| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com> |
| 7 | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| 8 | // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org> |
| 9 | // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com> |
| 10 | // |
| 11 | // This Source Code Form is subject to the terms of the Mozilla |
| 12 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 13 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 14 | |
| 15 | |
| 16 | /***************************************************************************** |
| 17 | *** Platform checks for aligned malloc functions *** |
| 18 | *****************************************************************************/ |
| 19 | |
| 20 | #ifndef EIGEN_MEMORY_H |
| 21 | #define EIGEN_MEMORY_H |
| 22 | |
| 23 | #ifndef EIGEN_MALLOC_ALREADY_ALIGNED |
| 24 | |
| 25 | // Try to determine automatically if malloc is already aligned. |
| 26 | |
| 27 | // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: |
| 28 | // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html |
| 29 | // This is true at least since glibc 2.8. |
| 30 | // This leaves the question how to detect 64-bit. According to this document, |
| 31 | // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf |
| 32 | // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed |
| 33 | // quite safe, at least within the context of glibc, to equate 64-bit with LP64. |
| 34 | #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ |
| 35 | && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
| 36 | #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 |
| 37 | #else |
| 38 | #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 |
| 39 | #endif |
| 40 | |
| 41 | // FreeBSD 6 seems to have 16-byte aligned malloc |
| 42 | // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup |
| 43 | // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures |
| 44 | // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup |
| 45 | #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
| 46 | #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 |
| 47 | #else |
| 48 | #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 |
| 49 | #endif |
| 50 | |
| 51 | #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
| 52 | || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
| 53 | || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ |
| 54 | || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED |
| 55 | #define EIGEN_MALLOC_ALREADY_ALIGNED 1 |
| 56 | #else |
| 57 | #define EIGEN_MALLOC_ALREADY_ALIGNED 0 |
| 58 | #endif |
| 59 | |
| 60 | #endif |
| 61 | |
| 62 | namespace Eigen { |
| 63 | |
| 64 | namespace internal { |
| 65 | |
| 66 | EIGEN_DEVICE_FUNC |
| 67 | inline void throw_std_bad_alloc() |
| 68 | { |
| 69 | #ifdef EIGEN_EXCEPTIONS |
| 70 | throw std::bad_alloc(); |
| 71 | #else |
| 72 | std::size_t huge = static_cast<std::size_t>(-1); |
| 73 | ::operator new(huge); |
| 74 | #endif |
| 75 | } |
| 76 | |
| 77 | /***************************************************************************** |
| 78 | *** Implementation of handmade aligned functions *** |
| 79 | *****************************************************************************/ |
| 80 | |
| 81 | /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ |
| 82 | |
| 83 | /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. |
| 84 | * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. |
| 85 | */ |
| 86 | inline void* handmade_aligned_malloc(std::size_t size) |
| 87 | { |
| 88 | void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES); |
| 89 | if (original == 0) return 0; |
| 90 | void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); |
| 91 | *(reinterpret_cast<void**>(aligned) - 1) = original; |
| 92 | return aligned; |
| 93 | } |
| 94 | |
| 95 | /** \internal Frees memory allocated with handmade_aligned_malloc */ |
| 96 | inline void handmade_aligned_free(void *ptr) |
| 97 | { |
| 98 | if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1)); |
| 99 | } |
| 100 | |
| 101 | /** \internal |
| 102 | * \brief Reallocates aligned memory. |
| 103 | * Since we know that our handmade version is based on std::malloc |
| 104 | * we can use std::realloc to implement efficient reallocation. |
| 105 | */ |
| 106 | inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) |
| 107 | { |
| 108 | if (ptr == 0) return handmade_aligned_malloc(size); |
| 109 | void *original = *(reinterpret_cast<void**>(ptr) - 1); |
| 110 | std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); |
| 111 | original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES); |
| 112 | if (original == 0) return 0; |
| 113 | void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); |
| 114 | void *previous_aligned = static_cast<char *>(original)+previous_offset; |
| 115 | if(aligned!=previous_aligned) |
| 116 | std::memmove(aligned, previous_aligned, size); |
| 117 | |
| 118 | *(reinterpret_cast<void**>(aligned) - 1) = original; |
