| 1 | /* $Id: ClpSimplex.hpp 1870 2012-07-22 16:13:48Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | /* |
| 6 | Authors |
| 7 | |
| 8 | John Forrest |
| 9 | |
| 10 | */ |
| 11 | #ifndef ClpSimplex_H |
| 12 | #define ClpSimplex_H |
| 13 | |
| 14 | #include <iostream> |
| 15 | #include <cfloat> |
| 16 | #include "ClpModel.hpp" |
| 17 | #include "ClpMatrixBase.hpp" |
| 18 | #include "ClpSolve.hpp" |
| 19 | class ClpDualRowPivot; |
| 20 | class ClpPrimalColumnPivot; |
| 21 | class ClpFactorization; |
| 22 | class CoinIndexedVector; |
| 23 | class ClpNonLinearCost; |
| 24 | class ClpNodeStuff; |
| 25 | class CoinStructuredModel; |
| 26 | class OsiClpSolverInterface; |
| 27 | class CoinWarmStartBasis; |
| 28 | class ClpDisasterHandler; |
| 29 | class ClpConstraint; |
| 30 | |
| 31 | /** This solves LPs using the simplex method |
| 32 | |
| 33 | It inherits from ClpModel and all its arrays are created at |
| 34 | algorithm time. Originally I tried to work with model arrays |
| 35 | but for simplicity of coding I changed to single arrays with |
| 36 | structural variables then row variables. Some coding is still |
| 37 | based on old style and needs cleaning up. |
| 38 | |
| 39 | For a description of algorithms: |
| 40 | |
| 41 | for dual see ClpSimplexDual.hpp and at top of ClpSimplexDual.cpp |
| 42 | for primal see ClpSimplexPrimal.hpp and at top of ClpSimplexPrimal.cpp |
| 43 | |
| 44 | There is an algorithm data member. + for primal variations |
| 45 | and - for dual variations |
| 46 | |
| 47 | */ |
| 48 | |
| 49 | class ClpSimplex : public ClpModel { |
| 50 | friend void ClpSimplexUnitTest(const std::string & mpsDir); |
| 51 | |
| 52 | public: |
| 53 | /** enums for status of various sorts. |
| 54 | First 4 match CoinWarmStartBasis, |
| 55 | isFixed means fixed at lower bound and out of basis |
| 56 | */ |
| 57 | enum Status { |
| 58 | isFree = 0x00, |
| 59 | basic = 0x01, |
| 60 | atUpperBound = 0x02, |
| 61 | atLowerBound = 0x03, |
| 62 | superBasic = 0x04, |
| 63 | isFixed = 0x05 |
| 64 | }; |
| 65 | // For Dual |
| 66 | enum FakeBound { |
| 67 | noFake = 0x00, |
| 68 | lowerFake = 0x01, |
| 69 | upperFake = 0x02, |
| 70 | bothFake = 0x03 |
| 71 | }; |
| 72 | |
| 73 | /**@name Constructors and destructor and copy */ |
| 74 | //@{ |
| 75 | /// Default constructor |
| 76 | ClpSimplex (bool emptyMessages = false ); |
| 77 | |
| 78 | /** Copy constructor. May scale depending on mode |
| 79 | -1 leave mode as is |
| 80 | 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later) |
| 81 | */ |
| 82 | ClpSimplex(const ClpSimplex & rhs, int scalingMode = -1); |
| 83 | /** Copy constructor from model. May scale depending on mode |
| 84 | -1 leave mode as is |
| 85 | 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later) |
| 86 | */ |
| 87 | ClpSimplex(const ClpModel & rhs, int scalingMode = -1); |
| 88 | /** Subproblem constructor. A subset of whole model is created from the |
| 89 | row and column lists given. The new order is given by list order and |
| 90 | duplicates are allowed. Name and integer information can be dropped |
| 91 | Can optionally modify rhs to take into account variables NOT in list |
| 92 | in this case duplicates are not allowed (also see getbackSolution) |
| 93 | */ |
| 94 | ClpSimplex (const ClpModel * wholeModel, |
| 95 | int numberRows, const int * whichRows, |
| 96 | int numberColumns, const int * whichColumns, |
| 97 | bool dropNames = true, bool dropIntegers = true, |
| 98 | bool fixOthers = false); |
| 99 | /** Subproblem constructor. A subset of whole model is created from the |
| 100 | row and column lists given. The new order is given by list order and |
| 101 | duplicates are allowed. Name and integer information can be dropped |
| 102 | Can optionally modify rhs to take into account variables NOT in list |
| 103 | in this case duplicates are not allowed (also see getbackSolution) |
| 104 | */ |
| 105 | ClpSimplex (const ClpSimplex * wholeModel, |
| 106 | int numberRows, const int * whichRows, |
| 107 | int numberColumns, const int * whichColumns, |
| 108 | bool dropNames = true, bool dropIntegers = true, |
| 109 | bool fixOthers = false); |
| 110 | /** This constructor modifies original ClpSimplex and stores |
| 111 | original stuff in created ClpSimplex. It is only to be used in |
| 112 | conjunction with originalModel */ |
| 113 | ClpSimplex (ClpSimplex * wholeModel, |
| 114 | int numberColumns, const int * whichColumns); |
| 115 | /** This copies back stuff from miniModel and then deletes miniModel. |
| 116 | Only to be used with mini constructor */ |
| 117 | void originalModel(ClpSimplex * miniModel); |
| 118 | /** Array persistence flag |
| 119 | If 0 then as now (delete/new) |
| 120 | 1 then only do arrays if bigger needed |
| 121 | 2 as 1 but give a bit extra if bigger needed |
| 122 | */ |
| 123 | void setPersistenceFlag(int value); |
| 124 | /// Save a copy of model with certain state - normally without cuts |
| 125 | void makeBaseModel(); |
| 126 | /// Switch off base model |
| 127 | void deleteBaseModel(); |
| 128 | /// See if we have base model |
| 129 | inline ClpSimplex * baseModel() const { |
| 130 | return baseModel_; |
| 131 | } |
| 132 | /** Reset to base model (just size and arrays needed) |
| 133 | If model NULL use internal copy |
| 134 | */ |
| 135 | void setToBaseModel(ClpSimplex * model = nullptr); |
