1 | // |
2 | // Copyright (c) 2013 Mikko Mononen memon@inside.org |
3 | // |
4 | // This software is provided 'as-is', without any express or implied |
5 | // warranty. In no event will the authors be held liable for any damages |
6 | // arising from the use of this software. |
7 | // Permission is granted to anyone to use this software for any purpose, |
8 | // including commercial applications, and to alter it and redistribute it |
9 | // freely, subject to the following restrictions: |
10 | // 1. The origin of this software must not be misrepresented; you must not |
11 | // claim that you wrote the original software. If you use this software |
12 | // in a product, an acknowledgment in the product documentation would be |
13 | // appreciated but is not required. |
14 | // 2. Altered source versions must be plainly marked as such, and must not be |
15 | // misrepresented as being the original software. |
16 | // 3. This notice may not be removed or altered from any source distribution. |
17 | // |
18 | |
19 | #include <stdlib.h> |
20 | #include <stdio.h> |
21 | #include <math.h> |
22 | #include <memory.h> |
23 | |
24 | #include "nanovg.h" |
25 | #define FONTSTASH_IMPLEMENTATION |
26 | #include "fontstash.h" |
27 | #define STB_IMAGE_IMPLEMENTATION |
28 | #include "stb_image.h" |
29 | |
30 | #ifdef _MSC_VER |
31 | #pragma warning(disable: 4100) // unreferenced formal parameter |
32 | #pragma warning(disable: 4127) // conditional expression is constant |
33 | #pragma warning(disable: 4204) // nonstandard extension used : non-constant aggregate initializer |
34 | #pragma warning(disable: 4706) // assignment within conditional expression |
35 | #endif |
36 | |
37 | #define NVG_INIT_FONTIMAGE_SIZE 512 |
38 | #define NVG_MAX_FONTIMAGE_SIZE 2048 |
39 | #define NVG_MAX_FONTIMAGES 4 |
40 | |
41 | #define NVG_INIT_COMMANDS_SIZE 256 |
42 | #define NVG_INIT_POINTS_SIZE 128 |
43 | #define NVG_INIT_PATHS_SIZE 16 |
44 | #define NVG_INIT_VERTS_SIZE 256 |
45 | #define NVG_MAX_STATES 32 |
46 | |
47 | #define NVG_KAPPA90 0.5522847493f // Length proportional to radius of a cubic bezier handle for 90deg arcs. |
48 | |
49 | #define NVG_COUNTOF(arr) (sizeof(arr) / sizeof(0[arr])) |
50 | |
51 | |
52 | enum NVGcommands { |
53 | NVG_MOVETO = 0, |
54 | NVG_LINETO = 1, |
55 | NVG_BEZIERTO = 2, |
56 | NVG_CLOSE = 3, |
57 | NVG_WINDING = 4, |
58 | }; |
59 | |
60 | enum NVGpointFlags |
61 | { |
62 | NVG_PT_CORNER = 0x01, |
63 | NVG_PT_LEFT = 0x02, |
64 | NVG_PT_BEVEL = 0x04, |
65 | NVG_PR_INNERBEVEL = 0x08, |
66 | }; |
67 | |
68 | struct NVGstate { |
69 | NVGcompositeOperationState compositeOperation; |
70 | int shapeAntiAlias; |
71 | NVGpaint fill; |
72 | NVGpaint stroke; |
73 | float strokeWidth; |
74 | float miterLimit; |
75 | int lineJoin; |
76 | int lineCap; |
77 | float alpha; |
78 | float xform[6]; |
79 | NVGscissor scissor; |
80 | float fontSize; |
81 | float letterSpacing; |
82 | float lineHeight; |
83 | float fontBlur; |
84 | int textAlign; |
85 | int fontId; |
86 | }; |
87 | typedef struct NVGstate NVGstate; |
88 | |
89 | struct NVGpoint { |
90 | float x,y; |
91 | float dx, dy; |
92 | float len; |
93 | float dmx, dmy; |
94 | unsigned char flags; |
95 | }; |
96 | typedef struct NVGpoint NVGpoint; |
97 | |
98 | struct NVGpathCache { |
99 | NVGpoint* points; |
100 | int npoints; |
101 | int cpoints; |
102 | NVGpath* paths; |
103 | int npaths; |
104 | int cpaths; |
105 | NVGvertex* verts; |
106 | int nverts; |
107 | int cverts; |
108 | float bounds[4]; |
109 | }; |
110 | typedef struct NVGpathCache NVGpathCache; |
111 | |
112 | struct NVGcontext { |
113 | NVGparams params; |
114 | float* commands; |
115 | int ccommands; |
116 | int ncommands; |
117 | float commandx, commandy; |
118 | NVGstate states[NVG_MAX_STATES]; |
119 | int nstates; |
120 | NVGpathCache* cache; |
121 | float tessTol; |
122 | float distTol; |
123 | float fringeWidth; |
124 | float devicePxRatio; |
125 | struct FONScontext* fs; |
126 | int fontImages[NVG_MAX_FONTIMAGES]; |
127 | int fontImageIdx; |
128 | int drawCallCount; |
129 | int fillTriCount; |
130 | int strokeTriCount; |
131 | int textTriCount; |
132 | }; |
133 | |
134 | static float nvg__sqrtf(float a) { return sqrtf(a); } |
135 | static float nvg__modf(float a, float b) { return fmodf(a, b); } |
136 | static float nvg__sinf(float a) { return sinf(a); } |
137 | static float nvg__cosf(float a) { return cosf(a); } |
138 | static float nvg__tanf(float a) { return tanf(a); } |
139 | static float nvg__atan2f(float a,float b) { return atan2f(a, b); } |
140 | static float nvg__acosf(float a) { return acosf(a); } |
141 | |
142 | static int nvg__mini(int a, int b) { return a < b ? a : b; } |
143 | static int nvg__maxi(int a, int b) { return a > b ? a : b; } |
144 | static int nvg__clampi(int a, int mn, int mx) { return a < mn ? mn : (a > mx ? mx : a); } |
145 | static float nvg__minf(float a, float b) { return a < b ? a : b; } |
146 | static float nvg__maxf(float a, float b) { return a > b ? a : b; } |
147 | static float nvg__absf(float a) { return a >= 0.0f ? a : -a; } |
148 | static float nvg__signf(float a) { return a >= 0.0f ? 1.0f : -1.0f; } |
149 | static float nvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } |
150 | static float nvg__cross(float dx0, float dy0, float dx1, float dy1) { return dx1*dy0 - dx0*dy1; } |
151 | |
152 | static float nvg__normalize(float *x, float* y) |
153 | { |
154 | float d = nvg__sqrtf((*x)*(*x) + (*y)*(*y)); |
155 | if (d > 1e-6f) { |
156 | float id = 1.0f / d; |
157 | *x *= id; |
158 | *y *= id; |
159 | } |
160 | return d; |
161 | } |
162 | |
163 | |
164 | static void nvg__deletePathCache(NVGpathCache* c) |
165 | { |
166 | if (c == NULL) return; |
167 | if (c->points != NULL) free(c->points); |
168 | if (c->paths != NULL) free(c->paths); |
169 | if (c->verts != NULL) free(c->verts); |
170 | free(c); |
171 | } |
172 | |
173 | static NVGpathCache* nvg__allocPathCache(void) |
174 | { |
175 | NVGpathCache* c = (NVGpathCache*)malloc(sizeof(NVGpathCache)); |
176 | if (c == NULL) goto error; |
177 | memset(c, 0, sizeof(NVGpathCache)); |
178 | |
179 | c->points = (NVGpoint*)malloc(sizeof(NVGpoint)*NVG_INIT_POINTS_SIZE); |
180 | if (!c->points) goto error; |
181 | c->npoints = 0; |
182 | c->cpoints = NVG_INIT_POINTS_SIZE; |
183 | |
184 | c->paths = (NVGpath*)malloc(sizeof(NVGpath)*NVG_INIT_PATHS_SIZE); |
185 | if (!c->paths) goto error; |
186 | c->npaths = 0; |
187 | c->cpaths = NVG_INIT_PATHS_SIZE; |
188 | |
189 | c->verts = (NVGvertex*)malloc(sizeof(NVGvertex)*NVG_INIT_VERTS_SIZE); |
190 | if (!c->verts) goto error; |
191 | c->nverts = 0; |
192 | c->cverts = NVG_INIT_VERTS_SIZE; |
193 | |
194 | return c; |
195 | error: |
196 | nvg__deletePathCache(c); |
197 | return NULL; |
198 | } |
199 | |
200 | static void nvg__setDevicePixelRatio(NVGcontext* ctx, float ratio) |
201 | { |
202 | ctx->tessTol = 0.25f / ratio; |
203 | ctx->distTol = 0.01f / ratio; |
204 | ctx->fringeWidth = 1.0f / ratio; |
205 | ctx->devicePxRatio = ratio; |
206 | } |
207 | |
208 | static NVGcompositeOperationState nvg__compositeOperationState(int op) |
209 | { |
210 | int sfactor = 0, dfactor = 0; |
211 | |
212 | if (op == NVG_SOURCE_OVER) |
213 | { |
214 | sfactor = NVG_ONE; |
215 | dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
216 | } |
217 | else if (op == NVG_SOURCE_IN) |
218 | { |
219 | sfactor = NVG_DST_ALPHA; |
220 | dfactor = NVG_ZERO; |
221 | } |
222 | else if (op == NVG_SOURCE_OUT) |
223 | { |
224 | sfactor = NVG_ONE_MINUS_DST_ALPHA; |
225 | dfactor = NVG_ZERO; |
226 | } |
227 | else if (op == NVG_ATOP) |
228 | { |
229 | sfactor = NVG_DST_ALPHA; |
230 | dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
231 | } |
232 | else if (op == NVG_DESTINATION_OVER) |
233 | { |
234 | sfactor = NVG_ONE_MINUS_DST_ALPHA; |
235 | dfactor = NVG_ONE; |
236 | } |
237 | else if (op == NVG_DESTINATION_IN) |
238 | { |
239 | sfactor = NVG_ZERO; |
240 | dfactor = NVG_SRC_ALPHA; |
241 | } |
242 | else if (op == NVG_DESTINATION_OUT) |
243 | { |
244 | sfactor = NVG_ZERO; |
245 | dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
246 | } |
247 | else if (op == NVG_DESTINATION_ATOP) |
248 | { |
249 | sfactor = NVG_ONE_MINUS_DST_ALPHA; |
250 | dfactor = NVG_SRC_ALPHA; |
251 | } |
252 | else if (op == NVG_LIGHTER) |
253 | { |
254 | sfactor = NVG_ONE; |
255 | dfactor = NVG_ONE; |
256 | } |
257 | else if (op == NVG_COPY) |
258 | { |
259 | sfactor = NVG_ONE; |
260 | dfactor = NVG_ZERO; |
261 | } |
262 | else if (op == NVG_XOR) |
263 | { |
264 | sfactor = NVG_ONE_MINUS_DST_ALPHA; |
265 | dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
266 | } |
267 | else |
268 | { |
269 | sfactor = NVG_ONE; |
270 | dfactor = NVG_ZERO; |
271 | } |
272 | |
273 | NVGcompositeOperationState state; |
274 | state.srcRGB = sfactor; |
275 | state.dstRGB = dfactor; |
276 | state.srcAlpha = sfactor; |
277 | state.dstAlpha = dfactor; |
278 | return state; |
279 | } |
280 | |
281 | static NVGstate* nvg__getState(NVGcontext* ctx) |
282 | { |
283 | return &ctx->states[ctx->nstates-1]; |
284 | } |
285 | |
286 | NVGcontext* nvgCreateInternal(NVGparams* params) |
287 | { |
288 | FONSparams fontParams; |
289 | NVGcontext* ctx = (NVGcontext*)malloc(sizeof(NVGcontext)); |
290 | int i; |
291 | if (ctx == NULL) goto error; |
292 | memset(ctx, 0, sizeof(NVGcontext)); |
293 | |
294 | ctx->params = *params; |
295 | for (i = 0; i < NVG_MAX_FONTIMAGES; i++) |
296 | ctx->fontImages[i] = 0; |
297 | |
298 | ctx->commands = (float*)malloc(sizeof(float)*NVG_INIT_COMMANDS_SIZE); |
299 | if (!ctx->commands) goto error; |
300 | ctx->ncommands = 0; |
301 | ctx->ccommands = NVG_INIT_COMMANDS_SIZE; |
302 | |
303 | ctx->cache = nvg__allocPathCache(); |
304 | if (ctx->cache == NULL) goto error; |
305 | |
306 | nvgSave(ctx); |
307 | nvgReset(ctx); |
308 | |
309 | nvg__setDevicePixelRatio(ctx, 1.0f); |
310 | |
311 | if (ctx->params.renderCreate(ctx->params.userPtr) == 0) goto error; |
312 | |
313 | // Init font rendering |
314 | memset(&fontParams, 0, sizeof(fontParams)); |
315 | fontParams.width = NVG_INIT_FONTIMAGE_SIZE; |
316 | fontParams.height = NVG_INIT_FONTIMAGE_SIZE; |
317 | fontParams.flags = FONS_ZERO_TOPLEFT; |
318 | fontParams.renderCreate = NULL; |
319 | fontParams.renderUpdate = NULL; |
320 | fontParams.renderDraw = NULL; |
321 | fontParams.renderDelete = NULL; |
322 | fontParams.userPtr = NULL; |
323 | ctx->fs = fonsCreateInternal(&fontParams); |
324 | if (ctx->fs == NULL) goto error; |
325 | |
326 | // Create font texture |
327 | ctx->fontImages[0] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, fontParams.width, fontParams.height, 0, NULL); |
328 | if (ctx->fontImages[0] == 0) goto error; |
329 | ctx->fontImageIdx = 0; |
330 | |
331 | return ctx; |
332 | |
333 | error: |
334 | nvgDeleteInternal(ctx); |
335 | return 0; |
336 | } |
337 | |
338 | NVGparams* nvgInternalParams(NVGcontext* ctx) |
339 | { |
340 | return &ctx->params; |
341 | } |
342 | |
343 | void nvgDeleteInternal(NVGcontext* ctx) |
344 | { |
345 | int i; |
346 | if (ctx == NULL) return; |
347 | if (ctx->commands != NULL) free(ctx->commands); |
348 | if (ctx->cache != NULL) nvg__deletePathCache(ctx->cache); |
349 | |
350 | if (ctx->fs) |
351 | fonsDeleteInternal(ctx->fs); |
352 | |
353 | for (i = 0; i < NVG_MAX_FONTIMAGES; i++) { |
354 | if (ctx->fontImages[i] != 0) { |
355 | nvgDeleteImage(ctx, ctx->fontImages[i]); |
356 | ctx->fontImages[i] = 0; |
357 | } |
358 | } |
359 | |
360 | if (ctx->params.renderDelete != NULL) |
361 | ctx->params.renderDelete(ctx->params.userPtr); |
362 | |
363 | free(ctx); |
364 | } |
365 | |
366 | void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio) |
367 | { |
368 | /* printf("Tris: draws:%d fill:%d stroke:%d text:%d TOT:%d\n", |
369 | ctx->drawCallCount, ctx->fillTriCount, ctx->strokeTriCount, ctx->textTriCount, |
370 | ctx->fillTriCount+ctx->strokeTriCount+ctx->textTriCount);*/ |
371 | |
372 | ctx->nstates = 0; |
373 | nvgSave(ctx); |
374 | nvgReset(ctx); |
