1 | /* $Id: ClpSimplex.hpp 1870 2012-07-22 16:13:48Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | /* |
6 | Authors |
7 | |
8 | John Forrest |
9 | |
10 | */ |
11 | #ifndef ClpSimplex_H |
12 | #define ClpSimplex_H |
13 | |
14 | #include <iostream> |
15 | #include <cfloat> |
16 | #include "ClpModel.hpp" |
17 | #include "ClpMatrixBase.hpp" |
18 | #include "ClpSolve.hpp" |
19 | class ClpDualRowPivot; |
20 | class ClpPrimalColumnPivot; |
21 | class ClpFactorization; |
22 | class CoinIndexedVector; |
23 | class ClpNonLinearCost; |
24 | class ClpNodeStuff; |
25 | class CoinStructuredModel; |
26 | class OsiClpSolverInterface; |
27 | class CoinWarmStartBasis; |
28 | class ClpDisasterHandler; |
29 | class ClpConstraint; |
30 | |
31 | /** This solves LPs using the simplex method |
32 | |
33 | It inherits from ClpModel and all its arrays are created at |
34 | algorithm time. Originally I tried to work with model arrays |
35 | but for simplicity of coding I changed to single arrays with |
36 | structural variables then row variables. Some coding is still |
37 | based on old style and needs cleaning up. |
38 | |
39 | For a description of algorithms: |
40 | |
41 | for dual see ClpSimplexDual.hpp and at top of ClpSimplexDual.cpp |
42 | for primal see ClpSimplexPrimal.hpp and at top of ClpSimplexPrimal.cpp |
43 | |
44 | There is an algorithm data member. + for primal variations |
45 | and - for dual variations |
46 | |
47 | */ |
48 | |
49 | class ClpSimplex : public ClpModel { |
50 | friend void ClpSimplexUnitTest(const std::string & mpsDir); |
51 | |
52 | public: |
53 | /** enums for status of various sorts. |
54 | First 4 match CoinWarmStartBasis, |
55 | isFixed means fixed at lower bound and out of basis |
56 | */ |
57 | enum Status { |
58 | isFree = 0x00, |
59 | basic = 0x01, |
60 | atUpperBound = 0x02, |
61 | atLowerBound = 0x03, |
62 | superBasic = 0x04, |
63 | isFixed = 0x05 |
64 | }; |
65 | // For Dual |
66 | enum FakeBound { |
67 | noFake = 0x00, |
68 | lowerFake = 0x01, |
69 | upperFake = 0x02, |
70 | bothFake = 0x03 |
71 | }; |
72 | |
73 | /**@name Constructors and destructor and copy */ |
74 | //@{ |
75 | /// Default constructor |
76 | ClpSimplex (bool emptyMessages = false ); |
77 | |
78 | /** Copy constructor. May scale depending on mode |
79 | -1 leave mode as is |
80 | 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later) |
81 | */ |
82 | ClpSimplex(const ClpSimplex & rhs, int scalingMode = -1); |
83 | /** Copy constructor from model. May scale depending on mode |
84 | -1 leave mode as is |
85 | 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later) |
86 | */ |
87 | ClpSimplex(const ClpModel & rhs, int scalingMode = -1); |
88 | /** Subproblem constructor. A subset of whole model is created from the |
89 | row and column lists given. The new order is given by list order and |
90 | duplicates are allowed. Name and integer information can be dropped |
91 | Can optionally modify rhs to take into account variables NOT in list |
92 | in this case duplicates are not allowed (also see getbackSolution) |
93 | */ |
94 | ClpSimplex (const ClpModel * wholeModel, |
95 | int numberRows, const int * whichRows, |
96 | int numberColumns, const int * whichColumns, |
97 | bool dropNames = true, bool dropIntegers = true, |
98 | bool fixOthers = false); |
99 | /** Subproblem constructor. A subset of whole model is created from the |
100 | row and column lists given. The new order is given by list order and |
101 | duplicates are allowed. Name and integer information can be dropped |
102 | Can optionally modify rhs to take into account variables NOT in list |
103 | in this case duplicates are not allowed (also see getbackSolution) |
104 | */ |
105 | ClpSimplex (const ClpSimplex * wholeModel, |
106 | int numberRows, const int * whichRows, |
107 | int numberColumns, const int * whichColumns, |
108 | bool dropNames = true, bool dropIntegers = true, |
109 | bool fixOthers = false); |
110 | /** This constructor modifies original ClpSimplex and stores |
111 | original stuff in created ClpSimplex. It is only to be used in |
112 | conjunction with originalModel */ |
113 | ClpSimplex (ClpSimplex * wholeModel, |
114 | int numberColumns, const int * whichColumns); |
115 | /** This copies back stuff from miniModel and then deletes miniModel. |
116 | Only to be used with mini constructor */ |
117 | void originalModel(ClpSimplex * miniModel); |
118 | /** Array persistence flag |
119 | If 0 then as now (delete/new) |
120 | 1 then only do arrays if bigger needed |
121 | 2 as 1 but give a bit extra if bigger needed |
122 | */ |
123 | void setPersistenceFlag(int value); |
124 | /// Save a copy of model with certain state - normally without cuts |
125 | void makeBaseModel(); |
126 | /// Switch off base model |
127 | void deleteBaseModel(); |
128 | /// See if we have base model |
129 | inline ClpSimplex * baseModel() const { |
130 | return baseModel_; |
131 | } |
132 | /** Reset to base model (just size and arrays needed) |
133 | If model NULL use internal copy |
134 | */ |
135 | void setToBaseModel(ClpSimplex * model = nullptr); |
136 | /// Assignment operator. This copies the data |
137 | ClpSimplex & operator=(const ClpSimplex & rhs); |
138 | /// Destructor |
139 | ~ClpSimplex ( ); |
140 | // Ones below are just ClpModel with some changes |
141 | /** Loads a problem (the constraints on the |
142 | rows are given by lower and upper bounds). If a pointer is 0 then the |
143 | following values are the default: |
144 | <ul> |
145 | <li> <code>colub</code>: all columns have upper bound infinity |
146 | <li> <code>collb</code>: all columns have lower bound 0 |
147 | <li> <code>rowub</code>: all rows have upper bound infinity |
148 | <li> <code>rowlb</code>: all rows have lower bound -infinity |
149 | <li> <code>obj</code>: all variables have 0 objective coefficient |
150 | </ul> |
151 | */ |
152 | void loadProblem ( const ClpMatrixBase& matrix, |
153 | const double* collb, const double* colub, |
154 | const double* obj, |
155 | const double* rowlb, const double* rowub, |
156 | const double * rowObjective = nullptr); |
157 | void loadProblem ( const CoinPackedMatrix& matrix, |
158 | const double* collb, const double* colub, |
159 | const double* obj, |
160 | const double* rowlb, const double* rowub, |
161 | const double * rowObjective = nullptr); |
162 | |
163 | /** Just like the other loadProblem() method except that the matrix is |
164 | given in a standard column major ordered format (without gaps). */ |
165 | void loadProblem ( const int numcols, const int numrows, |
166 | const CoinBigIndex* start, const int* index, |
167 | const double* value, |
168 | const double* collb, const double* colub, |
169 | const double* obj, |
170 | const double* rowlb, const double* rowub, |
171 | const double * rowObjective = nullptr); |
172 | /// This one is for after presolve to save memory |
173 | void loadProblem ( const int numcols, const int numrows, |
174 | const CoinBigIndex* start, const int* index, |
175 | const double* value, const int * length, |
176 | const double* collb, const double* colub, |
177 | const double* obj, |
178 | const double* rowlb, const double* rowub, |
179 | const double * rowObjective = nullptr); |
180 | /** This loads a model from a coinModel object - returns number of errors. |
181 | If keepSolution true and size is same as current then |
182 | keeps current status and solution |
183 | */ |
184 | int loadProblem ( CoinModel & modelObject, bool keepSolution = false); |
185 | /// Read an mps file from the given filename |
186 | int readMps(const char *filename, |
187 | bool keepNames = false, |
188 | bool ignoreErrors = false); |
189 | /// Read GMPL files from the given filenames |
190 | int readGMPL(const char *filename, const char * dataName, |
191 | bool keepNames = false); |
192 | /// Read file in LP format from file with name filename. |
193 | /// See class CoinLpIO for description of this format. |
194 | int readLp(const char *filename, const double epsilon = 1e-5); |
195 | /** Borrow model. This is so we dont have to copy large amounts |
196 | of data around. It assumes a derived class wants to overwrite |
