1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_SCALING_H |
11 | #define EIGEN_SCALING_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | /** \geometry_module \ingroup Geometry_Module |
16 | * |
17 | * \class Scaling |
18 | * |
19 | * \brief Represents a generic uniform scaling transformation |
20 | * |
21 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients. |
22 | * |
23 | * This class represent a uniform scaling transformation. It is the return |
24 | * type of Scaling(Scalar), and most of the time this is the only way it |
25 | * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
26 | * but rather to make easier the constructions and updates of Transform objects. |
27 | * |
28 | * To represent an axis aligned scaling, use the DiagonalMatrix class. |
29 | * |
30 | * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
31 | */ |
32 | template<typename _Scalar> |
33 | class UniformScaling |
34 | { |
35 | public: |
36 | /** the scalar type of the coefficients */ |
37 | typedef _Scalar Scalar; |
38 | |
39 | protected: |
40 | |
41 | Scalar m_factor; |
42 | |
43 | public: |
44 | |
45 | /** Default constructor without initialization. */ |
46 | UniformScaling() {} |
47 | /** Constructs and initialize a uniform scaling transformation */ |
48 | explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
49 | |
50 | inline const Scalar& factor() const { return m_factor; } |
51 | inline Scalar& factor() { return m_factor; } |
52 | |
53 | /** Concatenates two uniform scaling */ |
54 | inline UniformScaling operator* (const UniformScaling& other) const |
55 | { return UniformScaling(m_factor * other.factor()); } |
56 | |
57 | /** Concatenates a uniform scaling and a translation */ |
58 | template<int Dim> |
59 | inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; |
60 | |
61 | /** Concatenates a uniform scaling and an affine transformation */ |
62 | template<int Dim, int Mode, int Options> |
63 | inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const |
64 | { |
65 | Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; |
66 | res.prescale(factor()); |
67 | return res; |
68 | } |
69 | |
70 | /** Concatenates a uniform scaling and a linear transformation matrix */ |
71 | // TODO returns an expression |
72 | template<typename Derived> |
73 | inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const |
74 | { return other * m_factor; } |
75 | |
76 | template<typename Derived,int Dim> |
77 | inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const |
78 | { return r.toRotationMatrix() * m_factor; } |
79 | |
80 | /** \returns the inverse scaling */ |
81 | inline UniformScaling inverse() const |
82 | { return UniformScaling(Scalar(1)/m_factor); } |
83 | |
84 | /** \returns \c *this with scalar type casted to \a NewScalarType |
85 | * |
86 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
87 | * then this function smartly returns a const reference to \c *this. |
88 | */ |
89 | template<typename NewScalarType> |
90 | inline UniformScaling<NewScalarType> cast() const |
91 | { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } |
92 | |
93 | /** Copy constructor with scalar type conversion */ |
94 | template<typename OtherScalarType> |
95 | inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) |
96 | { m_factor = Scalar(other.factor()); } |
97 | |
98 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
99 | * determined by \a prec. |
100 | * |
101 | * \sa MatrixBase::isApprox() */ |
102 | bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
103 | { return internal::isApprox(m_factor, other.factor(), prec); } |
104 | |
105 | }; |
106 | |
107 | /** \addtogroup Geometry_Module */ |
108 | //@{ |
109 | |
110 | /** Concatenates a linear transformation matrix and a uniform scaling |
111 | * \relates UniformScaling |
112 | */ |
113 | // NOTE this operator is defiend in MatrixBase and not as a friend function |
114 | // of UniformScaling to fix an internal crash of Intel's ICC |
115 | template<typename Derived,typename Scalar> |
116 | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) |
117 | operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s) |
118 | { return matrix.derived() * s.factor(); } |
119 | |
120 | /** Constructs a uniform scaling from scale factor \a s */ |
121 | inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
122 | /** Constructs a uniform scaling from scale factor \a s */ |
123 | inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
124 | /** Constructs a uniform scaling from scale factor \a s */ |
125 | template<typename RealScalar> |
126 | inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) |
127 | { return UniformScaling<std::complex<RealScalar> >(s); } |
128 | |
129 | /** Constructs a 2D axis aligned scaling */ |
130 | template<typename Scalar> |
131 | inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy) |
132 | { return DiagonalMatrix<Scalar,2>(sx, sy); } |
133 | /** Constructs a 3D axis aligned scaling */ |
134 | template<typename Scalar> |
135 | inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) |
136 | { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } |
137 | |
138 | /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
139 | * This is an alias for coeffs.asDiagonal() |
140 | */ |
141 | template<typename Derived> |
142 | inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) |
143 | { return coeffs.asDiagonal(); } |
144 | |
145 | /** \deprecated */ |
146 | typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
147 | /** \deprecated */ |
148 | typedef DiagonalMatrix<double,2> AlignedScaling2d; |
149 | /** \deprecated */ |
150 | typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
151 | /** \deprecated */ |
152 | typedef DiagonalMatrix<double,3> AlignedScaling3d; |
153 | //@} |
154 | |
155 | template<typename Scalar> |
156 | template<int Dim> |
157 | inline Transform<Scalar,Dim,Affine> |
158 | UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const |
159 | { |
160 | Transform<Scalar,Dim,Affine> res; |
161 | res.matrix().setZero(); |
162 | res.linear().diagonal().fill(factor()); |
163 | res.translation() = factor() * t.vector(); |
164 | res(Dim,Dim) = Scalar(1); |
165 | return res; |
166 | } |
167 | |
168 | } // end namespace Eigen |
169 | |
170 | #endif // EIGEN_SCALING_H |
171 | |