375 | |
376 | nvg__setDevicePixelRatio(ctx, devicePixelRatio); |
377 | |
378 | ctx->params.renderViewport(ctx->params.userPtr, windowWidth, windowHeight, devicePixelRatio); |
379 | |
380 | ctx->drawCallCount = 0; |
381 | ctx->fillTriCount = 0; |
382 | ctx->strokeTriCount = 0; |
383 | ctx->textTriCount = 0; |
384 | } |
385 | |
386 | void nvgCancelFrame(NVGcontext* ctx) |
387 | { |
388 | ctx->params.renderCancel(ctx->params.userPtr); |
389 | } |
390 | |
391 | void nvgEndFrame(NVGcontext* ctx) |
392 | { |
393 | ctx->params.renderFlush(ctx->params.userPtr); |
394 | if (ctx->fontImageIdx != 0) { |
395 | int fontImage = ctx->fontImages[ctx->fontImageIdx]; |
396 | int i, j, iw, ih; |
397 | // delete images that smaller than current one |
398 | if (fontImage == 0) |
399 | return; |
400 | nvgImageSize(ctx, fontImage, &iw, &ih); |
401 | for (i = j = 0; i < ctx->fontImageIdx; i++) { |
402 | if (ctx->fontImages[i] != 0) { |
403 | int nw, nh; |
404 | nvgImageSize(ctx, ctx->fontImages[i], &nw, &nh); |
405 | if (nw < iw || nh < ih) |
406 | nvgDeleteImage(ctx, ctx->fontImages[i]); |
407 | else |
408 | ctx->fontImages[j++] = ctx->fontImages[i]; |
409 | } |
410 | } |
411 | // make current font image to first |
412 | ctx->fontImages[j++] = ctx->fontImages[0]; |
413 | ctx->fontImages[0] = fontImage; |
414 | ctx->fontImageIdx = 0; |
415 | // clear all images after j |
416 | for (i = j; i < NVG_MAX_FONTIMAGES; i++) |
417 | ctx->fontImages[i] = 0; |
418 | } |
419 | } |
420 | |
421 | NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b) |
422 | { |
423 | return nvgRGBA(r,g,b,255); |
424 | } |
425 | |
426 | NVGcolor nvgRGBf(float r, float g, float b) |
427 | { |
428 | return nvgRGBAf(r,g,b,1.0f); |
429 | } |
430 | |
431 | NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) |
432 | { |
433 | NVGcolor color; |
434 | // Use longer initialization to suppress warning. |
435 | color.r = r / 255.0f; |
436 | color.g = g / 255.0f; |
437 | color.b = b / 255.0f; |
438 | color.a = a / 255.0f; |
439 | return color; |
440 | } |
441 | |
442 | NVGcolor nvgRGBAf(float r, float g, float b, float a) |
443 | { |
444 | NVGcolor color; |
445 | // Use longer initialization to suppress warning. |
446 | color.r = r; |
447 | color.g = g; |
448 | color.b = b; |
449 | color.a = a; |
450 | return color; |
451 | } |
452 | |
453 | NVGcolor nvgTransRGBA(NVGcolor c, unsigned char a) |
454 | { |
455 | c.a = a / 255.0f; |
456 | return c; |
457 | } |
458 | |
459 | NVGcolor nvgTransRGBAf(NVGcolor c, float a) |
460 | { |
461 | c.a = a; |
462 | return c; |
463 | } |
464 | |
465 | NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u) |
466 | { |
467 | int i; |
468 | float oneminu; |
469 | NVGcolor cint = {{{0}}}; |
470 | |
471 | u = nvg__clampf(u, 0.0f, 1.0f); |
472 | oneminu = 1.0f - u; |
473 | for( i = 0; i <4; i++ ) |
474 | { |
475 | cint.rgba[i] = c0.rgba[i] * oneminu + c1.rgba[i] * u; |
476 | } |
477 | |
478 | return cint; |
479 | } |
480 | |
481 | NVGcolor nvgHSL(float h, float s, float l) |
482 | { |
483 | return nvgHSLA(h,s,l,255); |
484 | } |
485 | |
486 | static float nvg__hue(float h, float m1, float m2) |
487 | { |
488 | if (h < 0) h += 1; |
489 | if (h > 1) h -= 1; |
490 | if (h < 1.0f/6.0f) |
491 | return m1 + (m2 - m1) * h * 6.0f; |
492 | else if (h < 3.0f/6.0f) |
493 | return m2; |
494 | else if (h < 4.0f/6.0f) |
495 | return m1 + (m2 - m1) * (2.0f/3.0f - h) * 6.0f; |
496 | return m1; |
497 | } |
498 | |
499 | NVGcolor nvgHSLA(float h, float s, float l, unsigned char a) |
500 | { |
501 | float m1, m2; |
502 | NVGcolor col; |
503 | h = nvg__modf(h, 1.0f); |
504 | if (h < 0.0f) h += 1.0f; |
505 | s = nvg__clampf(s, 0.0f, 1.0f); |
506 | l = nvg__clampf(l, 0.0f, 1.0f); |
507 | m2 = l <= 0.5f ? (l * (1 + s)) : (l + s - l * s); |
508 | m1 = 2 * l - m2; |
509 | col.r = nvg__clampf(nvg__hue(h + 1.0f/3.0f, m1, m2), 0.0f, 1.0f); |
510 | col.g = nvg__clampf(nvg__hue(h, m1, m2), 0.0f, 1.0f); |
511 | col.b = nvg__clampf(nvg__hue(h - 1.0f/3.0f, m1, m2), 0.0f, 1.0f); |
512 | col.a = a/255.0f; |
513 | return col; |
514 | } |
515 | |
516 | void nvgTransformIdentity(float* t) |
517 | { |
518 | t[0] = 1.0f; t[1] = 0.0f; |
519 | t[2] = 0.0f; t[3] = 1.0f; |
520 | t[4] = 0.0f; t[5] = 0.0f; |
521 | } |
522 | |
523 | void nvgTransformTranslate(float* t, float tx, float ty) |
524 | { |
525 | t[0] = 1.0f; t[1] = 0.0f; |
526 | t[2] = 0.0f; t[3] = 1.0f; |
527 | t[4] = tx; t[5] = ty; |
528 | } |
529 | |
530 | void nvgTransformScale(float* t, float sx, float sy) |
531 | { |
532 | t[0] = sx; t[1] = 0.0f; |
533 | t[2] = 0.0f; t[3] = sy; |
534 | t[4] = 0.0f; t[5] = 0.0f; |
535 | } |
536 | |
537 | void nvgTransformRotate(float* t, float a) |
538 | { |
539 | float cs = nvg__cosf(a), sn = nvg__sinf(a); |
540 | t[0] = cs; t[1] = sn; |
541 | t[2] = -sn; t[3] = cs; |
542 | t[4] = 0.0f; t[5] = 0.0f; |
543 | } |
544 | |
545 | void nvgTransformSkewX(float* t, float a) |
546 | { |
547 | t[0] = 1.0f; t[1] = 0.0f; |
548 | t[2] = nvg__tanf(a); t[3] = 1.0f; |
549 | t[4] = 0.0f; t[5] = 0.0f; |
550 | } |
551 | |
552 | void nvgTransformSkewY(float* t, float a) |
553 | { |
554 | t[0] = 1.0f; t[1] = nvg__tanf(a); |
555 | t[2] = 0.0f; t[3] = 1.0f; |
556 | t[4] = 0.0f; t[5] = 0.0f; |
557 | } |
558 | |
559 | void nvgTransformMultiply(float* t, const float* s) |
560 | { |
561 | float t0 = t[0] * s[0] + t[1] * s[2]; |
562 | float t2 = t[2] * s[0] + t[3] * s[2]; |
563 | float t4 = t[4] * s[0] + t[5] * s[2] + s[4]; |
564 | t[1] = t[0] * s[1] + t[1] * s[3]; |
565 | t[3] = t[2] * s[1] + t[3] * s[3]; |
566 | t[5] = t[4] * s[1] + t[5] * s[3] + s[5]; |
567 | t[0] = t0; |
568 | t[2] = t2; |
569 | t[4] = t4; |
570 | } |
571 | |
572 | void nvgTransformPremultiply(float* t, const float* s) |
573 | { |
574 | float s2[6]; |
575 | memcpy(s2, s, sizeof(float)*6); |
576 | nvgTransformMultiply(s2, t); |
577 | memcpy(t, s2, sizeof(float)*6); |
578 | } |
579 | |
580 | int nvgTransformInverse(float* inv, const float* t) |
581 | { |
582 | double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; |
583 | if (det > -1e-6 && det < 1e-6) { |
584 | nvgTransformIdentity(inv); |
585 | return 0; |
586 | } |
587 | invdet = 1.0 / det; |
588 | inv[0] = (float)(t[3] * invdet); |
589 | inv[2] = (float)(-t[2] * invdet); |
590 | inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); |
591 | inv[1] = (float)(-t[1] * invdet); |
592 | inv[3] = (float)(t[0] * invdet); |
593 | inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); |
594 | return 1; |
595 | } |
596 | |
597 | void nvgTransformPoint(float* dx, float* dy, const float* t, float sx, float sy) |
598 | { |
599 | *dx = sx*t[0] + sy*t[2] + t[4]; |
600 | *dy = sx*t[1] + sy*t[3] + t[5]; |
601 | } |
602 | |
603 | float nvgDegToRad(float deg) |
604 | { |
605 | return deg / 180.0f * NVG_PI; |
606 | } |
607 | |
608 | float nvgRadToDeg(float rad) |
609 | { |
610 | return rad / NVG_PI * 180.0f; |
611 | } |
612 | |
613 | static void nvg__setPaintColor(NVGpaint* p, NVGcolor color) |
614 | { |
615 | memset(p, 0, sizeof(*p)); |
616 | nvgTransformIdentity(p->xform); |
617 | p->radius = 0.0f; |
618 | p->feather = 1.0f; |
619 | p->innerColor = color; |
620 | p->outerColor = color; |
621 | } |
622 | |
623 | |
624 | // State handling |
625 | void nvgSave(NVGcontext* ctx) |
626 | { |
627 | if (ctx->nstates >= NVG_MAX_STATES) |
628 | return; |
629 | if (ctx->nstates > 0) |
630 | memcpy(&ctx->states[ctx->nstates], &ctx->states[ctx->nstates-1], sizeof(NVGstate)); |
631 | ctx->nstates++; |
632 | } |
633 | |
634 | void nvgRestore(NVGcontext* ctx) |
635 | { |
636 | if (ctx->nstates <= 1) |
637 | return; |
638 | ctx->nstates--; |
639 | } |
640 | |
641 | void nvgReset(NVGcontext* ctx) |
642 | { |
643 | NVGstate* state = nvg__getState(ctx); |
644 | memset(state, 0, sizeof(*state)); |
645 | |
646 | nvg__setPaintColor(&state->fill, nvgRGBA(255,255,255,255)); |
647 | nvg__setPaintColor(&state->stroke, nvgRGBA(0,0,0,255)); |
648 | state->compositeOperation = nvg__compositeOperationState(NVG_SOURCE_OVER); |
649 | state->shapeAntiAlias = 1; |
650 | state->strokeWidth = 1.0f; |
651 | state->miterLimit = 10.0f; |
652 | state->lineCap = NVG_BUTT; |
653 | state->lineJoin = NVG_MITER; |
654 | state->alpha = 1.0f; |
655 | nvgTransformIdentity(state->xform); |
656 | |
657 | state->scissor.extent[0] = -1.0f; |
658 | state->scissor.extent[1] = -1.0f; |
659 | |
660 | state->fontSize = 16.0f; |
661 | state->letterSpacing = 0.0f; |
662 | state->lineHeight = 1.0f; |
663 | state->fontBlur = 0.0f; |
664 | state->textAlign = NVG_ALIGN_LEFT | NVG_ALIGN_BASELINE; |
665 | state->fontId = 0; |
666 | } |
667 | |
668 | // State setting |
669 | void nvgShapeAntiAlias(NVGcontext* ctx, int enabled) |
670 | { |
671 | NVGstate* state = nvg__getState(ctx); |
672 | state->shapeAntiAlias = enabled; |
673 | } |
674 | |
675 | void nvgStrokeWidth(NVGcontext* ctx, float width) |
676 | { |
677 | NVGstate* state = nvg__getState(ctx); |
678 | state->strokeWidth = width; |
679 | } |
680 | |
681 | void nvgMiterLimit(NVGcontext* ctx, float limit) |
682 | { |
683 | NVGstate* state = nvg__getState(ctx); |
684 | state->miterLimit = limit; |
685 | } |
686 | |
687 | void nvgLineCap(NVGcontext* ctx, int cap) |
688 | { |
689 | NVGstate* state = nvg__getState(ctx); |
690 | state->lineCap = cap; |
691 | } |
692 | |
693 | void nvgLineJoin(NVGcontext* ctx, int join) |
694 | { |
695 | NVGstate* state = nvg__getState(ctx); |
696 | state->lineJoin = join; |
697 | } |
698 | |
699 | void nvgGlobalAlpha(NVGcontext* ctx, float alpha) |
700 | { |
701 | NVGstate* state = nvg__getState(ctx); |
702 | state->alpha = alpha; |
703 | } |
704 | |
705 | void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f) |
706 | { |
707 | NVGstate* state = nvg__getState(ctx); |
708 | float t[6] = { a, b, c, d, e, f }; |
709 | nvgTransformPremultiply(state->xform, t); |
710 | } |
711 | |
712 | void nvgResetTransform(NVGcontext* ctx) |
713 | { |
714 | NVGstate* state = nvg__getState(ctx); |
715 | nvgTransformIdentity(state->xform); |
716 | } |
717 | |
718 | void nvgTranslate(NVGcontext* ctx, float x, float y) |
719 | { |
720 | NVGstate* state = nvg__getState(ctx); |
721 | float t[6]; |
722 | nvgTransformTranslate(t, x,y); |
723 | nvgTransformPremultiply(state->xform, t); |
724 | } |
725 | |
726 | void nvgRotate(NVGcontext* ctx, float angle) |
727 | { |
728 | NVGstate* state = nvg__getState(ctx); |
729 | float t[6]; |
730 | nvgTransformRotate(t, angle); |
731 | nvgTransformPremultiply(state->xform, t); |
732 | } |
733 | |
734 | void nvgSkewX(NVGcontext* ctx, float angle) |
735 | { |
736 | NVGstate* state = nvg__getState(ctx); |
737 | float t[6]; |
738 | nvgTransformSkewX(t, angle); |
739 | nvgTransformPremultiply(state->xform, t); |
740 | } |
741 | |
742 | void nvgSkewY(NVGcontext* ctx, float angle) |
743 | { |
744 | NVGstate* state = nvg__getState(ctx); |
745 | float t[6]; |
746 | nvgTransformSkewY(t, angle); |
747 | nvgTransformPremultiply(state->xform, t); |
748 | } |
749 | |
750 | void nvgScale(NVGcontext* ctx, float x, float y) |
751 | { |
752 | NVGstate* state = nvg__getState(ctx); |
753 | float t[6]; |
754 | nvgTransformScale(t, x,y); |
755 | nvgTransformPremultiply(state->xform, t); |
756 | } |
757 | |
758 | void nvgCurrentTransform(NVGcontext* ctx, float* xform) |
759 | { |
760 | NVGstate* state = nvg__getState(ctx); |
761 | if (xform == NULL) return; |
762 | memcpy(xform, state->xform, sizeof(float)*6); |
763 | } |
764 | |
765 | void nvgStrokeColor(NVGcontext* ctx, NVGcolor color) |
766 | { |
767 | NVGstate* state = nvg__getState(ctx); |
768 | nvg__setPaintColor(&state->stroke, color); |
769 | } |
770 | |
771 | void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint) |
772 | { |
773 | NVGstate* state = nvg__getState(ctx); |
774 | state->stroke = paint; |
775 | nvgTransformMultiply(state->stroke.xform, state->xform); |
776 | } |
777 | |
778 | void nvgFillColor(NVGcontext* ctx, NVGcolor color) |
779 | { |
780 | NVGstate* state = nvg__getState(ctx); |
781 | nvg__setPaintColor(&state->fill, color); |
