1 | // Introduction for Multilevelmixer: |
2 | // |
3 | // Multilevel layout computation is an iterative process that can |
4 | // be roughly divided in three phases: coarsening, placement, and |
5 | // single level layout. Starting with the smallest graph, the final |
6 | // layout for the input graph is obtained by successively computing |
7 | // layouts for the graph sequence computed by the coarsening phase. |
8 | // At each level, the additional vertices need to be placed into the |
9 | // layout of the preceding level, optionally after a scaling to provide |
10 | // the necessary space. |
11 | // It helps to overcome some problems of single level energybased graph |
12 | // layouts (such as finding a local optimal solution) and it speeds up |
13 | // the computation. |
14 | // |
15 | // The Modular Multilevel Mixer is an abstract class that can be used |
16 | // to build energybased multilevel layouts. Since it is modular you can |
17 | // easily assemble different layouts by using different coarsening |
18 | // techniques (merger), placer and single level layouts. |
19 | |
20 | #include <ogdf/basic/PreprocessorLayout.h> |
21 | #include <ogdf/energybased/FastMultipoleEmbedder.h> |
22 | #include <ogdf/energybased/multilevel_mixer/BarycenterPlacer.h> |
23 | #include <ogdf/energybased/multilevel_mixer/EdgeCoverMerger.h> |
24 | #include <ogdf/energybased/multilevel_mixer/LocalBiconnectedMerger.h> |
25 | #include <ogdf/energybased/multilevel_mixer/ModularMultilevelMixer.h> |
26 | #include <ogdf/energybased/multilevel_mixer/ScalingLayout.h> |
27 | #include <ogdf/energybased/multilevel_mixer/SolarMerger.h> |
28 | #include <ogdf/energybased/multilevel_mixer/SolarPlacer.h> |
29 | #include <ogdf/fileformats/GraphIO.h> |
30 | #include <ogdf/packing/ComponentSplitterLayout.h> |
31 | #include <ogdf/packing/TileToRowsCCPacker.h> |
32 | |
33 | using namespace ogdf; |
34 | |
35 | template<class T> |
36 | static MultilevelBuilder *getDoubleFactoredZeroAdjustedMerger() |
37 | { |
38 | T *merger = new T(); |
39 | merger->setFactor(2.0); |
40 | merger->setEdgeLengthAdjustment(0); |
41 | return merger; |
42 | } |
43 | |
44 | static InitialPlacer *getBarycenterPlacer() |
45 | { |
46 | BarycenterPlacer *placer = new BarycenterPlacer(); |
47 | placer->weightedPositionPriority(true); |
48 | return placer; |
49 | } |
50 | |
51 | static void configureFastLayout(ScalingLayout *sl, MultilevelBuilder *&merger, InitialPlacer *&placer) |
52 | { |
53 | // The SolarMerger is used for the coarsening phase. |
54 | merger = new SolarMerger(false, false); |
55 | // The SolarPlacer is used for the placement. |
56 | placer = new SolarPlacer(); |
57 | |
58 | // Postprocessing is applied at each level after the single level layout. |
59 | // It is turned off in this example. |
60 | sl->setExtraScalingSteps(0); |
61 | // In this example it is used to scale with fixed factor 2 relative to the graph drawing. |
62 | sl->setScalingType(ScalingLayout::ScalingType::RelativeToDrawing); |
63 | sl->setScaling(2.0, 2.0); |
64 | } |
65 | |
66 | static void configureNiceLayout(ScalingLayout *sl, MultilevelBuilder *&merger, InitialPlacer *&placer) |
67 | { |
68 | // The EdgeCoverMerger is used for the coarsening phase. |
69 | merger = getDoubleFactoredZeroAdjustedMerger<EdgeCoverMerger>(); |
70 | // The BarycenterPlacer is used for the placement. |
71 | placer = getBarycenterPlacer(); |
72 | |
73 | // Postprocessing is applied at each level after the single level layout. |
74 | // In this example a FastMultipoleEmbedder with zero iterations is used for postprocessing. |
75 | sl->setExtraScalingSteps(0); |
76 | // No scaling is done. It is fixed to factor 1. |
77 | sl->setScalingType(ScalingLayout::ScalingType::RelativeToDrawing); |
78 | sl->setScaling(1.0, 1.0); |
79 | } |
80 | |
81 | static void configureNoTwistLayout(ScalingLayout *sl, MultilevelBuilder *&merger, InitialPlacer *&placer) |
82 | { |