| 136 | /// Assignment operator. This copies the data |
| 137 | ClpSimplex & operator=(const ClpSimplex & rhs); |
| 138 | /// Destructor |
| 139 | ~ClpSimplex ( ); |
| 140 | // Ones below are just ClpModel with some changes |
| 141 | /** Loads a problem (the constraints on the |
| 142 | rows are given by lower and upper bounds). If a pointer is 0 then the |
| 143 | following values are the default: |
| 144 | <ul> |
| 145 | <li> <code>colub</code>: all columns have upper bound infinity |
| 146 | <li> <code>collb</code>: all columns have lower bound 0 |
| 147 | <li> <code>rowub</code>: all rows have upper bound infinity |
| 148 | <li> <code>rowlb</code>: all rows have lower bound -infinity |
| 149 | <li> <code>obj</code>: all variables have 0 objective coefficient |
| 150 | </ul> |
| 151 | */ |
| 152 | void loadProblem ( const ClpMatrixBase& matrix, |
| 153 | const double* collb, const double* colub, |
| 154 | const double* obj, |
| 155 | const double* rowlb, const double* rowub, |
| 156 | const double * rowObjective = nullptr); |
| 157 | void loadProblem ( const CoinPackedMatrix& matrix, |
| 158 | const double* collb, const double* colub, |
| 159 | const double* obj, |
| 160 | const double* rowlb, const double* rowub, |
| 161 | const double * rowObjective = nullptr); |
| 162 | |
| 163 | /** Just like the other loadProblem() method except that the matrix is |
| 164 | given in a standard column major ordered format (without gaps). */ |
| 165 | void loadProblem ( const int numcols, const int numrows, |
| 166 | const CoinBigIndex* start, const int* index, |
| 167 | const double* value, |
| 168 | const double* collb, const double* colub, |
| 169 | const double* obj, |
| 170 | const double* rowlb, const double* rowub, |
| 171 | const double * rowObjective = nullptr); |
| 172 | /// This one is for after presolve to save memory |
| 173 | void loadProblem ( const int numcols, const int numrows, |
| 174 | const CoinBigIndex* start, const int* index, |
| 175 | const double* value, const int * length, |
| 176 | const double* collb, const double* colub, |
| 177 | const double* obj, |
| 178 | const double* rowlb, const double* rowub, |
| 179 | const double * rowObjective = nullptr); |
| 180 | /** This loads a model from a coinModel object - returns number of errors. |
| 181 | If keepSolution true and size is same as current then |
| 182 | keeps current status and solution |
| 183 | */ |
| 184 | int loadProblem ( CoinModel & modelObject, bool keepSolution = false); |
| 185 | /// Read an mps file from the given filename |
| 186 | int readMps(const char *filename, |
| 187 | bool keepNames = false, |
| 188 | bool ignoreErrors = false); |
| 189 | /// Read GMPL files from the given filenames |
| 190 | int readGMPL(const char *filename, const char * dataName, |
| 191 | bool keepNames = false); |
| 192 | /// Read file in LP format from file with name filename. |
| 193 | /// See class CoinLpIO for description of this format. |
| 194 | int readLp(const char *filename, const double epsilon = 1e-5); |
| 195 | /** Borrow model. This is so we dont have to copy large amounts |
| 196 | of data around. It assumes a derived class wants to overwrite |
| 197 | an empty model with a real one - while it does an algorithm. |
| 198 | This is same as ClpModel one, but sets scaling on etc. */ |
| 199 | void borrowModel(ClpModel & otherModel); |
| 200 | void borrowModel(ClpSimplex & otherModel); |
| 201 | /// Pass in Event handler (cloned and deleted at end) |
| 202 | void passInEventHandler(const ClpEventHandler * eventHandler); |
| 203 | /// Puts solution back into small model |
| 204 | void getbackSolution(const ClpSimplex & smallModel, const int * whichRow, const int * whichColumn); |
| 205 | /** Load nonlinear part of problem from AMPL info |
| 206 | Returns 0 if linear |
| 207 | 1 if quadratic objective |
| 208 | 2 if quadratic constraints |
| 209 | 3 if nonlinear objective |
| 210 | 4 if nonlinear constraints |
| 211 | -1 on failure |
| 212 | */ |
| 213 | int loadNonLinear(void * info, int & numberConstraints, |
| 214 | ClpConstraint ** & constraints); |
| 215 | //@} |
| 216 | |
| 217 | /**@name Functions most useful to user */ |
| 218 | //@{ |
| 219 | /** General solve algorithm which can do presolve. |
| 220 | See ClpSolve.hpp for options |
| 221 | */ |
| 222 | int initialSolve(ClpSolve & options); |
| 223 | /// Default initial solve |
| 224 | int initialSolve(); |
| 225 | /// Dual initial solve |
| 226 | int initialDualSolve(); |
| 227 | /// Primal initial solve |
| 228 | int initialPrimalSolve(); |
| 229 | /// Barrier initial solve |
| 230 | int initialBarrierSolve(); |
| 231 | /// Barrier initial solve, not to be followed by crossover |
| 232 | int initialBarrierNoCrossSolve(); |
| 233 | /** Dual algorithm - see ClpSimplexDual.hpp for method. |
| 234 | ifValuesPass==2 just does values pass and then stops. |
| 235 | |
| 236 | startFinishOptions - bits |
| 237 | 1 - do not delete work areas and factorization at end |
| 238 | 2 - use old factorization if same number of rows |
| 239 | 4 - skip as much initialization of work areas as possible |
| 240 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
| 241 | maybe other bits later |
| 242 | */ |
| 243 | int dual(int ifValuesPass = 0, int startFinishOptions = 0); |
| 244 | // If using Debug |