782 | } |
783 | |
784 | void nvgFillPaint(NVGcontext* ctx, NVGpaint paint) |
785 | { |
786 | NVGstate* state = nvg__getState(ctx); |
787 | state->fill = paint; |
788 | nvgTransformMultiply(state->fill.xform, state->xform); |
789 | } |
790 | |
791 | int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags) |
792 | { |
793 | int w, h, n, image; |
794 | unsigned char* img; |
795 | stbi_set_unpremultiply_on_load(1); |
796 | stbi_convert_iphone_png_to_rgb(1); |
797 | img = stbi_load(filename, &w, &h, &n, 4); |
798 | if (img == NULL) { |
799 | // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); |
800 | return 0; |
801 | } |
802 | image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); |
803 | stbi_image_free(img); |
804 | return image; |
805 | } |
806 | |
807 | int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata) |
808 | { |
809 | int w, h, n, image; |
810 | unsigned char* img = stbi_load_from_memory(data, ndata, &w, &h, &n, 4); |
811 | if (img == NULL) { |
812 | // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); |
813 | return 0; |
814 | } |
815 | image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); |
816 | stbi_image_free(img); |
817 | return image; |
818 | } |
819 | |
820 | int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data) |
821 | { |
822 | return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_RGBA, w, h, imageFlags, data); |
823 | } |
824 | |
825 | void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data) |
826 | { |
827 | int w, h; |
828 | ctx->params.renderGetTextureSize(ctx->params.userPtr, image, &w, &h); |
829 | ctx->params.renderUpdateTexture(ctx->params.userPtr, image, 0,0, w,h, data); |
830 | } |
831 | |
832 | void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h) |
833 | { |
834 | ctx->params.renderGetTextureSize(ctx->params.userPtr, image, w, h); |
835 | } |
836 | |
837 | void nvgDeleteImage(NVGcontext* ctx, int image) |
838 | { |
839 | ctx->params.renderDeleteTexture(ctx->params.userPtr, image); |
840 | } |
841 | |
842 | NVGpaint nvgLinearGradient(NVGcontext* ctx, |
843 | float sx, float sy, float ex, float ey, |
844 | NVGcolor icol, NVGcolor ocol) |
845 | { |
846 | NVGpaint p; |
847 | float dx, dy, d; |
848 | const float large = 1e5; |
849 | NVG_NOTUSED(ctx); |
850 | memset(&p, 0, sizeof(p)); |
851 | |
852 | // Calculate transform aligned to the line |
853 | dx = ex - sx; |
854 | dy = ey - sy; |
855 | d = sqrtf(dx*dx + dy*dy); |
856 | if (d > 0.0001f) { |
857 | dx /= d; |
858 | dy /= d; |
859 | } else { |
860 | dx = 0; |
861 | dy = 1; |
862 | } |
863 | |
864 | p.xform[0] = dy; p.xform[1] = -dx; |
865 | p.xform[2] = dx; p.xform[3] = dy; |
866 | p.xform[4] = sx - dx*large; p.xform[5] = sy - dy*large; |
867 | |
868 | p.extent[0] = large; |
869 | p.extent[1] = large + d*0.5f; |
870 | |
871 | p.radius = 0.0f; |
872 | |
873 | p.feather = nvg__maxf(1.0f, d); |
874 | |
875 | p.innerColor = icol; |
876 | p.outerColor = ocol; |
877 | |
878 | return p; |
879 | } |
880 | |
881 | NVGpaint nvgRadialGradient(NVGcontext* ctx, |
882 | float cx, float cy, float inr, float outr, |
883 | NVGcolor icol, NVGcolor ocol) |
884 | { |
885 | NVGpaint p; |
886 | float r = (inr+outr)*0.5f; |
887 | float f = (outr-inr); |
888 | NVG_NOTUSED(ctx); |
889 | memset(&p, 0, sizeof(p)); |
890 | |
891 | nvgTransformIdentity(p.xform); |
892 | p.xform[4] = cx; |
893 | p.xform[5] = cy; |
894 | |
895 | p.extent[0] = r; |
896 | p.extent[1] = r; |
897 | |
898 | p.radius = r; |
899 | |
900 | p.feather = nvg__maxf(1.0f, f); |
901 | |
902 | p.innerColor = icol; |
903 | p.outerColor = ocol; |
904 | |
905 | return p; |
906 | } |
907 | |
908 | NVGpaint nvgBoxGradient(NVGcontext* ctx, |
909 | float x, float y, float w, float h, float r, float f, |
910 | NVGcolor icol, NVGcolor ocol) |
911 | { |
912 | NVGpaint p; |
913 | NVG_NOTUSED(ctx); |
914 | memset(&p, 0, sizeof(p)); |
915 | |
916 | nvgTransformIdentity(p.xform); |
917 | p.xform[4] = x+w*0.5f; |
918 | p.xform[5] = y+h*0.5f; |
919 | |
920 | p.extent[0] = w*0.5f; |
921 | p.extent[1] = h*0.5f; |
922 | |
923 | p.radius = r; |
924 | |
925 | p.feather = nvg__maxf(1.0f, f); |
926 | |
927 | p.innerColor = icol; |
928 | p.outerColor = ocol; |
929 | |
930 | return p; |
931 | } |
932 | |
933 | |
934 | NVGpaint nvgImagePattern(NVGcontext* ctx, |
935 | float cx, float cy, float w, float h, float angle, |
936 | int image, float alpha) |
937 | { |
938 | NVGpaint p; |
939 | NVG_NOTUSED(ctx); |
940 | memset(&p, 0, sizeof(p)); |
941 | |
942 | nvgTransformRotate(p.xform, angle); |
943 | p.xform[4] = cx; |
944 | p.xform[5] = cy; |
945 | |
946 | p.extent[0] = w; |
947 | p.extent[1] = h; |
948 | |
949 | p.image = image; |
950 | |
951 | p.innerColor = p.outerColor = nvgRGBAf(1,1,1,alpha); |
952 | |
953 | return p; |
954 | } |
955 | |
956 | // Scissoring |
957 | void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h) |
958 | { |
959 | NVGstate* state = nvg__getState(ctx); |
960 | |
961 | w = nvg__maxf(0.0f, w); |
962 | h = nvg__maxf(0.0f, h); |
963 | |
964 | nvgTransformIdentity(state->scissor.xform); |
965 | state->scissor.xform[4] = x+w*0.5f; |
966 | state->scissor.xform[5] = y+h*0.5f; |
967 | nvgTransformMultiply(state->scissor.xform, state->xform); |
968 | |
969 | state->scissor.extent[0] = w*0.5f; |
970 | state->scissor.extent[1] = h*0.5f; |
971 | } |
972 | |
973 | static void nvg__isectRects(float* dst, |
974 | float ax, float ay, float aw, float ah, |
975 | float bx, float by, float bw, float bh) |
976 | { |
977 | float minx = nvg__maxf(ax, bx); |
978 | float miny = nvg__maxf(ay, by); |
979 | float maxx = nvg__minf(ax+aw, bx+bw); |
980 | float maxy = nvg__minf(ay+ah, by+bh); |
981 | dst[0] = minx; |
982 | dst[1] = miny; |
983 | dst[2] = nvg__maxf(0.0f, maxx - minx); |
984 | dst[3] = nvg__maxf(0.0f, maxy - miny); |
985 | } |
986 | |
987 | void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h) |
988 | { |
989 | NVGstate* state = nvg__getState(ctx); |
990 | float pxform[6], invxorm[6]; |
991 | float rect[4]; |
992 | float ex, ey, tex, tey; |
993 | |
994 | // If no previous scissor has been set, set the scissor as current scissor. |
995 | if (state->scissor.extent[0] < 0) { |
996 | nvgScissor(ctx, x, y, w, h); |
997 | return; |
998 | } |
999 | |
1000 | // Transform the current scissor rect into current transform space. |
1001 | // If there is difference in rotation, this will be approximation. |
1002 | memcpy(pxform, state->scissor.xform, sizeof(float)*6); |
1003 | ex = state->scissor.extent[0]; |
1004 | ey = state->scissor.extent[1]; |
1005 | nvgTransformInverse(invxorm, state->xform); |
1006 | nvgTransformMultiply(pxform, invxorm); |
1007 | tex = ex*nvg__absf(pxform[0]) + ey*nvg__absf(pxform[2]); |
1008 | tey = ex*nvg__absf(pxform[1]) + ey*nvg__absf(pxform[3]); |
1009 | |
1010 | // Intersect rects. |
1011 | nvg__isectRects(rect, pxform[4]-tex,pxform[5]-tey,tex*2,tey*2, x,y,w,h); |
1012 | |
1013 | nvgScissor(ctx, rect[0], rect[1], rect[2], rect[3]); |
1014 | } |
1015 | |
1016 | void nvgResetScissor(NVGcontext* ctx) |
1017 | { |
1018 | NVGstate* state = nvg__getState(ctx); |
1019 | memset(state->scissor.xform, 0, sizeof(state->scissor.xform)); |
1020 | state->scissor.extent[0] = -1.0f; |
1021 | state->scissor.extent[1] = -1.0f; |
1022 | } |
1023 | |
1024 | // Global composite operation. |
1025 | void nvgGlobalCompositeOperation(NVGcontext* ctx, int op) |
1026 | { |
1027 | NVGstate* state = nvg__getState(ctx); |
1028 | state->compositeOperation = nvg__compositeOperationState(op); |
1029 | } |
1030 | |
1031 | void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor) |
1032 | { |
1033 | nvgGlobalCompositeBlendFuncSeparate(ctx, sfactor, dfactor, sfactor, dfactor); |
1034 | } |
1035 | |
1036 | void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha) |
1037 | { |
1038 | NVGcompositeOperationState op; |
1039 | op.srcRGB = srcRGB; |
1040 | op.dstRGB = dstRGB; |
1041 | op.srcAlpha = srcAlpha; |
1042 | op.dstAlpha = dstAlpha; |
1043 | |
1044 | NVGstate* state = nvg__getState(ctx); |
1045 | state->compositeOperation = op; |
1046 | } |
1047 | |
1048 | static int nvg__ptEquals(float x1, float y1, float x2, float y2, float tol) |
1049 | { |
1050 | float dx = x2 - x1; |
1051 | float dy = y2 - y1; |
1052 | return dx*dx + dy*dy < tol*tol; |
1053 | } |
1054 | |
1055 | static float nvg__distPtSeg(float x, float y, float px, float py, float qx, float qy) |
1056 | { |
1057 | float pqx, pqy, dx, dy, d, t; |
1058 | pqx = qx-px; |
1059 | pqy = qy-py; |
1060 | dx = x-px; |
1061 | dy = y-py; |
1062 | d = pqx*pqx + pqy*pqy; |
1063 | t = pqx*dx + pqy*dy; |
1064 | if (d > 0) t /= d; |
1065 | if (t < 0) t = 0; |
1066 | else if (t > 1) t = 1; |
1067 | dx = px + t*pqx - x; |
1068 | dy = py + t*pqy - y; |
1069 | return dx*dx + dy*dy; |
1070 | } |
1071 | |
1072 | static void nvg__appendCommands(NVGcontext* ctx, float* vals, int nvals) |
1073 | { |
1074 | NVGstate* state = nvg__getState(ctx); |
1075 | int i; |
1076 | |
1077 | if (ctx->ncommands+nvals > ctx->ccommands) { |
1078 | float* commands; |
1079 | int ccommands = ctx->ncommands+nvals + ctx->ccommands/2; |
1080 | commands = (float*)realloc(ctx->commands, sizeof(float)*ccommands); |
1081 | if (commands == NULL) return; |
1082 | ctx->commands = commands; |
1083 | ctx->ccommands = ccommands; |
1084 | } |
1085 | |
1086 | if ((int)vals[0] != NVG_CLOSE && (int)vals[0] != NVG_WINDING) { |
1087 | ctx->commandx = vals[nvals-2]; |
1088 | ctx->commandy = vals[nvals-1]; |
1089 | } |
1090 | |
1091 | // transform commands |
1092 | i = 0; |
1093 | while (i < nvals) { |
1094 | int cmd = (int)vals[i]; |
1095 | switch (cmd) { |
1096 | case NVG_MOVETO: |
1097 | nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
1098 | i += 3; |
1099 | break; |
1100 | case NVG_LINETO: |
1101 | nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
1102 | i += 3; |
1103 | break; |
1104 | case NVG_BEZIERTO: |
1105 | nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
1106 | nvgTransformPoint(&vals[i+3],&vals[i+4], state->xform, vals[i+3],vals[i+4]); |
1107 | nvgTransformPoint(&vals[i+5],&vals[i+6], state->xform, vals[i+5],vals[i+6]); |
1108 | i += 7; |
1109 | break; |
1110 | case NVG_CLOSE: |
1111 | i++; |
1112 | break; |
1113 | case NVG_WINDING: |
1114 | i += 2; |
1115 | break; |
1116 | default: |
1117 | i++; |
1118 | } |
1119 | } |
1120 | |
1121 | memcpy(&ctx->commands[ctx->ncommands], vals, nvals*sizeof(float)); |
1122 | |
1123 | ctx->ncommands += nvals; |
1124 | } |
1125 | |
1126 | |
1127 | static void nvg__clearPathCache(NVGcontext* ctx) |
1128 | { |
1129 | ctx->cache->npoints = 0; |
1130 | ctx->cache->npaths = 0; |
1131 | } |
1132 | |
1133 | static NVGpath* nvg__lastPath(NVGcontext* ctx) |
1134 | { |
1135 | if (ctx->cache->npaths > 0) |
1136 | return &ctx->cache->paths[ctx->cache->npaths-1]; |
1137 | return NULL; |
1138 | } |
1139 | |
1140 | static void nvg__addPath(NVGcontext* ctx) |
1141 | { |
1142 | NVGpath* path; |
1143 | if (ctx->cache->npaths+1 > ctx->cache->cpaths) { |
1144 | NVGpath* paths; |
1145 | int cpaths = ctx->cache->npaths+1 + ctx->cache->cpaths/2; |
1146 | paths = (NVGpath*)realloc(ctx->cache->paths, sizeof(NVGpath)*cpaths); |
1147 | if (paths == NULL) return; |
1148 | ctx->cache->paths = paths; |
1149 | ctx->cache->cpaths = cpaths; |
1150 | } |
1151 | path = &ctx->cache->paths[ctx->cache->npaths]; |
1152 | memset(path, 0, sizeof(*path)); |
1153 | path->first = ctx->cache->npoints; |
1154 | path->winding = NVG_CCW; |
1155 | |
1156 | ctx->cache->npaths++; |
1157 | } |
1158 | |
1159 | static NVGpoint* nvg__lastPoint(NVGcontext* ctx) |
1160 | { |
1161 | if (ctx->cache->npoints > 0) |
1162 | return &ctx->cache->points[ctx->cache->npoints-1]; |
1163 | return NULL; |
1164 | } |
1165 | |
1166 | static void nvg__addPoint(NVGcontext* ctx, float x, float y, int flags) |
1167 | { |
1168 | NVGpath* path = nvg__lastPath(ctx); |
1169 | NVGpoint* pt; |
1170 | if (path == NULL) return; |
1171 | |
1172 | if (path->count > 0 && ctx->cache->npoints > 0) { |
