1 | /* $Id: ClpHelperFunctions.hpp 1753 2011-06-19 16:27:26Z stefan $ */ |
2 | // Copyright (C) 2003, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #ifndef ClpHelperFunctions_H |
7 | #define ClpHelperFunctions_H |
8 | |
9 | #include "ClpConfig.h" |
10 | #ifdef HAVE_CMATH |
11 | # include <cmath> |
12 | #else |
13 | # ifdef HAVE_MATH_H |
14 | # include <math.h> |
15 | # else |
16 | # error "don't have header file for math" |
17 | # endif |
18 | #endif |
19 | |
20 | /** |
21 | Note (JJF) I have added some operations on arrays even though they may |
22 | duplicate CoinDenseVector. I think the use of templates was a mistake |
23 | as I don't think inline generic code can take as much advantage of |
24 | parallelism or machine architectures or memory hierarchies. |
25 | |
26 | */ |
27 | |
28 | double maximumAbsElement(const double * region, int size); |
29 | void setElements(double * region, int size, double value); |
30 | void multiplyAdd(const double * region1, int size, double multiplier1, |
31 | double * region2, double multiplier2); |
32 | double innerProduct(const double * region1, int size, const double * region2); |
33 | void getNorms(const double * region, int size, double & norm1, double & norm2); |
34 | #if COIN_LONG_WORK |
35 | // For long double versions |
36 | CoinWorkDouble maximumAbsElement(const CoinWorkDouble * region, int size); |
37 | void setElements(CoinWorkDouble * region, int size, CoinWorkDouble value); |
38 | void multiplyAdd(const CoinWorkDouble * region1, int size, CoinWorkDouble multiplier1, |
39 | CoinWorkDouble * region2, CoinWorkDouble multiplier2); |
40 | CoinWorkDouble innerProduct(const CoinWorkDouble * region1, int size, const CoinWorkDouble * region2); |
41 | void getNorms(const CoinWorkDouble * region, int size, CoinWorkDouble & norm1, CoinWorkDouble & norm2); |
42 | inline void |
43 | CoinMemcpyN(const double * from, const int size, CoinWorkDouble * to) |
44 | { |
45 | for (int i = 0; i < size; i++) |
46 | to[i] = from[i]; |
47 | } |
48 | inline void |
49 | CoinMemcpyN(const CoinWorkDouble * from, const int size, double * to) |
50 | { |
51 | for (int i = 0; i < size; i++) |
52 | to[i] = static_cast<double>(from[i]); |
53 | } |
54 | inline CoinWorkDouble |
55 | CoinMax(const CoinWorkDouble x1, const double x2) |
56 | { |
57 | return (x1 > x2) ? x1 : x2; |
58 | } |
59 | inline CoinWorkDouble |
60 | CoinMax(double x1, const CoinWorkDouble x2) |
61 | { |
62 | return (x1 > x2) ? x1 : x2; |
63 | } |
64 | inline CoinWorkDouble |
65 | CoinMin(const CoinWorkDouble x1, const double x2) |
66 | { |
67 | return (x1 < x2) ? x1 : x2; |
68 | } |
69 | inline CoinWorkDouble |
70 | CoinMin(double x1, const CoinWorkDouble x2) |
71 | { |
72 | return (x1 < x2) ? x1 : x2; |
73 | } |
74 | inline CoinWorkDouble CoinSqrt(CoinWorkDouble x) |
75 | { |
76 | return sqrtl(x); |
77 | } |
78 | #else |
79 | inline double CoinSqrt(double x) |
80 | { |
81 | return sqrt(x); |
82 | } |
83 | #endif |
84 | |
85 | /// Following only included if ClpPdco defined |
86 | #ifdef ClpPdco_H |
87 | |
88 | |
89 | inline double pdxxxmerit(int nlow, int nupp, int *low, int *upp, CoinDenseVector <double> &r1, |
90 | CoinDenseVector <double> &r2, CoinDenseVector <double> &rL, |
91 | CoinDenseVector <double> &rU, CoinDenseVector <double> &cL, |
92 | CoinDenseVector <double> &cU ) |
93 | { |
94 | |
95 | // Evaluate the merit function for Newton's method. |
96 | // It is the 2-norm of the three sets of residuals. |
97 | double sum1, sum2; |
98 | CoinDenseVector <double> f(6); |