| 245 | int dualDebug(int ifValuesPass = 0, int startFinishOptions = 0); |
| 246 | /** Primal algorithm - see ClpSimplexPrimal.hpp for method. |
| 247 | ifValuesPass==2 just does values pass and then stops. |
| 248 | |
| 249 | startFinishOptions - bits |
| 250 | 1 - do not delete work areas and factorization at end |
| 251 | 2 - use old factorization if same number of rows |
| 252 | 4 - skip as much initialization of work areas as possible |
| 253 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
| 254 | maybe other bits later |
| 255 | */ |
| 256 | int primal(int ifValuesPass = 0, int startFinishOptions = 0); |
| 257 | /** Solves nonlinear problem using SLP - may be used as crash |
| 258 | for other algorithms when number of iterations small. |
| 259 | Also exits if all problematical variables are changing |
| 260 | less than deltaTolerance |
| 261 | */ |
| 262 | int nonlinearSLP(int numberPasses, double deltaTolerance); |
| 263 | /** Solves problem with nonlinear constraints using SLP - may be used as crash |
| 264 | for other algorithms when number of iterations small. |
| 265 | Also exits if all problematical variables are changing |
| 266 | less than deltaTolerance |
| 267 | */ |
| 268 | int nonlinearSLP(int numberConstraints, ClpConstraint ** constraints, |
| 269 | int numberPasses, double deltaTolerance); |
| 270 | /** Solves using barrier (assumes you have good cholesky factor code). |
| 271 | Does crossover to simplex if asked*/ |
| 272 | int barrier(bool crossover = true); |
| 273 | /** Solves non-linear using reduced gradient. Phase = 0 get feasible, |
| 274 | =1 use solution */ |
| 275 | int reducedGradient(int phase = 0); |
| 276 | /// Solve using structure of model and maybe in parallel |
| 277 | int solve(CoinStructuredModel * model); |
| 278 | /** This loads a model from a CoinStructuredModel object - returns number of errors. |
| 279 | If originalOrder then keep to order stored in blocks, |
| 280 | otherwise first column/rows correspond to first block - etc. |
| 281 | If keepSolution true and size is same as current then |
| 282 | keeps current status and solution |
| 283 | */ |
| 284 | int loadProblem ( CoinStructuredModel & modelObject, |
| 285 | bool originalOrder = true, bool keepSolution = false); |
| 286 | /** |
| 287 | When scaling is on it is possible that the scaled problem |
| 288 | is feasible but the unscaled is not. Clp returns a secondary |
| 289 | status code to that effect. This option allows for a cleanup. |
| 290 | If you use it I would suggest 1. |
| 291 | This only affects actions when scaled optimal |
| 292 | 0 - no action |
| 293 | 1 - clean up using dual if primal infeasibility |
| 294 | 2 - clean up using dual if dual infeasibility |
| 295 | 3 - clean up using dual if primal or dual infeasibility |
| 296 | 11,12,13 - as 1,2,3 but use primal |
| 297 | |
| 298 | return code as dual/primal |
| 299 | */ |
| 300 | int cleanup(int cleanupScaling); |
| 301 | /** Dual ranging. |
| 302 | This computes increase/decrease in cost for each given variable and corresponding |
| 303 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
| 304 | and numberColumns.. for artificials/slacks. |
| 305 | For non-basic variables the information is trivial to compute and the change in cost is just minus the |
| 306 | reduced cost and the sequence number will be that of the non-basic variables. |
| 307 | For basic variables a ratio test is between the reduced costs for non-basic variables |
| 308 | and the row of the tableau corresponding to the basic variable. |
| 309 | The increase/decrease value is always >= 0.0 |
| 310 | |
| 311 | Up to user to provide correct length arrays where each array is of length numberCheck. |
| 312 | which contains list of variables for which information is desired. All other |
| 313 | arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays |
| 314 | will be information for variable 7. |
| 315 | |
| 316 | If valueIncrease/Decrease not NULL (both must be NULL or both non NULL) then these are filled with |
| 317 | the value of variable if such a change in cost were made (the existing bounds are ignored) |
| 318 | |
| 319 | Returns non-zero if infeasible unbounded etc |
| 320 | */ |
| 321 | int dualRanging(int numberCheck, const int * which, |
| 322 | double * costIncrease, int * sequenceIncrease, |
| 323 | double * costDecrease, int * sequenceDecrease, |
| 324 | double * valueIncrease = nullptr, double * valueDecrease = nullptr); |
| 325 | /** Primal ranging. |
| 326 | This computes increase/decrease in value for each given variable and corresponding |
| 327 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
| 328 | and numberColumns.. for artificials/slacks. |
| 329 | This should only be used for non-basic variabls as otherwise information is pretty useless |
| 330 | For basic variables the sequence number will be that of the basic variables. |
| 331 | |
| 332 | Up to user to provide correct length arrays where each array is of length numberCheck. |
| 333 | which contains list of variables for which information is desired. All other |
| 334 | arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays |
| 335 | will be information for variable 7. |
| 336 | |
| 337 | Returns non-zero if infeasible unbounded etc |
| 338 | */ |
| 339 | int primalRanging(int numberCheck, const int * which, |
