| 1 | /* $Id: ClpHelperFunctions.hpp 1753 2011-06-19 16:27:26Z stefan $ */ | 
| 2 | // Copyright (C) 2003, International Business Machines | 
| 3 | // Corporation and others.  All Rights Reserved. | 
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). | 
| 5 |  | 
| 6 | #ifndef ClpHelperFunctions_H | 
| 7 | #define ClpHelperFunctions_H | 
| 8 |  | 
| 9 | #include "ClpConfig.h" | 
| 10 | #ifdef HAVE_CMATH | 
| 11 | # include <cmath> | 
| 12 | #else | 
| 13 | # ifdef HAVE_MATH_H | 
| 14 | #  include <math.h> | 
| 15 | # else | 
| 16 | #  error "don't have header file for math" | 
| 17 | # endif | 
| 18 | #endif | 
| 19 |  | 
| 20 | /** | 
| 21 |     Note (JJF) I have added some operations on arrays even though they may | 
| 22 |     duplicate CoinDenseVector.  I think the use of templates was a mistake | 
| 23 |     as I don't think inline generic code can take as much advantage of | 
| 24 |     parallelism or machine architectures or memory hierarchies. | 
| 25 |  | 
| 26 | */ | 
| 27 |  | 
| 28 | double maximumAbsElement(const double * region, int size); | 
| 29 | void setElements(double * region, int size, double value); | 
| 30 | void multiplyAdd(const double * region1, int size, double multiplier1, | 
| 31 |                  double * region2, double multiplier2); | 
| 32 | double innerProduct(const double * region1, int size, const double * region2); | 
| 33 | void getNorms(const double * region, int size, double & norm1, double & norm2); | 
| 34 | #if COIN_LONG_WORK | 
| 35 | // For long double versions | 
| 36 | CoinWorkDouble maximumAbsElement(const CoinWorkDouble * region, int size); | 
| 37 | void setElements(CoinWorkDouble * region, int size, CoinWorkDouble value); | 
| 38 | void multiplyAdd(const CoinWorkDouble * region1, int size, CoinWorkDouble multiplier1, | 
| 39 |                  CoinWorkDouble * region2, CoinWorkDouble multiplier2); | 
| 40 | CoinWorkDouble innerProduct(const CoinWorkDouble * region1, int size, const CoinWorkDouble * region2); | 
| 41 | void getNorms(const CoinWorkDouble * region, int size, CoinWorkDouble & norm1, CoinWorkDouble & norm2); | 
| 42 | inline void | 
| 43 | CoinMemcpyN(const double * from, const int size, CoinWorkDouble * to) | 
| 44 | { | 
| 45 |      for (int i = 0; i < size; i++) | 
| 46 |           to[i] = from[i]; | 
| 47 | } | 
| 48 | inline void | 
| 49 | CoinMemcpyN(const CoinWorkDouble * from, const int size, double * to) | 
| 50 | { | 
| 51 |      for (int i = 0; i < size; i++) | 
| 52 |           to[i] = static_cast<double>(from[i]); | 
| 53 | } | 
| 54 | inline CoinWorkDouble | 
| 55 | CoinMax(const CoinWorkDouble x1, const double x2) | 
| 56 | { | 
| 57 |      return (x1 > x2) ? x1 : x2; | 
| 58 | } | 
| 59 | inline CoinWorkDouble | 
| 60 | CoinMax(double x1, const CoinWorkDouble x2) | 
| 61 | { | 
| 62 |      return (x1 > x2) ? x1 : x2; | 
| 63 | } | 
| 64 | inline CoinWorkDouble | 
| 65 | CoinMin(const CoinWorkDouble x1, const double x2) | 
| 66 | { | 
| 67 |      return (x1 < x2) ? x1 : x2; | 
| 68 | } | 
| 69 | inline CoinWorkDouble | 
| 70 | CoinMin(double x1, const CoinWorkDouble x2) | 
| 71 | { | 
| 72 |      return (x1 < x2) ? x1 : x2; | 
| 73 | } | 