1173 | pt = nvg__lastPoint(ctx); |
1174 | if (nvg__ptEquals(pt->x,pt->y, x,y, ctx->distTol)) { |
1175 | pt->flags |= flags; |
1176 | return; |
1177 | } |
1178 | } |
1179 | |
1180 | if (ctx->cache->npoints+1 > ctx->cache->cpoints) { |
1181 | NVGpoint* points; |
1182 | int cpoints = ctx->cache->npoints+1 + ctx->cache->cpoints/2; |
1183 | points = (NVGpoint*)realloc(ctx->cache->points, sizeof(NVGpoint)*cpoints); |
1184 | if (points == NULL) return; |
1185 | ctx->cache->points = points; |
1186 | ctx->cache->cpoints = cpoints; |
1187 | } |
1188 | |
1189 | pt = &ctx->cache->points[ctx->cache->npoints]; |
1190 | memset(pt, 0, sizeof(*pt)); |
1191 | pt->x = x; |
1192 | pt->y = y; |
1193 | pt->flags = (unsigned char)flags; |
1194 | |
1195 | ctx->cache->npoints++; |
1196 | path->count++; |
1197 | } |
1198 | |
1199 | static void nvg__closePath(NVGcontext* ctx) |
1200 | { |
1201 | NVGpath* path = nvg__lastPath(ctx); |
1202 | if (path == NULL) return; |
1203 | path->closed = 1; |
1204 | } |
1205 | |
1206 | static void nvg__pathWinding(NVGcontext* ctx, int winding) |
1207 | { |
1208 | NVGpath* path = nvg__lastPath(ctx); |
1209 | if (path == NULL) return; |
1210 | path->winding = winding; |
1211 | } |
1212 | |
1213 | static float nvg__getAverageScale(float *t) |
1214 | { |
1215 | float sx = sqrtf(t[0]*t[0] + t[2]*t[2]); |
1216 | float sy = sqrtf(t[1]*t[1] + t[3]*t[3]); |
1217 | return (sx + sy) * 0.5f; |
1218 | } |
1219 | |
1220 | static NVGvertex* nvg__allocTempVerts(NVGcontext* ctx, int nverts) |
1221 | { |
1222 | if (nverts > ctx->cache->cverts) { |
1223 | NVGvertex* verts; |
1224 | int cverts = (nverts + 0xff) & ~0xff; // Round up to prevent allocations when things change just slightly. |
1225 | verts = (NVGvertex*)realloc(ctx->cache->verts, sizeof(NVGvertex)*cverts); |
1226 | if (verts == NULL) return NULL; |
1227 | ctx->cache->verts = verts; |
1228 | ctx->cache->cverts = cverts; |
1229 | } |
1230 | |
1231 | return ctx->cache->verts; |
1232 | } |
1233 | |
1234 | static float nvg__triarea2(float ax, float ay, float bx, float by, float cx, float cy) |
1235 | { |
1236 | float abx = bx - ax; |
1237 | float aby = by - ay; |
1238 | float acx = cx - ax; |
1239 | float acy = cy - ay; |
1240 | return acx*aby - abx*acy; |
1241 | } |
1242 | |
1243 | static float nvg__polyArea(NVGpoint* pts, int npts) |
1244 | { |
1245 | int i; |
1246 | float area = 0; |
1247 | for (i = 2; i < npts; i++) { |
1248 | NVGpoint* a = &pts[0]; |
1249 | NVGpoint* b = &pts[i-1]; |
1250 | NVGpoint* c = &pts[i]; |
1251 | area += nvg__triarea2(a->x,a->y, b->x,b->y, c->x,c->y); |
1252 | } |
1253 | return area * 0.5f; |
1254 | } |
1255 | |
1256 | static void nvg__polyReverse(NVGpoint* pts, int npts) |
1257 | { |
1258 | NVGpoint tmp; |
1259 | int i = 0, j = npts-1; |
1260 | while (i < j) { |
1261 | tmp = pts[i]; |
1262 | pts[i] = pts[j]; |
1263 | pts[j] = tmp; |
1264 | i++; |
1265 | j--; |
1266 | } |
1267 | } |
1268 | |
1269 | |
1270 | static void nvg__vset(NVGvertex* vtx, float x, float y, float u, float v) |
1271 | { |
1272 | vtx->x = x; |
1273 | vtx->y = y; |
1274 | vtx->u = u; |
1275 | vtx->v = v; |
1276 | } |
1277 | |
1278 | static void nvg__tesselateBezier(NVGcontext* ctx, |
1279 | float x1, float y1, float x2, float y2, |
1280 | float x3, float y3, float x4, float y4, |
1281 | int level, int type) |
1282 | { |
1283 | float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234; |
1284 | float dx,dy,d2,d3; |
1285 | |
1286 | if (level > 10) return; |
1287 | |
1288 | x12 = (x1+x2)*0.5f; |
1289 | y12 = (y1+y2)*0.5f; |
1290 | x23 = (x2+x3)*0.5f; |
1291 | y23 = (y2+y3)*0.5f; |
1292 | x34 = (x3+x4)*0.5f; |
1293 | y34 = (y3+y4)*0.5f; |
1294 | x123 = (x12+x23)*0.5f; |
1295 | y123 = (y12+y23)*0.5f; |
1296 | |
1297 | dx = x4 - x1; |
1298 | dy = y4 - y1; |
1299 | d2 = nvg__absf(((x2 - x4) * dy - (y2 - y4) * dx)); |
1300 | d3 = nvg__absf(((x3 - x4) * dy - (y3 - y4) * dx)); |
1301 | |
1302 | if ((d2 + d3)*(d2 + d3) < ctx->tessTol * (dx*dx + dy*dy)) { |
1303 | nvg__addPoint(ctx, x4, y4, type); |
1304 | return; |
1305 | } |
1306 | |
1307 | /* if (nvg__absf(x1+x3-x2-x2) + nvg__absf(y1+y3-y2-y2) + nvg__absf(x2+x4-x3-x3) + nvg__absf(y2+y4-y3-y3) < ctx->tessTol) { |
1308 | nvg__addPoint(ctx, x4, y4, type); |
1309 | return; |
1310 | }*/ |
1311 | |
1312 | x234 = (x23+x34)*0.5f; |
1313 | y234 = (y23+y34)*0.5f; |
1314 | x1234 = (x123+x234)*0.5f; |
1315 | y1234 = (y123+y234)*0.5f; |
1316 | |
1317 | nvg__tesselateBezier(ctx, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0); |
1318 | nvg__tesselateBezier(ctx, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type); |
1319 | } |
1320 | |
1321 | static void nvg__flattenPaths(NVGcontext* ctx) |
1322 | { |
1323 | NVGpathCache* cache = ctx->cache; |
1324 | // NVGstate* state = nvg__getState(ctx); |
1325 | NVGpoint* last; |
1326 | NVGpoint* p0; |
1327 | NVGpoint* p1; |
1328 | NVGpoint* pts; |
1329 | NVGpath* path; |
1330 | int i, j; |
1331 | float* cp1; |
1332 | float* cp2; |
1333 | float* p; |
1334 | float area; |
1335 | |
1336 | if (cache->npaths > 0) |
1337 | return; |
1338 | |
1339 | // Flatten |
1340 | i = 0; |
1341 | while (i < ctx->ncommands) { |
1342 | int cmd = (int)ctx->commands[i]; |
1343 | switch (cmd) { |
1344 | case NVG_MOVETO: |
1345 | nvg__addPath(ctx); |
1346 | p = &ctx->commands[i+1]; |
1347 | nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); |
1348 | i += 3; |
1349 | break; |
1350 | case NVG_LINETO: |
1351 | p = &ctx->commands[i+1]; |
1352 | nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); |
1353 | i += 3; |
1354 | break; |
1355 | case NVG_BEZIERTO: |
1356 | last = nvg__lastPoint(ctx); |
1357 | if (last != NULL) { |
1358 | cp1 = &ctx->commands[i+1]; |
1359 | cp2 = &ctx->commands[i+3]; |
1360 | p = &ctx->commands[i+5]; |
1361 | nvg__tesselateBezier(ctx, last->x,last->y, cp1[0],cp1[1], cp2[0],cp2[1], p[0],p[1], 0, NVG_PT_CORNER); |
1362 | } |
1363 | i += 7; |
1364 | break; |
1365 | case NVG_CLOSE: |
1366 | nvg__closePath(ctx); |
1367 | i++; |
1368 | break; |
1369 | case NVG_WINDING: |
1370 | nvg__pathWinding(ctx, (int)ctx->commands[i+1]); |
1371 | i += 2; |
1372 | break; |
1373 | default: |
1374 | i++; |
1375 | } |
1376 | } |
1377 | |
1378 | cache->bounds[0] = cache->bounds[1] = 1e6f; |
1379 | cache->bounds[2] = cache->bounds[3] = -1e6f; |
1380 | |
1381 | // Calculate the direction and length of line segments. |
1382 | for (j = 0; j < cache->npaths; j++) { |
1383 | path = &cache->paths[j]; |
1384 | pts = &cache->points[path->first]; |
1385 | |
1386 | // If the first and last points are the same, remove the last, mark as closed path. |
1387 | p0 = &pts[path->count-1]; |
1388 | p1 = &pts[0]; |
1389 | if (nvg__ptEquals(p0->x,p0->y, p1->x,p1->y, ctx->distTol)) { |
1390 | path->count--; |
1391 | p0 = &pts[path->count-1]; |
1392 | path->closed = 1; |
1393 | } |
1394 | |
1395 | // Enforce winding. |
1396 | if (path->count > 2) { |
1397 | area = nvg__polyArea(pts, path->count); |
1398 | if (path->winding == NVG_CCW && area < 0.0f) |
1399 | nvg__polyReverse(pts, path->count); |
1400 | if (path->winding == NVG_CW && area > 0.0f) |
1401 | nvg__polyReverse(pts, path->count); |
1402 | } |
1403 | |
1404 | for(i = 0; i < path->count; i++) { |
1405 | // Calculate segment direction and length |
1406 | p0->dx = p1->x - p0->x; |
1407 | p0->dy = p1->y - p0->y; |
1408 | p0->len = nvg__normalize(&p0->dx, &p0->dy); |
1409 | // Update bounds |
1410 | cache->bounds[0] = nvg__minf(cache->bounds[0], p0->x); |
1411 | cache->bounds[1] = nvg__minf(cache->bounds[1], p0->y); |
1412 | cache->bounds[2] = nvg__maxf(cache->bounds[2], p0->x); |
1413 | cache->bounds[3] = nvg__maxf(cache->bounds[3], p0->y); |
1414 | // Advance |
1415 | p0 = p1++; |
1416 | } |
1417 | } |
1418 | } |
1419 | |
1420 | static int nvg__curveDivs(float r, float arc, float tol) |
1421 | { |
1422 | float da = acosf(r / (r + tol)) * 2.0f; |
1423 | return nvg__maxi(2, (int)ceilf(arc / da)); |
1424 | } |
1425 | |
1426 | static void nvg__chooseBevel(int bevel, NVGpoint* p0, NVGpoint* p1, float w, |
1427 | float* x0, float* y0, float* x1, float* y1) |
1428 | { |
1429 | if (bevel) { |
1430 | *x0 = p1->x + p0->dy * w; |
1431 | *y0 = p1->y - p0->dx * w; |
1432 | *x1 = p1->x + p1->dy * w; |
1433 | *y1 = p1->y - p1->dx * w; |
1434 | } else { |
1435 | *x0 = p1->x + p1->dmx * w; |
1436 | *y0 = p1->y + p1->dmy * w; |
1437 | *x1 = p1->x + p1->dmx * w; |
1438 | *y1 = p1->y + p1->dmy * w; |
1439 | } |
1440 | } |
1441 | |
1442 | static NVGvertex* nvg__roundJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, |
1443 | float lw, float rw, float lu, float ru, int ncap, |
1444 | float fringe) |
1445 | { |
1446 | int i, n; |
1447 | float dlx0 = p0->dy; |
1448 | float dly0 = -p0->dx; |
1449 | float dlx1 = p1->dy; |
1450 | float dly1 = -p1->dx; |
1451 | NVG_NOTUSED(fringe); |
1452 | |
1453 | if (p1->flags & NVG_PT_LEFT) { |
1454 | float lx0,ly0,lx1,ly1,a0,a1; |
1455 | nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); |
1456 | a0 = atan2f(-dly0, -dlx0); |
1457 | a1 = atan2f(-dly1, -dlx1); |
1458 | if (a1 > a0) a1 -= NVG_PI*2; |
1459 | |
1460 | nvg__vset(dst, lx0, ly0, lu,1); dst++; |
1461 | nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
1462 | |
1463 | n = nvg__clampi((int)ceilf(((a0 - a1) / NVG_PI) * ncap), 2, ncap); |
1464 | for (i = 0; i < n; i++) { |
1465 | float u = i/(float)(n-1); |
1466 | float a = a0 + u*(a1-a0); |
1467 | float rx = p1->x + cosf(a) * rw; |
1468 | float ry = p1->y + sinf(a) * rw; |
1469 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1470 | nvg__vset(dst, rx, ry, ru,1); dst++; |
1471 | } |
1472 | |
1473 | nvg__vset(dst, lx1, ly1, lu,1); dst++; |
1474 | nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
1475 | |
1476 | } else { |
1477 | float rx0,ry0,rx1,ry1,a0,a1; |
1478 | nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); |
1479 | a0 = atan2f(dly0, dlx0); |
1480 | a1 = atan2f(dly1, dlx1); |
1481 | if (a1 < a0) a1 += NVG_PI*2; |
1482 | |
1483 | nvg__vset(dst, p1->x + dlx0*rw, p1->y + dly0*rw, lu,1); dst++; |
1484 | nvg__vset(dst, rx0, ry0, ru,1); dst++; |
1485 | |
1486 | n = nvg__clampi((int)ceilf(((a1 - a0) / NVG_PI) * ncap), 2, ncap); |
1487 | for (i = 0; i < n; i++) { |
1488 | float u = i/(float)(n-1); |
1489 | float a = a0 + u*(a1-a0); |
1490 | float lx = p1->x + cosf(a) * lw; |
1491 | float ly = p1->y + sinf(a) * lw; |
1492 | nvg__vset(dst, lx, ly, lu,1); dst++; |
1493 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1494 | } |
1495 | |
1496 | nvg__vset(dst, p1->x + dlx1*rw, p1->y + dly1*rw, lu,1); dst++; |
1497 | nvg__vset(dst, rx1, ry1, ru,1); dst++; |
1498 | |
1499 | } |
1500 | return dst; |
1501 | } |
1502 | |
1503 | static NVGvertex* nvg__bevelJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, |
1504 | float lw, float rw, float lu, float ru, float fringe) |
1505 | { |
1506 | float rx0,ry0,rx1,ry1; |
1507 | float lx0,ly0,lx1,ly1; |
1508 | float dlx0 = p0->dy; |
1509 | float dly0 = -p0->dx; |
1510 | float dlx1 = p1->dy; |
1511 | float dly1 = -p1->dx; |
1512 | NVG_NOTUSED(fringe); |
1513 | |
1514 | if (p1->flags & NVG_PT_LEFT) { |
1515 | nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); |
1516 | |
1517 | nvg__vset(dst, lx0, ly0, lu,1); dst++; |
1518 | nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
1519 | |
1520 | if (p1->flags & NVG_PT_BEVEL) { |
1521 | nvg__vset(dst, lx0, ly0, lu,1); dst++; |
1522 | nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
1523 | |
1524 | nvg__vset(dst, lx1, ly1, lu,1); dst++; |
1525 | nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
1526 | } else { |
1527 | rx0 = p1->x - p1->dmx * rw; |
1528 | ry0 = p1->y - p1->dmy * rw; |
1529 | |
1530 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1531 | nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
1532 | |
1533 | nvg__vset(dst, rx0, ry0, ru,1); dst++; |
1534 | nvg__vset(dst, rx0, ry0, ru,1); dst++; |
1535 | |
1536 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1537 | nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