197 | an empty model with a real one - while it does an algorithm. |
198 | This is same as ClpModel one, but sets scaling on etc. */ |
199 | void borrowModel(ClpModel & otherModel); |
200 | void borrowModel(ClpSimplex & otherModel); |
201 | /// Pass in Event handler (cloned and deleted at end) |
202 | void passInEventHandler(const ClpEventHandler * eventHandler); |
203 | /// Puts solution back into small model |
204 | void getbackSolution(const ClpSimplex & smallModel, const int * whichRow, const int * whichColumn); |
205 | /** Load nonlinear part of problem from AMPL info |
206 | Returns 0 if linear |
207 | 1 if quadratic objective |
208 | 2 if quadratic constraints |
209 | 3 if nonlinear objective |
210 | 4 if nonlinear constraints |
211 | -1 on failure |
212 | */ |
213 | int loadNonLinear(void * info, int & numberConstraints, |
214 | ClpConstraint ** & constraints); |
215 | //@} |
216 | |
217 | /**@name Functions most useful to user */ |
218 | //@{ |
219 | /** General solve algorithm which can do presolve. |
220 | See ClpSolve.hpp for options |
221 | */ |
222 | int initialSolve(ClpSolve & options); |
223 | /// Default initial solve |
224 | int initialSolve(); |
225 | /// Dual initial solve |
226 | int initialDualSolve(); |
227 | /// Primal initial solve |
228 | int initialPrimalSolve(); |
229 | /// Barrier initial solve |
230 | int initialBarrierSolve(); |
231 | /// Barrier initial solve, not to be followed by crossover |
232 | int initialBarrierNoCrossSolve(); |
233 | /** Dual algorithm - see ClpSimplexDual.hpp for method. |
234 | ifValuesPass==2 just does values pass and then stops. |
235 | |
236 | startFinishOptions - bits |
237 | 1 - do not delete work areas and factorization at end |
238 | 2 - use old factorization if same number of rows |
239 | 4 - skip as much initialization of work areas as possible |
240 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
241 | maybe other bits later |
242 | */ |
243 | int dual(int ifValuesPass = 0, int startFinishOptions = 0); |
244 | // If using Debug |
245 | int dualDebug(int ifValuesPass = 0, int startFinishOptions = 0); |
246 | /** Primal algorithm - see ClpSimplexPrimal.hpp for method. |
247 | ifValuesPass==2 just does values pass and then stops. |
248 | |
249 | startFinishOptions - bits |
250 | 1 - do not delete work areas and factorization at end |
251 | 2 - use old factorization if same number of rows |
252 | 4 - skip as much initialization of work areas as possible |
253 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
254 | maybe other bits later |
255 | */ |
256 | int primal(int ifValuesPass = 0, int startFinishOptions = 0); |
257 | /** Solves nonlinear problem using SLP - may be used as crash |
258 | for other algorithms when number of iterations small. |
259 | Also exits if all problematical variables are changing |
260 | less than deltaTolerance |
261 | */ |
262 | int nonlinearSLP(int numberPasses, double deltaTolerance); |
263 | /** Solves problem with nonlinear constraints using SLP - may be used as crash |
264 | for other algorithms when number of iterations small. |
265 | Also exits if all problematical variables are changing |
266 | less than deltaTolerance |
267 | */ |
268 | int nonlinearSLP(int numberConstraints, ClpConstraint ** constraints, |
269 | int numberPasses, double deltaTolerance); |
270 | /** Solves using barrier (assumes you have good cholesky factor code). |
271 | Does crossover to simplex if asked*/ |
272 | int barrier(bool crossover = true); |
273 | /** Solves non-linear using reduced gradient. Phase = 0 get feasible, |
274 | =1 use solution */ |
275 | int reducedGradient(int phase = 0); |
276 | /// Solve using structure of model and maybe in parallel |
277 | int solve(CoinStructuredModel * model); |
278 | /** This loads a model from a CoinStructuredModel object - returns number of errors. |
279 | If originalOrder then keep to order stored in blocks, |
280 | otherwise first column/rows correspond to first block - etc. |
281 | If keepSolution true and size is same as current then |
282 | keeps current status and solution |
283 | */ |
284 | int loadProblem ( CoinStructuredModel & modelObject, |
285 | bool originalOrder = true, bool keepSolution = false); |
286 | /** |
287 | When scaling is on it is possible that the scaled problem |
288 | is feasible but the unscaled is not. Clp returns a secondary |
289 | status code to that effect. This option allows for a cleanup. |
290 | If you use it I would suggest 1. |
291 | This only affects actions when scaled optimal |
292 | 0 - no action |
293 | 1 - clean up using dual if primal infeasibility |
294 | 2 - clean up using dual if dual infeasibility |
295 | 3 - clean up using dual if primal or dual infeasibility |
296 | 11,12,13 - as 1,2,3 but use primal |
297 | |
298 | return code as dual/primal |
299 | */ |
300 | int cleanup(int cleanupScaling); |
301 | /** Dual ranging. |
302 | This computes increase/decrease in cost for each given variable and corresponding |
303 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
304 | and numberColumns.. for artificials/slacks. |
305 | For non-basic variables the information is trivial to compute and the change in cost is just minus the |
306 | reduced cost and the sequence number will be that of the non-basic variables. |
307 | For basic variables a ratio test is between the reduced costs for non-basic variables |
308 | and the row of the tableau corresponding to the basic variable. |
309 | The increase/decrease value is always >= 0.0 |
310 | |
311 | Up to user to provide correct length arrays where each array is of length numberCheck. |
312 | which contains list of variables for which information is desired. All other |
313 | arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays |
314 | will be information for variable 7. |
315 | |
316 | If valueIncrease/Decrease not NULL (both must be NULL or both non NULL) then these are filled with |
317 | the value of variable if such a change in cost were made (the existing bounds are ignored) |
318 | |
319 | Returns non-zero if infeasible unbounded etc |
320 | */ |
321 | int dualRanging(int numberCheck, const int * which, |
322 | double * costIncrease, int * sequenceIncrease, |
323 | double * costDecrease, int * sequenceDecrease, |
324 | double * valueIncrease = nullptr, double * valueDecrease = nullptr); |
325 | /** Primal ranging. |
326 | This computes increase/decrease in value for each given variable and corresponding |
327 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
328 | and numberColumns.. for artificials/slacks. |
329 | This should only be used for non-basic variabls as otherwise information is pretty useless |
330 | For basic variables the sequence number will be that of the basic variables. |
331 | |
332 | Up to user to provide correct length arrays where each array is of length numberCheck. |
333 | which contains list of variables for which information is desired. All other |
334 | arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays |
335 | will be information for variable 7. |
336 | |
337 | Returns non-zero if infeasible unbounded etc |
338 | */ |
339 | int primalRanging(int numberCheck, const int * which, |
340 | double * valueIncrease, int * sequenceIncrease, |
341 | double * valueDecrease, int * sequenceDecrease); |
342 | /** Write the basis in MPS format to the specified file. |
343 | If writeValues true writes values of structurals |
344 | (and adds VALUES to end of NAME card) |
345 | |
346 | Row and column names may be null. |
347 | formatType is |
348 | <ul> |
349 | <li> 0 - normal |
350 | <li> 1 - extra accuracy |
351 | <li> 2 - IEEE hex (later) |
352 | </ul> |
353 | |
354 | Returns non-zero on I/O error |
355 | */ |
356 | int writeBasis(const char *filename, |
357 | bool writeValues = false, |
358 | int formatType = 0) const; |
359 | /** Read a basis from the given filename, |
360 | returns -1 on file error, 0 if no values, 1 if values */ |
361 | int readBasis(const char *filename); |
362 | /// Returns a basis (to be deleted by user) |
363 | CoinWarmStartBasis * getBasis() const; |
364 | /// Passes in factorization |
365 | void setFactorization( ClpFactorization & factorization); |
366 | // Swaps factorization |
