| 1 | /* $Id: ClpPredictorCorrector.hpp 1665 2011-01-04 17:55:54Z lou $ */ |
| 2 | // Copyright (C) 2003, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | /* |
| 6 | Authors |
| 7 | |
| 8 | John Forrest |
| 9 | |
| 10 | */ |
| 11 | #ifndef ClpPredictorCorrector_H |
| 12 | #define ClpPredictorCorrector_H |
| 13 | |
| 14 | #include "ClpInterior.hpp" |
| 15 | |
| 16 | /** This solves LPs using the predictor-corrector method due to Mehrotra. |
| 17 | It also uses multiple centrality corrections as in Gondzio. |
| 18 | |
| 19 | See; |
| 20 | S. Mehrotra, "On the implementation of a primal-dual interior point method", |
| 21 | SIAM Journal on optimization, 2 (1992) |
| 22 | J. Gondzio, "Multiple centraility corrections in a primal-dual method for linear programming", |
| 23 | Computational Optimization and Applications",6 (1996) |
| 24 | |
| 25 | |
| 26 | It is rather basic as Interior point is not my speciality |
| 27 | |
| 28 | It inherits from ClpInterior. It has no data of its own and |
| 29 | is never created - only cast from a ClpInterior object at algorithm time. |
| 30 | |
| 31 | It can also solve QPs |
| 32 | |
| 33 | |
| 34 | |
| 35 | */ |
| 36 | |
| 37 | class ClpPredictorCorrector : public ClpInterior { |
| 38 | |
| 39 | public: |
| 40 | |
| 41 | /**@name Description of algorithm */ |
| 42 | //@{ |
| 43 | /** Primal Dual Predictor Corrector algorithm |
| 44 | |
| 45 | Method |
| 46 | |
| 47 | Big TODO |
| 48 | */ |
| 49 | |
| 50 | int solve(); |
| 51 | //@} |
| 52 | |
| 53 | /**@name Functions used in algorithm */ |
| 54 | //@{ |
| 55 | /// findStepLength. |
| 56 | //phase - 0 predictor |
| 57 | // 1 corrector |
| 58 | // 2 primal dual |
| 59 | CoinWorkDouble findStepLength( int phase); |
| 60 | /// findDirectionVector. |
| 61 | CoinWorkDouble findDirectionVector(const int phase); |
| 62 | /// createSolution. Creates solution from scratch (- code if no memory) |
| 63 | int createSolution(); |
| 64 | /// complementarityGap. Computes gap |
| 65 | //phase 0=as is , 1 = after predictor , 2 after corrector |
| 66 | CoinWorkDouble complementarityGap(int & numberComplementarityPairs, int & numberComplementarityItems, |
| 67 | const int phase); |
| 68 | /// setupForSolve. |
| 69 | //phase 0=affine , 1 = corrector , 2 = primal-dual |
| 70 | void setupForSolve(const int phase); |
| 71 | /** Does solve. region1 is for deltaX (columns+rows), region2 for deltaPi (rows) */ |
| 72 | void solveSystem(CoinWorkDouble * region1, CoinWorkDouble * region2, |
| 73 | const CoinWorkDouble * region1In, const CoinWorkDouble * region2In, |
| 74 | const CoinWorkDouble * saveRegion1, const CoinWorkDouble * saveRegion2, |
| 75 | bool gentleRefine); |
| 76 | /// sees if looks plausible change in complementarity |
| 77 | bool checkGoodMove(const bool doCorrector, CoinWorkDouble & bestNextGap, |
| 78 | bool allowIncreasingGap); |
| 79 | ///: checks for one step size |
| 80 | bool checkGoodMove2(CoinWorkDouble move, CoinWorkDouble & bestNextGap, |
| 81 | bool allowIncreasingGap); |
| 82 | /// updateSolution. Updates solution at end of iteration |
| 83 | //returns number fixed |
| 84 | int updateSolution(CoinWorkDouble nextGap); |
| 85 | /// Save info on products of affine deltaT*deltaW and deltaS*deltaZ |
| 86 | CoinWorkDouble affineProduct(); |
| 87 | ///See exactly what would happen given current deltas |
| 88 | void debugMove(int phase, CoinWorkDouble primalStep, CoinWorkDouble dualStep); |
| 89 | //@} |
| 90 | |
| 91 | }; |
| 92 | #endif |
| 93 | |