| 119 | return aligned; |
| 120 | } |
| 121 | |
| 122 | /***************************************************************************** |
| 123 | *** Implementation of portable aligned versions of malloc/free/realloc *** |
| 124 | *****************************************************************************/ |
| 125 | |
| 126 | #ifdef EIGEN_NO_MALLOC |
| 127 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| 128 | { |
| 129 | eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)" ); |
| 130 | } |
| 131 | #elif defined EIGEN_RUNTIME_NO_MALLOC |
| 132 | EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) |
| 133 | { |
| 134 | static bool value = true; |
| 135 | if (update == 1) |
| 136 | value = new_value; |
| 137 | return value; |
| 138 | } |
| 139 | EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } |
| 140 | EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } |
| 141 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| 142 | { |
| 143 | eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)" ); |
| 144 | } |
| 145 | #else |
| 146 | EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| 147 | {} |
| 148 | #endif |
| 149 | |
| 150 | /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. |
| 151 | * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. |
| 152 | */ |
| 153 | EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) |
| 154 | { |
| 155 | check_that_malloc_is_allowed(); |
| 156 | |
| 157 | void *result; |
| 158 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| 159 | result = std::malloc(size); |
| 160 | #if EIGEN_DEFAULT_ALIGN_BYTES==16 |
| 161 | eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator." ); |
| 162 | #endif |
| 163 | #else |
| 164 | result = handmade_aligned_malloc(size); |
| 165 | #endif |
| 166 | |
| 167 | if(!result && size) |
| 168 | throw_std_bad_alloc(); |
| 169 | |
| 170 | return result; |
| 171 | } |
| 172 | |
| 173 | /** \internal Frees memory allocated with aligned_malloc. */ |
| 174 | EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) |
| 175 | { |
| 176 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| 177 | std::free(ptr); |
| 178 | #else |
| 179 | handmade_aligned_free(ptr); |
| 180 | #endif |
| 181 | } |
| 182 | |
| 183 | /** |
| 184 | * \internal |
| 185 | * \brief Reallocates an aligned block of memory. |
| 186 | * \throws std::bad_alloc on allocation failure |
| 187 | */ |
| 188 | inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) |
| 189 | { |
| 190 | EIGEN_UNUSED_VARIABLE(old_size); |
| 191 | |
| 192 | void *result; |
| 193 | #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| 194 | result = std::realloc(ptr,new_size); |
| 195 | #else |
| 196 | result = handmade_aligned_realloc(ptr,new_size,old_size); |
| 197 | #endif |
| 198 | |
| 199 | if (!result && new_size) |
| 200 | throw_std_bad_alloc(); |
| 201 | |
| 202 | return result; |
| 203 | } |
| 204 | |
| 205 | /***************************************************************************** |
| 206 | *** Implementation of conditionally aligned functions *** |
| 207 | *****************************************************************************/ |
| 208 | |
| 209 | /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. |
| 210 | * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. |
| 211 | */ |
| 212 | template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) |
| 213 | { |
| 214 | return aligned_malloc(size); |
| 215 | } |
| 216 | |
| 217 | template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) |
| 218 | { |
| 219 | check_that_malloc_is_allowed(); |
| 220 | |
| 221 | void *result = std::malloc(size); |
| 222 | if(!result && size) |
| 223 | throw_std_bad_alloc(); |
| 224 | return result; |
| 225 | } |
| 226 | |
| 227 | /** \internal Frees memory allocated with conditional_aligned_malloc */ |
| 228 | template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) |
| 229 | { |
| 230 | aligned_free(ptr); |
| 231 | } |
| 232 | |
| 233 | template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr) |
| 234 | { |
| 235 | std::free(ptr); |
| 236 | } |
| 237 | |
| 238 | template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) |
| 239 | { |
| 240 | return aligned_realloc(ptr, new_size, old_size); |
| 241 | } |
| 242 | |
| 243 | template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t) |
| 244 | { |
| 245 | return std::realloc(ptr, new_size); |
| 246 | } |
| 247 | |
| 248 | /***************************************************************************** |
| 249 | *** Construction/destruction of array elements *** |
| 250 | *****************************************************************************/ |
| 251 | |
| 252 | /** \internal Destructs the elements of an array. |
| 253 | * The \a size parameters tells on how many objects to call the destructor of T. |
| 254 | */ |
| 255 | template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) |
| 256 | { |
| 257 | // always destruct an array starting from the end. |
