| 1 | /* $Id: ClpHelperFunctions.hpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2003, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #ifndef ClpHelperFunctions_H |
| 7 | #define ClpHelperFunctions_H |
| 8 | |
| 9 | #include "ClpConfig.h" |
| 10 | #ifdef HAVE_CMATH |
| 11 | # include <cmath> |
| 12 | #else |
| 13 | # ifdef HAVE_MATH_H |
| 14 | # include <math.h> |
| 15 | # else |
| 16 | # error "don't have header file for math" |
| 17 | # endif |
| 18 | #endif |
| 19 | |
| 20 | /** |
| 21 | Note (JJF) I have added some operations on arrays even though they may |
| 22 | duplicate CoinDenseVector. I think the use of templates was a mistake |
| 23 | as I don't think inline generic code can take as much advantage of |
| 24 | parallelism or machine architectures or memory hierarchies. |
| 25 | |
| 26 | */ |
| 27 | |
| 28 | double maximumAbsElement(const double * region, int size); |
| 29 | void setElements(double * region, int size, double value); |
| 30 | void multiplyAdd(const double * region1, int size, double multiplier1, |
| 31 | double * region2, double multiplier2); |
| 32 | double innerProduct(const double * region1, int size, const double * region2); |
| 33 | void getNorms(const double * region, int size, double & norm1, double & norm2); |
| 34 | #if COIN_LONG_WORK |
| 35 | // For long double versions |
| 36 | CoinWorkDouble maximumAbsElement(const CoinWorkDouble * region, int size); |
| 37 | void setElements(CoinWorkDouble * region, int size, CoinWorkDouble value); |
| 38 | void multiplyAdd(const CoinWorkDouble * region1, int size, CoinWorkDouble multiplier1, |
| 39 | CoinWorkDouble * region2, CoinWorkDouble multiplier2); |
| 40 | CoinWorkDouble innerProduct(const CoinWorkDouble * region1, int size, const CoinWorkDouble * region2); |
| 41 | void getNorms(const CoinWorkDouble * region, int size, CoinWorkDouble & norm1, CoinWorkDouble & norm2); |
| 42 | inline void |
| 43 | CoinMemcpyN(const double * from, const int size, CoinWorkDouble * to) |
| 44 | { |
| 45 | for (int i = 0; i < size; i++) |
| 46 | to[i] = from[i]; |
| 47 | } |
| 48 | inline void |
| 49 | CoinMemcpyN(const CoinWorkDouble * from, const int size, double * to) |
| 50 | { |
| 51 | for (int i = 0; i < size; i++) |
| 52 | to[i] = static_cast<double>(from[i]); |
| 53 | } |
| 54 | inline CoinWorkDouble |
| 55 | CoinMax(const CoinWorkDouble x1, const double x2) |
| 56 | { |
| 57 | return (x1 > x2) ? x1 : x2; |
| 58 | } |
| 59 | inline CoinWorkDouble |
| 60 | CoinMax(double x1, const CoinWorkDouble x2) |
| 61 | { |
| 62 | return (x1 > x2) ? x1 : x2; |
| 63 | } |
| 64 | inline CoinWorkDouble |
| 65 | CoinMin(const CoinWorkDouble x1, const double x2) |
| 66 | { |
| 67 | return (x1 < x2) ? x1 : x2; |
| 68 | } |
| 69 | inline CoinWorkDouble |
| 70 | CoinMin(double x1, const CoinWorkDouble x2) |
| 71 | { |
| 72 | return (x1 < x2) ? x1 : x2; |
| 73 | } |
| 74 | inline CoinWorkDouble CoinSqrt(CoinWorkDouble x) |
| 75 | { |
| 76 | return sqrtl(x); |
| 77 | } |
| 78 | #else |
| 79 | inline double CoinSqrt(double x) |
| 80 | { |
| 81 | return sqrt(x); |
| 82 | } |
| 83 | #endif |
| 84 | |
| 85 | /// Following only included if ClpPdco defined |
| 86 | #ifdef ClpPdco_H |
| 87 | |
| 88 | |
| 89 | inline double pdxxxmerit(int nlow, int nupp, int *low, int *upp, CoinDenseVector <double> &r1, |
| 90 | CoinDenseVector <double> &r2, CoinDenseVector <double> &rL, |
| 91 | CoinDenseVector <double> &rU, CoinDenseVector <double> &cL, |
| 92 | CoinDenseVector <double> &cU ) |
| 93 | { |
| 94 | |
| 95 | // Evaluate the merit function for Newton's method. |
| 96 | // It is the 2-norm of the three sets of residuals. |
| 97 | double sum1, sum2; |
| 98 | CoinDenseVector <double> f(6); |