367 | ClpFactorization * swapFactorization( ClpFactorization * factorization); |
368 | /// Copies in factorization to existing one |
369 | void copyFactorization( ClpFactorization & factorization); |
370 | /** Tightens primal bounds to make dual faster. Unless |
371 | fixed or doTight>10, bounds are slightly looser than they could be. |
372 | This is to make dual go faster and is probably not needed |
373 | with a presolve. Returns non-zero if problem infeasible. |
374 | |
375 | Fudge for branch and bound - put bounds on columns of factor * |
376 | largest value (at continuous) - should improve stability |
377 | in branch and bound on infeasible branches (0.0 is off) |
378 | */ |
379 | int tightenPrimalBounds(double factor = 0.0, int doTight = 0, bool tightIntegers = false); |
380 | /** Crash - at present just aimed at dual, returns |
381 | -2 if dual preferred and crash basis created |
382 | -1 if dual preferred and all slack basis preferred |
383 | 0 if basis going in was not all slack |
384 | 1 if primal preferred and all slack basis preferred |
385 | 2 if primal preferred and crash basis created. |
386 | |
387 | if gap between bounds <="gap" variables can be flipped |
388 | ( If pivot -1 then can be made super basic!) |
389 | |
390 | If "pivot" is |
391 | -1 No pivoting - always primal |
392 | 0 No pivoting (so will just be choice of algorithm) |
393 | 1 Simple pivoting e.g. gub |
394 | 2 Mini iterations |
395 | */ |
396 | int crash(double gap, int pivot); |
397 | /// Sets row pivot choice algorithm in dual |
398 | void setDualRowPivotAlgorithm(ClpDualRowPivot & choice); |
399 | /// Sets column pivot choice algorithm in primal |
400 | void setPrimalColumnPivotAlgorithm(ClpPrimalColumnPivot & choice); |
401 | /** For strong branching. On input lower and upper are new bounds |
402 | while on output they are change in objective function values |
403 | (>1.0e50 infeasible). |
404 | Return code is 0 if nothing interesting, -1 if infeasible both |
405 | ways and +1 if infeasible one way (check values to see which one(s)) |
406 | Solutions are filled in as well - even down, odd up - also |
407 | status and number of iterations |
408 | */ |
409 | int strongBranching(int numberVariables, const int * variables, |
410 | double * newLower, double * newUpper, |
411 | double ** outputSolution, |
412 | int * outputStatus, int * outputIterations, |
413 | bool stopOnFirstInfeasible = true, |
414 | bool alwaysFinish = false, |
415 | int startFinishOptions = 0); |
416 | /// Fathom - 1 if solution |
417 | int fathom(void * stuff); |
418 | /** Do up to N deep - returns |
419 | -1 - no solution nNodes_ valid nodes |
420 | >= if solution and that node gives solution |
421 | ClpNode array is 2**N long. Values for N and |
422 | array are in stuff (nNodes_ also in stuff) */ |
423 | int fathomMany(void * stuff); |
424 | /// Double checks OK |
425 | double doubleCheck(); |
426 | /// Starts Fast dual2 |
427 | int startFastDual2(ClpNodeStuff * stuff); |
428 | /// Like Fast dual |
429 | int fastDual2(ClpNodeStuff * stuff); |
430 | /// Stops Fast dual2 |
431 | void stopFastDual2(ClpNodeStuff * stuff); |
432 | /** Deals with crunch aspects |
433 | mode 0 - in |
434 | 1 - out with solution |
435 | 2 - out without solution |
436 | returns small model or NULL |
437 | */ |
438 | ClpSimplex * fastCrunch(ClpNodeStuff * stuff, int mode); |
439 | //@} |
440 | |
441 | /**@name Needed for functionality of OsiSimplexInterface */ |
442 | //@{ |
443 | /** Pivot in a variable and out a variable. Returns 0 if okay, |
444 | 1 if inaccuracy forced re-factorization, -1 if would be singular. |
445 | Also updates primal/dual infeasibilities. |
446 | Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out. |
447 | */ |
448 | int pivot(); |
449 | |
450 | /** Pivot in a variable and choose an outgoing one. Assumes primal |
451 | feasible - will not go through a bound. Returns step length in theta |
452 | Returns ray in ray_ (or NULL if no pivot) |
453 | Return codes as before but -1 means no acceptable pivot |
454 | */ |
455 | int primalPivotResult(); |
456 | |
457 | /** Pivot out a variable and choose an incoing one. Assumes dual |
458 | feasible - will not go through a reduced cost. |
459 | Returns step length in theta |
460 | Returns ray in ray_ (or NULL if no pivot) |
461 | Return codes as before but -1 means no acceptable pivot |
462 | */ |
463 | int dualPivotResult(); |
464 | |
465 | /** Common bits of coding for dual and primal. Return 0 if okay, |
466 | 1 if bad matrix, 2 if very bad factorization |
467 | |
468 | startFinishOptions - bits |
469 | 1 - do not delete work areas and factorization at end |
470 | 2 - use old factorization if same number of rows |
471 | 4 - skip as much initialization of work areas as possible |
472 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
473 | maybe other bits later |
474 | |
475 | */ |
476 | int startup(int ifValuesPass, int startFinishOptions = 0); |
477 | void finish(int startFinishOptions = 0); |
478 | |
479 | /** Factorizes and returns true if optimal. Used by user */ |
480 | bool statusOfProblem(bool initial = false); |
481 | /// If user left factorization frequency then compute |
482 | void defaultFactorizationFrequency(); |
483 | //@} |
484 | |
485 | /**@name most useful gets and sets */ |
486 | //@{ |
487 | /// If problem is primal feasible |
488 | inline bool primalFeasible() const { |
489 | return (numberPrimalInfeasibilities_ == 0); |
490 | } |
491 | /// If problem is dual feasible |
492 | inline bool dualFeasible() const { |
493 | return (numberDualInfeasibilities_ == 0); |
494 | } |
495 | /// factorization |
496 | inline ClpFactorization * factorization() const { |
497 | return factorization_; |
498 | } |
499 | /// Sparsity on or off |
500 | bool sparseFactorization() const; |
501 | void setSparseFactorization(bool value); |
502 | /// Factorization frequency |
503 | int factorizationFrequency() const; |
504 | void setFactorizationFrequency(int value); |
505 | /// Dual bound |
506 | inline double dualBound() const { |
507 | return dualBound_; |
508 | } |
509 | void setDualBound(double value); |
510 | /// Infeasibility cost |
511 | inline double infeasibilityCost() const { |
512 | return infeasibilityCost_; |
513 | } |
514 | void setInfeasibilityCost(double value); |
515 | /** Amount of print out: |
516 | 0 - none |
517 | 1 - just final |
518 | 2 - just factorizations |
519 | 3 - as 2 plus a bit more |
520 | 4 - verbose |
521 | above that 8,16,32 etc just for selective debug |
522 | */ |
523 | /** Perturbation: |
524 | 50 - switch on perturbation |
525 | 100 - auto perturb if takes too long (1.0e-6 largest nonzero) |
526 | 101 - we are perturbed |
527 | 102 - don't try perturbing again |
528 | default is 100 |
529 | others are for playing |
530 | */ |
531 | inline int perturbation() const { |
532 | return perturbation_; |
533 | } |
534 | void setPerturbation(int value); |
535 | /// Current (or last) algorithm |
536 | inline int algorithm() const { |
537 | return algorithm_; |
538 | } |
539 | /// Set algorithm |
540 | inline void setAlgorithm(int value) { |
541 | algorithm_ = value; |
542 | } |
543 | /// Return true if the objective limit test can be relied upon |
544 | bool isObjectiveLimitTestValid() const ; |
545 | /// Sum of dual infeasibilities |
546 | inline double sumDualInfeasibilities() const { |
547 | return sumDualInfeasibilities_; |
548 | } |
549 | inline void setSumDualInfeasibilities(double value) { |
550 | sumDualInfeasibilities_ = value; |
551 | } |
552 | /// Sum of relaxed dual infeasibilities |
553 | inline double sumOfRelaxedDualInfeasibilities() const { |
554 | return sumOfRelaxedDualInfeasibilities_; |
555 | } |
556 | inline void setSumOfRelaxedDualInfeasibilities(double value) { |
557 | sumOfRelaxedDualInfeasibilities_ = value; |
558 | } |
559 | /// Number of dual infeasibilities |
560 | inline int numberDualInfeasibilities() const { |
561 | return numberDualInfeasibilities_; |
562 | } |
563 | inline void setNumberDualInfeasibilities(int value) { |
564 | numberDualInfeasibilities_ = value; |
565 | } |
566 | /// Number of dual infeasibilities (without free) |
567 | inline int numberDualInfeasibilitiesWithoutFree() const { |