| 340 | double * valueIncrease, int * sequenceIncrease, |
| 341 | double * valueDecrease, int * sequenceDecrease); |
| 342 | /** Write the basis in MPS format to the specified file. |
| 343 | If writeValues true writes values of structurals |
| 344 | (and adds VALUES to end of NAME card) |
| 345 | |
| 346 | Row and column names may be null. |
| 347 | formatType is |
| 348 | <ul> |
| 349 | <li> 0 - normal |
| 350 | <li> 1 - extra accuracy |
| 351 | <li> 2 - IEEE hex (later) |
| 352 | </ul> |
| 353 | |
| 354 | Returns non-zero on I/O error |
| 355 | */ |
| 356 | int writeBasis(const char *filename, |
| 357 | bool writeValues = false, |
| 358 | int formatType = 0) const; |
| 359 | /** Read a basis from the given filename, |
| 360 | returns -1 on file error, 0 if no values, 1 if values */ |
| 361 | int readBasis(const char *filename); |
| 362 | /// Returns a basis (to be deleted by user) |
| 363 | CoinWarmStartBasis * getBasis() const; |
| 364 | /// Passes in factorization |
| 365 | void setFactorization( ClpFactorization & factorization); |
| 366 | // Swaps factorization |
| 367 | ClpFactorization * swapFactorization( ClpFactorization * factorization); |
| 368 | /// Copies in factorization to existing one |
| 369 | void copyFactorization( ClpFactorization & factorization); |
| 370 | /** Tightens primal bounds to make dual faster. Unless |
| 371 | fixed or doTight>10, bounds are slightly looser than they could be. |
| 372 | This is to make dual go faster and is probably not needed |
| 373 | with a presolve. Returns non-zero if problem infeasible. |
| 374 | |
| 375 | Fudge for branch and bound - put bounds on columns of factor * |
| 376 | largest value (at continuous) - should improve stability |
| 377 | in branch and bound on infeasible branches (0.0 is off) |
| 378 | */ |
| 379 | int tightenPrimalBounds(double factor = 0.0, int doTight = 0, bool tightIntegers = false); |
| 380 | /** Crash - at present just aimed at dual, returns |
| 381 | -2 if dual preferred and crash basis created |
| 382 | -1 if dual preferred and all slack basis preferred |
| 383 | 0 if basis going in was not all slack |
| 384 | 1 if primal preferred and all slack basis preferred |
| 385 | 2 if primal preferred and crash basis created. |
| 386 | |
| 387 | if gap between bounds <="gap" variables can be flipped |
| 388 | ( If pivot -1 then can be made super basic!) |
| 389 | |
| 390 | If "pivot" is |
| 391 | -1 No pivoting - always primal |
| 392 | 0 No pivoting (so will just be choice of algorithm) |
| 393 | 1 Simple pivoting e.g. gub |
| 394 | 2 Mini iterations |
| 395 | */ |
| 396 | int crash(double gap, int pivot); |
| 397 | /// Sets row pivot choice algorithm in dual |
| 398 | void setDualRowPivotAlgorithm(ClpDualRowPivot & choice); |
| 399 | /// Sets column pivot choice algorithm in primal |
| 400 | void setPrimalColumnPivotAlgorithm(ClpPrimalColumnPivot & choice); |
| 401 | /** For strong branching. On input lower and upper are new bounds |
| 402 | while on output they are change in objective function values |
| 403 | (>1.0e50 infeasible). |
| 404 | Return code is 0 if nothing interesting, -1 if infeasible both |
| 405 | ways and +1 if infeasible one way (check values to see which one(s)) |
| 406 | Solutions are filled in as well - even down, odd up - also |
| 407 | status and number of iterations |
| 408 | */ |
| 409 | int strongBranching(int numberVariables, const int * variables, |
| 410 | double * newLower, double * newUpper, |
| 411 | double ** outputSolution, |
| 412 | int * outputStatus, int * outputIterations, |
| 413 | bool stopOnFirstInfeasible = true, |
| 414 | bool alwaysFinish = false, |
| 415 | int startFinishOptions = 0); |
| 416 | /// Fathom - 1 if solution |
| 417 | int fathom(void * stuff); |
| 418 | /** Do up to N deep - returns |
| 419 | -1 - no solution nNodes_ valid nodes |
| 420 | >= if solution and that node gives solution |
| 421 | ClpNode array is 2**N long. Values for N and |
| 422 | array are in stuff (nNodes_ also in stuff) */ |
| 423 | int fathomMany(void * stuff); |
| 424 | /// Double checks OK |
| 425 | double doubleCheck(); |
| 426 | /// Starts Fast dual2 |
| 427 | int startFastDual2(ClpNodeStuff * stuff); |
| 428 | /// Like Fast dual |
| 429 | int fastDual2(ClpNodeStuff * stuff); |
| 430 | /// Stops Fast dual2 |
| 431 | void stopFastDual2(ClpNodeStuff * stuff); |
| 432 | /** Deals with crunch aspects |
| 433 | mode 0 - in |
| 434 | 1 - out with solution |
| 435 | 2 - out without solution |
| 436 | returns small model or NULL |
| 437 | */ |
| 438 | ClpSimplex * fastCrunch(ClpNodeStuff * stuff, int mode); |
| 439 | //@} |
| 440 | |
| 441 | /**@name Needed for functionality of OsiSimplexInterface */ |
| 442 | //@{ |
| 443 | /** Pivot in a variable and out a variable. Returns 0 if okay, |
| 444 | 1 if inaccuracy forced re-factorization, -1 if would be singular. |
| 445 | Also updates primal/dual infeasibilities. |
| 446 | Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out. |
| 447 | */ |
| 448 | int pivot(); |
| 449 | |
| 450 | /** Pivot in a variable and choose an outgoing one. Assumes primal |
| 451 | feasible - will not go through a bound. Returns step length in theta |
| 452 | Returns ray in ray_ (or NULL if no pivot) |
| 453 | Return codes as before but -1 means no acceptable pivot |
| 454 | */ |
| 455 | int primalPivotResult(); |
| 456 | |