99 | f[0] = r1.twoNorm(); |
100 | f[1] = r2.twoNorm(); |
101 | sum1 = sum2 = 0.0; |
102 | for (int k = 0; k < nlow; k++) { |
103 | sum1 += rL[low[k]] * rL[low[k]]; |
104 | sum2 += cL[low[k]] * cL[low[k]]; |
105 | } |
106 | f[2] = sqrt(sum1); |
107 | f[4] = sqrt(sum2); |
108 | sum1 = sum2 = 0.0; |
109 | for (int k = 0; k < nupp; k++) { |
110 | sum1 += rL[upp[k]] * rL[upp[k]]; |
111 | sum2 += cL[upp[k]] * cL[upp[k]]; |
112 | } |
113 | f[3] = sqrt(sum1); |
114 | f[5] = sqrt(sum2); |
115 | |
116 | return f.twoNorm(); |
117 | } |
118 | |
119 | //----------------------------------------------------------------------- |
120 | // End private function pdxxxmerit |
121 | //----------------------------------------------------------------------- |
122 | |
123 | |
124 | //function [r1,r2,rL,rU,Pinf,Dinf] = ... |
125 | // pdxxxresid1( Aname,fix,low,upp, ... |
126 | // b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ) |
127 | |
128 | inline void pdxxxresid1(ClpPdco *model, const int nlow, const int nupp, const int nfix, |
129 | int *low, int *upp, int *fix, |
130 | CoinDenseVector <double> &b, double *bl, double *bu, double d1, double d2, |
131 | CoinDenseVector <double> &grad, CoinDenseVector <double> &rL, |
132 | CoinDenseVector <double> &rU, CoinDenseVector <double> &x, |
133 | CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, |
134 | CoinDenseVector <double> &y, CoinDenseVector <double> &z1, |
135 | CoinDenseVector <double> &z2, CoinDenseVector <double> &r1, |
136 | CoinDenseVector <double> &r2, double *Pinf, double *Dinf) |
137 | { |
138 | |
139 | // Form residuals for the primal and dual equations. |
140 | // rL, rU are output, but we input them as full vectors |
141 | // initialized (permanently) with any relevant zeros. |
142 | |
143 | // Get some element pointers for efficiency |
144 | double *x_elts = x.getElements(); |
145 | double *r2_elts = r2.getElements(); |
146 | |
147 | for (int k = 0; k < nfix; k++) |
148 | x_elts[fix[k]] = 0; |
149 | |
150 | r1.clear(); |
151 | r2.clear(); |
152 | model->matVecMult( 1, r1, x ); |
153 | model->matVecMult( 2, r2, y ); |
154 | for (int k = 0; k < nfix; k++) |
155 | r2_elts[fix[k]] = 0; |
156 | |
157 | |
158 | r1 = b - r1 - d2 * d2 * y; |
159 | r2 = grad - r2 - z1; // grad includes d1*d1*x |
160 | if (nupp > 0) |
161 | r2 = r2 + z2; |
162 | |
163 | for (int k = 0; k < nlow; k++) |
164 | rL[low[k]] = bl[low[k]] - x[low[k]] + x1[low[k]]; |
165 | for (int k = 0; k < nupp; k++) |
166 | rU[upp[k]] = - bu[upp[k]] + x[upp[k]] + x2[upp[k]]; |
167 | |
168 | double normL = 0.0; |
169 | double normU = 0.0; |
170 | for (int k = 0; k < nlow; k++) |
171 | if (rL[low[k]] > normL) normL = rL[low[k]]; |
172 | for (int k = 0; k < nupp; k++) |
173 | if (rU[upp[k]] > normU) normU = rU[upp[k]]; |
174 | |
175 | *Pinf = CoinMax(normL, normU); |
176 | *Pinf = CoinMax( r1.infNorm() , *Pinf ); |
177 | *Dinf = r2.infNorm(); |
178 | *Pinf = CoinMax( *Pinf, 1e-99 ); |
179 | *Dinf = CoinMax( *Dinf, 1e-99 ); |
180 | } |
181 | |
182 | //----------------------------------------------------------------------- |
183 | // End private function pdxxxresid1 |
184 | //----------------------------------------------------------------------- |
185 | |
186 | |
187 | //function [cL,cU,center,Cinf,Cinf0] = ... |
188 | // pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ) |
189 | |
190 | inline void pdxxxresid2(double mu, int nlow, int nupp, int *low, int *upp, |
191 | CoinDenseVector <double> &cL, CoinDenseVector <double> &cU, |