1538 | } |
1539 | |
1540 | nvg__vset(dst, lx1, ly1, lu,1); dst++; |
1541 | nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
1542 | |
1543 | } else { |
1544 | nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); |
1545 | |
1546 | nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
1547 | nvg__vset(dst, rx0, ry0, ru,1); dst++; |
1548 | |
1549 | if (p1->flags & NVG_PT_BEVEL) { |
1550 | nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
1551 | nvg__vset(dst, rx0, ry0, ru,1); dst++; |
1552 | |
1553 | nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
1554 | nvg__vset(dst, rx1, ry1, ru,1); dst++; |
1555 | } else { |
1556 | lx0 = p1->x + p1->dmx * lw; |
1557 | ly0 = p1->y + p1->dmy * lw; |
1558 | |
1559 | nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
1560 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1561 | |
1562 | nvg__vset(dst, lx0, ly0, lu,1); dst++; |
1563 | nvg__vset(dst, lx0, ly0, lu,1); dst++; |
1564 | |
1565 | nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
1566 | nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
1567 | } |
1568 | |
1569 | nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
1570 | nvg__vset(dst, rx1, ry1, ru,1); dst++; |
1571 | } |
1572 | |
1573 | return dst; |
1574 | } |
1575 | |
1576 | static NVGvertex* nvg__buttCapStart(NVGvertex* dst, NVGpoint* p, |
1577 | float dx, float dy, float w, float d, |
1578 | float aa, float u0, float u1) |
1579 | { |
1580 | float px = p->x - dx*d; |
1581 | float py = p->y - dy*d; |
1582 | float dlx = dy; |
1583 | float dly = -dx; |
1584 | nvg__vset(dst, px + dlx*w - dx*aa, py + dly*w - dy*aa, u0,0); dst++; |
1585 | nvg__vset(dst, px - dlx*w - dx*aa, py - dly*w - dy*aa, u1,0); dst++; |
1586 | nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; |
1587 | nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; |
1588 | return dst; |
1589 | } |
1590 | |
1591 | static NVGvertex* nvg__buttCapEnd(NVGvertex* dst, NVGpoint* p, |
1592 | float dx, float dy, float w, float d, |
1593 | float aa, float u0, float u1) |
1594 | { |
1595 | float px = p->x + dx*d; |
1596 | float py = p->y + dy*d; |
1597 | float dlx = dy; |
1598 | float dly = -dx; |
1599 | nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; |
1600 | nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; |
1601 | nvg__vset(dst, px + dlx*w + dx*aa, py + dly*w + dy*aa, u0,0); dst++; |
1602 | nvg__vset(dst, px - dlx*w + dx*aa, py - dly*w + dy*aa, u1,0); dst++; |
1603 | return dst; |
1604 | } |
1605 | |
1606 | |
1607 | static NVGvertex* nvg__roundCapStart(NVGvertex* dst, NVGpoint* p, |
1608 | float dx, float dy, float w, int ncap, |
1609 | float aa, float u0, float u1) |
1610 | { |
1611 | int i; |
1612 | float px = p->x; |
1613 | float py = p->y; |
1614 | float dlx = dy; |
1615 | float dly = -dx; |
1616 | NVG_NOTUSED(aa); |
1617 | for (i = 0; i < ncap; i++) { |
1618 | float a = i/(float)(ncap-1)*NVG_PI; |
1619 | float ax = cosf(a) * w, ay = sinf(a) * w; |
1620 | nvg__vset(dst, px - dlx*ax - dx*ay, py - dly*ax - dy*ay, u0,1); dst++; |
1621 | nvg__vset(dst, px, py, 0.5f,1); dst++; |
1622 | } |
1623 | nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; |
1624 | nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; |
1625 | return dst; |
1626 | } |
1627 | |
1628 | static NVGvertex* nvg__roundCapEnd(NVGvertex* dst, NVGpoint* p, |
1629 | float dx, float dy, float w, int ncap, |
1630 | float aa, float u0, float u1) |
1631 | { |
1632 | int i; |
1633 | float px = p->x; |
1634 | float py = p->y; |
1635 | float dlx = dy; |
1636 | float dly = -dx; |
1637 | NVG_NOTUSED(aa); |
1638 | nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; |
1639 | nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; |
1640 | for (i = 0; i < ncap; i++) { |
1641 | float a = i/(float)(ncap-1)*NVG_PI; |
1642 | float ax = cosf(a) * w, ay = sinf(a) * w; |
1643 | nvg__vset(dst, px, py, 0.5f,1); dst++; |
1644 | nvg__vset(dst, px - dlx*ax + dx*ay, py - dly*ax + dy*ay, u0,1); dst++; |
1645 | } |
1646 | return dst; |
1647 | } |
1648 | |
1649 | |
1650 | static void nvg__calculateJoins(NVGcontext* ctx, float w, int lineJoin, float miterLimit) |
1651 | { |
1652 | NVGpathCache* cache = ctx->cache; |
1653 | int i, j; |
1654 | float iw = 0.0f; |
1655 | |
1656 | if (w > 0.0f) iw = 1.0f / w; |
1657 | |
1658 | // Calculate which joins needs extra vertices to append, and gather vertex count. |
1659 | for (i = 0; i < cache->npaths; i++) { |
1660 | NVGpath* path = &cache->paths[i]; |
1661 | NVGpoint* pts = &cache->points[path->first]; |
1662 | NVGpoint* p0 = &pts[path->count-1]; |
1663 | NVGpoint* p1 = &pts[0]; |
1664 | int nleft = 0; |
1665 | |
1666 | path->nbevel = 0; |
1667 | |
1668 | for (j = 0; j < path->count; j++) { |
1669 | float dlx0, dly0, dlx1, dly1, dmr2, cross, limit; |
1670 | dlx0 = p0->dy; |
1671 | dly0 = -p0->dx; |
1672 | dlx1 = p1->dy; |
1673 | dly1 = -p1->dx; |
1674 | // Calculate extrusions |
1675 | p1->dmx = (dlx0 + dlx1) * 0.5f; |
1676 | p1->dmy = (dly0 + dly1) * 0.5f; |
1677 | dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; |
1678 | if (dmr2 > 0.000001f) { |
1679 | float scale = 1.0f / dmr2; |
1680 | if (scale > 600.0f) { |
1681 | scale = 600.0f; |
1682 | } |
1683 | p1->dmx *= scale; |
1684 | p1->dmy *= scale; |
1685 | } |
1686 | |
1687 | // Clear flags, but keep the corner. |
1688 | p1->flags = (p1->flags & NVG_PT_CORNER) ? NVG_PT_CORNER : 0; |
1689 | |
1690 | // Keep track of left turns. |
1691 | cross = p1->dx * p0->dy - p0->dx * p1->dy; |
1692 | if (cross > 0.0f) { |
1693 | nleft++; |
1694 | p1->flags |= NVG_PT_LEFT; |
1695 | } |
1696 | |
1697 | // Calculate if we should use bevel or miter for inner join. |
1698 | limit = nvg__maxf(1.01f, nvg__minf(p0->len, p1->len) * iw); |
1699 | if ((dmr2 * limit*limit) < 1.0f) |
1700 | p1->flags |= NVG_PR_INNERBEVEL; |
1701 | |
1702 | // Check to see if the corner needs to be beveled. |
1703 | if (p1->flags & NVG_PT_CORNER) { |
1704 | if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NVG_BEVEL || lineJoin == NVG_ROUND) { |
1705 | p1->flags |= NVG_PT_BEVEL; |
1706 | } |
1707 | } |
1708 | |
1709 | if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) |
1710 | path->nbevel++; |
1711 | |
1712 | p0 = p1++; |
1713 | } |
1714 | |
1715 | path->convex = (nleft == path->count) ? 1 : 0; |
1716 | } |
1717 | } |
1718 | |
1719 | |
1720 | static int nvg__expandStroke(NVGcontext* ctx, float w, float fringe, int lineCap, int lineJoin, float miterLimit) |
1721 | { |
1722 | NVGpathCache* cache = ctx->cache; |
1723 | NVGvertex* verts; |
1724 | NVGvertex* dst; |
1725 | int cverts, i, j; |
1726 | float aa = fringe;//ctx->fringeWidth; |
1727 | float u0 = 0.0f, u1 = 1.0f; |
1728 | int ncap = nvg__curveDivs(w, NVG_PI, ctx->tessTol); // Calculate divisions per half circle. |
1729 | |
1730 | w += aa * 0.5f; |
1731 | |
1732 | // Disable the gradient used for antialiasing when antialiasing is not used. |
1733 | if (aa == 0.0f) { |
1734 | u0 = 0.5f; |
1735 | u1 = 0.5f; |
1736 | } |
1737 | |
1738 | nvg__calculateJoins(ctx, w, lineJoin, miterLimit); |
1739 | |
1740 | // Calculate max vertex usage. |
1741 | cverts = 0; |
1742 | for (i = 0; i < cache->npaths; i++) { |
1743 | NVGpath* path = &cache->paths[i]; |
1744 | int loop = (path->closed == 0) ? 0 : 1; |
1745 | if (lineJoin == NVG_ROUND) |
1746 | cverts += (path->count + path->nbevel*(ncap+2) + 1) * 2; // plus one for loop |
1747 | else |
1748 | cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop |
1749 | if (loop == 0) { |
1750 | // space for caps |
1751 | if (lineCap == NVG_ROUND) { |
1752 | cverts += (ncap*2 + 2)*2; |
1753 | } else { |
1754 | cverts += (3+3)*2; |
1755 | } |
1756 | } |
1757 | } |
1758 | |
1759 | verts = nvg__allocTempVerts(ctx, cverts); |
1760 | if (verts == NULL) return 0; |
1761 | |
1762 | for (i = 0; i < cache->npaths; i++) { |
1763 | NVGpath* path = &cache->paths[i]; |
1764 | NVGpoint* pts = &cache->points[path->first]; |
1765 | NVGpoint* p0; |
1766 | NVGpoint* p1; |
1767 | int s, e, loop; |
1768 | float dx, dy; |
1769 | |
1770 | path->fill = 0; |
1771 | path->nfill = 0; |
1772 | |
1773 | // Calculate fringe or stroke |
1774 | loop = (path->closed == 0) ? 0 : 1; |
1775 | dst = verts; |
1776 | path->stroke = dst; |
1777 | |
1778 | if (loop) { |
1779 | // Looping |
1780 | p0 = &pts[path->count-1]; |
1781 | p1 = &pts[0]; |
1782 | s = 0; |
1783 | e = path->count; |
1784 | } else { |
1785 | // Add cap |
1786 | p0 = &pts[0]; |
1787 | p1 = &pts[1]; |
1788 | s = 1; |
1789 | e = path->count-1; |
1790 | } |
1791 | |
1792 | if (loop == 0) { |
1793 | // Add cap |
1794 | dx = p1->x - p0->x; |
1795 | dy = p1->y - p0->y; |
1796 | nvg__normalize(&dx, &dy); |
1797 | if (lineCap == NVG_BUTT) |
1798 | dst = nvg__buttCapStart(dst, p0, dx, dy, w, -aa*0.5f, aa, u0, u1); |
1799 | else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) |
1800 | dst = nvg__buttCapStart(dst, p0, dx, dy, w, w-aa, aa, u0, u1); |
1801 | else if (lineCap == NVG_ROUND) |
1802 | dst = nvg__roundCapStart(dst, p0, dx, dy, w, ncap, aa, u0, u1); |
1803 | } |
1804 | |
1805 | for (j = s; j < e; ++j) { |
1806 | if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { |
1807 | if (lineJoin == NVG_ROUND) { |
1808 | dst = nvg__roundJoin(dst, p0, p1, w, w, u0, u1, ncap, aa); |
1809 | } else { |
1810 | dst = nvg__bevelJoin(dst, p0, p1, w, w, u0, u1, aa); |
1811 | } |
1812 | } else { |
1813 | nvg__vset(dst, p1->x + (p1->dmx * w), p1->y + (p1->dmy * w), u0,1); dst++; |
1814 | nvg__vset(dst, p1->x - (p1->dmx * w), p1->y - (p1->dmy * w), u1,1); dst++; |
1815 | } |
1816 | p0 = p1++; |
1817 | } |
1818 | |
1819 | if (loop) { |
1820 | // Loop it |
1821 | nvg__vset(dst, verts[0].x, verts[0].y, u0,1); dst++; |
1822 | nvg__vset(dst, verts[1].x, verts[1].y, u1,1); dst++; |
1823 | } else { |
1824 | // Add cap |
1825 | dx = p1->x - p0->x; |
1826 | dy = p1->y - p0->y; |
1827 | nvg__normalize(&dx, &dy); |
1828 | if (lineCap == NVG_BUTT) |
1829 | dst = nvg__buttCapEnd(dst, p1, dx, dy, w, -aa*0.5f, aa, u0, u1); |
1830 | else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) |
1831 | dst = nvg__buttCapEnd(dst, p1, dx, dy, w, w-aa, aa, u0, u1); |
1832 | else if (lineCap == NVG_ROUND) |
1833 | dst = nvg__roundCapEnd(dst, p1, dx, dy, w, ncap, aa, u0, u1); |
1834 | } |
1835 | |
1836 | path->nstroke = (int)(dst - verts); |
1837 | |
1838 | verts = dst; |
1839 | } |
1840 | |
1841 | return 1; |
1842 | } |
1843 | |
1844 | static int nvg__expandFill(NVGcontext* ctx, float w, int lineJoin, float miterLimit) |
1845 | { |
1846 | NVGpathCache* cache = ctx->cache; |
1847 | NVGvertex* verts; |
1848 | NVGvertex* dst; |
1849 | int cverts, convex, i, j; |
1850 | float aa = ctx->fringeWidth; |
1851 | int fringe = w > 0.0f; |
1852 | |
1853 | nvg__calculateJoins(ctx, w, lineJoin, miterLimit); |
1854 | |
1855 | // Calculate max vertex usage. |
1856 | cverts = 0; |
1857 | for (i = 0; i < cache->npaths; i++) { |
1858 | NVGpath* path = &cache->paths[i]; |
1859 | cverts += path->count + path->nbevel + 1; |
1860 | if (fringe) |
1861 | cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop |
1862 | } |
1863 | |
1864 | verts = nvg__allocTempVerts(ctx, cverts); |
1865 | if (verts == NULL) return 0; |
1866 | |
1867 | convex = cache->npaths == 1 && cache->paths[0].convex; |
1868 | |
1869 | for (i = 0; i < cache->npaths; i++) { |
1870 | NVGpath* path = &cache->paths[i]; |
1871 | NVGpoint* pts = &cache->points[path->first]; |
1872 | NVGpoint* p0; |
1873 | NVGpoint* p1; |
1874 | float rw, lw, woff; |
1875 | float ru, lu; |
1876 | |
1877 | // Calculate shape vertices. |
1878 | woff = 0.5f*aa; |
1879 | dst = verts; |
1880 | path->fill = dst; |
1881 | |
1882 | if (fringe) { |
1883 | // Looping |
1884 | p0 = &pts[path->count-1]; |
1885 | p1 = &pts[0]; |
1886 | for (j = 0; j < path->count; ++j) { |
1887 | if (p1->flags & NVG_PT_BEVEL) { |
1888 | float dlx0 = p0->dy; |
1889 | float dly0 = -p0->dx; |
1890 | float dlx1 = p1->dy; |
1891 | float dly1 = -p1->dx; |