| 457 | /** Pivot out a variable and choose an incoing one. Assumes dual |
| 458 | feasible - will not go through a reduced cost. |
| 459 | Returns step length in theta |
| 460 | Returns ray in ray_ (or NULL if no pivot) |
| 461 | Return codes as before but -1 means no acceptable pivot |
| 462 | */ |
| 463 | int dualPivotResult(); |
| 464 | |
| 465 | /** Common bits of coding for dual and primal. Return 0 if okay, |
| 466 | 1 if bad matrix, 2 if very bad factorization |
| 467 | |
| 468 | startFinishOptions - bits |
| 469 | 1 - do not delete work areas and factorization at end |
| 470 | 2 - use old factorization if same number of rows |
| 471 | 4 - skip as much initialization of work areas as possible |
| 472 | (based on whatsChanged in clpmodel.hpp) ** work in progress |
| 473 | maybe other bits later |
| 474 | |
| 475 | */ |
| 476 | int startup(int ifValuesPass, int startFinishOptions = 0); |
| 477 | void finish(int startFinishOptions = 0); |
| 478 | |
| 479 | /** Factorizes and returns true if optimal. Used by user */ |
| 480 | bool statusOfProblem(bool initial = false); |
| 481 | /// If user left factorization frequency then compute |
| 482 | void defaultFactorizationFrequency(); |
| 483 | //@} |
| 484 | |
| 485 | /**@name most useful gets and sets */ |
| 486 | //@{ |
| 487 | /// If problem is primal feasible |
| 488 | inline bool primalFeasible() const { |
| 489 | return (numberPrimalInfeasibilities_ == 0); |
| 490 | } |
| 491 | /// If problem is dual feasible |
| 492 | inline bool dualFeasible() const { |
| 493 | return (numberDualInfeasibilities_ == 0); |
| 494 | } |
| 495 | /// factorization |
| 496 | inline ClpFactorization * factorization() const { |
| 497 | return factorization_; |
| 498 | } |
| 499 | /// Sparsity on or off |
| 500 | bool sparseFactorization() const; |
| 501 | void setSparseFactorization(bool value); |
| 502 | /// Factorization frequency |
| 503 | int factorizationFrequency() const; |
| 504 | void setFactorizationFrequency(int value); |
| 505 | /// Dual bound |
| 506 | inline double dualBound() const { |
| 507 | return dualBound_; |
| 508 | } |
| 509 | void setDualBound(double value); |
| 510 | /// Infeasibility cost |
| 511 | inline double infeasibilityCost() const { |
| 512 | return infeasibilityCost_; |
| 513 | } |
| 514 | void setInfeasibilityCost(double value); |
| 515 | /** Amount of print out: |
| 516 | 0 - none |
| 517 | 1 - just final |
| 518 | 2 - just factorizations |
| 519 | 3 - as 2 plus a bit more |
| 520 | 4 - verbose |
| 521 | above that 8,16,32 etc just for selective debug |
| 522 | */ |
| 523 | /** Perturbation: |
| 524 | 50 - switch on perturbation |
| 525 | 100 - auto perturb if takes too long (1.0e-6 largest nonzero) |
| 526 | 101 - we are perturbed |
| 527 | 102 - don't try perturbing again |
| 528 | default is 100 |
| 529 | others are for playing |
| 530 | */ |
| 531 | inline int perturbation() const { |
| 532 | return perturbation_; |
| 533 | } |
| 534 | void setPerturbation(int value); |
| 535 | /// Current (or last) algorithm |
| 536 | inline int algorithm() const { |
| 537 | return algorithm_; |
| 538 | } |
| 539 | /// Set algorithm |
| 540 | inline void setAlgorithm(int value) { |
| 541 | algorithm_ = value; |
| 542 | } |
| 543 | /// Return true if the objective limit test can be relied upon |
| 544 | bool isObjectiveLimitTestValid() const ; |
| 545 | /// Sum of dual infeasibilities |
| 546 | inline double sumDualInfeasibilities() const { |
| 547 | return sumDualInfeasibilities_; |
| 548 | } |
| 549 | inline void setSumDualInfeasibilities(double value) { |
| 550 | sumDualInfeasibilities_ = value; |
| 551 | } |
| 552 | /// Sum of relaxed dual infeasibilities |
| 553 | inline double sumOfRelaxedDualInfeasibilities() const { |
| 554 | return sumOfRelaxedDualInfeasibilities_; |
| 555 | } |
| 556 | inline void setSumOfRelaxedDualInfeasibilities(double value) { |
| 557 | sumOfRelaxedDualInfeasibilities_ = value; |
| 558 | } |
| 559 | /// Number of dual infeasibilities |
| 560 | inline int numberDualInfeasibilities() const { |
| 561 | return numberDualInfeasibilities_; |
| 562 | } |
| 563 | inline void setNumberDualInfeasibilities(int value) { |
| 564 | numberDualInfeasibilities_ = value; |
| 565 | } |
| 566 | /// Number of dual infeasibilities (without free) |
| 567 | inline int numberDualInfeasibilitiesWithoutFree() const { |
| 568 | return numberDualInfeasibilitiesWithoutFree_; |
| 569 | } |
| 570 | /// Sum of primal infeasibilities |
| 571 | inline double sumPrimalInfeasibilities() const { |
| 572 | return sumPrimalInfeasibilities_; |
| 573 | } |
| 574 | inline void setSumPrimalInfeasibilities(double value) { |
| 575 | sumPrimalInfeasibilities_ = value; |
| 576 | } |
| 577 | /// Sum of relaxed primal infeasibilities |
| 578 | inline double sumOfRelaxedPrimalInfeasibilities() const { |
| 579 | return sumOfRelaxedPrimalInfeasibilities_; |
| 580 | } |
| 581 | inline void setSumOfRelaxedPrimalInfeasibilities(double value) { |
| 582 | sumOfRelaxedPrimalInfeasibilities_ = value; |
| 583 | } |
| 584 | /// Number of primal infeasibilities |
| 585 | inline int numberPrimalInfeasibilities() const { |
| 586 | return numberPrimalInfeasibilities_; |
| 587 | } |
| 588 | inline void setNumberPrimalInfeasibilities(int value) { |
| 589 | numberPrimalInfeasibilities_ = value; |
| 590 | } |