83 | // The LocalBiconnectedMerger is used for the coarsening phase. |
84 | // It tries to keep biconnectivity to avoid twisted graph layouts. |
85 | merger = getDoubleFactoredZeroAdjustedMerger<LocalBiconnectedMerger>(); |
86 | // The BarycenterPlacer is used for the placement. |
87 | placer = getBarycenterPlacer(); |
88 | |
89 | // Postprocessing is applied at each level after the single level layout. |
90 | // It is turned off in this example. |
91 | sl->setExtraScalingSteps(1); |
92 | // The ScalingLayout is used to scale with a factor between 5 and 10 |
93 | // relative to the edge length. |
94 | sl->setScalingType(ScalingLayout::ScalingType::RelativeToDesiredLength); |
95 | sl->setScaling(5.0, 10.0); |
96 | } |
97 | |
98 | int main(int argc, const char *argv[]) |
99 | { |
100 | if (argc != 2) { |
101 | std::cout << "Usage: " << argv[0] << " (0|1|2)" << std::endl; |
102 | return 255; |
103 | } |
104 | |
105 | // We first declare a Graph G with GraphAttributes GA and load it from |
106 | // the GML file sierpinski_04.gml. |
107 | Graph g; |
108 | GraphAttributes ga(g); |
109 | if (!GraphIO::read(ga, g, "uk_Pack_Bary_EC_FRENC.gml" , GraphIO::readGML)) { |
110 | std::cerr << "Could not load Graph" << std::endl; |
111 | return 1; |
112 | } |
113 | |
114 | // We assign a width and height of 10.0 to each node. |
115 | for (node v : g.nodes) { |
116 | ga.width(v) = ga.height(v) = 10.0; |
117 | } |
118 | |
119 | // Then we create a MultilevelGraph from the GraphAttributes. |
120 | MultilevelGraph mlg(ga); |
121 | |
122 | // The FastMultipoleEmbedder is used for the single level layout. |
123 | FastMultipoleEmbedder *fme = new FastMultipoleEmbedder(); |
124 | // It will use 1000 iterations at each level. |
125 | fme->setNumIterations(1000); |
126 | fme->setRandomize(false); |
127 | |
128 | // To minimize dispersion of the graph when more nodes are added, a |
129 | // ScalingLayout can be used to scale up the graph on each level. |
130 | ScalingLayout *sl = new ScalingLayout(); |
131 | sl->setLayoutRepeats(1); |
132 | // The FastMultipoleEmbedder is nested into this ScalingLayout. |
133 | sl->setSecondaryLayout(fme); |
134 | |
135 | // Set the merger and placer according to the wanted configuration. |
136 | MultilevelBuilder *merger; |
137 | InitialPlacer *placer; |
138 | switch (argv[1][0]) { |
139 | case 2: |
140 | configureFastLayout(sl, merger, placer); |
141 | break; |
142 | case 1: |
143 | configureNiceLayout(sl, merger, placer); |
144 | break; |
145 | default: |
146 | configureNoTwistLayout(sl, merger, placer); |
147 | break; |
148 | } |
149 | |
150 | // Then the ModularMultilevelMixer is created. |
151 | ModularMultilevelMixer *mmm = new ModularMultilevelMixer; |
152 | mmm->setLayoutRepeats(1); |
153 | // The single level layout, the placer and the merger are set. |
154 | mmm->setLevelLayoutModule(sl); |
155 | mmm->setInitialPlacer(placer); |
156 | mmm->setMultilevelBuilder(merger); |
157 | |
158 | // Since energybased algorithms are not doing well for disconnected |
159 | // graphs, the ComponentSplitterLayout is used to split the graph and |
160 | // computation is done separately for each connected component. |
161 | ComponentSplitterLayout *csl = new ComponentSplitterLayout; |
162 | // The TileToRowsPacker merges these connected components after computation. |
163 | TileToRowsCCPacker *ttrccp = new TileToRowsCCPacker; |
164 | csl->setPacker(ttrccp); |
165 | csl->setLayoutModule(mmm); |
166 | |
167 | // At last the PreprocessorLayout removes double edges and loops. |
168 | PreprocessorLayout ppl; |
169 | ppl.setLayoutModule(csl); |
170 | ppl.setRandomizePositions(true); |
171 | |
172 | ppl.call(mlg); |
173 | |
174 | // After the computation the MultilevelGraph is exported to the |
175 | // GraphAttributes and written to disk. |
176 | mlg.exportAttributes(ga); |
177 | GraphIO::write(ga, "output-multilevelmixer-.gml" , GraphIO::writeGML); |
178 | |
179 | return 0; |
180 | } |
181 | |