| 99 | f[0] = r1.twoNorm(); |
| 100 | f[1] = r2.twoNorm(); |
| 101 | sum1 = sum2 = 0.0; |
| 102 | for (int k = 0; k < nlow; k++) { |
| 103 | sum1 += rL[low[k]] * rL[low[k]]; |
| 104 | sum2 += cL[low[k]] * cL[low[k]]; |
| 105 | } |
| 106 | f[2] = sqrt(sum1); |
| 107 | f[4] = sqrt(sum2); |
| 108 | sum1 = sum2 = 0.0; |
| 109 | for (int k = 0; k < nupp; k++) { |
| 110 | sum1 += rL[upp[k]] * rL[upp[k]]; |
| 111 | sum2 += cL[upp[k]] * cL[upp[k]]; |
| 112 | } |
| 113 | f[3] = sqrt(sum1); |
| 114 | f[5] = sqrt(sum2); |
| 115 | |
| 116 | return f.twoNorm(); |
| 117 | } |
| 118 | |
| 119 | //----------------------------------------------------------------------- |
| 120 | // End private function pdxxxmerit |
| 121 | //----------------------------------------------------------------------- |
| 122 | |
| 123 | |
| 124 | //function [r1,r2,rL,rU,Pinf,Dinf] = ... |
| 125 | // pdxxxresid1( Aname,fix,low,upp, ... |
| 126 | // b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ) |
| 127 | |
| 128 | inline void pdxxxresid1(ClpPdco *model, const int nlow, const int nupp, const int nfix, |
| 129 | int *low, int *upp, int *fix, |
| 130 | CoinDenseVector <double> &b, double *bl, double *bu, double d1, double d2, |
| 131 | CoinDenseVector <double> &grad, CoinDenseVector <double> &rL, |
| 132 | CoinDenseVector <double> &rU, CoinDenseVector <double> &x, |
| 133 | CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, |
| 134 | CoinDenseVector <double> &y, CoinDenseVector <double> &z1, |
| 135 | CoinDenseVector <double> &z2, CoinDenseVector <double> &r1, |
| 136 | CoinDenseVector <double> &r2, double *Pinf, double *Dinf) |
| 137 | { |
| 138 | |
| 139 | // Form residuals for the primal and dual equations. |
| 140 | // rL, rU are output, but we input them as full vectors |
| 141 | // initialized (permanently) with any relevant zeros. |
| 142 | |
| 143 | // Get some element pointers for efficiency |
| 144 | double *x_elts = x.getElements(); |
| 145 | double *r2_elts = r2.getElements(); |
| 146 | |
| 147 | for (int k = 0; k < nfix; k++) |
| 148 | x_elts[fix[k]] = 0; |
| 149 | |
| 150 | r1.clear(); |
| 151 | r2.clear(); |
| 152 | model->matVecMult( 1, r1, x ); |
| 153 | model->matVecMult( 2, r2, y ); |
| 154 | for (int k = 0; k < nfix; k++) |
| 155 | r2_elts[fix[k]] = 0; |
| 156 | |
| 157 | |
| 158 | r1 = b - r1 - d2 * d2 * y; |
| 159 | r2 = grad - r2 - z1; // grad includes d1*d1*x |
| 160 | if (nupp > 0) |
| 161 | r2 = r2 + z2; |
| 162 | |
| 163 | for (int k = 0; k < nlow; k++) |
| 164 | rL[low[k]] = bl[low[k]] - x[low[k]] + x1[low[k]]; |
| 165 | for (int k = 0; k < nupp; k++) |
| 166 | rU[upp[k]] = - bu[upp[k]] + x[upp[k]] + x2[upp[k]]; |
| 167 | |
| 168 | double normL = 0.0; |
| 169 | double normU = 0.0; |
| 170 | for (int k = 0; k < nlow; k++) |
| 171 | if (rL[low[k]] > normL) normL = rL[low[k]]; |
| 172 | for (int k = 0; k < nupp; k++) |
| 173 | if (rU[upp[k]] > normU) normU = rU[upp[k]]; |
| 174 | |
| 175 | *Pinf = CoinMax(normL, normU); |
| 176 | *Pinf = CoinMax( r1.infNorm() , *Pinf ); |
| 177 | *Dinf = r2.infNorm(); |
| 178 | *Pinf = CoinMax( *Pinf, 1e-99 ); |
| 179 | *Dinf = CoinMax( *Dinf, 1e-99 ); |
| 180 | } |
| 181 | |
| 182 | //----------------------------------------------------------------------- |
| 183 | // End private function pdxxxresid1 |
| 184 | //----------------------------------------------------------------------- |
| 185 | |
| 186 | |
| 187 | //function [cL,cU,center,Cinf,Cinf0] = ... |
| 188 | // pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ) |
| 189 | |
| 190 | inline void pdxxxresid2(double mu, int nlow, int nupp, int *low, int *upp, |
| 191 | CoinDenseVector <double> &cL, CoinDenseVector <double> &cU, |
| 192 | CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, |