| 591 | /** Save model to file, returns 0 if success. This is designed for |
| 592 | use outside algorithms so does not save iterating arrays etc. |
| 593 | It does not save any messaging information. |
| 594 | Does not save scaling values. |
| 595 | It does not know about all types of virtual functions. |
| 596 | */ |
| 597 | int saveModel(const char * fileName); |
| 598 | /** Restore model from file, returns 0 if success, |
| 599 | deletes current model */ |
| 600 | int restoreModel(const char * fileName); |
| 601 | |
| 602 | /** Just check solution (for external use) - sets sum of |
| 603 | infeasibilities etc. |
| 604 | If setToBounds 0 then primal column values not changed |
| 605 | and used to compute primal row activity values. If 1 or 2 |
| 606 | then status used - so all nonbasic variables set to |
| 607 | indicated bound and if any values changed (or ==2) basic values re-computed. |
| 608 | */ |
| 609 | void checkSolution(int setToBounds = 0); |
| 610 | /** Just check solution (for internal use) - sets sum of |
| 611 | infeasibilities etc. */ |
| 612 | void checkSolutionInternal(); |
| 613 | /// Check unscaled primal solution but allow for rounding error |
| 614 | void checkUnscaledSolution(); |
| 615 | /// Useful row length arrays (0,1,2,3,4,5) |
| 616 | inline CoinIndexedVector * rowArray(int index) const { |
| 617 | return rowArray_[index]; |
| 618 | } |
| 619 | /// Useful column length arrays (0,1,2,3,4,5) |
| 620 | inline CoinIndexedVector * columnArray(int index) const { |
| 621 | return columnArray_[index]; |
| 622 | } |
| 623 | //@} |
| 624 | |
| 625 | /******************** End of most useful part **************/ |
| 626 | /**@name Functions less likely to be useful to casual user */ |
| 627 | //@{ |
| 628 | /** Given an existing factorization computes and checks |
| 629 | primal and dual solutions. Uses input arrays for variables at |
| 630 | bounds. Returns feasibility states */ |
| 631 | int getSolution ( const double * rowActivities, |
| 632 | const double * columnActivities); |
| 633 | /** Given an existing factorization computes and checks |
| 634 | primal and dual solutions. Uses current problem arrays for |
| 635 | bounds. Returns feasibility states */ |
| 636 | int getSolution (); |
| 637 | /** Constructs a non linear cost from list of non-linearities (columns only) |
| 638 | First lower of each column is taken as real lower |
| 639 | Last lower is taken as real upper and cost ignored |
| 640 | |
| 641 | Returns nonzero if bad data e.g. lowers not monotonic |
| 642 | */ |
| 643 | int createPiecewiseLinearCosts(const int * starts, |
| 644 | const double * lower, const double * gradient); |
| 645 | /// dual row pivot choice |
| 646 | inline ClpDualRowPivot * dualRowPivot() const { |
| 647 | return dualRowPivot_; |
| 648 | } |
| 649 | /// primal column pivot choice |
| 650 | inline ClpPrimalColumnPivot * primalColumnPivot() const { |
| 651 | return primalColumnPivot_; |
| 652 | } |
| 653 | /// Returns true if model looks OK |
| 654 | inline bool goodAccuracy() const { |
| 655 | return (largestPrimalError_ < 1.0e-7 && largestDualError_ < 1.0e-7); |
| 656 | } |
| 657 | /** Return model - updates any scalars */ |
| 658 | void returnModel(ClpSimplex & otherModel); |
| 659 | /** Factorizes using current basis. |
| 660 | solveType - 1 iterating, 0 initial, -1 external |
| 661 | If 10 added then in primal values pass |
| 662 | Return codes are as from ClpFactorization unless initial factorization |
| 663 | when total number of singularities is returned. |
| 664 | Special case is numberRows_+1 -> all slack basis. |
| 665 | */ |
| 666 | int internalFactorize(int solveType); |
| 667 | /// Save data |
| 668 | ClpDataSave saveData() ; |
| 669 | /// Restore data |
| 670 | void restoreData(ClpDataSave saved); |
| 671 | /// Clean up status |
| 672 | void cleanStatus(); |
| 673 | /// Factorizes using current basis. For external use |
| 674 | int factorize(); |
| 675 | /** Computes duals from scratch. If givenDjs then |
| 676 | allows for nonzero basic djs */ |
| 677 | void computeDuals(double * givenDjs); |
| 678 | /// Computes primals from scratch |
| 679 | void computePrimals ( const double * rowActivities, |
| 680 | const double * columnActivities); |
| 681 | /** Adds multiple of a column into an array */ |
| 682 | void add(double * array, |
| 683 | int column, double multiplier) const; |
| 684 | /** |
| 685 | Unpacks one column of the matrix into indexed array |
| 686 | Uses sequenceIn_ |
| 687 | Also applies scaling if needed |
| 688 | */ |
| 689 | void unpack(CoinIndexedVector * rowArray) const ; |
| 690 | /** |
| 691 | Unpacks one column of the matrix into indexed array |
| 692 | Slack if sequence>= numberColumns |
| 693 | Also applies scaling if needed |
| 694 | */ |
| 695 | void unpack(CoinIndexedVector * rowArray, int sequence) const; |
| 696 | /** |
| 697 | Unpacks one column of the matrix into indexed array |
| 698 | ** as packed vector |
| 699 | Uses sequenceIn_ |
| 700 | Also applies scaling if needed |
| 701 | */ |
| 702 | void unpackPacked(CoinIndexedVector * rowArray) ; |
| 703 | /** |
| 704 | Unpacks one column of the matrix into indexed array |
| 705 | ** as packed vector |
| 706 | Slack if sequence>= numberColumns |
| 707 | Also applies scaling if needed |
| 708 | */ |
| 709 | void unpackPacked(CoinIndexedVector * rowArray, int sequence); |
