| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|---|
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 6 | // | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 10 |  | 
|---|
| 11 | #ifndef EIGEN_JACOBI_H | 
|---|
| 12 | #define EIGEN_JACOBI_H | 
|---|
| 13 |  | 
|---|
| 14 | namespace Eigen { | 
|---|
| 15 |  | 
|---|
| 16 | /** \ingroup Jacobi_Module | 
|---|
| 17 | * \jacobi_module | 
|---|
| 18 | * \class JacobiRotation | 
|---|
| 19 | * \brief Rotation given by a cosine-sine pair. | 
|---|
| 20 | * | 
|---|
| 21 | * This class represents a Jacobi or Givens rotation. | 
|---|
| 22 | * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by | 
|---|
| 23 | * its cosine \c c and sine \c s as follow: | 
|---|
| 24 | * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$ | 
|---|
| 25 | * | 
|---|
| 26 | * You can apply the respective counter-clockwise rotation to a column vector \c v by | 
|---|
| 27 | * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: | 
|---|
| 28 | * \code | 
|---|
| 29 | * v.applyOnTheLeft(J.adjoint()); | 
|---|
| 30 | * \endcode | 
|---|
| 31 | * | 
|---|
| 32 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 33 | */ | 
|---|
| 34 | template<typename Scalar> class JacobiRotation | 
|---|
| 35 | { | 
|---|
| 36 | public: | 
|---|
| 37 | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|---|
| 38 |  | 
|---|
| 39 | /** Default constructor without any initialization. */ | 
|---|
| 40 | JacobiRotation() {} | 
|---|
| 41 |  | 
|---|
| 42 | /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ | 
|---|
| 43 | JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} | 
|---|
| 44 |  | 
|---|
| 45 | Scalar& c() { return m_c; } | 
|---|
| 46 | Scalar c() const { return m_c; } | 
|---|
| 47 | Scalar& s() { return m_s; } | 
|---|
| 48 | Scalar s() const { return m_s; } | 
|---|
| 49 |  | 
|---|
| 50 | /** Concatenates two planar rotation */ | 
|---|
| 51 | JacobiRotation operator*(const JacobiRotation& other) | 
|---|
| 52 | { | 
|---|
| 53 | using numext::conj; | 
|---|
| 54 | return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, | 
|---|
| 55 | conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | /** Returns the transposed transformation */ | 
|---|
| 59 | JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } | 
|---|
| 60 |  | 
|---|
| 61 | /** Returns the adjoint transformation */ | 
|---|
| 62 | JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } | 
|---|
| 63 |  | 
|---|
| 64 | template<typename Derived> | 
|---|
| 65 | bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q); | 
|---|
| 66 | bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); | 
|---|
| 67 |  | 
|---|
| 68 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); | 
|---|
| 69 |  | 
|---|
| 70 | protected: | 
|---|
| 71 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); | 
|---|
| 72 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); | 
|---|
| 73 |  | 
|---|
| 74 | Scalar m_c, m_s; | 
|---|
| 75 | }; | 
|---|
| 76 |  | 
|---|
| 77 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix | 
|---|
| 78 | * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ | 
|---|
| 79 | * | 
|---|
| 80 | * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 81 | */ | 
|---|
| 82 | template<typename Scalar> | 
|---|
| 83 | bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) | 
|---|
| 84 | { | 
|---|
| 85 | using std::sqrt; | 
|---|
| 86 | using std::abs; | 
|---|
| 87 | RealScalar deno = RealScalar(2)*abs(y); | 
|---|
| 88 | if(deno < (std::numeric_limits<RealScalar>::min)()) | 
|---|
| 89 | { | 
|---|
| 90 | m_c = Scalar(1); | 
|---|
| 91 | m_s = Scalar(0); | 
|---|
| 92 | return false; | 
|---|
| 93 | } | 
|---|
| 94 | else | 
|---|
| 95 | { | 
|---|
| 96 | RealScalar tau = (x-z)/deno; | 