| 258 | if(ptr) |
| 259 | while(size) ptr[--size].~T(); |
| 260 | } |
| 261 | |
| 262 | /** \internal Constructs the elements of an array. |
| 263 | * The \a size parameter tells on how many objects to call the constructor of T. |
| 264 | */ |
| 265 | template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size) |
| 266 | { |
| 267 | std::size_t i; |
| 268 | EIGEN_TRY |
| 269 | { |
| 270 | for (i = 0; i < size; ++i) ::new (ptr + i) T; |
| 271 | return ptr; |
| 272 | } |
| 273 | EIGEN_CATCH(...) |
| 274 | { |
| 275 | destruct_elements_of_array(ptr, i); |
| 276 | EIGEN_THROW; |
| 277 | } |
| 278 | return NULL; |
| 279 | } |
| 280 | |
| 281 | /***************************************************************************** |
| 282 | *** Implementation of aligned new/delete-like functions *** |
| 283 | *****************************************************************************/ |
| 284 | |
| 285 | template<typename T> |
| 286 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) |
| 287 | { |
| 288 | if(size > std::size_t(-1) / sizeof(T)) |
| 289 | throw_std_bad_alloc(); |
| 290 | } |
| 291 | |
| 292 | /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. |
| 293 | * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. |
| 294 | * The default constructor of T is called. |
| 295 | */ |
| 296 | template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) |
| 297 | { |
| 298 | check_size_for_overflow<T>(size); |
| 299 | T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); |
| 300 | EIGEN_TRY |
| 301 | { |
| 302 | return construct_elements_of_array(result, size); |
| 303 | } |
| 304 | EIGEN_CATCH(...) |
| 305 | { |
| 306 | aligned_free(result); |
| 307 | EIGEN_THROW; |
| 308 | } |
| 309 | return result; |
| 310 | } |
| 311 | |
| 312 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) |
| 313 | { |
| 314 | check_size_for_overflow<T>(size); |
| 315 | T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| 316 | EIGEN_TRY |
| 317 | { |
| 318 | return construct_elements_of_array(result, size); |
| 319 | } |
| 320 | EIGEN_CATCH(...) |
| 321 | { |
| 322 | conditional_aligned_free<Align>(result); |
| 323 | EIGEN_THROW; |
| 324 | } |
| 325 | return result; |
| 326 | } |
| 327 | |
| 328 | /** \internal Deletes objects constructed with aligned_new |
| 329 | * The \a size parameters tells on how many objects to call the destructor of T. |
| 330 | */ |
| 331 | template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) |
| 332 | { |
| 333 | destruct_elements_of_array<T>(ptr, size); |
| 334 | aligned_free(ptr); |
| 335 | } |
| 336 | |
| 337 | /** \internal Deletes objects constructed with conditional_aligned_new |
| 338 | * The \a size parameters tells on how many objects to call the destructor of T. |
| 339 | */ |
| 340 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) |
| 341 | { |
| 342 | destruct_elements_of_array<T>(ptr, size); |
| 343 | conditional_aligned_free<Align>(ptr); |
| 344 | } |
| 345 | |
| 346 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) |
| 347 | { |
| 348 | check_size_for_overflow<T>(new_size); |
| 349 | check_size_for_overflow<T>(old_size); |
| 350 | if(new_size < old_size) |
| 351 | destruct_elements_of_array(pts+new_size, old_size-new_size); |
| 352 | T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| 353 | if(new_size > old_size) |
| 354 | { |
| 355 | EIGEN_TRY |
| 356 | { |
| 357 | construct_elements_of_array(result+old_size, new_size-old_size); |
| 358 | } |
| 359 | EIGEN_CATCH(...) |
| 360 | { |
| 361 | conditional_aligned_free<Align>(result); |
| 362 | EIGEN_THROW; |
| 363 | } |
| 364 | } |
| 365 | return result; |
| 366 | } |
| 367 | |
| 368 | |
| 369 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) |
| 370 | { |
| 371 | if(size==0) |
| 372 | return 0; // short-cut. Also fixes Bug 884 |
| 373 | check_size_for_overflow<T>(size); |
| 374 | T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| 375 | if(NumTraits<T>::RequireInitialization) |
| 376 | { |
| 377 | EIGEN_TRY |
| 378 | { |
| 379 | construct_elements_of_array(result, size); |
| 380 | } |
| 381 | EIGEN_CATCH(...) |
| 382 | { |
| 383 | conditional_aligned_free<Align>(result); |
| 384 | EIGEN_THROW; |
| 385 | } |
| 386 | } |
| 387 | return result; |
| 388 | } |
| 389 | |
| 390 | template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) |
| 391 | { |
| 392 | check_size_for_overflow<T>(new_size); |
| 393 | check_size_for_overflow<T>(old_size); |
| 394 | if(NumTraits<T>::RequireInitialization && (new_size < old_size)) |
| 395 | destruct_elements_of_array(pts+new_size, old_size-new_size); |
| 396 | T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| 397 | if(NumTraits<T>::RequireInitialization && (new_size > old_size)) |
| 398 | { |
| 399 | EIGEN_TRY |
| 400 | { |
| 401 | construct_elements_of_array(result+old_size, new_size-old_size); |
| 402 | } |
| 403 | EIGEN_CATCH(...) |
| 404 | { |
| 405 | conditional_aligned_free<Align>(result); |
| 406 | EIGEN_THROW; |
| 407 | } |
| 408 | } |