1892 | if (p1->flags & NVG_PT_LEFT) { |
1893 | float lx = p1->x + p1->dmx * woff; |
1894 | float ly = p1->y + p1->dmy * woff; |
1895 | nvg__vset(dst, lx, ly, 0.5f,1); dst++; |
1896 | } else { |
1897 | float lx0 = p1->x + dlx0 * woff; |
1898 | float ly0 = p1->y + dly0 * woff; |
1899 | float lx1 = p1->x + dlx1 * woff; |
1900 | float ly1 = p1->y + dly1 * woff; |
1901 | nvg__vset(dst, lx0, ly0, 0.5f,1); dst++; |
1902 | nvg__vset(dst, lx1, ly1, 0.5f,1); dst++; |
1903 | } |
1904 | } else { |
1905 | nvg__vset(dst, p1->x + (p1->dmx * woff), p1->y + (p1->dmy * woff), 0.5f,1); dst++; |
1906 | } |
1907 | p0 = p1++; |
1908 | } |
1909 | } else { |
1910 | for (j = 0; j < path->count; ++j) { |
1911 | nvg__vset(dst, pts[j].x, pts[j].y, 0.5f,1); |
1912 | dst++; |
1913 | } |
1914 | } |
1915 | |
1916 | path->nfill = (int)(dst - verts); |
1917 | verts = dst; |
1918 | |
1919 | // Calculate fringe |
1920 | if (fringe) { |
1921 | lw = w + woff; |
1922 | rw = w - woff; |
1923 | lu = 0; |
1924 | ru = 1; |
1925 | dst = verts; |
1926 | path->stroke = dst; |
1927 | |
1928 | // Create only half a fringe for convex shapes so that |
1929 | // the shape can be rendered without stenciling. |
1930 | if (convex) { |
1931 | lw = woff; // This should generate the same vertex as fill inset above. |
1932 | lu = 0.5f; // Set outline fade at middle. |
1933 | } |
1934 | |
1935 | // Looping |
1936 | p0 = &pts[path->count-1]; |
1937 | p1 = &pts[0]; |
1938 | |
1939 | for (j = 0; j < path->count; ++j) { |
1940 | if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { |
1941 | dst = nvg__bevelJoin(dst, p0, p1, lw, rw, lu, ru, ctx->fringeWidth); |
1942 | } else { |
1943 | nvg__vset(dst, p1->x + (p1->dmx * lw), p1->y + (p1->dmy * lw), lu,1); dst++; |
1944 | nvg__vset(dst, p1->x - (p1->dmx * rw), p1->y - (p1->dmy * rw), ru,1); dst++; |
1945 | } |
1946 | p0 = p1++; |
1947 | } |
1948 | |
1949 | // Loop it |
1950 | nvg__vset(dst, verts[0].x, verts[0].y, lu,1); dst++; |
1951 | nvg__vset(dst, verts[1].x, verts[1].y, ru,1); dst++; |
1952 | |
1953 | path->nstroke = (int)(dst - verts); |
1954 | verts = dst; |
1955 | } else { |
1956 | path->stroke = NULL; |
1957 | path->nstroke = 0; |
1958 | } |
1959 | } |
1960 | |
1961 | return 1; |
1962 | } |
1963 | |
1964 | |
1965 | // Draw |
1966 | void nvgBeginPath(NVGcontext* ctx) |
1967 | { |
1968 | ctx->ncommands = 0; |
1969 | nvg__clearPathCache(ctx); |
1970 | } |
1971 | |
1972 | void nvgMoveTo(NVGcontext* ctx, float x, float y) |
1973 | { |
1974 | float vals[] = { NVG_MOVETO, x, y }; |
1975 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
1976 | } |
1977 | |
1978 | void nvgLineTo(NVGcontext* ctx, float x, float y) |
1979 | { |
1980 | float vals[] = { NVG_LINETO, x, y }; |
1981 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
1982 | } |
1983 | |
1984 | void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y) |
1985 | { |
1986 | float vals[] = { NVG_BEZIERTO, c1x, c1y, c2x, c2y, x, y }; |
1987 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
1988 | } |
1989 | |
1990 | void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y) |
1991 | { |
1992 | float x0 = ctx->commandx; |
1993 | float y0 = ctx->commandy; |
1994 | float vals[] = { NVG_BEZIERTO, |
1995 | x0 + 2.0f/3.0f*(cx - x0), y0 + 2.0f/3.0f*(cy - y0), |
1996 | x + 2.0f/3.0f*(cx - x), y + 2.0f/3.0f*(cy - y), |
1997 | x, y }; |
1998 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
1999 | } |
2000 | |
2001 | void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius) |
2002 | { |
2003 | float x0 = ctx->commandx; |
2004 | float y0 = ctx->commandy; |
2005 | float dx0,dy0, dx1,dy1, a, d, cx,cy, a0,a1; |
2006 | int dir; |
2007 | |
2008 | if (ctx->ncommands == 0) { |
2009 | return; |
2010 | } |
2011 | |
2012 | // Handle degenerate cases. |
2013 | if (nvg__ptEquals(x0,y0, x1,y1, ctx->distTol) || |
2014 | nvg__ptEquals(x1,y1, x2,y2, ctx->distTol) || |
2015 | nvg__distPtSeg(x1,y1, x0,y0, x2,y2) < ctx->distTol*ctx->distTol || |
2016 | radius < ctx->distTol) { |
2017 | nvgLineTo(ctx, x1,y1); |
2018 | return; |
2019 | } |
2020 | |
2021 | // Calculate tangential circle to lines (x0,y0)-(x1,y1) and (x1,y1)-(x2,y2). |
2022 | dx0 = x0-x1; |
2023 | dy0 = y0-y1; |
2024 | dx1 = x2-x1; |
2025 | dy1 = y2-y1; |
2026 | nvg__normalize(&dx0,&dy0); |
2027 | nvg__normalize(&dx1,&dy1); |
2028 | a = nvg__acosf(dx0*dx1 + dy0*dy1); |
2029 | d = radius / nvg__tanf(a/2.0f); |
2030 | |
2031 | // printf("a=%f° d=%f\n", a/NVG_PI*180.0f, d); |
2032 | |
2033 | if (d > 10000.0f) { |
2034 | nvgLineTo(ctx, x1,y1); |
2035 | return; |
2036 | } |
2037 | |
2038 | if (nvg__cross(dx0,dy0, dx1,dy1) > 0.0f) { |
2039 | cx = x1 + dx0*d + dy0*radius; |
2040 | cy = y1 + dy0*d + -dx0*radius; |
2041 | a0 = nvg__atan2f(dx0, -dy0); |
2042 | a1 = nvg__atan2f(-dx1, dy1); |
2043 | dir = NVG_CW; |
2044 | // printf("CW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); |
2045 | } else { |
2046 | cx = x1 + dx0*d + -dy0*radius; |
2047 | cy = y1 + dy0*d + dx0*radius; |
2048 | a0 = nvg__atan2f(-dx0, dy0); |
2049 | a1 = nvg__atan2f(dx1, -dy1); |
2050 | dir = NVG_CCW; |
2051 | // printf("CCW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); |
2052 | } |
2053 | |
2054 | nvgArc(ctx, cx, cy, radius, a0, a1, dir); |
2055 | } |
2056 | |
2057 | void nvgClosePath(NVGcontext* ctx) |
2058 | { |
2059 | float vals[] = { NVG_CLOSE }; |
2060 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
2061 | } |
2062 | |
2063 | void nvgPathWinding(NVGcontext* ctx, int dir) |
2064 | { |
2065 | float vals[] = { NVG_WINDING, (float)dir }; |
2066 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
2067 | } |
2068 | |
2069 | void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir) |
2070 | { |
2071 | float a = 0, da = 0, hda = 0, kappa = 0; |
2072 | float dx = 0, dy = 0, x = 0, y = 0, tanx = 0, tany = 0; |
2073 | float px = 0, py = 0, ptanx = 0, ptany = 0; |
2074 | float vals[3 + 5*7 + 100]; |
2075 | int i, ndivs, nvals; |
2076 | int move = ctx->ncommands > 0 ? NVG_LINETO : NVG_MOVETO; |
2077 | |
2078 | // Clamp angles |
2079 | da = a1 - a0; |
2080 | if (dir == NVG_CW) { |
2081 | if (nvg__absf(da) >= NVG_PI*2) { |
2082 | da = NVG_PI*2; |
2083 | } else { |
2084 | while (da < 0.0f) da += NVG_PI*2; |
2085 | } |
2086 | } else { |
2087 | if (nvg__absf(da) >= NVG_PI*2) { |
2088 | da = -NVG_PI*2; |
2089 | } else { |
2090 | while (da > 0.0f) da -= NVG_PI*2; |
2091 | } |
2092 | } |
2093 | |
2094 | // Split arc into max 90 degree segments. |
2095 | ndivs = nvg__maxi(1, nvg__mini((int)(nvg__absf(da) / (NVG_PI*0.5f) + 0.5f), 5)); |
2096 | hda = (da / (float)ndivs) / 2.0f; |
2097 | kappa = nvg__absf(4.0f / 3.0f * (1.0f - nvg__cosf(hda)) / nvg__sinf(hda)); |
2098 | |
2099 | if (dir == NVG_CCW) |
2100 | kappa = -kappa; |
2101 | |
2102 | nvals = 0; |
2103 | for (i = 0; i <= ndivs; i++) { |
2104 | a = a0 + da * (i/(float)ndivs); |
2105 | dx = nvg__cosf(a); |
2106 | dy = nvg__sinf(a); |
2107 | x = cx + dx*r; |
2108 | y = cy + dy*r; |
2109 | tanx = -dy*r*kappa; |
2110 | tany = dx*r*kappa; |
2111 | |
2112 | if (i == 0) { |
2113 | vals[nvals++] = (float)move; |
2114 | vals[nvals++] = x; |
2115 | vals[nvals++] = y; |
2116 | } else { |
2117 | vals[nvals++] = NVG_BEZIERTO; |
2118 | vals[nvals++] = px+ptanx; |
2119 | vals[nvals++] = py+ptany; |
2120 | vals[nvals++] = x-tanx; |
2121 | vals[nvals++] = y-tany; |
2122 | vals[nvals++] = x; |
2123 | vals[nvals++] = y; |
2124 | } |
2125 | px = x; |
2126 | py = y; |
2127 | ptanx = tanx; |
2128 | ptany = tany; |
2129 | } |
2130 | |
2131 | nvg__appendCommands(ctx, vals, nvals); |
2132 | } |
2133 | |
2134 | void nvgRect(NVGcontext* ctx, float x, float y, float w, float h) |
2135 | { |
2136 | float vals[] = { |
2137 | NVG_MOVETO, x,y, |
2138 | NVG_LINETO, x,y+h, |
2139 | NVG_LINETO, x+w,y+h, |
2140 | NVG_LINETO, x+w,y, |
2141 | NVG_CLOSE |
2142 | }; |
2143 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
2144 | } |
2145 | |
2146 | void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r) |
2147 | { |
2148 | nvgRoundedRectVarying(ctx, x, y, w, h, r, r, r, r); |
2149 | } |
2150 | |
2151 | void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft) |
2152 | { |
2153 | if(radTopLeft < 0.1f && radTopRight < 0.1f && radBottomRight < 0.1f && radBottomLeft < 0.1f) { |
2154 | nvgRect(ctx, x, y, w, h); |
2155 | return; |
2156 | } else { |
2157 | float halfw = nvg__absf(w)*0.5f; |
2158 | float halfh = nvg__absf(h)*0.5f; |
2159 | float rxBL = nvg__minf(radBottomLeft, halfw) * nvg__signf(w), ryBL = nvg__minf(radBottomLeft, halfh) * nvg__signf(h); |
2160 | float rxBR = nvg__minf(radBottomRight, halfw) * nvg__signf(w), ryBR = nvg__minf(radBottomRight, halfh) * nvg__signf(h); |
2161 | float rxTR = nvg__minf(radTopRight, halfw) * nvg__signf(w), ryTR = nvg__minf(radTopRight, halfh) * nvg__signf(h); |
2162 | float rxTL = nvg__minf(radTopLeft, halfw) * nvg__signf(w), ryTL = nvg__minf(radTopLeft, halfh) * nvg__signf(h); |
2163 | float vals[] = { |
2164 | NVG_MOVETO, x, y + ryTL, |
2165 | NVG_LINETO, x, y + h - ryBL, |
2166 | NVG_BEZIERTO, x, y + h - ryBL*(1 - NVG_KAPPA90), x + rxBL*(1 - NVG_KAPPA90), y + h, x + rxBL, y + h, |
2167 | NVG_LINETO, x + w - rxBR, y + h, |
2168 | NVG_BEZIERTO, x + w - rxBR*(1 - NVG_KAPPA90), y + h, x + w, y + h - ryBR*(1 - NVG_KAPPA90), x + w, y + h - ryBR, |
2169 | NVG_LINETO, x + w, y + ryTR, |
2170 | NVG_BEZIERTO, x + w, y + ryTR*(1 - NVG_KAPPA90), x + w - rxTR*(1 - NVG_KAPPA90), y, x + w - rxTR, y, |
2171 | NVG_LINETO, x + rxTL, y, |
2172 | NVG_BEZIERTO, x + rxTL*(1 - NVG_KAPPA90), y, x, y + ryTL*(1 - NVG_KAPPA90), x, y + ryTL, |
2173 | NVG_CLOSE |
2174 | }; |
2175 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
2176 | } |
2177 | } |
2178 | |
2179 | void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry) |
2180 | { |
2181 | float vals[] = { |
2182 | NVG_MOVETO, cx-rx, cy, |
2183 | NVG_BEZIERTO, cx-rx, cy+ry*NVG_KAPPA90, cx-rx*NVG_KAPPA90, cy+ry, cx, cy+ry, |
2184 | NVG_BEZIERTO, cx+rx*NVG_KAPPA90, cy+ry, cx+rx, cy+ry*NVG_KAPPA90, cx+rx, cy, |
2185 | NVG_BEZIERTO, cx+rx, cy-ry*NVG_KAPPA90, cx+rx*NVG_KAPPA90, cy-ry, cx, cy-ry, |
2186 | NVG_BEZIERTO, cx-rx*NVG_KAPPA90, cy-ry, cx-rx, cy-ry*NVG_KAPPA90, cx-rx, cy, |
2187 | NVG_CLOSE |
2188 | }; |
2189 | nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
2190 | } |
2191 | |
2192 | void nvgCircle(NVGcontext* ctx, float cx, float cy, float r) |
2193 | { |
2194 | nvgEllipse(ctx, cx,cy, r,r); |
2195 | } |
2196 | |
2197 | void nvgDebugDumpPathCache(NVGcontext* ctx) |
2198 | { |
2199 | const NVGpath* path; |
2200 | int i, j; |
2201 | |
2202 | printf("Dumping %d cached paths\n" , ctx->cache->npaths); |
2203 | for (i = 0; i < ctx->cache->npaths; i++) { |
2204 | path = &ctx->cache->paths[i]; |
2205 | printf(" - Path %d\n" , i); |
2206 | if (path->nfill) { |
2207 | printf(" - fill: %d\n" , path->nfill); |
2208 | for (j = 0; j < path->nfill; j++) |
2209 | printf("%f\t%f\n" , path->fill[j].x, path->fill[j].y); |
2210 | } |
2211 | if (path->nstroke) { |
2212 | printf(" - stroke: %d\n" , path->nstroke); |
2213 | for (j = 0; j < path->nstroke; j++) |
2214 | printf("%f\t%f\n" , path->stroke[j].x, path->stroke[j].y); |
2215 | } |
2216 | } |
2217 | } |
2218 | |
2219 | void nvgFill(NVGcontext* ctx) |
2220 | { |
2221 | NVGstate* state = nvg__getState(ctx); |
2222 | const NVGpath* path; |
2223 | NVGpaint fillPaint = state->fill; |
2224 | int i; |
2225 | |
2226 | nvg__flattenPaths(ctx); |
2227 | if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) |
2228 | nvg__expandFill(ctx, ctx->fringeWidth, NVG_MITER, 2.4f); |
2229 | else |
2230 | nvg__expandFill(ctx, 0.0f, NVG_MITER, 2.4f); |
2231 | |
2232 | // Apply global alpha |
2233 | fillPaint.innerColor.a *= state->alpha; |
2234 | fillPaint.outerColor.a *= state->alpha; |
2235 | |
2236 | ctx->params.renderFill(ctx->params.userPtr, &fillPaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, |
2237 | ctx->cache->bounds, ctx->cache->paths, ctx->cache->npaths); |
2238 | |
2239 | // Count triangles |
2240 | for (i = 0; i < ctx->cache->npaths; i++) { |