|---|
| 97 | RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); | 
|---|
| 98 | RealScalar t; | 
|---|
| 99 | if(tau>RealScalar(0)) | 
|---|
| 100 | { | 
|---|
| 101 | t = RealScalar(1) / (tau + w); | 
|---|
| 102 | } | 
|---|
| 103 | else | 
|---|
| 104 | { | 
|---|
| 105 | t = RealScalar(1) / (tau - w); | 
|---|
| 106 | } | 
|---|
| 107 | RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); | 
|---|
| 108 | RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); | 
|---|
| 109 | m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; | 
|---|
| 110 | m_c = n; | 
|---|
| 111 | return true; | 
|---|
| 112 | } | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix | 
|---|
| 116 | * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields | 
|---|
| 117 | * a diagonal matrix \f$ A = J^* B J \f$ | 
|---|
| 118 | * | 
|---|
| 119 | * Example: \include Jacobi_makeJacobi.cpp | 
|---|
| 120 | * Output: \verbinclude Jacobi_makeJacobi.out | 
|---|
| 121 | * | 
|---|
| 122 | * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 123 | */ | 
|---|
| 124 | template<typename Scalar> | 
|---|
| 125 | template<typename Derived> | 
|---|
| 126 | inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q) | 
|---|
| 127 | { | 
|---|
| 128 | return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector | 
|---|
| 132 | * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: | 
|---|
| 133 | * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. | 
|---|
| 134 | * | 
|---|
| 135 | * The value of \a r is returned if \a r is not null (the default is null). | 
|---|
| 136 | * Also note that G is built such that the cosine is always real. | 
|---|
| 137 | * | 
|---|
| 138 | * Example: \include Jacobi_makeGivens.cpp | 
|---|
| 139 | * Output: \verbinclude Jacobi_makeGivens.out | 
|---|
| 140 | * | 
|---|
| 141 | * This function implements the continuous Givens rotation generation algorithm | 
|---|
| 142 | * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. | 
|---|
| 143 | * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. | 
|---|
| 144 | * | 
|---|
| 145 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 146 | */ | 
|---|
| 147 | template<typename Scalar> | 
|---|
| 148 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) | 
|---|
| 149 | { | 
|---|
| 150 | makeGivens(p, q, r, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 |  | 
|---|
| 154 | // specialization for complexes | 
|---|
| 155 | template<typename Scalar> | 
|---|
| 156 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) | 
|---|
| 157 | { | 
|---|
| 158 | using std::sqrt; | 
|---|
| 159 | using std::abs; | 
|---|
| 160 | using numext::conj; | 
|---|
| 161 |  | 
|---|
| 162 | if(q==Scalar(0)) | 
|---|
| 163 | { | 
|---|
| 164 | m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); | 
|---|
| 165 | m_s = 0; | 
|---|
| 166 | if(r) *r = m_c * p; | 
|---|
| 167 | } | 
|---|
| 168 | else if(p==Scalar(0)) | 
|---|
| 169 | { | 
|---|
| 170 | m_c = 0; | 
|---|
| 171 | m_s = -q/abs(q); | 
|---|
| 172 | if(r) *r = abs(q); | 
|---|
| 173 | } | 
|---|
| 174 | else | 
|---|
| 175 | { | 
|---|
| 176 | RealScalar p1 = numext::norm1(p); | 
|---|
| 177 | RealScalar q1 = numext::norm1(q); | 
|---|
| 178 | if(p1>=q1) | 
|---|
| 179 | { | 
|---|
| 180 | Scalar ps = p / p1; | 
|---|
| 181 | RealScalar p2 = numext::abs2(ps); | 
|---|
| 182 | Scalar qs = q / p1; | 
|---|
| 183 | RealScalar q2 = numext::abs2(qs); | 
|---|
| 184 |  | 
|---|
| 185 | RealScalar u = sqrt(RealScalar(1) + q2/p2); | 
|---|
| 186 | if(numext::real(p)<RealScalar(0)) | 
|---|
| 187 | u = -u; | 
|---|
| 188 |  | 
|---|
| 189 | m_c = Scalar(1)/u; | 
|---|
| 190 | m_s = -qs*conj(ps)*(m_c/p2); | 
|---|
| 191 | if(r) *r = p * u; | 
|---|
| 192 | } | 
|---|
| 193 | else | 
|---|
| 194 | { | 
|---|