| 409 | return result; |
| 410 | } |
| 411 | |
| 412 | template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) |
| 413 | { |
| 414 | if(NumTraits<T>::RequireInitialization) |
| 415 | destruct_elements_of_array<T>(ptr, size); |
| 416 | conditional_aligned_free<Align>(ptr); |
| 417 | } |
| 418 | |
| 419 | /****************************************************************************/ |
| 420 | |
| 421 | /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. |
| 422 | * |
| 423 | * \tparam Alignment requested alignment in Bytes. |
| 424 | * \param array the address of the start of the array |
| 425 | * \param size the size of the array |
| 426 | * |
| 427 | * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, |
| 428 | * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If |
| 429 | * packet size for the given scalar type is 1, then everything is considered well-aligned. |
| 430 | * |
| 431 | * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a |
| 432 | * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for |
| 433 | * example with Scalar=double on certain 32-bit platforms, see bug #79. |
| 434 | * |
| 435 | * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. |
| 436 | * \sa first_default_aligned() |
| 437 | */ |
| 438 | template<int Alignment, typename Scalar, typename Index> |
| 439 | EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) |
| 440 | { |
| 441 | const Index ScalarSize = sizeof(Scalar); |
| 442 | const Index AlignmentSize = Alignment / ScalarSize; |
| 443 | const Index AlignmentMask = AlignmentSize-1; |
| 444 | |
| 445 | if(AlignmentSize<=1) |
| 446 | { |
| 447 | // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar |
| 448 | // so that all elements of the array have the same alignment. |
| 449 | return 0; |
| 450 | } |
| 451 | else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) |
| 452 | { |
| 453 | // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. |
| 454 | // Consequently, no element of the array is well aligned. |
| 455 | return size; |
| 456 | } |
| 457 | else |
| 458 | { |
| 459 | Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; |
| 460 | return (first < size) ? first : size; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. |
| 465 | * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */ |
| 466 | template<typename Scalar, typename Index> |
| 467 | EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) |
| 468 | { |
| 469 | typedef typename packet_traits<Scalar>::type DefaultPacketType; |
| 470 | return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size); |
| 471 | } |
| 472 | |
| 473 | /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size |
| 474 | */ |
| 475 | template<typename Index> |
| 476 | inline Index first_multiple(Index size, Index base) |
| 477 | { |
| 478 | return ((size+base-1)/base)*base; |
| 479 | } |
| 480 | |
| 481 | // std::copy is much slower than memcpy, so let's introduce a smart_copy which |
| 482 | // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. |
| 483 | template<typename T, bool UseMemcpy> struct smart_copy_helper; |
| 484 | |
| 485 | template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) |
| 486 | { |
| 487 | smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
| 488 | } |
| 489 | |
| 490 | template<typename T> struct smart_copy_helper<T,true> { |
| 491 | EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
| 492 | { |
| 493 | IntPtr size = IntPtr(end)-IntPtr(start); |
| 494 | if(size==0) return; |
| 495 | eigen_internal_assert(start!=0 && end!=0 && target!=0); |
| 496 | std::memcpy(target, start, size); |
| 497 | } |
| 498 | }; |
| 499 | |
| 500 | template<typename T> struct smart_copy_helper<T,false> { |
| 501 | EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
| 502 | { std::copy(start, end, target); } |
| 503 | }; |
| 504 | |
| 505 | // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. |
| 506 | template<typename T, bool UseMemmove> struct smart_memmove_helper; |
| 507 | |
| 508 | template<typename T> void smart_memmove(const T* start, const T* end, T* target) |
| 509 | { |
| 510 | smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
| 511 | } |
| 512 | |
| 513 | template<typename T> struct smart_memmove_helper<T,true> { |
| 514 | static inline void run(const T* start, const T* end, T* target) |
| 515 | { |
| 516 | IntPtr size = IntPtr(end)-IntPtr(start); |
| 517 | if(size==0) return; |
| 518 | eigen_internal_assert(start!=0 && end!=0 && target!=0); |
| 519 | std::memmove(target, start, size); |
| 520 | } |
| 521 | }; |
| 522 | |
| 523 | template<typename T> struct smart_memmove_helper<T,false> { |
| 524 | static inline void run(const T* start, const T* end, T* target) |
| 525 | { |
| 526 | if (UIntPtr(target) < UIntPtr(start)) |
| 527 | { |
| 528 | std::copy(start, end, target); |
| 529 | } |
| 530 | else |
| 531 | { |
| 532 | std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); |
| 533 | std::copy_backward(start, end, target + count); |
