1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_JACOBI_H |
12 | #define EIGEN_JACOBI_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | /** \ingroup Jacobi_Module |
17 | * \jacobi_module |
18 | * \class JacobiRotation |
19 | * \brief Rotation given by a cosine-sine pair. |
20 | * |
21 | * This class represents a Jacobi or Givens rotation. |
22 | * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by |
23 | * its cosine \c c and sine \c s as follow: |
24 | * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ |
25 | * |
26 | * You can apply the respective counter-clockwise rotation to a column vector \c v by |
27 | * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: |
28 | * \code |
29 | * v.applyOnTheLeft(J.adjoint()); |
30 | * \endcode |
31 | * |
32 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
33 | */ |
34 | template<typename Scalar> class JacobiRotation |
35 | { |
36 | public: |
37 | typedef typename NumTraits<Scalar>::Real RealScalar; |
38 | |
39 | /** Default constructor without any initialization. */ |
40 | JacobiRotation() {} |
41 | |
42 | /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ |
43 | JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} |
44 | |
45 | Scalar& c() { return m_c; } |
46 | Scalar c() const { return m_c; } |
47 | Scalar& s() { return m_s; } |
48 | Scalar s() const { return m_s; } |
49 | |
50 | /** Concatenates two planar rotation */ |
51 | JacobiRotation operator*(const JacobiRotation& other) |
52 | { |
53 | using numext::conj; |
54 | return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, |
55 | conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); |
56 | } |
57 | |
58 | /** Returns the transposed transformation */ |
59 | JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } |
60 | |
61 | /** Returns the adjoint transformation */ |
62 | JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } |
63 | |
64 | template<typename Derived> |
65 | bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q); |
66 | bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); |
67 | |
68 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); |
69 | |
70 | protected: |
71 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); |
72 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); |
73 | |
74 | Scalar m_c, m_s; |
75 | }; |
76 | |
77 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix |
78 | * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ |
79 | * |
80 | * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
81 | */ |
82 | template<typename Scalar> |
83 | bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) |
84 | { |
85 | using std::sqrt; |
86 | using std::abs; |
87 | RealScalar deno = RealScalar(2)*abs(y); |
88 | if(deno < (std::numeric_limits<RealScalar>::min)()) |
89 | { |
90 | m_c = Scalar(1); |
91 | m_s = Scalar(0); |
92 | return false; |
93 | } |
94 | else |
95 | { |
96 | RealScalar tau = (x-z)/deno; |
97 | RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); |
98 | RealScalar t; |
99 | if(tau>RealScalar(0)) |
100 | { |
101 | t = RealScalar(1) / (tau + w); |
102 | } |
103 | else |
104 | { |
105 | t = RealScalar(1) / (tau - w); |
106 | } |
107 | RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); |
108 | RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); |
109 | m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; |
110 | m_c = n; |
111 | return true; |
112 | } |
113 | } |
114 | |
115 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix |
116 | * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields |
117 | * a diagonal matrix \f$ A = J^* B J \f$ |
118 | * |
119 | * Example: \include Jacobi_makeJacobi.cpp |
120 | * Output: \verbinclude Jacobi_makeJacobi.out |
121 | * |
122 | * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
123 | */ |
124 | template<typename Scalar> |
125 | template<typename Derived> |
126 | inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q) |
127 | { |
128 | return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); |
129 | } |
130 | |
131 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector |
132 | * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: |
133 | * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. |
134 | * |
135 | * The value of \a r is returned if \a r is not null (the default is null). |
136 | * Also note that G is built such that the cosine is always real. |
137 | * |
138 | * Example: \include Jacobi_makeGivens.cpp |
139 | * Output: \verbinclude Jacobi_makeGivens.out |
140 | * |
141 | * This function implements the continuous Givens rotation generation algorithm |
142 | * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. |
143 | * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. |
144 | * |
145 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
146 | */ |
147 | template<typename Scalar> |
148 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) |
149 | { |
150 | makeGivens(p, q, r, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); |
151 | } |