2241 | path = &ctx->cache->paths[i]; |
2242 | ctx->fillTriCount += path->nfill-2; |
2243 | ctx->fillTriCount += path->nstroke-2; |
2244 | ctx->drawCallCount += 2; |
2245 | } |
2246 | } |
2247 | |
2248 | void nvgStroke(NVGcontext* ctx) |
2249 | { |
2250 | NVGstate* state = nvg__getState(ctx); |
2251 | float scale = nvg__getAverageScale(state->xform); |
2252 | float strokeWidth = nvg__clampf(state->strokeWidth * scale, 0.0f, 200.0f); |
2253 | NVGpaint strokePaint = state->stroke; |
2254 | const NVGpath* path; |
2255 | int i; |
2256 | |
2257 | |
2258 | if (strokeWidth < ctx->fringeWidth) { |
2259 | // If the stroke width is less than pixel size, use alpha to emulate coverage. |
2260 | // Since coverage is area, scale by alpha*alpha. |
2261 | float alpha = nvg__clampf(strokeWidth / ctx->fringeWidth, 0.0f, 1.0f); |
2262 | strokePaint.innerColor.a *= alpha*alpha; |
2263 | strokePaint.outerColor.a *= alpha*alpha; |
2264 | strokeWidth = ctx->fringeWidth; |
2265 | } |
2266 | |
2267 | // Apply global alpha |
2268 | strokePaint.innerColor.a *= state->alpha; |
2269 | strokePaint.outerColor.a *= state->alpha; |
2270 | |
2271 | nvg__flattenPaths(ctx); |
2272 | |
2273 | if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) |
2274 | nvg__expandStroke(ctx, strokeWidth*0.5f, ctx->fringeWidth, state->lineCap, state->lineJoin, state->miterLimit); |
2275 | else |
2276 | nvg__expandStroke(ctx, strokeWidth*0.5f, 0.0f, state->lineCap, state->lineJoin, state->miterLimit); |
2277 | |
2278 | ctx->params.renderStroke(ctx->params.userPtr, &strokePaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, |
2279 | strokeWidth, ctx->cache->paths, ctx->cache->npaths); |
2280 | |
2281 | // Count triangles |
2282 | for (i = 0; i < ctx->cache->npaths; i++) { |
2283 | path = &ctx->cache->paths[i]; |
2284 | ctx->strokeTriCount += path->nstroke-2; |
2285 | ctx->drawCallCount++; |
2286 | } |
2287 | } |
2288 | |
2289 | // Add fonts |
2290 | int nvgCreateFont(NVGcontext* ctx, const char* name, const char* path) |
2291 | { |
2292 | return fonsAddFont(ctx->fs, name, path); |
2293 | } |
2294 | |
2295 | int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData) |
2296 | { |
2297 | return fonsAddFontMem(ctx->fs, name, data, ndata, freeData); |
2298 | } |
2299 | |
2300 | int nvgFindFont(NVGcontext* ctx, const char* name) |
2301 | { |
2302 | if (name == NULL) return -1; |
2303 | return fonsGetFontByName(ctx->fs, name); |
2304 | } |
2305 | |
2306 | |
2307 | int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont) |
2308 | { |
2309 | if(baseFont == -1 || fallbackFont == -1) return 0; |
2310 | return fonsAddFallbackFont(ctx->fs, baseFont, fallbackFont); |
2311 | } |
2312 | |
2313 | int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont) |
2314 | { |
2315 | return nvgAddFallbackFontId(ctx, nvgFindFont(ctx, baseFont), nvgFindFont(ctx, fallbackFont)); |
2316 | } |
2317 | |
2318 | // State setting |
2319 | void nvgFontSize(NVGcontext* ctx, float size) |
2320 | { |
2321 | NVGstate* state = nvg__getState(ctx); |
2322 | state->fontSize = size; |
2323 | } |
2324 | |
2325 | void nvgFontBlur(NVGcontext* ctx, float blur) |
2326 | { |
2327 | NVGstate* state = nvg__getState(ctx); |
2328 | state->fontBlur = blur; |
2329 | } |
2330 | |
2331 | void nvgTextLetterSpacing(NVGcontext* ctx, float spacing) |
2332 | { |
2333 | NVGstate* state = nvg__getState(ctx); |
2334 | state->letterSpacing = spacing; |
2335 | } |
2336 | |
2337 | void nvgTextLineHeight(NVGcontext* ctx, float lineHeight) |
2338 | { |
2339 | NVGstate* state = nvg__getState(ctx); |
2340 | state->lineHeight = lineHeight; |
2341 | } |
2342 | |
2343 | void nvgTextAlign(NVGcontext* ctx, int align) |
2344 | { |
2345 | NVGstate* state = nvg__getState(ctx); |
2346 | state->textAlign = align; |
2347 | } |
2348 | |
2349 | void nvgFontFaceId(NVGcontext* ctx, int font) |
2350 | { |
2351 | NVGstate* state = nvg__getState(ctx); |
2352 | state->fontId = font; |
2353 | } |
2354 | |
2355 | void nvgFontFace(NVGcontext* ctx, const char* font) |
2356 | { |
2357 | NVGstate* state = nvg__getState(ctx); |
2358 | state->fontId = fonsGetFontByName(ctx->fs, font); |
2359 | } |
2360 | |
2361 | static float nvg__quantize(float a, float d) |
2362 | { |
2363 | return ((int)(a / d + 0.5f)) * d; |
2364 | } |
2365 | |
2366 | static float nvg__getFontScale(NVGstate* state) |
2367 | { |
2368 | return nvg__minf(nvg__quantize(nvg__getAverageScale(state->xform), 0.01f), 4.0f); |
2369 | } |
2370 | |
2371 | static void nvg__flushTextTexture(NVGcontext* ctx) |
2372 | { |
2373 | int dirty[4]; |
2374 | |
2375 | if (fonsValidateTexture(ctx->fs, dirty)) { |
2376 | int fontImage = ctx->fontImages[ctx->fontImageIdx]; |
2377 | // Update texture |
2378 | if (fontImage != 0) { |
2379 | int iw, ih; |
2380 | const unsigned char* data = fonsGetTextureData(ctx->fs, &iw, &ih); |
2381 | int x = dirty[0]; |
2382 | int y = dirty[1]; |
2383 | int w = dirty[2] - dirty[0]; |
2384 | int h = dirty[3] - dirty[1]; |
2385 | ctx->params.renderUpdateTexture(ctx->params.userPtr, fontImage, x,y, w,h, data); |
2386 | } |
2387 | } |
2388 | } |
2389 | |
2390 | static int nvg__allocTextAtlas(NVGcontext* ctx) |
2391 | { |
2392 | int iw, ih; |
2393 | nvg__flushTextTexture(ctx); |
2394 | if (ctx->fontImageIdx >= NVG_MAX_FONTIMAGES-1) |
2395 | return 0; |
2396 | // if next fontImage already have a texture |
2397 | if (ctx->fontImages[ctx->fontImageIdx+1] != 0) |
2398 | nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx+1], &iw, &ih); |
2399 | else { // calculate the new font image size and create it. |
2400 | nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx], &iw, &ih); |
2401 | if (iw > ih) |
2402 | ih *= 2; |
2403 | else |
2404 | iw *= 2; |
2405 | if (iw > NVG_MAX_FONTIMAGE_SIZE || ih > NVG_MAX_FONTIMAGE_SIZE) |
2406 | iw = ih = NVG_MAX_FONTIMAGE_SIZE; |
2407 | ctx->fontImages[ctx->fontImageIdx+1] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, iw, ih, 0, NULL); |
2408 | } |
2409 | ++ctx->fontImageIdx; |
2410 | fonsResetAtlas(ctx->fs, iw, ih); |
2411 | return 1; |
2412 | } |
2413 | |
2414 | static void nvg__renderText(NVGcontext* ctx, NVGvertex* verts, int nverts) |
2415 | { |
2416 | NVGstate* state = nvg__getState(ctx); |
2417 | NVGpaint paint = state->fill; |
2418 | |
2419 | // Render triangles. |
2420 | paint.image = ctx->fontImages[ctx->fontImageIdx]; |
2421 | |
2422 | // Apply global alpha |
2423 | paint.innerColor.a *= state->alpha; |
2424 | paint.outerColor.a *= state->alpha; |
2425 | |
2426 | ctx->params.renderTriangles(ctx->params.userPtr, &paint, state->compositeOperation, &state->scissor, verts, nverts); |
2427 | |
2428 | ctx->drawCallCount++; |
2429 | ctx->textTriCount += nverts/3; |
2430 | } |
2431 | |
2432 | float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end) |
2433 | { |
2434 | NVGstate* state = nvg__getState(ctx); |
2435 | FONStextIter iter, prevIter; |
2436 | FONSquad q; |
2437 | NVGvertex* verts; |
2438 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2439 | float invscale = 1.0f / scale; |
2440 | int cverts = 0; |
2441 | int nverts = 0; |
2442 | |
2443 | if (end == NULL) |
2444 | end = string + strlen(string); |
2445 | |
2446 | if (state->fontId == FONS_INVALID) return x; |
2447 | |
2448 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2449 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2450 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2451 | fonsSetAlign(ctx->fs, state->textAlign); |
2452 | fonsSetFont(ctx->fs, state->fontId); |
2453 | |
2454 | cverts = nvg__maxi(2, (int)(end - string)) * 6; // conservative estimate. |
2455 | verts = nvg__allocTempVerts(ctx, cverts); |
2456 | if (verts == NULL) return x; |
2457 | |
2458 | fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_REQUIRED); |
2459 | prevIter = iter; |
2460 | while (fonsTextIterNext(ctx->fs, &iter, &q)) { |
2461 | float c[4*2]; |
2462 | if (iter.prevGlyphIndex == -1) { // can not retrieve glyph? |
2463 | if (nverts != 0) { |
2464 | nvg__renderText(ctx, verts, nverts); |
2465 | nverts = 0; |
2466 | } |
2467 | if (!nvg__allocTextAtlas(ctx)) |
2468 | break; // no memory :( |
2469 | iter = prevIter; |
2470 | fonsTextIterNext(ctx->fs, &iter, &q); // try again |
2471 | if (iter.prevGlyphIndex == -1) // still can not find glyph? |
2472 | break; |
2473 | } |
2474 | prevIter = iter; |
2475 | // Transform corners. |
2476 | nvgTransformPoint(&c[0],&c[1], state->xform, q.x0*invscale, q.y0*invscale); |
2477 | nvgTransformPoint(&c[2],&c[3], state->xform, q.x1*invscale, q.y0*invscale); |
2478 | nvgTransformPoint(&c[4],&c[5], state->xform, q.x1*invscale, q.y1*invscale); |
2479 | nvgTransformPoint(&c[6],&c[7], state->xform, q.x0*invscale, q.y1*invscale); |
2480 | // Create triangles |
2481 | if (nverts+6 <= cverts) { |
2482 | nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; |
2483 | nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; |
2484 | nvg__vset(&verts[nverts], c[2], c[3], q.s1, q.t0); nverts++; |
2485 | nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; |
2486 | nvg__vset(&verts[nverts], c[6], c[7], q.s0, q.t1); nverts++; |
2487 | nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; |
2488 | } |
2489 | } |
2490 | |
2491 | // TODO: add back-end bit to do this just once per frame. |
2492 | nvg__flushTextTexture(ctx); |
2493 | |
2494 | nvg__renderText(ctx, verts, nverts); |
2495 | |
2496 | return iter.nextx / scale; |
2497 | } |
2498 | |
2499 | void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end) |
2500 | { |
2501 | NVGstate* state = nvg__getState(ctx); |
2502 | NVGtextRow rows[2]; |
2503 | int nrows = 0, i; |
2504 | int oldAlign = state->textAlign; |
2505 | int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); |
2506 | int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); |
2507 | float lineh = 0; |
2508 | |
2509 | if (state->fontId == FONS_INVALID) return; |
2510 | |
2511 | nvgTextMetrics(ctx, NULL, NULL, &lineh); |
2512 | |
2513 | state->textAlign = NVG_ALIGN_LEFT | valign; |
2514 | |
2515 | while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { |
2516 | for (i = 0; i < nrows; i++) { |
2517 | NVGtextRow* row = &rows[i]; |
2518 | if (haling & NVG_ALIGN_LEFT) |
2519 | nvgText(ctx, x, y, row->start, row->end); |
2520 | else if (haling & NVG_ALIGN_CENTER) |
2521 | nvgText(ctx, x + breakRowWidth*0.5f - row->width*0.5f, y, row->start, row->end); |
2522 | else if (haling & NVG_ALIGN_RIGHT) |
2523 | nvgText(ctx, x + breakRowWidth - row->width, y, row->start, row->end); |
2524 | y += lineh * state->lineHeight; |
2525 | } |
2526 | string = rows[nrows-1].next; |
2527 | } |
2528 | |
2529 | state->textAlign = oldAlign; |
2530 | } |
2531 | |
2532 | int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions) |
2533 | { |
2534 | NVGstate* state = nvg__getState(ctx); |
2535 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2536 | float invscale = 1.0f / scale; |
2537 | FONStextIter iter, prevIter; |
2538 | FONSquad q; |
2539 | int npos = 0; |
2540 | |
2541 | if (state->fontId == FONS_INVALID) return 0; |
2542 | |
2543 | if (end == NULL) |
2544 | end = string + strlen(string); |
2545 | |
2546 | if (string == end) |
2547 | return 0; |
2548 | |
2549 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2550 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2551 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2552 | fonsSetAlign(ctx->fs, state->textAlign); |
2553 | fonsSetFont(ctx->fs, state->fontId); |
2554 | |
2555 | fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_OPTIONAL); |
2556 | prevIter = iter; |
2557 | while (fonsTextIterNext(ctx->fs, &iter, &q)) { |
2558 | if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? |
2559 | iter = prevIter; |
2560 | fonsTextIterNext(ctx->fs, &iter, &q); // try again |
2561 | } |
2562 | prevIter = iter; |
2563 | positions[npos].str = iter.str; |
2564 | positions[npos].x = iter.x * invscale; |
2565 | positions[npos].minx = nvg__minf(iter.x, q.x0) * invscale; |