568 | return numberDualInfeasibilitiesWithoutFree_; |
569 | } |
570 | /// Sum of primal infeasibilities |
571 | inline double sumPrimalInfeasibilities() const { |
572 | return sumPrimalInfeasibilities_; |
573 | } |
574 | inline void setSumPrimalInfeasibilities(double value) { |
575 | sumPrimalInfeasibilities_ = value; |
576 | } |
577 | /// Sum of relaxed primal infeasibilities |
578 | inline double sumOfRelaxedPrimalInfeasibilities() const { |
579 | return sumOfRelaxedPrimalInfeasibilities_; |
580 | } |
581 | inline void setSumOfRelaxedPrimalInfeasibilities(double value) { |
582 | sumOfRelaxedPrimalInfeasibilities_ = value; |
583 | } |
584 | /// Number of primal infeasibilities |
585 | inline int numberPrimalInfeasibilities() const { |
586 | return numberPrimalInfeasibilities_; |
587 | } |
588 | inline void setNumberPrimalInfeasibilities(int value) { |
589 | numberPrimalInfeasibilities_ = value; |
590 | } |
591 | /** Save model to file, returns 0 if success. This is designed for |
592 | use outside algorithms so does not save iterating arrays etc. |
593 | It does not save any messaging information. |
594 | Does not save scaling values. |
595 | It does not know about all types of virtual functions. |
596 | */ |
597 | int saveModel(const char * fileName); |
598 | /** Restore model from file, returns 0 if success, |
599 | deletes current model */ |
600 | int restoreModel(const char * fileName); |
601 | |
602 | /** Just check solution (for external use) - sets sum of |
603 | infeasibilities etc. |
604 | If setToBounds 0 then primal column values not changed |
605 | and used to compute primal row activity values. If 1 or 2 |
606 | then status used - so all nonbasic variables set to |
607 | indicated bound and if any values changed (or ==2) basic values re-computed. |
608 | */ |
609 | void checkSolution(int setToBounds = 0); |
610 | /** Just check solution (for internal use) - sets sum of |
611 | infeasibilities etc. */ |
612 | void checkSolutionInternal(); |
613 | /// Check unscaled primal solution but allow for rounding error |
614 | void checkUnscaledSolution(); |
615 | /// Useful row length arrays (0,1,2,3,4,5) |
616 | inline CoinIndexedVector * rowArray(int index) const { |
617 | return rowArray_[index]; |
618 | } |
619 | /// Useful column length arrays (0,1,2,3,4,5) |
620 | inline CoinIndexedVector * columnArray(int index) const { |
621 | return columnArray_[index]; |
622 | } |
623 | //@} |
624 | |
625 | /******************** End of most useful part **************/ |
626 | /**@name Functions less likely to be useful to casual user */ |
627 | //@{ |
628 | /** Given an existing factorization computes and checks |
629 | primal and dual solutions. Uses input arrays for variables at |
630 | bounds. Returns feasibility states */ |
631 | int getSolution ( const double * rowActivities, |
632 | const double * columnActivities); |
633 | /** Given an existing factorization computes and checks |
634 | primal and dual solutions. Uses current problem arrays for |
635 | bounds. Returns feasibility states */ |
636 | int getSolution (); |
637 | /** Constructs a non linear cost from list of non-linearities (columns only) |
638 | First lower of each column is taken as real lower |
639 | Last lower is taken as real upper and cost ignored |
640 | |
641 | Returns nonzero if bad data e.g. lowers not monotonic |
642 | */ |
643 | int createPiecewiseLinearCosts(const int * starts, |
644 | const double * lower, const double * gradient); |
645 | /// dual row pivot choice |
646 | inline ClpDualRowPivot * dualRowPivot() const { |
647 | return dualRowPivot_; |
648 | } |
649 | /// primal column pivot choice |
650 | inline ClpPrimalColumnPivot * primalColumnPivot() const { |
651 | return primalColumnPivot_; |
652 | } |
653 | /// Returns true if model looks OK |
654 | inline bool goodAccuracy() const { |
655 | return (largestPrimalError_ < 1.0e-7 && largestDualError_ < 1.0e-7); |
656 | } |
657 | /** Return model - updates any scalars */ |
658 | void returnModel(ClpSimplex & otherModel); |
659 | /** Factorizes using current basis. |
660 | solveType - 1 iterating, 0 initial, -1 external |
661 | If 10 added then in primal values pass |
662 | Return codes are as from ClpFactorization unless initial factorization |
663 | when total number of singularities is returned. |
664 | Special case is numberRows_+1 -> all slack basis. |
665 | */ |
666 | int internalFactorize(int solveType); |
667 | /// Save data |
668 | ClpDataSave saveData() ; |
669 | /// Restore data |
670 | void restoreData(ClpDataSave saved); |
671 | /// Clean up status |
672 | void cleanStatus(); |
673 | /// Factorizes using current basis. For external use |
674 | int factorize(); |
675 | /** Computes duals from scratch. If givenDjs then |
676 | allows for nonzero basic djs */ |
677 | void computeDuals(double * givenDjs); |
678 | /// Computes primals from scratch |
679 | void computePrimals ( const double * rowActivities, |
680 | const double * columnActivities); |
681 | /** Adds multiple of a column into an array */ |
682 | void add(double * array, |
683 | int column, double multiplier) const; |
684 | /** |
685 | Unpacks one column of the matrix into indexed array |
686 | Uses sequenceIn_ |
687 | Also applies scaling if needed |
688 | */ |
689 | void unpack(CoinIndexedVector * rowArray) const ; |
690 | /** |
691 | Unpacks one column of the matrix into indexed array |
692 | Slack if sequence>= numberColumns |
693 | Also applies scaling if needed |
694 | */ |
695 | void unpack(CoinIndexedVector * rowArray, int sequence) const; |
696 | /** |
697 | Unpacks one column of the matrix into indexed array |
698 | ** as packed vector |
699 | Uses sequenceIn_ |
700 | Also applies scaling if needed |
701 | */ |
702 | void unpackPacked(CoinIndexedVector * rowArray) ; |
703 | /** |
704 | Unpacks one column of the matrix into indexed array |
705 | ** as packed vector |
706 | Slack if sequence>= numberColumns |
707 | Also applies scaling if needed |
708 | */ |
709 | void unpackPacked(CoinIndexedVector * rowArray, int sequence); |
710 | protected: |
711 | /** |
712 | This does basis housekeeping and does values for in/out variables. |
713 | Can also decide to re-factorize |
714 | */ |
715 | int housekeeping(double objectiveChange); |
716 | /** This sets largest infeasibility and most infeasible and sum |
717 | and number of infeasibilities (Primal) */ |
718 | void checkPrimalSolution(const double * rowActivities = nullptr, |
719 | const double * columnActivies = nullptr); |
720 | /** This sets largest infeasibility and most infeasible and sum |
721 | and number of infeasibilities (Dual) */ |
722 | void checkDualSolution(); |
723 | /** This sets sum and number of infeasibilities (Dual and Primal) */ |
724 | void checkBothSolutions(); |
725 | /** If input negative scales objective so maximum <= -value |
726 | and returns scale factor used. If positive unscales and also |
727 | redoes dual stuff |
728 | */ |
729 | double scaleObjective(double value); |
730 | /// Solve using Dantzig-Wolfe decomposition and maybe in parallel |
731 | int solveDW(CoinStructuredModel * model); |
732 | /// Solve using Benders decomposition and maybe in parallel |
733 | int solveBenders(CoinStructuredModel * model); |
734 | public: |
735 | /** For advanced use. When doing iterative solves things can get |
736 | nasty so on values pass if incoming solution has largest |
737 | infeasibility < incomingInfeasibility throw out variables |
738 | from basis until largest infeasibility < allowedInfeasibility |
739 | or incoming largest infeasibility. |
740 | If allowedInfeasibility>= incomingInfeasibility this is |
741 | always possible altough you may end up with an all slack basis. |
742 | |
743 | Defaults are 1.0,10.0 |
744 | */ |
745 | void setValuesPassAction(double incomingInfeasibility, |
746 | double allowedInfeasibility); |
747 | //@} |
748 | /**@name most useful gets and sets */ |
749 | //@{ |
750 | public: |
751 | /// Initial value for alpha accuracy calculation (-1.0 off) |
752 | inline double alphaAccuracy() const { |
753 | return alphaAccuracy_; |
754 | } |
755 | inline void setAlphaAccuracy(double value) { |