152 | |
153 | |
154 | // specialization for complexes |
155 | template<typename Scalar> |
156 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) |
157 | { |
158 | using std::sqrt; |
159 | using std::abs; |
160 | using numext::conj; |
161 | |
162 | if(q==Scalar(0)) |
163 | { |
164 | m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); |
165 | m_s = 0; |
166 | if(r) *r = m_c * p; |
167 | } |
168 | else if(p==Scalar(0)) |
169 | { |
170 | m_c = 0; |
171 | m_s = -q/abs(q); |
172 | if(r) *r = abs(q); |
173 | } |
174 | else |
175 | { |
176 | RealScalar p1 = numext::norm1(p); |
177 | RealScalar q1 = numext::norm1(q); |
178 | if(p1>=q1) |
179 | { |
180 | Scalar ps = p / p1; |
181 | RealScalar p2 = numext::abs2(ps); |
182 | Scalar qs = q / p1; |
183 | RealScalar q2 = numext::abs2(qs); |
184 | |
185 | RealScalar u = sqrt(RealScalar(1) + q2/p2); |
186 | if(numext::real(p)<RealScalar(0)) |
187 | u = -u; |
188 | |
189 | m_c = Scalar(1)/u; |
190 | m_s = -qs*conj(ps)*(m_c/p2); |
191 | if(r) *r = p * u; |
192 | } |
193 | else |
194 | { |
195 | Scalar ps = p / q1; |
196 | RealScalar p2 = numext::abs2(ps); |
197 | Scalar qs = q / q1; |
198 | RealScalar q2 = numext::abs2(qs); |
199 | |
200 | RealScalar u = q1 * sqrt(p2 + q2); |
201 | if(numext::real(p)<RealScalar(0)) |
202 | u = -u; |
203 | |
204 | p1 = abs(p); |
205 | ps = p/p1; |
206 | m_c = p1/u; |
207 | m_s = -conj(ps) * (q/u); |
208 | if(r) *r = ps * u; |
209 | } |
210 | } |
211 | } |
212 | |
213 | // specialization for reals |
214 | template<typename Scalar> |
215 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) |
216 | { |
217 | using std::sqrt; |
218 | using std::abs; |
219 | if(q==Scalar(0)) |
220 | { |
221 | m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); |
222 | m_s = Scalar(0); |
223 | if(r) *r = abs(p); |
224 | } |
225 | else if(p==Scalar(0)) |
226 | { |
227 | m_c = Scalar(0); |
228 | m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); |
229 | if(r) *r = abs(q); |
230 | } |
231 | else if(abs(p) > abs(q)) |
232 | { |
233 | Scalar t = q/p; |
234 | Scalar u = sqrt(Scalar(1) + numext::abs2(t)); |
235 | if(p<Scalar(0)) |
236 | u = -u; |
237 | m_c = Scalar(1)/u; |
238 | m_s = -t * m_c; |
239 | if(r) *r = p * u; |
240 | } |
241 | else |
242 | { |
243 | Scalar t = p/q; |
244 | Scalar u = sqrt(Scalar(1) + numext::abs2(t)); |
245 | if(q<Scalar(0)) |
246 | u = -u; |
247 | m_s = -Scalar(1)/u; |
248 | m_c = -t * m_s; |
249 | if(r) *r = q * u; |
250 | } |
251 | |
252 | } |
253 | |
254 | /**************************************************************************************** |
255 | * Implementation of MatrixBase methods |
256 | ****************************************************************************************/ |
257 | |
258 | namespace internal { |
259 | /** \jacobi_module |
260 | * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: |
261 | * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ |
262 | * |
263 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
264 | */ |
265 | template<typename VectorX, typename VectorY, typename OtherScalar> |
266 | void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j); |
267 | } |
268 | |
269 | /** \jacobi_module |
270 | * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, |
271 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. |
272 | * |
273 | * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() |
274 | */ |
275 | template<typename Derived> |
276 | template<typename OtherScalar> |
277 | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
278 | { |
279 | RowXpr x(this->row(p)); |
280 | RowXpr y(this->row(q)); |
281 | internal::apply_rotation_in_the_plane(x, y, j); |
282 | } |
283 | |
284 | /** \ingroup Jacobi_Module |
285 | * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J |
286 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. |
287 | * |
288 | * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() |
289 | */ |
290 | template<typename Derived> |
291 | template<typename OtherScalar> |
292 | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
293 | { |
294 | ColXpr x(this->col(p)); |
295 | ColXpr y(this->col(q)); |
296 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); |
297 | } |
298 | |
299 | namespace internal { |
300 | |
301 | template<typename Scalar, typename OtherScalar, |
302 | int SizeAtCompileTime, int MinAlignment, bool Vectorizable> |
303 | struct apply_rotation_in_the_plane_selector |
304 | { |
305 | static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) |
306 | { |
307 | for(Index i=0; i<size; ++i) |
308 | { |
309 | Scalar xi = *x; |
310 | Scalar yi = *y; |
311 | *x = c * xi + numext::conj(s) * yi; |
312 | *y = -s * xi + numext::conj(c) * yi; |
313 | x += incrx; |
314 | y += incry; |
315 | } |
316 | } |
317 | }; |
318 | |
319 | template<typename Scalar, typename OtherScalar, |
320 | int SizeAtCompileTime, int MinAlignment> |
321 | struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */> |
322 | { |
323 | static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) |