| 195 | Scalar ps = p / q1; | 
|---|
| 196 | RealScalar p2 = numext::abs2(ps); | 
|---|
| 197 | Scalar qs = q / q1; | 
|---|
| 198 | RealScalar q2 = numext::abs2(qs); | 
|---|
| 199 |  | 
|---|
| 200 | RealScalar u = q1 * sqrt(p2 + q2); | 
|---|
| 201 | if(numext::real(p)<RealScalar(0)) | 
|---|
| 202 | u = -u; | 
|---|
| 203 |  | 
|---|
| 204 | p1 = abs(p); | 
|---|
| 205 | ps = p/p1; | 
|---|
| 206 | m_c = p1/u; | 
|---|
| 207 | m_s = -conj(ps) * (q/u); | 
|---|
| 208 | if(r) *r = ps * u; | 
|---|
| 209 | } | 
|---|
| 210 | } | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | // specialization for reals | 
|---|
| 214 | template<typename Scalar> | 
|---|
| 215 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) | 
|---|
| 216 | { | 
|---|
| 217 | using std::sqrt; | 
|---|
| 218 | using std::abs; | 
|---|
| 219 | if(q==Scalar(0)) | 
|---|
| 220 | { | 
|---|
| 221 | m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); | 
|---|
| 222 | m_s = Scalar(0); | 
|---|
| 223 | if(r) *r = abs(p); | 
|---|
| 224 | } | 
|---|
| 225 | else if(p==Scalar(0)) | 
|---|
| 226 | { | 
|---|
| 227 | m_c = Scalar(0); | 
|---|
| 228 | m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); | 
|---|
| 229 | if(r) *r = abs(q); | 
|---|
| 230 | } | 
|---|
| 231 | else if(abs(p) > abs(q)) | 
|---|
| 232 | { | 
|---|
| 233 | Scalar t = q/p; | 
|---|
| 234 | Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
|---|
| 235 | if(p<Scalar(0)) | 
|---|
| 236 | u = -u; | 
|---|
| 237 | m_c = Scalar(1)/u; | 
|---|
| 238 | m_s = -t * m_c; | 
|---|
| 239 | if(r) *r = p * u; | 
|---|
| 240 | } | 
|---|
| 241 | else | 
|---|
| 242 | { | 
|---|
| 243 | Scalar t = p/q; | 
|---|
| 244 | Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
|---|
| 245 | if(q<Scalar(0)) | 
|---|
| 246 | u = -u; | 
|---|
| 247 | m_s = -Scalar(1)/u; | 
|---|
| 248 | m_c = -t * m_s; | 
|---|
| 249 | if(r) *r = q * u; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 | /**************************************************************************************** | 
|---|
| 255 | *   Implementation of MatrixBase methods | 
|---|
| 256 | ****************************************************************************************/ | 
|---|
| 257 |  | 
|---|
| 258 | namespace internal { | 
|---|
| 259 | /** \jacobi_module | 
|---|
| 260 | * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: | 
|---|
| 261 | * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ | 
|---|
| 262 | * | 
|---|
| 263 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 264 | */ | 
|---|
| 265 | template<typename VectorX, typename VectorY, typename OtherScalar> | 
|---|
| 266 | void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j); | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | /** \jacobi_module | 
|---|
| 270 | * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, | 
|---|
| 271 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. | 
|---|
| 272 | * | 
|---|
| 273 | * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() | 
|---|
| 274 | */ | 
|---|
| 275 | template<typename Derived> | 
|---|
| 276 | template<typename OtherScalar> | 
|---|
| 277 | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) | 
|---|
| 278 | { | 
|---|
| 279 | RowXpr x(this->row(p)); | 
|---|
| 280 | RowXpr y(this->row(q)); | 
|---|
| 281 | internal::apply_rotation_in_the_plane(x, y, j); | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | /** \ingroup Jacobi_Module | 
|---|
| 285 | * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J | 
|---|
| 286 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. | 
|---|
| 287 | * | 
|---|
| 288 | * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() | 
|---|
| 289 | */ | 
|---|
| 290 | template<typename Derived> | 
|---|
| 291 | template<typename OtherScalar> | 