756 | alphaAccuracy_ = value; |
757 | } |
758 | public: |
759 | /// Objective value |
760 | //inline double objectiveValue() const { |
761 | //return (objectiveValue_-bestPossibleImprovement_)*optimizationDirection_ - dblParam_[ClpObjOffset]; |
762 | //} |
763 | /// Set disaster handler |
764 | inline void setDisasterHandler(ClpDisasterHandler * handler) { |
765 | disasterArea_ = handler; |
766 | } |
767 | /// Get disaster handler |
768 | inline ClpDisasterHandler * disasterHandler() const { |
769 | return disasterArea_; |
770 | } |
771 | /// Large bound value (for complementarity etc) |
772 | inline double largeValue() const { |
773 | return largeValue_; |
774 | } |
775 | void setLargeValue( double value) ; |
776 | /// Largest error on Ax-b |
777 | inline double largestPrimalError() const { |
778 | return largestPrimalError_; |
779 | } |
780 | /// Largest error on basic duals |
781 | inline double largestDualError() const { |
782 | return largestDualError_; |
783 | } |
784 | /// Largest error on Ax-b |
785 | inline void setLargestPrimalError(double value) { |
786 | largestPrimalError_ = value; |
787 | } |
788 | /// Largest error on basic duals |
789 | inline void setLargestDualError(double value) { |
790 | largestDualError_ = value; |
791 | } |
792 | /// Get zero tolerance |
793 | inline double zeroTolerance() const { |
794 | return zeroTolerance_;/*factorization_->zeroTolerance();*/ |
795 | } |
796 | /// Set zero tolerance |
797 | inline void setZeroTolerance( double value) { |
798 | zeroTolerance_ = value; |
799 | } |
800 | /// Basic variables pivoting on which rows |
801 | inline int * pivotVariable() const { |
802 | return pivotVariable_; |
803 | } |
804 | /// If automatic scaling on |
805 | inline bool automaticScaling() const { |
806 | return automaticScale_ != 0; |
807 | } |
808 | inline void setAutomaticScaling(bool onOff) { |
809 | automaticScale_ = onOff ? 1 : 0; |
810 | } |
811 | /// Current dual tolerance |
812 | inline double currentDualTolerance() const { |
813 | return dualTolerance_; |
814 | } |
815 | inline void setCurrentDualTolerance(double value) { |
816 | dualTolerance_ = value; |
817 | } |
818 | /// Current primal tolerance |
819 | inline double currentPrimalTolerance() const { |
820 | return primalTolerance_; |
821 | } |
822 | inline void setCurrentPrimalTolerance(double value) { |
823 | primalTolerance_ = value; |
824 | } |
825 | /// How many iterative refinements to do |
826 | inline int numberRefinements() const { |
827 | return numberRefinements_; |
828 | } |
829 | void setNumberRefinements( int value) ; |
830 | /// Alpha (pivot element) for use by classes e.g. steepestedge |
831 | inline double alpha() const { |
832 | return alpha_; |
833 | } |
834 | inline void setAlpha(double value) { |
835 | alpha_ = value; |
836 | } |
837 | /// Reduced cost of last incoming for use by classes e.g. steepestedge |
838 | inline double dualIn() const { |
839 | return dualIn_; |
840 | } |
841 | /// Pivot Row for use by classes e.g. steepestedge |
842 | inline int pivotRow() const { |
843 | return pivotRow_; |
844 | } |
845 | inline void setPivotRow(int value) { |
846 | pivotRow_ = value; |
847 | } |
848 | /// value of incoming variable (in Dual) |
849 | double valueIncomingDual() const; |
850 | //@} |
851 | |
852 | protected: |
853 | /**@name protected methods */ |
854 | //@{ |
855 | /** May change basis and then returns number changed. |
856 | Computation of solutions may be overriden by given pi and solution |
857 | */ |
858 | int gutsOfSolution ( double * givenDuals, |
859 | const double * givenPrimals, |
860 | bool valuesPass = false); |
861 | /// Does most of deletion (0 = all, 1 = most, 2 most + factorization) |
862 | void gutsOfDelete(int type); |
863 | /// Does most of copying |
864 | void gutsOfCopy(const ClpSimplex & rhs); |
865 | /** puts in format I like (rowLower,rowUpper) also see StandardMatrix |
866 | 1 bit does rows (now and columns), (2 bit does column bounds), 4 bit does objective(s). |
867 | 8 bit does solution scaling in |
868 | 16 bit does rowArray and columnArray indexed vectors |
869 | and makes row copy if wanted, also sets columnStart_ etc |
870 | Also creates scaling arrays if needed. It does scaling if needed. |
871 | 16 also moves solutions etc in to work arrays |
872 | On 16 returns false if problem "bad" i.e. matrix or bounds bad |
873 | If startFinishOptions is -1 then called by user in getSolution |
874 | so do arrays but keep pivotVariable_ |
875 | */ |
876 | bool createRim(int what, bool makeRowCopy = false, int startFinishOptions = 0); |
877 | /// Does rows and columns |
878 | void createRim1(bool initial); |
879 | /// Does objective |
880 | void createRim4(bool initial); |
881 | /// Does rows and columns and objective |
882 | void createRim5(bool initial); |
883 | /** releases above arrays and does solution scaling out. May also |
884 | get rid of factorization data - |
885 | 0 get rid of nothing, 1 get rid of arrays, 2 also factorization |
886 | */ |
887 | void deleteRim(int getRidOfFactorizationData = 2); |
888 | /// Sanity check on input rim data (after scaling) - returns true if okay |
889 | bool sanityCheck(); |
890 | //@} |
891 | public: |
892 | /**@name public methods */ |
893 | //@{ |
894 | /** Return row or column sections - not as much needed as it |
895 | once was. These just map into single arrays */ |
896 | inline double * solutionRegion(int section) const { |
897 | if (!section) return rowActivityWork_; |
898 | else return columnActivityWork_; |
899 | } |
900 | inline double * djRegion(int section) const { |
901 | if (!section) return rowReducedCost_; |
902 | else return reducedCostWork_; |
903 | } |
904 | inline double * lowerRegion(int section) const { |
905 | if (!section) return rowLowerWork_; |
906 | else return columnLowerWork_; |
907 | } |
908 | inline double * upperRegion(int section) const { |
909 | if (!section) return rowUpperWork_; |
910 | else return columnUpperWork_; |
911 | } |
912 | inline double * costRegion(int section) const { |
913 | if (!section) return rowObjectiveWork_; |
914 | else return objectiveWork_; |
915 | } |
916 | /// Return region as single array |
917 | inline double * solutionRegion() const { |
918 | return solution_; |
919 | } |
920 | inline double * djRegion() const { |
921 | return dj_; |
922 | } |
923 | inline double * lowerRegion() const { |
924 | return lower_; |
925 | } |
926 | inline double * upperRegion() const { |
927 | return upper_; |
928 | } |
929 | inline double * costRegion() const { |
930 | return cost_; |
931 | } |
932 | inline Status getStatus(int sequence) const { |
933 | return static_cast<Status> (status_[sequence] & 7); |
934 | } |
935 | inline void setStatus(int sequence, Status newstatus) { |
936 | unsigned char & st_byte = status_[sequence]; |
937 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
938 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
939 | } |
940 | /// Start or reset using maximumRows_ and Columns_ - true if change |
941 | bool startPermanentArrays(); |
942 | /** Normally the first factorization does sparse coding because |
943 | the factorization could be singular. This allows initial dense |
944 | factorization when it is known to be safe |
945 | */ |
946 | void setInitialDenseFactorization(bool onOff); |
947 | bool initialDenseFactorization() const; |
948 | /** Return sequence In or Out */ |
949 | inline int sequenceIn() const { |
950 | return sequenceIn_; |
951 | } |
952 | inline int sequenceOut() const { |
953 | return sequenceOut_; |
954 | } |
955 | /** Set sequenceIn or Out */ |
956 | inline void setSequenceIn(int sequence) { |
957 | sequenceIn_ = sequence; |
958 | } |
959 | inline void setSequenceOut(int sequence) { |
960 | sequenceOut_ = sequence; |
961 | } |
962 | /** Return direction In or Out */ |
963 | inline int directionIn() const { |
964 | return directionIn_; |
965 | } |
966 | inline int directionOut() const { |
967 | return directionOut_; |
968 | } |
969 | /** Set directionIn or Out */ |
970 | inline void setDirectionIn(int direction) { |
971 | directionIn_ = direction; |
972 | } |
973 | inline void setDirectionOut(int direction) { |
974 | directionOut_ = direction; |
975 | } |