| 534 | } |
| 535 | } |
| 536 | }; |
| 537 | |
| 538 | |
| 539 | /***************************************************************************** |
| 540 | *** Implementation of runtime stack allocation (falling back to malloc) *** |
| 541 | *****************************************************************************/ |
| 542 | |
| 543 | // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA |
| 544 | // to the appropriate stack allocation function |
| 545 | #ifndef EIGEN_ALLOCA |
| 546 | #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) |
| 547 | #define EIGEN_ALLOCA alloca |
| 548 | #elif EIGEN_COMP_MSVC |
| 549 | #define EIGEN_ALLOCA _alloca |
| 550 | #endif |
| 551 | #endif |
| 552 | |
| 553 | // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data |
| 554 | // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. |
| 555 | template<typename T> class aligned_stack_memory_handler : noncopyable |
| 556 | { |
| 557 | public: |
| 558 | /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. |
| 559 | * Note that \a ptr can be 0 regardless of the other parameters. |
| 560 | * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). |
| 561 | * In this case, the buffer elements will also be destructed when this handler will be destructed. |
| 562 | * Finally, if \a dealloc is true, then the pointer \a ptr is freed. |
| 563 | **/ |
| 564 | aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) |
| 565 | : m_ptr(ptr), m_size(size), m_deallocate(dealloc) |
| 566 | { |
| 567 | if(NumTraits<T>::RequireInitialization && m_ptr) |
| 568 | Eigen::internal::construct_elements_of_array(m_ptr, size); |
| 569 | } |
| 570 | ~aligned_stack_memory_handler() |
| 571 | { |
| 572 | if(NumTraits<T>::RequireInitialization && m_ptr) |
| 573 | Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); |
| 574 | if(m_deallocate) |
| 575 | Eigen::internal::aligned_free(m_ptr); |
| 576 | } |
| 577 | protected: |
| 578 | T* m_ptr; |
| 579 | std::size_t m_size; |
| 580 | bool m_deallocate; |
| 581 | }; |
| 582 | |
| 583 | template<typename T> class scoped_array : noncopyable |
| 584 | { |
| 585 | T* m_ptr; |
| 586 | public: |
| 587 | explicit scoped_array(std::ptrdiff_t size) |
| 588 | { |
| 589 | m_ptr = new T[size]; |
| 590 | } |
| 591 | ~scoped_array() |
| 592 | { |
| 593 | delete[] m_ptr; |
| 594 | } |
| 595 | T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } |
| 596 | const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } |
| 597 | T* &ptr() { return m_ptr; } |
| 598 | const T* ptr() const { return m_ptr; } |
| 599 | operator const T*() const { return m_ptr; } |
| 600 | }; |
| 601 | |
| 602 | template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b) |
| 603 | { |
| 604 | std::swap(a.ptr(),b.ptr()); |
| 605 | } |
| 606 | |
| 607 | } // end namespace internal |
| 608 | |
| 609 | /** \internal |
| 610 | * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack |
| 611 | * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform |
| 612 | * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. |
| 613 | * The allocated buffer is automatically deleted when exiting the scope of this declaration. |
| 614 | * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. |
| 615 | * Here is an example: |
| 616 | * \code |
| 617 | * { |
| 618 | * ei_declare_aligned_stack_constructed_variable(float,data,size,0); |
| 619 | * // use data[0] to data[size-1] |
| 620 | * } |
| 621 | * \endcode |
| 622 | * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. |
| 623 | */ |
| 624 | #ifdef EIGEN_ALLOCA |
| 625 | |
| 626 | #if EIGEN_DEFAULT_ALIGN_BYTES>0 |
| 627 | // We always manually re-align the result of EIGEN_ALLOCA. |
| 628 | // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. |
| 629 | #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) |
| 630 | #else |
| 631 | #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) |
| 632 | #endif |
| 633 | |
| 634 | #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| 635 | Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| 636 | TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ |
| 637 | : reinterpret_cast<TYPE*>( \ |
| 638 | (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ |
| 639 | : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ |
| 640 | Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) |
| 641 | |
| 642 | #else |
| 643 | |
| 644 | #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| 645 | Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| 646 | TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ |
| 647 | Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) |
| 648 | |
| 649 | #endif |
| 650 | |
| 651 | |
| 652 | /***************************************************************************** |
| 653 | *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** |
| 654 | *****************************************************************************/ |
| 655 | |
| 656 | #if EIGEN_MAX_ALIGN_BYTES!=0 |