192 | CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, |
193 | CoinDenseVector <double> &z1, CoinDenseVector <double> &z2, |
194 | double *center, double *Cinf, double *Cinf0) |
195 | { |
196 | |
197 | // Form residuals for the complementarity equations. |
198 | // cL, cU are output, but we input them as full vectors |
199 | // initialized (permanently) with any relevant zeros. |
200 | // Cinf is the complementarity residual for X1 z1 = mu e, etc. |
201 | // Cinf0 is the same for mu=0 (i.e., for the original problem). |
202 | |
203 | double maxXz = -1e20; |
204 | double minXz = 1e20; |
205 | |
206 | double *x1_elts = x1.getElements(); |
207 | double *z1_elts = z1.getElements(); |
208 | double *cL_elts = cL.getElements(); |
209 | for (int k = 0; k < nlow; k++) { |
210 | double x1z1 = x1_elts[low[k]] * z1_elts[low[k]]; |
211 | cL_elts[low[k]] = mu - x1z1; |
212 | if (x1z1 > maxXz) maxXz = x1z1; |
213 | if (x1z1 < minXz) minXz = x1z1; |
214 | } |
215 | |
216 | double *x2_elts = x2.getElements(); |
217 | double *z2_elts = z2.getElements(); |
218 | double *cU_elts = cU.getElements(); |
219 | for (int k = 0; k < nupp; k++) { |
220 | double x2z2 = x2_elts[upp[k]] * z2_elts[upp[k]]; |
221 | cU_elts[upp[k]] = mu - x2z2; |
222 | if (x2z2 > maxXz) maxXz = x2z2; |
223 | if (x2z2 < minXz) minXz = x2z2; |
224 | } |
225 | |
226 | maxXz = CoinMax( maxXz, 1e-99 ); |
227 | minXz = CoinMax( minXz, 1e-99 ); |
228 | *center = maxXz / minXz; |
229 | |
230 | double normL = 0.0; |
231 | double normU = 0.0; |
232 | for (int k = 0; k < nlow; k++) |
233 | if (cL_elts[low[k]] > normL) normL = cL_elts[low[k]]; |
234 | for (int k = 0; k < nupp; k++) |
235 | if (cU_elts[upp[k]] > normU) normU = cU_elts[upp[k]]; |
236 | *Cinf = CoinMax( normL, normU); |
237 | *Cinf0 = maxXz; |
238 | } |
239 | //----------------------------------------------------------------------- |
240 | // End private function pdxxxresid2 |
241 | //----------------------------------------------------------------------- |
242 | |
243 | inline double pdxxxstep( CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) |
244 | { |
245 | |
246 | // Assumes x > 0. |
247 | // Finds the maximum step such that x + step*dx >= 0. |
248 | |
249 | double step = 1e+20; |
250 | |
251 | int n = x.size(); |
252 | double *x_elts = x.getElements(); |
253 | double *dx_elts = dx.getElements(); |
254 | for (int k = 0; k < n; k++) |
255 | if (dx_elts[k] < 0) |
256 | if ((x_elts[k] / (-dx_elts[k])) < step) |
257 | step = x_elts[k] / (-dx_elts[k]); |
258 | return step; |
259 | } |
260 | //----------------------------------------------------------------------- |
261 | // End private function pdxxxstep |
262 | //----------------------------------------------------------------------- |
263 | |
264 | inline double pdxxxstep(int nset, int *set, CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) |
265 | { |
266 | |
267 | // Assumes x > 0. |
268 | // Finds the maximum step such that x + step*dx >= 0. |
269 | |
270 | double step = 1e+20; |
271 | |
272 | int n = x.size(); |
273 | double *x_elts = x.getElements(); |
274 | double *dx_elts = dx.getElements(); |
275 | for (int k = 0; k < n; k++) |
276 | if (dx_elts[k] < 0) |
277 | if ((x_elts[k] / (-dx_elts[k])) < step) |
278 | step = x_elts[k] / (-dx_elts[k]); |
279 | return step; |
280 | } |
281 | //----------------------------------------------------------------------- |
282 | // End private function pdxxxstep |
283 | //----------------------------------------------------------------------- |
284 | #endif |
285 | #endif |
286 | |