| 710 | protected: |
| 711 | /** |
| 712 | This does basis housekeeping and does values for in/out variables. |
| 713 | Can also decide to re-factorize |
| 714 | */ |
| 715 | int housekeeping(double objectiveChange); |
| 716 | /** This sets largest infeasibility and most infeasible and sum |
| 717 | and number of infeasibilities (Primal) */ |
| 718 | void checkPrimalSolution(const double * rowActivities = nullptr, |
| 719 | const double * columnActivies = nullptr); |
| 720 | /** This sets largest infeasibility and most infeasible and sum |
| 721 | and number of infeasibilities (Dual) */ |
| 722 | void checkDualSolution(); |
| 723 | /** This sets sum and number of infeasibilities (Dual and Primal) */ |
| 724 | void checkBothSolutions(); |
| 725 | /** If input negative scales objective so maximum <= -value |
| 726 | and returns scale factor used. If positive unscales and also |
| 727 | redoes dual stuff |
| 728 | */ |
| 729 | double scaleObjective(double value); |
| 730 | /// Solve using Dantzig-Wolfe decomposition and maybe in parallel |
| 731 | int solveDW(CoinStructuredModel * model); |
| 732 | /// Solve using Benders decomposition and maybe in parallel |
| 733 | int solveBenders(CoinStructuredModel * model); |
| 734 | public: |
| 735 | /** For advanced use. When doing iterative solves things can get |
| 736 | nasty so on values pass if incoming solution has largest |
| 737 | infeasibility < incomingInfeasibility throw out variables |
| 738 | from basis until largest infeasibility < allowedInfeasibility |
| 739 | or incoming largest infeasibility. |
| 740 | If allowedInfeasibility>= incomingInfeasibility this is |
| 741 | always possible altough you may end up with an all slack basis. |
| 742 | |
| 743 | Defaults are 1.0,10.0 |
| 744 | */ |
| 745 | void setValuesPassAction(double incomingInfeasibility, |
| 746 | double allowedInfeasibility); |
| 747 | //@} |
| 748 | /**@name most useful gets and sets */ |
| 749 | //@{ |
| 750 | public: |
| 751 | /// Initial value for alpha accuracy calculation (-1.0 off) |
| 752 | inline double alphaAccuracy() const { |
| 753 | return alphaAccuracy_; |
| 754 | } |
| 755 | inline void setAlphaAccuracy(double value) { |
| 756 | alphaAccuracy_ = value; |
| 757 | } |
| 758 | public: |
| 759 | /// Objective value |
| 760 | //inline double objectiveValue() const { |
| 761 | //return (objectiveValue_-bestPossibleImprovement_)*optimizationDirection_ - dblParam_[ClpObjOffset]; |
| 762 | //} |
| 763 | /// Set disaster handler |
| 764 | inline void setDisasterHandler(ClpDisasterHandler * handler) { |
| 765 | disasterArea_ = handler; |
| 766 | } |
| 767 | /// Get disaster handler |
| 768 | inline ClpDisasterHandler * disasterHandler() const { |
| 769 | return disasterArea_; |
| 770 | } |
| 771 | /// Large bound value (for complementarity etc) |
| 772 | inline double largeValue() const { |
| 773 | return largeValue_; |
| 774 | } |
| 775 | void setLargeValue( double value) ; |
| 776 | /// Largest error on Ax-b |
| 777 | inline double largestPrimalError() const { |
| 778 | return largestPrimalError_; |
| 779 | } |
| 780 | /// Largest error on basic duals |
| 781 | inline double largestDualError() const { |
| 782 | return largestDualError_; |
| 783 | } |
| 784 | /// Largest error on Ax-b |
| 785 | inline void setLargestPrimalError(double value) { |
| 786 | largestPrimalError_ = value; |
| 787 | } |
| 788 | /// Largest error on basic duals |
| 789 | inline void setLargestDualError(double value) { |
| 790 | largestDualError_ = value; |
| 791 | } |
| 792 | /// Get zero tolerance |
| 793 | inline double zeroTolerance() const { |
| 794 | return zeroTolerance_;/*factorization_->zeroTolerance();*/ |
| 795 | } |
| 796 | /// Set zero tolerance |
| 797 | inline void setZeroTolerance( double value) { |
| 798 | zeroTolerance_ = value; |
| 799 | } |
| 800 | /// Basic variables pivoting on which rows |
| 801 | inline int * pivotVariable() const { |
| 802 | return pivotVariable_; |
| 803 | } |
| 804 | /// If automatic scaling on |
| 805 | inline bool automaticScaling() const { |
| 806 | return automaticScale_ != 0; |
| 807 | } |
| 808 | inline void setAutomaticScaling(bool onOff) { |
| 809 | automaticScale_ = onOff ? 1 : 0; |
| 810 | } |
| 811 | /// Current dual tolerance |
| 812 | inline double currentDualTolerance() const { |
| 813 | return dualTolerance_; |
| 814 | } |
| 815 | inline void setCurrentDualTolerance(double value) { |
| 816 | dualTolerance_ = value; |
| 817 | } |
| 818 | /// Current primal tolerance |
| 819 | inline double currentPrimalTolerance() const { |
| 820 | return primalTolerance_; |
| 821 | } |
| 822 | inline void setCurrentPrimalTolerance(double value) { |
| 823 | primalTolerance_ = value; |
| 824 | } |
| 825 | /// How many iterative refinements to do |
| 826 | inline int numberRefinements() const { |
| 827 | return numberRefinements_; |
| 828 | } |
| 829 | void setNumberRefinements( int value) ; |
| 830 | /// Alpha (pivot element) for use by classes e.g. steepestedge |
| 831 | inline double alpha() const { |
| 832 | return alpha_; |
| 833 | } |
| 834 | inline void setAlpha(double value) { |
| 835 | alpha_ = value; |
| 836 | } |
| 837 | /// Reduced cost of last incoming for use by classes e.g. steepestedge |
| 838 | inline double dualIn() const { |
| 839 | return dualIn_; |
| 840 | } |