976 | /// Value of Out variable |
977 | inline double valueOut() const { |
978 | return valueOut_; |
979 | } |
980 | /// Set value of out variable |
981 | inline void setValueOut(double value) { |
982 | valueOut_ = value; |
983 | } |
984 | /// Set lower of out variable |
985 | inline void setLowerOut(double value) { |
986 | lowerOut_ = value; |
987 | } |
988 | /// Set upper of out variable |
989 | inline void setUpperOut(double value) { |
990 | upperOut_ = value; |
991 | } |
992 | /// Set theta of out variable |
993 | inline void setTheta(double value) { |
994 | theta_ = value; |
995 | } |
996 | /// Returns 1 if sequence indicates column |
997 | inline int isColumn(int sequence) const { |
998 | return sequence < numberColumns_ ? 1 : 0; |
999 | } |
1000 | /// Returns sequence number within section |
1001 | inline int sequenceWithin(int sequence) const { |
1002 | return sequence < numberColumns_ ? sequence : sequence - numberColumns_; |
1003 | } |
1004 | /// Return row or column values |
1005 | inline double solution(int sequence) { |
1006 | return solution_[sequence]; |
1007 | } |
1008 | /// Return address of row or column values |
1009 | inline double & solutionAddress(int sequence) { |
1010 | return solution_[sequence]; |
1011 | } |
1012 | inline double reducedCost(int sequence) { |
1013 | return dj_[sequence]; |
1014 | } |
1015 | inline double & reducedCostAddress(int sequence) { |
1016 | return dj_[sequence]; |
1017 | } |
1018 | inline double lower(int sequence) { |
1019 | return lower_[sequence]; |
1020 | } |
1021 | /// Return address of row or column lower bound |
1022 | inline double & lowerAddress(int sequence) { |
1023 | return lower_[sequence]; |
1024 | } |
1025 | inline double upper(int sequence) { |
1026 | return upper_[sequence]; |
1027 | } |
1028 | /// Return address of row or column upper bound |
1029 | inline double & upperAddress(int sequence) { |
1030 | return upper_[sequence]; |
1031 | } |
1032 | inline double cost(int sequence) { |
1033 | return cost_[sequence]; |
1034 | } |
1035 | /// Return address of row or column cost |
1036 | inline double & costAddress(int sequence) { |
1037 | return cost_[sequence]; |
1038 | } |
1039 | /// Return original lower bound |
1040 | inline double originalLower(int iSequence) const { |
1041 | if (iSequence < numberColumns_) return columnLower_[iSequence]; |
1042 | else |
1043 | return rowLower_[iSequence-numberColumns_]; |
1044 | } |
1045 | /// Return original lower bound |
1046 | inline double originalUpper(int iSequence) const { |
1047 | if (iSequence < numberColumns_) return columnUpper_[iSequence]; |
1048 | else |
1049 | return rowUpper_[iSequence-numberColumns_]; |
1050 | } |
1051 | /// Theta (pivot change) |
1052 | inline double theta() const { |
1053 | return theta_; |
1054 | } |
1055 | /** Best possible improvement using djs (primal) or |
1056 | obj change by flipping bounds to make dual feasible (dual) */ |
1057 | inline double bestPossibleImprovement() const { |
1058 | return bestPossibleImprovement_; |
1059 | } |
1060 | /// Return pointer to details of costs |
1061 | inline ClpNonLinearCost * nonLinearCost() const { |
1062 | return nonLinearCost_; |
1063 | } |
1064 | /** Return more special options |
1065 | 1 bit - if presolve says infeasible in ClpSolve return |
1066 | 2 bit - if presolved problem infeasible return |
1067 | 4 bit - keep arrays like upper_ around |
1068 | 8 bit - if factorization kept can still declare optimal at once |
1069 | 16 bit - if checking replaceColumn accuracy before updating |
1070 | 32 bit - say optimal if primal feasible! |
1071 | 64 bit - give up easily in dual (and say infeasible) |
1072 | 128 bit - no objective, 0-1 and in B&B |
1073 | 256 bit - in primal from dual or vice versa |
1074 | 512 bit - alternative use of solveType_ |
1075 | 1024 bit - don't do row copy of factorization |
1076 | 2048 bit - perturb in complete fathoming |
1077 | 4096 bit - try more for complete fathoming |
1078 | 8192 bit - don't even think of using primal if user asks for dual (and vv) |
1079 | */ |
1080 | inline int moreSpecialOptions() const { |
1081 | return moreSpecialOptions_; |
1082 | } |
1083 | /** Set more special options |
1084 | 1 bit - if presolve says infeasible in ClpSolve return |
1085 | 2 bit - if presolved problem infeasible return |
1086 | 4 bit - keep arrays like upper_ around |
1087 | 8 bit - no free or superBasic variables |
1088 | 16 bit - if checking replaceColumn accuracy before updating |
1089 | 32 bit - say optimal if primal feasible! |
1090 | 64 bit - give up easily in dual (and say infeasible) |
1091 | 128 bit - no objective, 0-1 and in B&B |
1092 | 256 bit - in primal from dual or vice versa |
1093 | 512 bit - alternative use of solveType_ |
1094 | 1024 bit - don't do row copy of factorization |
1095 | 2048 bit - perturb in complete fathoming |
1096 | 4096 bit - try more for complete fathoming |
1097 | 8192 bit - don't even think of using primal if user asks for dual (and vv) |
1098 | */ |
1099 | inline void setMoreSpecialOptions(int value) { |
1100 | moreSpecialOptions_ = value; |
1101 | } |
1102 | //@} |
1103 | /**@name status methods */ |
1104 | //@{ |
1105 | inline void setFakeBound(int sequence, FakeBound fakeBound) { |
1106 | unsigned char & st_byte = status_[sequence]; |
1107 | st_byte = static_cast<unsigned char>(st_byte & ~24); |
1108 | st_byte = static_cast<unsigned char>(st_byte | (fakeBound << 3)); |
1109 | } |
1110 | inline FakeBound getFakeBound(int sequence) const { |
1111 | return static_cast<FakeBound> ((status_[sequence] >> 3) & 3); |
1112 | } |
1113 | inline void setRowStatus(int sequence, Status newstatus) { |
1114 | unsigned char & st_byte = status_[sequence+numberColumns_]; |
1115 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
1116 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
1117 | } |
1118 | inline Status getRowStatus(int sequence) const { |
1119 | return static_cast<Status> (status_[sequence+numberColumns_] & 7); |
1120 | } |
1121 | inline void setColumnStatus(int sequence, Status newstatus) { |
1122 | unsigned char & st_byte = status_[sequence]; |
1123 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
1124 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
1125 | } |
1126 | inline Status getColumnStatus(int sequence) const { |
1127 | return static_cast<Status> (status_[sequence] & 7); |
1128 | } |
1129 | inline void setPivoted( int sequence) { |
1130 | status_[sequence] = static_cast<unsigned char>(status_[sequence] | 32); |
1131 | } |
1132 | inline void clearPivoted( int sequence) { |
1133 | status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~32); |
1134 | } |
1135 | inline bool pivoted(int sequence) const { |
1136 | return (((status_[sequence] >> 5) & 1) != 0); |
1137 | } |
1138 | /// To flag a variable (not inline to allow for column generation) |
1139 | void setFlagged( int sequence); |
1140 | inline void clearFlagged( int sequence) { |
1141 | status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~64); |
1142 | } |
1143 | inline bool flagged(int sequence) const { |
1144 | return ((status_[sequence] & 64) != 0); |
1145 | } |
1146 | /// To say row active in primal pivot row choice |
1147 | inline void setActive( int iRow) { |
1148 | status_[iRow] = static_cast<unsigned char>(status_[iRow] | 128); |
1149 | } |
1150 | inline void clearActive( int iRow) { |
1151 | status_[iRow] = static_cast<unsigned char>(status_[iRow] & ~128); |
1152 | } |
1153 | inline bool active(int iRow) const { |
1154 | return ((status_[iRow] & 128) != 0); |
1155 | } |
1156 | /** Set up status array (can be used by OsiClp). |
1157 | Also can be used to set up all slack basis */ |
1158 | void createStatus() ; |
1159 | /** Sets up all slack basis and resets solution to |
1160 | as it was after initial load or readMps */ |
1161 | void allSlackBasis(bool resetSolution = false); |
1162 | |
1163 | /// So we know when to be cautious |
1164 | inline int lastBadIteration() const { |
1165 | return lastBadIteration_; |
1166 | } |
1167 | /// Progress flag - at present 0 bit says artificials out |
1168 | inline int progressFlag() const { |
1169 | return (progressFlag_ & 3); |
1170 | } |
1171 | /// Force re-factorization early |