| 74 | inline CoinWorkDouble CoinSqrt(CoinWorkDouble x) | 
| 75 | { | 
| 76 |      return sqrtl(x); | 
| 77 | } | 
| 78 | #else | 
| 79 | inline double CoinSqrt(double x) | 
| 80 | { | 
| 81 |      return sqrt(x); | 
| 82 | } | 
| 83 | #endif | 
| 84 |  | 
| 85 | /// Following only included if ClpPdco defined | 
| 86 | #ifdef ClpPdco_H | 
| 87 |  | 
| 88 |  | 
| 89 | inline double pdxxxmerit(int nlow, int nupp, int *low, int *upp, CoinDenseVector <double> &r1, | 
| 90 |                          CoinDenseVector <double> &r2, CoinDenseVector <double> &rL, | 
| 91 |                          CoinDenseVector <double> &rU, CoinDenseVector <double> &cL, | 
| 92 |                          CoinDenseVector <double> &cU ) | 
| 93 | { | 
| 94 |  | 
| 95 | // Evaluate the merit function for Newton's method. | 
| 96 | // It is the 2-norm of the three sets of residuals. | 
| 97 |      double sum1, sum2; | 
| 98 |      CoinDenseVector <double> f(6); | 
| 99 |      f[0] = r1.twoNorm(); | 
| 100 |      f[1] = r2.twoNorm(); | 
| 101 |      sum1 = sum2 = 0.0; | 
| 102 |      for (int k = 0; k < nlow; k++) { | 
| 103 |           sum1 += rL[low[k]] * rL[low[k]]; | 
| 104 |           sum2 += cL[low[k]] * cL[low[k]]; | 
| 105 |      } | 
| 106 |      f[2] = sqrt(sum1); | 
| 107 |      f[4] = sqrt(sum2); | 
| 108 |      sum1 = sum2 = 0.0; | 
| 109 |      for (int k = 0; k < nupp; k++) { | 
| 110 |           sum1 += rL[upp[k]] * rL[upp[k]]; | 
| 111 |           sum2 += cL[upp[k]] * cL[upp[k]]; | 
| 112 |      } | 
| 113 |      f[3] = sqrt(sum1); | 
| 114 |      f[5] = sqrt(sum2); | 
| 115 |  | 
| 116 |      return f.twoNorm(); | 
| 117 | } | 
| 118 |  | 
| 119 | //----------------------------------------------------------------------- | 
| 120 | // End private function pdxxxmerit | 
| 121 | //----------------------------------------------------------------------- | 
| 122 |  | 
| 123 |  | 
| 124 | //function [r1,r2,rL,rU,Pinf,Dinf] =    ... | 
| 125 | //      pdxxxresid1( Aname,fix,low,upp, ... | 
| 126 | //                   b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ) | 
| 127 |  | 
| 128 | inline void pdxxxresid1(ClpPdco *model, const int nlow, const int nupp, const int nfix, | 
| 129 |                         int *low, int *upp, int *fix, | 
| 130 |                         CoinDenseVector <double> &b, double *bl, double *bu, double d1, double d2, | 
| 131 |                         CoinDenseVector <double> &grad, CoinDenseVector <double> &rL, | 
| 132 |                         CoinDenseVector <double> &rU, CoinDenseVector <double> &x, | 
| 133 |                         CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, | 
| 134 |                         CoinDenseVector <double> &y,  CoinDenseVector <double> &z1, | 
| 135 |                         CoinDenseVector <double> &z2, CoinDenseVector <double> &r1, | 
| 136 |                         CoinDenseVector <double> &r2, double *Pinf, double *Dinf) | 
| 137 | { | 
| 138 |  | 
| 139 | // Form residuals for the primal and dual equations. | 
| 140 | // rL, rU are output, but we input them as full vectors | 
| 141 | // initialized (permanently) with any relevant zeros. | 
| 142 |  | 
| 143 | // Get some element pointers for efficiency | 