324 | { |
325 | enum { |
326 | PacketSize = packet_traits<Scalar>::size, |
327 | OtherPacketSize = packet_traits<OtherScalar>::size |
328 | }; |
329 | typedef typename packet_traits<Scalar>::type Packet; |
330 | typedef typename packet_traits<OtherScalar>::type OtherPacket; |
331 | |
332 | /*** dynamic-size vectorized paths ***/ |
333 | if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1)) |
334 | { |
335 | // both vectors are sequentially stored in memory => vectorization |
336 | enum { Peeling = 2 }; |
337 | |
338 | Index alignedStart = internal::first_default_aligned(y, size); |
339 | Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; |
340 | |
341 | const OtherPacket pc = pset1<OtherPacket>(c); |
342 | const OtherPacket ps = pset1<OtherPacket>(s); |
343 | conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj; |
344 | conj_helper<OtherPacket,Packet,false,false> pm; |
345 | |
346 | for(Index i=0; i<alignedStart; ++i) |
347 | { |
348 | Scalar xi = x[i]; |
349 | Scalar yi = y[i]; |
350 | x[i] = c * xi + numext::conj(s) * yi; |
351 | y[i] = -s * xi + numext::conj(c) * yi; |
352 | } |
353 | |
354 | Scalar* EIGEN_RESTRICT px = x + alignedStart; |
355 | Scalar* EIGEN_RESTRICT py = y + alignedStart; |
356 | |
357 | if(internal::first_default_aligned(x, size)==alignedStart) |
358 | { |
359 | for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) |
360 | { |
361 | Packet xi = pload<Packet>(px); |
362 | Packet yi = pload<Packet>(py); |
363 | pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); |
364 | pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); |
365 | px += PacketSize; |
366 | py += PacketSize; |
367 | } |
368 | } |
369 | else |
370 | { |
371 | Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); |
372 | for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) |
373 | { |
374 | Packet xi = ploadu<Packet>(px); |
375 | Packet xi1 = ploadu<Packet>(px+PacketSize); |
376 | Packet yi = pload <Packet>(py); |
377 | Packet yi1 = pload <Packet>(py+PacketSize); |
378 | pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); |
379 | pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); |
380 | pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); |
381 | pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); |
382 | px += Peeling*PacketSize; |
383 | py += Peeling*PacketSize; |
384 | } |
385 | if(alignedEnd!=peelingEnd) |
386 | { |
387 | Packet xi = ploadu<Packet>(x+peelingEnd); |
388 | Packet yi = pload <Packet>(y+peelingEnd); |
389 | pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); |
390 | pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); |
391 | } |
392 | } |
393 | |
394 | for(Index i=alignedEnd; i<size; ++i) |
395 | { |
396 | Scalar xi = x[i]; |
397 | Scalar yi = y[i]; |
398 | x[i] = c * xi + numext::conj(s) * yi; |
399 | y[i] = -s * xi + numext::conj(c) * yi; |
400 | } |
401 | } |
402 | |
403 | /*** fixed-size vectorized path ***/ |
404 | else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment |
405 | { |
406 | const OtherPacket pc = pset1<OtherPacket>(c); |
407 | const OtherPacket ps = pset1<OtherPacket>(s); |
408 | conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj; |
409 | conj_helper<OtherPacket,Packet,false,false> pm; |
410 | Scalar* EIGEN_RESTRICT px = x; |
411 | Scalar* EIGEN_RESTRICT py = y; |
412 | for(Index i=0; i<size; i+=PacketSize) |
413 | { |
414 | Packet xi = pload<Packet>(px); |
415 | Packet yi = pload<Packet>(py); |
416 | pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); |
417 | pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); |
418 | px += PacketSize; |
419 | py += PacketSize; |
420 | } |
421 | } |
422 | |
423 | /*** non-vectorized path ***/ |
424 | else |
425 | { |
426 | apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s); |
427 | } |
428 | } |
429 | }; |
430 | |
431 | template<typename VectorX, typename VectorY, typename OtherScalar> |
432 | void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j) |
433 | { |
434 | typedef typename VectorX::Scalar Scalar; |
435 | const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit) |
436 | && (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size)); |
437 | |
438 | eigen_assert(xpr_x.size() == xpr_y.size()); |
439 | Index size = xpr_x.size(); |
440 | Index incrx = xpr_x.derived().innerStride(); |
441 | Index incry = xpr_y.derived().innerStride(); |
442 | |
443 | Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); |
444 | Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); |
445 | |
446 | OtherScalar c = j.c(); |
447 | OtherScalar s = j.s(); |
448 | if (c==OtherScalar(1) && s==OtherScalar(0)) |
449 | return; |
450 | |
451 | apply_rotation_in_the_plane_selector< |
452 | Scalar,OtherScalar, |
453 | VectorX::SizeAtCompileTime, |
454 | EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment), |
455 | Vectorizable>::run(x,incrx,y,incry,size,c,s); |
456 | } |
457 | |
458 | } // end namespace internal |
459 | |
460 | } // end namespace Eigen |
461 | |
462 | #endif // EIGEN_JACOBI_H |
463 | |