1172 | inline void forceFactorization(int value) { |
1173 | forceFactorization_ = value; |
1174 | } |
1175 | /// Raw objective value (so always minimize in primal) |
1176 | inline double rawObjectiveValue() const { |
1177 | return objectiveValue_; |
1178 | } |
1179 | /// Compute objective value from solution and put in objectiveValue_ |
1180 | void computeObjectiveValue(bool useWorkingSolution = false); |
1181 | /// Compute minimization objective value from internal solution without perturbation |
1182 | double computeInternalObjectiveValue(); |
1183 | /** Number of extra rows. These are ones which will be dynamically created |
1184 | each iteration. This is for GUB but may have other uses. |
1185 | */ |
1186 | inline int () const { |
1187 | return numberExtraRows_; |
1188 | } |
1189 | /** Maximum number of basic variables - can be more than number of rows if GUB |
1190 | */ |
1191 | inline int maximumBasic() const { |
1192 | return maximumBasic_; |
1193 | } |
1194 | /// Iteration when we entered dual or primal |
1195 | inline int baseIteration() const { |
1196 | return baseIteration_; |
1197 | } |
1198 | /// Create C++ lines to get to current state |
1199 | void generateCpp( FILE * fp, bool defaultFactor = false); |
1200 | /// Gets clean and emptyish factorization |
1201 | ClpFactorization * getEmptyFactorization(); |
1202 | /// May delete or may make clean and emptyish factorization |
1203 | void setEmptyFactorization(); |
1204 | /// Move status and solution across |
1205 | void moveInfo(const ClpSimplex & rhs, bool justStatus = false); |
1206 | //@} |
1207 | |
1208 | ///@name Basis handling |
1209 | // These are only to be used using startFinishOptions (ClpSimplexDual, ClpSimplexPrimal) |
1210 | // *** At present only without scaling |
1211 | // *** Slacks havve -1.0 element (so == row activity) - take care |
1212 | ///Get a row of the tableau (slack part in slack if not NULL) |
1213 | void getBInvARow(int row, double* z, double * slack = nullptr); |
1214 | |
1215 | ///Get a row of the basis inverse |
1216 | void getBInvRow(int row, double* z); |
1217 | |
1218 | ///Get a column of the tableau |
1219 | void getBInvACol(int col, double* vec); |
1220 | |
1221 | ///Get a column of the basis inverse |
1222 | void getBInvCol(int col, double* vec); |
1223 | |
1224 | /** Get basic indices (order of indices corresponds to the |
1225 | order of elements in a vector retured by getBInvACol() and |
1226 | getBInvCol()). |
1227 | */ |
1228 | void getBasics(int* index); |
1229 | |
1230 | //@} |
1231 | //------------------------------------------------------------------------- |
1232 | /**@name Changing bounds on variables and constraints */ |
1233 | //@{ |
1234 | /** Set an objective function coefficient */ |
1235 | void setObjectiveCoefficient( int elementIndex, double elementValue ); |
1236 | /** Set an objective function coefficient */ |
1237 | inline void setObjCoeff( int elementIndex, double elementValue ) { |
1238 | setObjectiveCoefficient( elementIndex, elementValue); |
1239 | } |
1240 | |
1241 | /** Set a single column lower bound<br> |
1242 | Use -DBL_MAX for -infinity. */ |
1243 | void setColumnLower( int elementIndex, double elementValue ); |
1244 | |
1245 | /** Set a single column upper bound<br> |
1246 | Use DBL_MAX for infinity. */ |
1247 | void setColumnUpper( int elementIndex, double elementValue ); |
1248 | |
1249 | /** Set a single column lower and upper bound */ |
1250 | void setColumnBounds( int elementIndex, |
1251 | double lower, double upper ); |
1252 | |
1253 | /** Set the bounds on a number of columns simultaneously<br> |
1254 | The default implementation just invokes setColLower() and |
1255 | setColUpper() over and over again. |
1256 | @param indexFirst,indexLast pointers to the beginning and after the |
1257 | end of the array of the indices of the variables whose |
1258 | <em>either</em> bound changes |
1259 | @param boundList the new lower/upper bound pairs for the variables |
1260 | */ |
1261 | void setColumnSetBounds(const int* indexFirst, |
1262 | const int* indexLast, |
1263 | const double* boundList); |
1264 | |
1265 | /** Set a single column lower bound<br> |
1266 | Use -DBL_MAX for -infinity. */ |
1267 | inline void setColLower( int elementIndex, double elementValue ) { |
1268 | setColumnLower(elementIndex, elementValue); |
1269 | } |
1270 | /** Set a single column upper bound<br> |
1271 | Use DBL_MAX for infinity. */ |
1272 | inline void setColUpper( int elementIndex, double elementValue ) { |
1273 | setColumnUpper(elementIndex, elementValue); |
1274 | } |
1275 | |
1276 | /** Set a single column lower and upper bound */ |
1277 | inline void setColBounds( int elementIndex, |
1278 | double newlower, double newupper ) { |
1279 | setColumnBounds(elementIndex, newlower, newupper); |
1280 | } |
1281 | |
1282 | /** Set the bounds on a number of columns simultaneously<br> |
1283 | @param indexFirst,indexLast pointers to the beginning and after the |
1284 | end of the array of the indices of the variables whose |
1285 | <em>either</em> bound changes |
1286 | @param boundList the new lower/upper bound pairs for the variables |
1287 | */ |
1288 | inline void setColSetBounds(const int* indexFirst, |
1289 | const int* indexLast, |
1290 | const double* boundList) { |
1291 | setColumnSetBounds(indexFirst, indexLast, boundList); |
1292 | } |
1293 | |
1294 | /** Set a single row lower bound<br> |
1295 | Use -DBL_MAX for -infinity. */ |
1296 | void setRowLower( int elementIndex, double elementValue ); |
1297 | |
1298 | /** Set a single row upper bound<br> |
1299 | Use DBL_MAX for infinity. */ |
1300 | void setRowUpper( int elementIndex, double elementValue ) ; |
1301 | |
1302 | /** Set a single row lower and upper bound */ |
1303 | void setRowBounds( int elementIndex, |
1304 | double lower, double upper ) ; |
1305 | |
1306 | /** Set the bounds on a number of rows simultaneously<br> |
1307 | @param indexFirst,indexLast pointers to the beginning and after the |
1308 | end of the array of the indices of the constraints whose |
1309 | <em>either</em> bound changes |
1310 | @param boundList the new lower/upper bound pairs for the constraints |
1311 | */ |
1312 | void setRowSetBounds(const int* indexFirst, |
1313 | const int* indexLast, |
1314 | const double* boundList); |
1315 | /// Resizes rim part of model |
1316 | void resize (int newNumberRows, int newNumberColumns); |
1317 | |
1318 | //@} |
1319 | |
1320 | ////////////////// data ////////////////// |
1321 | protected: |
1322 | |
1323 | /**@name data. Many arrays have a row part and a column part. |
1324 | There is a single array with both - columns then rows and |
1325 | then normally two arrays pointing to rows and columns. The |
1326 | single array is the owner of memory |
1327 | */ |
1328 | //@{ |
1329 | /** Best possible improvement using djs (primal) or |
1330 | obj change by flipping bounds to make dual feasible (dual) */ |
1331 | double bestPossibleImprovement_; |
1332 | /// Zero tolerance |
1333 | double zeroTolerance_; |
1334 | /// Sequence of worst (-1 if feasible) |
1335 | int columnPrimalSequence_; |
1336 | /// Sequence of worst (-1 if feasible) |
1337 | int rowPrimalSequence_; |
1338 | /// "Best" objective value |
1339 | double bestObjectiveValue_; |
1340 | /// More special options - see set for details |
1341 | int moreSpecialOptions_; |
1342 | /// Iteration when we entered dual or primal |
1343 | int baseIteration_; |
1344 | /// Primal tolerance needed to make dual feasible (<largeTolerance) |
1345 | double primalToleranceToGetOptimal_; |
1346 | /// Large bound value (for complementarity etc) |
1347 | double largeValue_; |
1348 | /// Largest error on Ax-b |
1349 | double largestPrimalError_; |
1350 | /// Largest error on basic duals |
1351 | double largestDualError_; |
1352 | /// For computing whether to re-factorize |
1353 | double alphaAccuracy_; |
1354 | /// Dual bound |
1355 | double dualBound_; |
1356 | /// Alpha (pivot element) |
1357 | double alpha_; |
1358 | /// Theta (pivot change) |
1359 | double theta_; |
1360 | /// Lower Bound on In variable |
1361 | double lowerIn_; |
1362 | /// Value of In variable |
1363 | double valueIn_; |