|---|
| 292 | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) | 
|---|
| 293 | { | 
|---|
| 294 | ColXpr x(this->col(p)); | 
|---|
| 295 | ColXpr y(this->col(q)); | 
|---|
| 296 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | namespace internal { | 
|---|
| 300 |  | 
|---|
| 301 | template<typename Scalar, typename OtherScalar, | 
|---|
| 302 | int SizeAtCompileTime, int MinAlignment, bool Vectorizable> | 
|---|
| 303 | struct apply_rotation_in_the_plane_selector | 
|---|
| 304 | { | 
|---|
| 305 | static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) | 
|---|
| 306 | { | 
|---|
| 307 | for(Index i=0; i<size; ++i) | 
|---|
| 308 | { | 
|---|
| 309 | Scalar xi = *x; | 
|---|
| 310 | Scalar yi = *y; | 
|---|
| 311 | *x =  c * xi + numext::conj(s) * yi; | 
|---|
| 312 | *y = -s * xi + numext::conj(c) * yi; | 
|---|
| 313 | x += incrx; | 
|---|
| 314 | y += incry; | 
|---|
| 315 | } | 
|---|
| 316 | } | 
|---|
| 317 | }; | 
|---|
| 318 |  | 
|---|
| 319 | template<typename Scalar, typename OtherScalar, | 
|---|
| 320 | int SizeAtCompileTime, int MinAlignment> | 
|---|
| 321 | struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */> | 
|---|
| 322 | { | 
|---|
| 323 | static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) | 
|---|
| 324 | { | 
|---|
| 325 | enum { | 
|---|
| 326 | PacketSize = packet_traits<Scalar>::size, | 
|---|
| 327 | OtherPacketSize = packet_traits<OtherScalar>::size | 
|---|
| 328 | }; | 
|---|
| 329 | typedef typename packet_traits<Scalar>::type Packet; | 
|---|
| 330 | typedef typename packet_traits<OtherScalar>::type OtherPacket; | 
|---|
| 331 |  | 
|---|
| 332 | /*** dynamic-size vectorized paths ***/ | 
|---|
| 333 | if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1)) | 
|---|
| 334 | { | 
|---|
| 335 | // both vectors are sequentially stored in memory => vectorization | 
|---|
| 336 | enum { Peeling = 2 }; | 
|---|
| 337 |  | 
|---|
| 338 | Index alignedStart = internal::first_default_aligned(y, size); | 
|---|
| 339 | Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; | 
|---|
| 340 |  | 
|---|
| 341 | const OtherPacket pc = pset1<OtherPacket>(c); | 
|---|
| 342 | const OtherPacket ps = pset1<OtherPacket>(s); | 
|---|
| 343 | conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj; | 
|---|
| 344 | conj_helper<OtherPacket,Packet,false,false> pm; | 
|---|
| 345 |  | 
|---|
| 346 | for(Index i=0; i<alignedStart; ++i) | 
|---|
| 347 | { | 
|---|
| 348 | Scalar xi = x[i]; | 
|---|
| 349 | Scalar yi = y[i]; | 
|---|
| 350 | x[i] =  c * xi + numext::conj(s) * yi; | 
|---|
| 351 | y[i] = -s * xi + numext::conj(c) * yi; | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | Scalar* EIGEN_RESTRICT px = x + alignedStart; | 
|---|
| 355 | Scalar* EIGEN_RESTRICT py = y + alignedStart; | 
|---|
| 356 |  | 
|---|
| 357 | if(internal::first_default_aligned(x, size)==alignedStart) | 
|---|
| 358 | { | 
|---|
| 359 | for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) | 
|---|
| 360 | { | 
|---|
| 361 | Packet xi = pload<Packet>(px); | 
|---|
| 362 | Packet yi = pload<Packet>(py); | 
|---|
| 363 | pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
|---|
| 364 | pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
|---|
| 365 | px += PacketSize; | 
|---|
| 366 | py += PacketSize; | 
|---|
| 367 | } | 
|---|
| 368 | } | 
|---|
| 369 | else | 
|---|
| 370 | { | 
|---|
| 371 | Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); | 
|---|
| 372 | for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) | 
|---|
| 373 | { | 
|---|
| 374 | Packet xi   = ploadu<Packet>(px); | 
|---|
| 375 | Packet xi1  = ploadu<Packet>(px+PacketSize); | 
|---|
| 376 | Packet yi   = pload <Packet>(py); | 
|---|
| 377 | Packet yi1  = pload <Packet>(py+PacketSize); | 
|---|