| 193 | CoinDenseVector <double> &z1, CoinDenseVector <double> &z2, |
| 194 | double *center, double *Cinf, double *Cinf0) |
| 195 | { |
| 196 | |
| 197 | // Form residuals for the complementarity equations. |
| 198 | // cL, cU are output, but we input them as full vectors |
| 199 | // initialized (permanently) with any relevant zeros. |
| 200 | // Cinf is the complementarity residual for X1 z1 = mu e, etc. |
| 201 | // Cinf0 is the same for mu=0 (i.e., for the original problem). |
| 202 | |
| 203 | double maxXz = -1e20; |
| 204 | double minXz = 1e20; |
| 205 | |
| 206 | double *x1_elts = x1.getElements(); |
| 207 | double *z1_elts = z1.getElements(); |
| 208 | double *cL_elts = cL.getElements(); |
| 209 | for (int k = 0; k < nlow; k++) { |
| 210 | double x1z1 = x1_elts[low[k]] * z1_elts[low[k]]; |
| 211 | cL_elts[low[k]] = mu - x1z1; |
| 212 | if (x1z1 > maxXz) maxXz = x1z1; |
| 213 | if (x1z1 < minXz) minXz = x1z1; |
| 214 | } |
| 215 | |
| 216 | double *x2_elts = x2.getElements(); |
| 217 | double *z2_elts = z2.getElements(); |
| 218 | double *cU_elts = cU.getElements(); |
| 219 | for (int k = 0; k < nupp; k++) { |
| 220 | double x2z2 = x2_elts[upp[k]] * z2_elts[upp[k]]; |
| 221 | cU_elts[upp[k]] = mu - x2z2; |
| 222 | if (x2z2 > maxXz) maxXz = x2z2; |
| 223 | if (x2z2 < minXz) minXz = x2z2; |
| 224 | } |
| 225 | |
| 226 | maxXz = CoinMax( maxXz, 1e-99 ); |
| 227 | minXz = CoinMax( minXz, 1e-99 ); |
| 228 | *center = maxXz / minXz; |
| 229 | |
| 230 | double normL = 0.0; |
| 231 | double normU = 0.0; |
| 232 | for (int k = 0; k < nlow; k++) |
| 233 | if (cL_elts[low[k]] > normL) normL = cL_elts[low[k]]; |
| 234 | for (int k = 0; k < nupp; k++) |
| 235 | if (cU_elts[upp[k]] > normU) normU = cU_elts[upp[k]]; |
| 236 | *Cinf = CoinMax( normL, normU); |
| 237 | *Cinf0 = maxXz; |
| 238 | } |
| 239 | //----------------------------------------------------------------------- |
| 240 | // End private function pdxxxresid2 |
| 241 | //----------------------------------------------------------------------- |
| 242 | |
| 243 | inline double pdxxxstep( CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) |
| 244 | { |
| 245 | |
| 246 | // Assumes x > 0. |
| 247 | // Finds the maximum step such that x + step*dx >= 0. |
| 248 | |
| 249 | double step = 1e+20; |
| 250 | |
| 251 | int n = x.size(); |
| 252 | double *x_elts = x.getElements(); |
| 253 | double *dx_elts = dx.getElements(); |
| 254 | for (int k = 0; k < n; k++) |
| 255 | if (dx_elts[k] < 0) |
| 256 | if ((x_elts[k] / (-dx_elts[k])) < step) |
| 257 | step = x_elts[k] / (-dx_elts[k]); |
| 258 | return step; |
| 259 | } |
| 260 | //----------------------------------------------------------------------- |
| 261 | // End private function pdxxxstep |
| 262 | //----------------------------------------------------------------------- |
| 263 | |
| 264 | inline double pdxxxstep(int nset, int *set, CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) |
| 265 | { |
| 266 | |
| 267 | // Assumes x > 0. |
| 268 | // Finds the maximum step such that x + step*dx >= 0. |
| 269 | |
| 270 | double step = 1e+20; |
| 271 | |
| 272 | int n = x.size(); |
| 273 | double *x_elts = x.getElements(); |
| 274 | double *dx_elts = dx.getElements(); |
| 275 | for (int k = 0; k < n; k++) |
| 276 | if (dx_elts[k] < 0) |
| 277 | if ((x_elts[k] / (-dx_elts[k])) < step) |
| 278 | step = x_elts[k] / (-dx_elts[k]); |
| 279 | return step; |
| 280 | } |
| 281 | //----------------------------------------------------------------------- |
| 282 | // End private function pdxxxstep |
| 283 | //----------------------------------------------------------------------- |
| 284 | #endif |
| 285 | #endif |
| 286 | |