2566 | positions[npos].maxx = nvg__maxf(iter.nextx, q.x1) * invscale; |
2567 | npos++; |
2568 | if (npos >= maxPositions) |
2569 | break; |
2570 | } |
2571 | |
2572 | return npos; |
2573 | } |
2574 | |
2575 | enum NVGcodepointType { |
2576 | NVG_SPACE, |
2577 | NVG_NEWLINE, |
2578 | NVG_CHAR, |
2579 | NVG_CJK_CHAR, |
2580 | }; |
2581 | |
2582 | int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows) |
2583 | { |
2584 | NVGstate* state = nvg__getState(ctx); |
2585 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2586 | float invscale = 1.0f / scale; |
2587 | FONStextIter iter, prevIter; |
2588 | FONSquad q; |
2589 | int nrows = 0; |
2590 | float rowStartX = 0; |
2591 | float rowWidth = 0; |
2592 | float rowMinX = 0; |
2593 | float rowMaxX = 0; |
2594 | const char* rowStart = NULL; |
2595 | const char* rowEnd = NULL; |
2596 | const char* wordStart = NULL; |
2597 | float wordStartX = 0; |
2598 | float wordMinX = 0; |
2599 | const char* breakEnd = NULL; |
2600 | float breakWidth = 0; |
2601 | float breakMaxX = 0; |
2602 | int type = NVG_SPACE, ptype = NVG_SPACE; |
2603 | unsigned int pcodepoint = 0; |
2604 | |
2605 | if (maxRows == 0) return 0; |
2606 | if (state->fontId == FONS_INVALID) return 0; |
2607 | |
2608 | if (end == NULL) |
2609 | end = string + strlen(string); |
2610 | |
2611 | if (string == end) return 0; |
2612 | |
2613 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2614 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2615 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2616 | fonsSetAlign(ctx->fs, state->textAlign); |
2617 | fonsSetFont(ctx->fs, state->fontId); |
2618 | |
2619 | breakRowWidth *= scale; |
2620 | |
2621 | fonsTextIterInit(ctx->fs, &iter, 0, 0, string, end, FONS_GLYPH_BITMAP_OPTIONAL); |
2622 | prevIter = iter; |
2623 | while (fonsTextIterNext(ctx->fs, &iter, &q)) { |
2624 | if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? |
2625 | iter = prevIter; |
2626 | fonsTextIterNext(ctx->fs, &iter, &q); // try again |
2627 | } |
2628 | prevIter = iter; |
2629 | switch (iter.codepoint) { |
2630 | case 9: // \t |
2631 | case 11: // \v |
2632 | case 12: // \f |
2633 | case 32: // space |
2634 | case 0x00a0: // NBSP |
2635 | type = NVG_SPACE; |
2636 | break; |
2637 | case 10: // \n |
2638 | type = pcodepoint == 13 ? NVG_SPACE : NVG_NEWLINE; |
2639 | break; |
2640 | case 13: // \r |
2641 | type = pcodepoint == 10 ? NVG_SPACE : NVG_NEWLINE; |
2642 | break; |
2643 | case 0x0085: // NEL |
2644 | type = NVG_NEWLINE; |
2645 | break; |
2646 | default: |
2647 | if ((iter.codepoint >= 0x4E00 && iter.codepoint <= 0x9FFF) || |
2648 | (iter.codepoint >= 0x3000 && iter.codepoint <= 0x30FF) || |
2649 | (iter.codepoint >= 0xFF00 && iter.codepoint <= 0xFFEF) || |
2650 | (iter.codepoint >= 0x1100 && iter.codepoint <= 0x11FF) || |
2651 | (iter.codepoint >= 0x3130 && iter.codepoint <= 0x318F) || |
2652 | (iter.codepoint >= 0xAC00 && iter.codepoint <= 0xD7AF)) |
2653 | type = NVG_CJK_CHAR; |
2654 | else |
2655 | type = NVG_CHAR; |
2656 | break; |
2657 | } |
2658 | |
2659 | if (type == NVG_NEWLINE) { |
2660 | // Always handle new lines. |
2661 | rows[nrows].start = rowStart != NULL ? rowStart : iter.str; |
2662 | rows[nrows].end = rowEnd != NULL ? rowEnd : iter.str; |
2663 | rows[nrows].width = rowWidth * invscale; |
2664 | rows[nrows].minx = rowMinX * invscale; |
2665 | rows[nrows].maxx = rowMaxX * invscale; |
2666 | rows[nrows].next = iter.next; |
2667 | nrows++; |
2668 | if (nrows >= maxRows) |
2669 | return nrows; |
2670 | // Set null break point |
2671 | breakEnd = rowStart; |
2672 | breakWidth = 0.0; |
2673 | breakMaxX = 0.0; |
2674 | // Indicate to skip the white space at the beginning of the row. |
2675 | rowStart = NULL; |
2676 | rowEnd = NULL; |
2677 | rowWidth = 0; |
2678 | rowMinX = rowMaxX = 0; |
2679 | } else { |
2680 | if (rowStart == NULL) { |
2681 | // Skip white space until the beginning of the line |
2682 | if (type == NVG_CHAR || type == NVG_CJK_CHAR) { |
2683 | // The current char is the row so far |
2684 | rowStartX = iter.x; |
2685 | rowStart = iter.str; |
2686 | rowEnd = iter.next; |
2687 | rowWidth = iter.nextx - rowStartX; // q.x1 - rowStartX; |
2688 | rowMinX = q.x0 - rowStartX; |
2689 | rowMaxX = q.x1 - rowStartX; |
2690 | wordStart = iter.str; |
2691 | wordStartX = iter.x; |
2692 | wordMinX = q.x0 - rowStartX; |
2693 | // Set null break point |
2694 | breakEnd = rowStart; |
2695 | breakWidth = 0.0; |
2696 | breakMaxX = 0.0; |
2697 | } |
2698 | } else { |
2699 | float nextWidth = iter.nextx - rowStartX; |
2700 | |
2701 | // track last non-white space character |
2702 | if (type == NVG_CHAR || type == NVG_CJK_CHAR) { |
2703 | rowEnd = iter.next; |
2704 | rowWidth = iter.nextx - rowStartX; |
2705 | rowMaxX = q.x1 - rowStartX; |
2706 | } |
2707 | // track last end of a word |
2708 | if (((ptype == NVG_CHAR || ptype == NVG_CJK_CHAR) && type == NVG_SPACE) || type == NVG_CJK_CHAR) { |
2709 | breakEnd = iter.str; |
2710 | breakWidth = rowWidth; |
2711 | breakMaxX = rowMaxX; |
2712 | } |
2713 | // track last beginning of a word |
2714 | if ((ptype == NVG_SPACE && (type == NVG_CHAR || type == NVG_CJK_CHAR)) || type == NVG_CJK_CHAR) { |
2715 | wordStart = iter.str; |
2716 | wordStartX = iter.x; |
2717 | wordMinX = q.x0 - rowStartX; |
2718 | } |
2719 | |
2720 | // Break to new line when a character is beyond break width. |
2721 | if ((type == NVG_CHAR || type == NVG_CJK_CHAR) && nextWidth > breakRowWidth) { |
2722 | // The run length is too long, need to break to new line. |
2723 | if (breakEnd == rowStart) { |
2724 | // The current word is longer than the row length, just break it from here. |
2725 | rows[nrows].start = rowStart; |
2726 | rows[nrows].end = iter.str; |
2727 | rows[nrows].width = rowWidth * invscale; |
2728 | rows[nrows].minx = rowMinX * invscale; |
2729 | rows[nrows].maxx = rowMaxX * invscale; |
2730 | rows[nrows].next = iter.str; |
2731 | nrows++; |
2732 | if (nrows >= maxRows) |
2733 | return nrows; |
2734 | rowStartX = iter.x; |
2735 | rowStart = iter.str; |
2736 | rowEnd = iter.next; |
2737 | rowWidth = iter.nextx - rowStartX; |
2738 | rowMinX = q.x0 - rowStartX; |
2739 | rowMaxX = q.x1 - rowStartX; |
2740 | wordStart = iter.str; |
2741 | wordStartX = iter.x; |
2742 | wordMinX = q.x0 - rowStartX; |
2743 | } else { |
2744 | // Break the line from the end of the last word, and start new line from the beginning of the new. |
2745 | rows[nrows].start = rowStart; |
2746 | rows[nrows].end = breakEnd; |
2747 | rows[nrows].width = breakWidth * invscale; |
2748 | rows[nrows].minx = rowMinX * invscale; |
2749 | rows[nrows].maxx = breakMaxX * invscale; |
2750 | rows[nrows].next = wordStart; |
2751 | nrows++; |
2752 | if (nrows >= maxRows) |
2753 | return nrows; |
2754 | rowStartX = wordStartX; |
2755 | rowStart = wordStart; |
2756 | rowEnd = iter.next; |
2757 | rowWidth = iter.nextx - rowStartX; |
2758 | rowMinX = wordMinX; |
2759 | rowMaxX = q.x1 - rowStartX; |
2760 | // No change to the word start |
2761 | } |
2762 | // Set null break point |
2763 | breakEnd = rowStart; |
2764 | breakWidth = 0.0; |
2765 | breakMaxX = 0.0; |
2766 | } |
2767 | } |
2768 | } |
2769 | |
2770 | pcodepoint = iter.codepoint; |
2771 | ptype = type; |
2772 | } |
2773 | |
2774 | // Break the line from the end of the last word, and start new line from the beginning of the new. |
2775 | if (rowStart != NULL) { |
2776 | rows[nrows].start = rowStart; |
2777 | rows[nrows].end = rowEnd; |
2778 | rows[nrows].width = rowWidth * invscale; |
2779 | rows[nrows].minx = rowMinX * invscale; |
2780 | rows[nrows].maxx = rowMaxX * invscale; |
2781 | rows[nrows].next = end; |
2782 | nrows++; |
2783 | } |
2784 | |
2785 | return nrows; |
2786 | } |
2787 | |
2788 | float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds) |
2789 | { |
2790 | NVGstate* state = nvg__getState(ctx); |
2791 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2792 | float invscale = 1.0f / scale; |
2793 | float width; |
2794 | |
2795 | if (state->fontId == FONS_INVALID) return 0; |
2796 | |
2797 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2798 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2799 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2800 | fonsSetAlign(ctx->fs, state->textAlign); |
2801 | fonsSetFont(ctx->fs, state->fontId); |
2802 | |
2803 | width = fonsTextBounds(ctx->fs, x*scale, y*scale, string, end, bounds); |
2804 | if (bounds != NULL) { |
2805 | // Use line bounds for height. |
2806 | fonsLineBounds(ctx->fs, y*scale, &bounds[1], &bounds[3]); |
2807 | bounds[0] *= invscale; |
2808 | bounds[1] *= invscale; |
2809 | bounds[2] *= invscale; |
2810 | bounds[3] *= invscale; |
2811 | } |
2812 | return width * invscale; |
2813 | } |
2814 | |
2815 | void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds) |
2816 | { |
2817 | NVGstate* state = nvg__getState(ctx); |
2818 | NVGtextRow rows[2]; |
2819 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2820 | float invscale = 1.0f / scale; |
2821 | int nrows = 0, i; |
2822 | int oldAlign = state->textAlign; |
2823 | int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); |
2824 | int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); |
2825 | float lineh = 0, rminy = 0, rmaxy = 0; |
2826 | float minx, miny, maxx, maxy; |
2827 | |
2828 | if (state->fontId == FONS_INVALID) { |
2829 | if (bounds != NULL) |
2830 | bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0f; |
2831 | return; |
2832 | } |
2833 | |
2834 | nvgTextMetrics(ctx, NULL, NULL, &lineh); |
2835 | |
2836 | state->textAlign = NVG_ALIGN_LEFT | valign; |
2837 | |
2838 | minx = maxx = x; |
2839 | miny = maxy = y; |
2840 | |
2841 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2842 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2843 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2844 | fonsSetAlign(ctx->fs, state->textAlign); |
2845 | fonsSetFont(ctx->fs, state->fontId); |
2846 | fonsLineBounds(ctx->fs, 0, &rminy, &rmaxy); |
2847 | rminy *= invscale; |
2848 | rmaxy *= invscale; |
2849 | |
2850 | while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { |
2851 | for (i = 0; i < nrows; i++) { |
2852 | NVGtextRow* row = &rows[i]; |
2853 | float rminx, rmaxx, dx = 0; |
2854 | // Horizontal bounds |
2855 | if (haling & NVG_ALIGN_LEFT) |
2856 | dx = 0; |
2857 | else if (haling & NVG_ALIGN_CENTER) |
2858 | dx = breakRowWidth*0.5f - row->width*0.5f; |
2859 | else if (haling & NVG_ALIGN_RIGHT) |
2860 | dx = breakRowWidth - row->width; |
2861 | rminx = x + row->minx + dx; |
2862 | rmaxx = x + row->maxx + dx; |
2863 | minx = nvg__minf(minx, rminx); |
2864 | maxx = nvg__maxf(maxx, rmaxx); |
2865 | // Vertical bounds. |
2866 | miny = nvg__minf(miny, y + rminy); |
2867 | maxy = nvg__maxf(maxy, y + rmaxy); |
2868 | |
2869 | y += lineh * state->lineHeight; |
2870 | } |
2871 | string = rows[nrows-1].next; |
2872 | } |
2873 | |
2874 | state->textAlign = oldAlign; |
2875 | |
2876 | if (bounds != NULL) { |
2877 | bounds[0] = minx; |
2878 | bounds[1] = miny; |
2879 | bounds[2] = maxx; |
2880 | bounds[3] = maxy; |
2881 | } |
2882 | } |
2883 | |
2884 | void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh) |
2885 | { |
2886 | NVGstate* state = nvg__getState(ctx); |
2887 | float scale = nvg__getFontScale(state) * ctx->devicePxRatio; |
2888 | float invscale = 1.0f / scale; |
2889 | |
2890 | if (state->fontId == FONS_INVALID) return; |
2891 | |
2892 | fonsSetSize(ctx->fs, state->fontSize*scale); |
2893 | fonsSetSpacing(ctx->fs, state->letterSpacing*scale); |
2894 | fonsSetBlur(ctx->fs, state->fontBlur*scale); |
2895 | fonsSetAlign(ctx->fs, state->textAlign); |
2896 | fonsSetFont(ctx->fs, state->fontId); |
2897 | |
2898 | fonsVertMetrics(ctx->fs, ascender, descender, lineh); |
2899 | if (ascender != NULL) |
2900 | *ascender *= invscale; |
2901 | if (descender != NULL) |
2902 | *descender *= invscale; |
2903 | if (lineh != NULL) |
2904 | *lineh *= invscale; |
2905 | } |
2906 | // vim: ft=c nu noet ts=4 |
2907 | |