| 378 | pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
|---|
| 379 | pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); | 
|---|
| 380 | pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
|---|
| 381 | pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); | 
|---|
| 382 | px += Peeling*PacketSize; | 
|---|
| 383 | py += Peeling*PacketSize; | 
|---|
| 384 | } | 
|---|
| 385 | if(alignedEnd!=peelingEnd) | 
|---|
| 386 | { | 
|---|
| 387 | Packet xi = ploadu<Packet>(x+peelingEnd); | 
|---|
| 388 | Packet yi = pload <Packet>(y+peelingEnd); | 
|---|
| 389 | pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
|---|
| 390 | pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
|---|
| 391 | } | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | for(Index i=alignedEnd; i<size; ++i) | 
|---|
| 395 | { | 
|---|
| 396 | Scalar xi = x[i]; | 
|---|
| 397 | Scalar yi = y[i]; | 
|---|
| 398 | x[i] =  c * xi + numext::conj(s) * yi; | 
|---|
| 399 | y[i] = -s * xi + numext::conj(c) * yi; | 
|---|
| 400 | } | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | /*** fixed-size vectorized path ***/ | 
|---|
| 404 | else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment | 
|---|
| 405 | { | 
|---|
| 406 | const OtherPacket pc = pset1<OtherPacket>(c); | 
|---|
| 407 | const OtherPacket ps = pset1<OtherPacket>(s); | 
|---|
| 408 | conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj; | 
|---|
| 409 | conj_helper<OtherPacket,Packet,false,false> pm; | 
|---|
| 410 | Scalar* EIGEN_RESTRICT px = x; | 
|---|
| 411 | Scalar* EIGEN_RESTRICT py = y; | 
|---|
| 412 | for(Index i=0; i<size; i+=PacketSize) | 
|---|
| 413 | { | 
|---|
| 414 | Packet xi = pload<Packet>(px); | 
|---|
| 415 | Packet yi = pload<Packet>(py); | 
|---|
| 416 | pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
|---|
| 417 | pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
|---|
| 418 | px += PacketSize; | 
|---|
| 419 | py += PacketSize; | 
|---|
| 420 | } | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | /*** non-vectorized path ***/ | 
|---|
| 424 | else | 
|---|
| 425 | { | 
|---|
| 426 | apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s); | 
|---|
| 427 | } | 
|---|
| 428 | } | 
|---|
| 429 | }; | 
|---|
| 430 |  | 
|---|
| 431 | template<typename VectorX, typename VectorY, typename OtherScalar> | 
|---|
| 432 | void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j) | 
|---|
| 433 | { | 
|---|
| 434 | typedef typename VectorX::Scalar Scalar; | 
|---|
| 435 | const bool Vectorizable =    (VectorX::Flags & VectorY::Flags & PacketAccessBit) | 
|---|
| 436 | && (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size)); | 
|---|
| 437 |  | 
|---|
| 438 | eigen_assert(xpr_x.size() == xpr_y.size()); | 
|---|
| 439 | Index size = xpr_x.size(); | 
|---|
| 440 | Index incrx = xpr_x.derived().innerStride(); | 
|---|
| 441 | Index incry = xpr_y.derived().innerStride(); | 
|---|
| 442 |  | 
|---|
| 443 | Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); | 
|---|
| 444 | Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); | 
|---|
| 445 |  | 
|---|
| 446 | OtherScalar c = j.c(); | 
|---|
| 447 | OtherScalar s = j.s(); | 
|---|
| 448 | if (c==OtherScalar(1) && s==OtherScalar(0)) | 
|---|
| 449 | return; | 
|---|
| 450 |  | 
|---|
| 451 | apply_rotation_in_the_plane_selector< | 
|---|
| 452 | Scalar,OtherScalar, | 
|---|
| 453 | VectorX::SizeAtCompileTime, | 
|---|
| 454 | EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment), | 
|---|
| 455 | Vectorizable>::run(x,incrx,y,incry,size,c,s); | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | } // end namespace internal | 
|---|
| 459 |  | 
|---|
| 460 | } // end namespace Eigen | 
|---|
| 461 |  | 
|---|
| 462 | #endif // EIGEN_JACOBI_H | 
|---|
| 463 |  | 
|---|