1364 | /// Upper Bound on In variable |
1365 | double upperIn_; |
1366 | /// Reduced cost of In variable |
1367 | double dualIn_; |
1368 | /// Lower Bound on Out variable |
1369 | double lowerOut_; |
1370 | /// Value of Out variable |
1371 | double valueOut_; |
1372 | /// Upper Bound on Out variable |
1373 | double upperOut_; |
1374 | /// Infeasibility (dual) or ? (primal) of Out variable |
1375 | double dualOut_; |
1376 | /// Current dual tolerance for algorithm |
1377 | double dualTolerance_; |
1378 | /// Current primal tolerance for algorithm |
1379 | double primalTolerance_; |
1380 | /// Sum of dual infeasibilities |
1381 | double sumDualInfeasibilities_; |
1382 | /// Sum of primal infeasibilities |
1383 | double sumPrimalInfeasibilities_; |
1384 | /// Weight assigned to being infeasible in primal |
1385 | double infeasibilityCost_; |
1386 | /// Sum of Dual infeasibilities using tolerance based on error in duals |
1387 | double sumOfRelaxedDualInfeasibilities_; |
1388 | /// Sum of Primal infeasibilities using tolerance based on error in primals |
1389 | double sumOfRelaxedPrimalInfeasibilities_; |
1390 | /// Acceptable pivot value just after factorization |
1391 | double acceptablePivot_; |
1392 | /// Working copy of lower bounds (Owner of arrays below) |
1393 | double * lower_; |
1394 | /// Row lower bounds - working copy |
1395 | double * rowLowerWork_; |
1396 | /// Column lower bounds - working copy |
1397 | double * columnLowerWork_; |
1398 | /// Working copy of upper bounds (Owner of arrays below) |
1399 | double * upper_; |
1400 | /// Row upper bounds - working copy |
1401 | double * rowUpperWork_; |
1402 | /// Column upper bounds - working copy |
1403 | double * columnUpperWork_; |
1404 | /// Working copy of objective (Owner of arrays below) |
1405 | double * cost_; |
1406 | /// Row objective - working copy |
1407 | double * rowObjectiveWork_; |
1408 | /// Column objective - working copy |
1409 | double * objectiveWork_; |
1410 | /// Useful row length arrays |
1411 | CoinIndexedVector * rowArray_[6]; |
1412 | /// Useful column length arrays |
1413 | CoinIndexedVector * columnArray_[6]; |
1414 | /// Sequence of In variable |
1415 | int sequenceIn_; |
1416 | /// Direction of In, 1 going up, -1 going down, 0 not a clude |
1417 | int directionIn_; |
1418 | /// Sequence of Out variable |
1419 | int sequenceOut_; |
1420 | /// Direction of Out, 1 to upper bound, -1 to lower bound, 0 - superbasic |
1421 | int directionOut_; |
1422 | /// Pivot Row |
1423 | int pivotRow_; |
1424 | /// Last good iteration (immediately after a re-factorization) |
1425 | int lastGoodIteration_; |
1426 | /// Working copy of reduced costs (Owner of arrays below) |
1427 | double * dj_; |
1428 | /// Reduced costs of slacks not same as duals (or - duals) |
1429 | double * rowReducedCost_; |
1430 | /// Possible scaled reduced costs |
1431 | double * reducedCostWork_; |
1432 | /// Working copy of primal solution (Owner of arrays below) |
1433 | double * solution_; |
1434 | /// Row activities - working copy |
1435 | double * rowActivityWork_; |
1436 | /// Column activities - working copy |
1437 | double * columnActivityWork_; |
1438 | /// Number of dual infeasibilities |
1439 | int numberDualInfeasibilities_; |
1440 | /// Number of dual infeasibilities (without free) |
1441 | int numberDualInfeasibilitiesWithoutFree_; |
1442 | /// Number of primal infeasibilities |
1443 | int numberPrimalInfeasibilities_; |
1444 | /// How many iterative refinements to do |
1445 | int numberRefinements_; |
1446 | /// dual row pivot choice |
1447 | ClpDualRowPivot * dualRowPivot_; |
1448 | /// primal column pivot choice |
1449 | ClpPrimalColumnPivot * primalColumnPivot_; |
1450 | /// Basic variables pivoting on which rows |
1451 | int * pivotVariable_; |
1452 | /// factorization |
1453 | ClpFactorization * factorization_; |
1454 | /// Saved version of solution |
1455 | double * savedSolution_; |
1456 | /// Number of times code has tentatively thought optimal |
1457 | int numberTimesOptimal_; |
1458 | /// Disaster handler |
1459 | ClpDisasterHandler * disasterArea_; |
1460 | /// If change has been made (first attempt at stopping looping) |
1461 | int changeMade_; |
1462 | /// Algorithm >0 == Primal, <0 == Dual |
1463 | int algorithm_; |
1464 | /** Now for some reliability aids |
1465 | This forces re-factorization early */ |
1466 | int forceFactorization_; |
1467 | /** Perturbation: |
1468 | -50 to +50 - perturb by this power of ten (-6 sounds good) |
1469 | 100 - auto perturb if takes too long (1.0e-6 largest nonzero) |
1470 | 101 - we are perturbed |
1471 | 102 - don't try perturbing again |
1472 | default is 100 |
1473 | */ |
1474 | int perturbation_; |
1475 | /// Saved status regions |
1476 | unsigned char * saveStatus_; |
1477 | /** Very wasteful way of dealing with infeasibilities in primal. |
1478 | However it will allow non-linearities and use of dual |
1479 | analysis. If it doesn't work it can easily be replaced. |
1480 | */ |
1481 | ClpNonLinearCost * nonLinearCost_; |
1482 | /// So we know when to be cautious |
1483 | int lastBadIteration_; |
1484 | /// So we know when to open up again |
1485 | int lastFlaggedIteration_; |
1486 | /// Can be used for count of fake bounds (dual) or fake costs (primal) |
1487 | int numberFake_; |
1488 | /// Can be used for count of changed costs (dual) or changed bounds (primal) |
1489 | int numberChanged_; |
1490 | /// Progress flag - at present 0 bit says artificials out, 1 free in |
1491 | int progressFlag_; |
1492 | /// First free/super-basic variable (-1 if none) |
1493 | int firstFree_; |
1494 | /** Number of extra rows. These are ones which will be dynamically created |
1495 | each iteration. This is for GUB but may have other uses. |
1496 | */ |
1497 | int ; |
1498 | /** Maximum number of basic variables - can be more than number of rows if GUB |
1499 | */ |
1500 | int maximumBasic_; |
1501 | /// If may skip final factorize then allow up to this pivots (default 20) |
1502 | int dontFactorizePivots_; |
1503 | /** For advanced use. When doing iterative solves things can get |
1504 | nasty so on values pass if incoming solution has largest |
1505 | infeasibility < incomingInfeasibility throw out variables |
1506 | from basis until largest infeasibility < allowedInfeasibility. |
1507 | if allowedInfeasibility>= incomingInfeasibility this is |
1508 | always possible altough you may end up with an all slack basis. |
1509 | |
1510 | Defaults are 1.0,10.0 |
1511 | */ |
1512 | double incomingInfeasibility_; |
1513 | double allowedInfeasibility_; |
1514 | /// Automatic scaling of objective and rhs and bounds |
1515 | int automaticScale_; |
1516 | /// Maximum perturbation array size (take out when code rewritten) |
1517 | int maximumPerturbationSize_; |
1518 | /// Perturbation array (maximumPerturbationSize_) |
1519 | double * perturbationArray_; |
1520 | /// A copy of model with certain state - normally without cuts |
1521 | ClpSimplex * baseModel_; |
1522 | /// For dealing with all issues of cycling etc |
1523 | ClpSimplexProgress progress_; |
1524 | public: |
1525 | /// Spare int array for passing information [0]!=0 switches on |
1526 | mutable int spareIntArray_[4]; |
1527 | /// Spare double array for passing information [0]!=0 switches on |
1528 | mutable double spareDoubleArray_[4]; |
1529 | protected: |
1530 | /// Allow OsiClp certain perks |
1531 | friend class OsiClpSolverInterface; |
1532 | //@} |
1533 | }; |
1534 | //############################################################################# |
1535 | /** A function that tests the methods in the ClpSimplex class. The |
1536 | only reason for it not to be a member method is that this way it doesn't |
1537 | have to be compiled into the library. And that's a gain, because the |
1538 | library should be compiled with optimization on, but this method should be |
1539 | compiled with debugging. |
1540 | |
1541 | It also does some testing of ClpFactorization class |
1542 | */ |
1543 | void |
1544 | ClpSimplexUnitTest(const std::string & mpsDir); |
1545 | |
1546 | // For Devex stuff |
1547 | #define DEVEX_TRY_NORM 1.0e-4 |
1548 | #define DEVEX_ADD_ONE 1.0 |
1549 | #endif |
1550 | |