public std::allocator<T> |
722 | { |
723 | public: |
724 | typedef std::size_t size_type; |
725 | typedef std::ptrdiff_t difference_type; |
726 | typedef T* pointer; |
727 | typedef const T* const_pointer; |
728 | typedef T& reference; |
729 | typedef const T& const_reference; |
730 | typedef T value_type; |
731 | |
732 | template<class U> |
733 | struct rebind |
734 | { |
735 | typedef aligned_allocator<U> other; |
736 | }; |
737 | |
738 | aligned_allocator() : std::allocator<T>() {} |
739 | |
740 | aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {} |
741 | |
742 | template<class U> |
743 | aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {} |
744 | |
745 | ~aligned_allocator() {} |
746 | |
747 | pointer allocate(size_type num, const void* /*hint*/ = 0) |
748 | { |
749 | internal::check_size_for_overflow<T>(num); |
750 | size_type size = num * sizeof(T); |
751 | #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0) |
752 | // workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 |
753 | // It triggered eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807 |
754 | if(size>=std::size_t((std::numeric_limits<std::ptrdiff_t>::max)())) |
755 | return 0; |
756 | else |
757 | #endif |
758 | return static_cast<pointer>( internal::aligned_malloc(size) ); |
759 | } |
760 | |
761 | void deallocate(pointer p, size_type /*num*/) |
762 | { |
763 | internal::aligned_free(p); |
764 | } |
765 | }; |
766 | |
767 | //---------- Cache sizes ---------- |
768 | |
769 | #if !defined(EIGEN_NO_CPUID) |
770 | # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 |
771 | # if defined(__PIC__) && EIGEN_ARCH_i386 |
772 | // Case for x86 with PIC |
773 | # define EIGEN_CPUID(abcd,func,id) \ |
774 | __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); |
775 | # elif defined(__PIC__) && EIGEN_ARCH_x86_64 |
776 | // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. |
777 | // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. |
778 | # define EIGEN_CPUID(abcd,func,id) \ |
779 | __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); |
780 | # else |
781 | // Case for x86_64 or x86 w/o PIC |
782 | # define EIGEN_CPUID(abcd,func,id) \ |
783 | __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); |
784 | # endif |
785 | # elif EIGEN_COMP_MSVC |
786 | # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 |
787 | # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) |
788 | # endif |
789 | # endif |
790 | #endif |
791 | |
792 | namespace internal { |
793 | |
794 | #ifdef EIGEN_CPUID |
795 | |
796 | inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) |
797 | { |
798 | return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; |
799 | } |
800 | |
801 | inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) |
802 | { |
803 | int abcd[4]; |
804 | l1 = l2 = l3 = 0; |
805 | int cache_id = 0; |
806 | int cache_type = 0; |
807 | do { |
808 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
809 | EIGEN_CPUID(abcd,0x4,cache_id); |
810 | cache_type = (abcd[0] & 0x0F) >> 0; |
811 | if(cache_type==1||cache_type==3) // data or unified cache |
812 | { |
813 | int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] |
814 | int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] |
815 | int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] |
816 | int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] |
817 | int sets = (abcd[2]); // C[31:0] |
818 | |
819 | int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); |
820 | |
821 | switch(cache_level) |
822 | { |
823 | case 1: l1 = cache_size; break; |
824 | case 2: l2 = cache_size; break; |
825 | case 3: l3 = cache_size; break; |
826 | default: break; |
827 | } |
828 | } |
829 | cache_id++; |
830 | } while(cache_type>0 && cache_id<16); |
831 | } |
832 | |
833 | inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) |
834 | { |
835 | int abcd[4]; |
836 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
837 | l1 = l2 = l3 = 0; |
838 | EIGEN_CPUID(abcd,0x00000002,0); |
839 | unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; |
840 | bool check_for_p2_core2 = false; |
841 | for(int i=0; i<14; ++i) |
842 | { |
843 | switch(bytes[i]) |
844 | { |
845 | case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines |
846 | case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines |
847 | case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines |
848 | case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
849 | case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
850 | case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines |
851 | case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines |
852 | case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored |
853 | case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored |
854 | case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored |
855 | case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored |
856 | case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) |
857 | case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored |
858 | case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
859 | case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored |
860 | case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored |
861 | case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored |
862 | case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored |
863 | case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored |
864 | case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored |
865 | case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored |
866 | case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored |
867 | case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) |
868 | case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines |
869 | case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines |
870 | case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines |
871 | case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines |
872 | case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines |
873 | case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines |
874 | case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines |
875 | case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines |
876 | case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 |
877 | case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines |
878 | case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines |
879 | case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines |
880 | case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines |
881 | case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines |
882 | case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines |
883 | case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored |
884 | case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored |
885 | case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored |
886 | case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
887 | case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines |
888 | case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) |
889 | case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines |
890 | case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines |
891 | case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines |
892 | case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines |
893 | case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines |
894 | case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines |
895 | case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines |
896 | case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines |
897 | case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines |
898 | case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) |
899 | case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) |
900 | case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) |
901 | case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) |
902 | |
903 | default: break; |
904 | } |
905 | } |
906 | if(check_for_p2_core2 && l2 == l3) |
907 | l3 = 0; |
908 | l1 *= 1024; |
909 | l2 *= 1024; |
910 | l3 *= 1024; |
911 | } |
912 | |
913 | inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) |
914 | { |
915 | if(max_std_funcs>=4) |
916 | queryCacheSizes_intel_direct(l1,l2,l3); |
917 | else |
918 | queryCacheSizes_intel_codes(l1,l2,l3); |
919 | } |
920 | |
921 | inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) |
922 | { |
923 | int abcd[4]; |
924 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
925 | EIGEN_CPUID(abcd,0x80000005,0); |
926 | l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB |
927 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
928 | EIGEN_CPUID(abcd,0x80000006,0); |
929 | l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB |
930 | l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB |
931 | } |
932 | #endif |
933 | |
934 | /** \internal |
935 | * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ |
936 | inline void queryCacheSizes(int& l1, int& l2, int& l3) |
937 | { |
938 | #ifdef EIGEN_CPUID |
939 | int abcd[4]; |
940 | const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; |
941 | const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; |
942 | const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" |
943 | |
944 | // identify the CPU vendor |
945 | EIGEN_CPUID(abcd,0x0,0); |
946 | int max_std_funcs = abcd[1]; |
947 | if(cpuid_is_vendor(abcd,GenuineIntel)) |
948 | queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
949 | else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) |
950 | queryCacheSizes_amd(l1,l2,l3); |
951 | else |
952 | // by default let's use Intel's API |
953 | queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
954 | |
955 | // here is the list of other vendors: |
956 | // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") |
957 | // ||cpuid_is_vendor(abcd,"CyrixInstead") |
958 | // ||cpuid_is_vendor(abcd,"CentaurHauls") |
959 | // ||cpuid_is_vendor(abcd,"GenuineTMx86") |
960 | // ||cpuid_is_vendor(abcd,"TransmetaCPU") |
961 | // ||cpuid_is_vendor(abcd,"RiseRiseRise") |
962 | // ||cpuid_is_vendor(abcd,"Geode by NSC") |
963 | // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") |
964 | // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") |
965 | // ||cpuid_is_vendor(abcd,"NexGenDriven") |
966 | #else |
967 | l1 = l2 = l3 = -1; |
968 | #endif |
969 | } |
970 | |
971 | /** \internal |
972 | * \returns the size in Bytes of the L1 data cache */ |
973 | inline int queryL1CacheSize() |
974 | { |
975 | int l1(-1), l2, l3; |
976 | queryCacheSizes(l1,l2,l3); |
977 | return l1; |
978 | } |
979 | |
980 | /** \internal |
981 | * \returns the size in Bytes of the L2 or L3 cache if this later is present */ |
982 | inline int queryTopLevelCacheSize() |
983 | { |
984 | int l1, l2(-1), l3(-1); |
985 | queryCacheSizes(l1,l2,l3); |
986 | return (std::max)(l2,l3); |
987 | } |
988 | |
989 | } // end namespace internal |
990 | |
991 | } // end namespace Eigen |
992 | |
993 | #endif // EIGEN_MEMORY_H |
994 | |