| 144 |      double *x_elts  = x.getElements(); | 
| 145 |      double *r2_elts = r2.getElements(); | 
| 146 |  | 
| 147 |      for (int k = 0; k < nfix; k++) | 
| 148 |           x_elts[fix[k]]  = 0; | 
| 149 |  | 
| 150 |      r1.clear(); | 
| 151 |      r2.clear(); | 
| 152 |      model->matVecMult( 1, r1, x ); | 
| 153 |      model->matVecMult( 2, r2, y ); | 
| 154 |      for (int k = 0; k < nfix; k++) | 
| 155 |           r2_elts[fix[k]]  = 0; | 
| 156 |  | 
| 157 |  | 
| 158 |      r1      = b    - r1 - d2 * d2 * y; | 
| 159 |      r2      = grad - r2 - z1;              // grad includes d1*d1*x | 
| 160 |      if (nupp > 0) | 
| 161 |           r2    = r2 + z2; | 
| 162 |  | 
| 163 |      for (int k = 0; k < nlow; k++) | 
| 164 |           rL[low[k]] = bl[low[k]] - x[low[k]] + x1[low[k]]; | 
| 165 |      for (int k = 0; k < nupp; k++) | 
| 166 |           rU[upp[k]] = - bu[upp[k]] + x[upp[k]] + x2[upp[k]]; | 
| 167 |  | 
| 168 |      double normL = 0.0; | 
| 169 |      double normU = 0.0; | 
| 170 |      for (int k = 0; k < nlow; k++) | 
| 171 |           if (rL[low[k]] > normL) normL = rL[low[k]]; | 
| 172 |      for (int k = 0; k < nupp; k++) | 
| 173 |           if (rU[upp[k]] > normU) normU = rU[upp[k]]; | 
| 174 |  | 
| 175 |      *Pinf    = CoinMax(normL, normU); | 
| 176 |      *Pinf    = CoinMax( r1.infNorm() , *Pinf ); | 
| 177 |      *Dinf    = r2.infNorm(); | 
| 178 |      *Pinf    = CoinMax( *Pinf, 1e-99 ); | 
| 179 |      *Dinf    = CoinMax( *Dinf, 1e-99 ); | 
| 180 | } | 
| 181 |  | 
| 182 | //----------------------------------------------------------------------- | 
| 183 | // End private function pdxxxresid1 | 
| 184 | //----------------------------------------------------------------------- | 
| 185 |  | 
| 186 |  | 
| 187 | //function [cL,cU,center,Cinf,Cinf0] = ... | 
| 188 | //      pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ) | 
| 189 |  | 
| 190 | inline void pdxxxresid2(double mu, int nlow, int nupp, int *low, int *upp, | 
| 191 |                         CoinDenseVector <double> &cL, CoinDenseVector <double> &cU, | 
| 192 |                         CoinDenseVector <double> &x1, CoinDenseVector <double> &x2, | 
| 193 |                         CoinDenseVector <double> &z1, CoinDenseVector <double> &z2, | 
| 194 |                         double *center, double *Cinf, double *Cinf0) | 
| 195 | { | 
| 196 |  | 
| 197 | // Form residuals for the complementarity equations. | 
| 198 | // cL, cU are output, but we input them as full vectors | 
| 199 | // initialized (permanently) with any relevant zeros. | 
| 200 | // Cinf  is the complementarity residual for X1 z1 = mu e, etc. | 
| 201 | // Cinf0 is the same for mu=0 (i.e., for the original problem). | 
| 202 |  | 
| 203 |      double maxXz = -1e20; | 
| 204 |      double minXz = 1e20; | 
| 205 |  | 
| 206 |      double *x1_elts = x1.getElements(); | 
| 207 |      double *z1_elts = z1.getElements(); | 
| 208 |      double *cL_elts = cL.getElements(); | 
| 209 |      for (int k = 0; k < nlow; k++) { | 
| 210 |           double x1z1    = x1_elts[low[k]] * z1_elts[low[k]]; | 
| 211 |           cL_elts[low[k]] = mu - x1z1; | 
| 212 |           if (x1z1 > maxXz) maxXz = x1z1; | 