| 657 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| 658 | void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ |
| 659 | EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ |
| 660 | EIGEN_CATCH (...) { return 0; } \ |
| 661 | } |
| 662 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ |
| 663 | void *operator new(std::size_t size) { \ |
| 664 | return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| 665 | } \ |
| 666 | void *operator new[](std::size_t size) { \ |
| 667 | return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| 668 | } \ |
| 669 | void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| 670 | void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| 671 | void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| 672 | void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| 673 | /* in-place new and delete. since (at least afaik) there is no actual */ \ |
| 674 | /* memory allocated we can safely let the default implementation handle */ \ |
| 675 | /* this particular case. */ \ |
| 676 | static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ |
| 677 | static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ |
| 678 | void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ |
| 679 | void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ |
| 680 | /* nothrow-new (returns zero instead of std::bad_alloc) */ \ |
| 681 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| 682 | void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ |
| 683 | Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ |
| 684 | } \ |
| 685 | typedef void eigen_aligned_operator_new_marker_type; |
| 686 | #else |
| 687 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| 688 | #endif |
| 689 | |
| 690 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) |
| 691 | #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ |
| 692 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0))) |
| 693 | |
| 694 | /****************************************************************************/ |
| 695 | |
| 696 | /** \class aligned_allocator |
| 697 | * \ingroup Core_Module |
| 698 | * |
| 699 | * \brief STL compatible allocator to use with types requiring a non standrad alignment. |
| 700 | * |
| 701 | * The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. |
| 702 | * By default, it will thus provide at least 16 bytes alignment and more in following cases: |
| 703 | * - 32 bytes alignment if AVX is enabled. |
| 704 | * - 64 bytes alignment if AVX512 is enabled. |
| 705 | * |
| 706 | * This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented |
| 707 | * \link TopicPreprocessorDirectivesPerformance there \endlink. |
| 708 | * |
| 709 | * Example: |
| 710 | * \code |
| 711 | * // Matrix4f requires 16 bytes alignment: |
| 712 | * std::map< int, Matrix4f, std::less<int>, |
| 713 | * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; |
| 714 | * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
| 715 | * std::map< int, Vector3f > my_map_vec3; |
| 716 | * \endcode |
| 717 | * |
| 718 | * \sa \blank \ref TopicStlContainers. |
| 719 | */ |
| 720 | template<class T> |
| 721 | class aligned_allocator : public std::allocator<T> |
| 722 | { |
| 723 | public: |
| 724 | typedef std::size_t size_type; |
| 725 | typedef std::ptrdiff_t difference_type; |
| 726 | typedef T* pointer; |
| 727 | typedef const T* const_pointer; |
| 728 | typedef T& reference; |
| 729 | typedef const T& const_reference; |
| 730 | typedef T value_type; |
| 731 | |
| 732 | template<class U> |
| 733 | struct rebind |
| 734 | { |
| 735 | typedef aligned_allocator<U> other; |
| 736 | }; |
| 737 | |
| 738 | aligned_allocator() : std::allocator<T>() {} |
| 739 | |
| 740 | aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {} |
| 741 | |
| 742 | template<class U> |
| 743 | aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {} |
| 744 | |
| 745 | ~aligned_allocator() {} |
| 746 | |
| 747 | pointer allocate(size_type num, const void* /*hint*/ = 0) |
| 748 | { |
| 749 | internal::check_size_for_overflow<T>(num); |
| 750 | size_type size = num * sizeof(T); |
| 751 | #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0) |
| 752 | // workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 |
| 753 | // It triggered eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807 |
| 754 | if(size>=std::size_t((std::numeric_limits<std::ptrdiff_t>::max)())) |
| 755 | return 0; |
| 756 | else |
| 757 | #endif |
| 758 | return static_cast<pointer>( internal::aligned_malloc(size) ); |
| 759 | } |
| 760 | |
| 761 | void deallocate(pointer p, size_type /*num*/) |
| 762 | { |
| 763 | internal::aligned_free(p); |
| 764 | } |
| 765 | }; |
| 766 | |
| 767 | //---------- Cache sizes ---------- |
| 768 | |
| 769 | #if !defined(EIGEN_NO_CPUID) |
| 770 | # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 |
| 771 | # if defined(__PIC__) && EIGEN_ARCH_i386 |
| 772 | // Case for x86 with PIC |
| 773 | # define EIGEN_CPUID(abcd,func,id) \ |
| 774 | __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); |
| 775 | # elif defined(__PIC__) && EIGEN_ARCH_x86_64 |
| 776 | // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. |
| 777 | // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. |
| 778 | # define EIGEN_CPUID(abcd,func,id) \ |
| 779 | __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); |
| 780 | # else |
| 781 | // Case for x86_64 or x86 w/o PIC |
| 782 | # define EIGEN_CPUID(abcd,func,id) \ |
| 783 | __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); |
| 784 | # endif |
| 785 | # elif EIGEN_COMP_MSVC |
| 786 | # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 |
| 787 | # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) |
| 788 | # endif |
| 789 | # endif |
| 790 | #endif |
| 791 | |
| 792 | namespace internal { |
| 793 | |
| 794 | #ifdef EIGEN_CPUID |
| 795 | |
| 796 | inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) |
| 797 | { |
| 798 | return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; |
| 799 | } |
| 800 | |
| 801 | inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) |
| 802 | { |
| 803 | int abcd[4]; |
| 804 | l1 = l2 = l3 = 0; |
| 805 | int cache_id = 0; |
| 806 | int cache_type = 0; |
| 807 | do { |
| 808 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| 809 | EIGEN_CPUID(abcd,0x4,cache_id); |
| 810 | cache_type = (abcd[0] & 0x0F) >> 0; |
| 811 | if(cache_type==1||cache_type==3) // data or unified cache |
| 812 | { |
| 813 | int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] |
| 814 | int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] |
| 815 | int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] |
| 816 | int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] |
| 817 | int sets = (abcd[2]); // C[31:0] |
| 818 | |
| 819 | int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); |
| 820 | |
| 821 | switch(cache_level) |
| 822 | { |
| 823 | case 1: l1 = cache_size; break; |
| 824 | case 2: l2 = cache_size; break; |
| 825 | case 3: l3 = cache_size; break; |
| 826 | default: break; |
| 827 | } |
| 828 | } |
| 829 | cache_id++; |
| 830 | } while(cache_type>0 && cache_id<16); |
| 831 | } |
| 832 | |
| 833 | inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) |
| 834 | { |
| 835 | int abcd[4]; |
| 836 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| 837 | l1 = l2 = l3 = 0; |
| 838 | EIGEN_CPUID(abcd,0x00000002,0); |
| 839 | unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; |
| 840 | bool check_for_p2_core2 = false; |
| 841 | for(int i=0; i<14; ++i) |
| 842 | { |
| 843 | switch(bytes[i]) |
| 844 | { |
| 845 | case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines |
| 846 | case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines |
| 847 | case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines |
| 848 | case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| 849 | case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| 850 | case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines |
| 851 | case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines |
| 852 | case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored |
| 853 | case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored |
| 854 | case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored |
| 855 | case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored |
| 856 | case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) |
| 857 | case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored |
| 858 | case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| 859 | case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored |
| 860 | case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored |
| 861 | case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored |
| 862 | case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored |
| 863 | case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored |
| 864 | case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored |
| 865 | case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored |
| 866 | case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored |
| 867 | case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) |
| 868 | case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines |
| 869 | case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines |
| 870 | case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines |
| 871 | case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines |
| 872 | case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines |
| 873 | case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines |
| 874 | case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines |
| 875 | case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines |
| 876 | case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 |
| 877 | case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines |
| 878 | case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines |
| 879 | case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines |
| 880 | case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines |
| 881 | case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines |
| 882 | case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines |
| 883 | case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored |
| 884 | case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored |
| 885 | case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored |
| 886 | case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| 887 | case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines |
| 888 | case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) |
| 889 | case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines |
| 890 | case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines |
| 891 | case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines |
| 892 | case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines |
| 893 | case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines |
| 894 | case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines |
| 895 | case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines |
| 896 | case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines |
| 897 | case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines |
| 898 | case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) |
| 899 | case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) |
| 900 | case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) |
| 901 | case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) |
| 902 | |
| 903 | default: break; |
| 904 | } |
| 905 | } |
| 906 | if(check_for_p2_core2 && l2 == l3) |
| 907 | l3 = 0; |
| 908 | l1 *= 1024; |
| 909 | l2 *= 1024; |
| 910 | l3 *= 1024; |
| 911 | } |
| 912 | |
| 913 | inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) |
| 914 | { |
| 915 | if(max_std_funcs>=4) |
| 916 | queryCacheSizes_intel_direct(l1,l2,l3); |
| 917 | else |
| 918 | queryCacheSizes_intel_codes(l1,l2,l3); |
| 919 | } |
| 920 | |
| 921 | inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) |
| 922 | { |
| 923 | int abcd[4]; |
| 924 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| 925 | EIGEN_CPUID(abcd,0x80000005,0); |
| 926 | l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB |
| 927 | abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| 928 | EIGEN_CPUID(abcd,0x80000006,0); |
| 929 | l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB |
| 930 | l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB |
| 931 | } |
| 932 | #endif |
| 933 | |
| 934 | /** \internal |
| 935 | * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ |
| 936 | inline void queryCacheSizes(int& l1, int& l2, int& l3) |
| 937 | { |
| 938 | #ifdef EIGEN_CPUID |
| 939 | int abcd[4]; |
| 940 | const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; |
| 941 | const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; |
| 942 | const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" |
| 943 | |
| 944 | // identify the CPU vendor |
| 945 | EIGEN_CPUID(abcd,0x0,0); |
| 946 | int max_std_funcs = abcd[1]; |
| 947 | if(cpuid_is_vendor(abcd,GenuineIntel)) |
| 948 | queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| 949 | else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) |
| 950 | queryCacheSizes_amd(l1,l2,l3); |
| 951 | else |
| 952 | // by default let's use Intel's API |
| 953 | queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| 954 | |
| 955 | // here is the list of other vendors: |
| 956 | // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") |
| 957 | // ||cpuid_is_vendor(abcd,"CyrixInstead") |
| 958 | // ||cpuid_is_vendor(abcd,"CentaurHauls") |
| 959 | // ||cpuid_is_vendor(abcd,"GenuineTMx86") |
| 960 | // ||cpuid_is_vendor(abcd,"TransmetaCPU") |
| 961 | // ||cpuid_is_vendor(abcd,"RiseRiseRise") |
| 962 | // ||cpuid_is_vendor(abcd,"Geode by NSC") |
| 963 | // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") |
| 964 | // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") |
| 965 | // ||cpuid_is_vendor(abcd,"NexGenDriven") |
| 966 | #else |
| 967 | l1 = l2 = l3 = -1; |
| 968 | #endif |
| 969 | } |
| 970 | |
| 971 | /** \internal |
| 972 | * \returns the size in Bytes of the L1 data cache */ |
| 973 | inline int queryL1CacheSize() |
| 974 | { |
| 975 | int l1(-1), l2, l3; |
| 976 | queryCacheSizes(l1,l2,l3); |
| 977 | return l1; |
| 978 | } |
| 979 | |
| 980 | /** \internal |
| 981 | * \returns the size in Bytes of the L2 or L3 cache if this later is present */ |
| 982 | inline int queryTopLevelCacheSize() |
| 983 | { |
| 984 | int l1, l2(-1), l3(-1); |
| 985 | queryCacheSizes(l1,l2,l3); |
| 986 | return (std::max)(l2,l3); |
| 987 | } |
| 988 | |
| 989 | } // end namespace internal |
| 990 | |
| 991 | } // end namespace Eigen |
| 992 | |
| 993 | #endif // EIGEN_MEMORY_H |
| 994 | |