| 213 |           if (x1z1 < minXz) minXz = x1z1; | 
| 214 |      } | 
| 215 |  | 
| 216 |      double *x2_elts = x2.getElements(); | 
| 217 |      double *z2_elts = z2.getElements(); | 
| 218 |      double *cU_elts = cU.getElements(); | 
| 219 |      for (int k = 0; k < nupp; k++) { | 
| 220 |           double x2z2    = x2_elts[upp[k]] * z2_elts[upp[k]]; | 
| 221 |           cU_elts[upp[k]] = mu - x2z2; | 
| 222 |           if (x2z2 > maxXz) maxXz = x2z2; | 
| 223 |           if (x2z2 < minXz) minXz = x2z2; | 
| 224 |      } | 
| 225 |  | 
| 226 |      maxXz   = CoinMax( maxXz, 1e-99 ); | 
| 227 |      minXz   = CoinMax( minXz, 1e-99 ); | 
| 228 |      *center  = maxXz / minXz; | 
| 229 |  | 
| 230 |      double normL = 0.0; | 
| 231 |      double normU = 0.0; | 
| 232 |      for (int k = 0; k < nlow; k++) | 
| 233 |           if (cL_elts[low[k]] > normL) normL = cL_elts[low[k]]; | 
| 234 |      for (int k = 0; k < nupp; k++) | 
| 235 |           if (cU_elts[upp[k]] > normU) normU = cU_elts[upp[k]]; | 
| 236 |      *Cinf    = CoinMax( normL, normU); | 
| 237 |      *Cinf0   = maxXz; | 
| 238 | } | 
| 239 | //----------------------------------------------------------------------- | 
| 240 | // End private function pdxxxresid2 | 
| 241 | //----------------------------------------------------------------------- | 
| 242 |  | 
| 243 | inline double  pdxxxstep( CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) | 
| 244 | { | 
| 245 |  | 
| 246 | // Assumes x > 0. | 
| 247 | // Finds the maximum step such that x + step*dx >= 0. | 
| 248 |  | 
| 249 |      double step     = 1e+20; | 
| 250 |  | 
| 251 |      int n = x.size(); | 
| 252 |      double *x_elts = x.getElements(); | 
| 253 |      double *dx_elts = dx.getElements(); | 
| 254 |      for (int k = 0; k < n; k++) | 
| 255 |           if (dx_elts[k] < 0) | 
| 256 |                if ((x_elts[k] / (-dx_elts[k])) < step) | 
| 257 |                     step = x_elts[k] / (-dx_elts[k]); | 
| 258 |      return step; | 
| 259 | } | 
| 260 | //----------------------------------------------------------------------- | 
| 261 | // End private function pdxxxstep | 
| 262 | //----------------------------------------------------------------------- | 
| 263 |  | 
| 264 | inline double  pdxxxstep(int nset, int *set, CoinDenseVector <double> &x, CoinDenseVector <double> &dx ) | 
| 265 | { | 
| 266 |  | 
| 267 | // Assumes x > 0. | 
| 268 | // Finds the maximum step such that x + step*dx >= 0. | 
| 269 |  | 
| 270 |      double step     = 1e+20; | 
| 271 |  | 
| 272 |      int n = x.size(); | 
| 273 |      double *x_elts = x.getElements(); | 
| 274 |      double *dx_elts = dx.getElements(); | 
| 275 |      for (int k = 0; k < n; k++) | 
| 276 |           if (dx_elts[k] < 0) | 
| 277 |                if ((x_elts[k] / (-dx_elts[k])) < step) | 
| 278 |                     step = x_elts[k] / (-dx_elts[k]); | 
| 279 |      return step; | 
| 280 | } | 
| 281 | //----------------------------------------------------------------------- | 
| 282 | // End private function pdxxxstep | 
| 283 | //----------------------------------------------------------------------- | 
| 284 | #endif | 
| 285 | #endif | 
| 286 |  |