| 841 | /// Pivot Row for use by classes e.g. steepestedge |
| 842 | inline int pivotRow() const { |
| 843 | return pivotRow_; |
| 844 | } |
| 845 | inline void setPivotRow(int value) { |
| 846 | pivotRow_ = value; |
| 847 | } |
| 848 | /// value of incoming variable (in Dual) |
| 849 | double valueIncomingDual() const; |
| 850 | //@} |
| 851 | |
| 852 | protected: |
| 853 | /**@name protected methods */ |
| 854 | //@{ |
| 855 | /** May change basis and then returns number changed. |
| 856 | Computation of solutions may be overriden by given pi and solution |
| 857 | */ |
| 858 | int gutsOfSolution ( double * givenDuals, |
| 859 | const double * givenPrimals, |
| 860 | bool valuesPass = false); |
| 861 | /// Does most of deletion (0 = all, 1 = most, 2 most + factorization) |
| 862 | void gutsOfDelete(int type); |
| 863 | /// Does most of copying |
| 864 | void gutsOfCopy(const ClpSimplex & rhs); |
| 865 | /** puts in format I like (rowLower,rowUpper) also see StandardMatrix |
| 866 | 1 bit does rows (now and columns), (2 bit does column bounds), 4 bit does objective(s). |
| 867 | 8 bit does solution scaling in |
| 868 | 16 bit does rowArray and columnArray indexed vectors |
| 869 | and makes row copy if wanted, also sets columnStart_ etc |
| 870 | Also creates scaling arrays if needed. It does scaling if needed. |
| 871 | 16 also moves solutions etc in to work arrays |
| 872 | On 16 returns false if problem "bad" i.e. matrix or bounds bad |
| 873 | If startFinishOptions is -1 then called by user in getSolution |
| 874 | so do arrays but keep pivotVariable_ |
| 875 | */ |
| 876 | bool createRim(int what, bool makeRowCopy = false, int startFinishOptions = 0); |
| 877 | /// Does rows and columns |
| 878 | void createRim1(bool initial); |
| 879 | /// Does objective |
| 880 | void createRim4(bool initial); |
| 881 | /// Does rows and columns and objective |
| 882 | void createRim5(bool initial); |
| 883 | /** releases above arrays and does solution scaling out. May also |
| 884 | get rid of factorization data - |
| 885 | 0 get rid of nothing, 1 get rid of arrays, 2 also factorization |
| 886 | */ |
| 887 | void deleteRim(int getRidOfFactorizationData = 2); |
| 888 | /// Sanity check on input rim data (after scaling) - returns true if okay |
| 889 | bool sanityCheck(); |
| 890 | //@} |
| 891 | public: |
| 892 | /**@name public methods */ |
| 893 | //@{ |
| 894 | /** Return row or column sections - not as much needed as it |
| 895 | once was. These just map into single arrays */ |
| 896 | inline double * solutionRegion(int section) const { |
| 897 | if (!section) return rowActivityWork_; |
| 898 | else return columnActivityWork_; |
| 899 | } |
| 900 | inline double * djRegion(int section) const { |
| 901 | if (!section) return rowReducedCost_; |
| 902 | else return reducedCostWork_; |
| 903 | } |
| 904 | inline double * lowerRegion(int section) const { |
| 905 | if (!section) return rowLowerWork_; |
| 906 | else return columnLowerWork_; |
| 907 | } |
| 908 | inline double * upperRegion(int section) const { |
| 909 | if (!section) return rowUpperWork_; |
| 910 | else return columnUpperWork_; |
| 911 | } |
| 912 | inline double * costRegion(int section) const { |
| 913 | if (!section) return rowObjectiveWork_; |
| 914 | else return objectiveWork_; |
| 915 | } |
| 916 | /// Return region as single array |
| 917 | inline double * solutionRegion() const { |
| 918 | return solution_; |
| 919 | } |
| 920 | inline double * djRegion() const { |
| 921 | return dj_; |
| 922 | } |
| 923 | inline double * lowerRegion() const { |
| 924 | return lower_; |
| 925 | } |
| 926 | inline double * upperRegion() const { |
| 927 | return upper_; |
| 928 | } |
| 929 | inline double * costRegion() const { |
| 930 | return cost_; |
| 931 | } |
| 932 | inline Status getStatus(int sequence) const { |
| 933 | return static_cast<Status> (status_[sequence] & 7); |
| 934 | } |
| 935 | inline void setStatus(int sequence, Status newstatus) { |
| 936 | unsigned char & st_byte = status_[sequence]; |
| 937 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
| 938 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
| 939 | } |
| 940 | /// Start or reset using maximumRows_ and Columns_ - true if change |
| 941 | bool startPermanentArrays(); |
| 942 | /** Normally the first factorization does sparse coding because |
| 943 | the factorization could be singular. This allows initial dense |
| 944 | factorization when it is known to be safe |
| 945 | */ |
| 946 | void setInitialDenseFactorization(bool onOff); |
| 947 | bool initialDenseFactorization() const; |
| 948 | /** Return sequence In or Out */ |
| 949 | inline int sequenceIn() const { |
| 950 | return sequenceIn_; |
| 951 | } |
| 952 | inline int sequenceOut() const { |
| 953 | return sequenceOut_; |
| 954 | } |
| 955 | /** Set sequenceIn or Out */ |
| 956 | inline void setSequenceIn(int sequence) { |
| 957 | sequenceIn_ = sequence; |
| 958 | } |
| 959 | inline void setSequenceOut(int sequence) { |
| 960 | sequenceOut_ = sequence; |
| 961 | } |
| 962 | /** Return direction In or Out */ |
| 963 | inline int directionIn() const { |
| 964 | return directionIn_; |
| 965 | } |
| 966 | inline int directionOut() const { |
| 967 | return directionOut_; |
| 968 | } |
| 969 | /** Set directionIn or Out */ |
| 970 | inline void setDirectionIn(int direction) { |
| 971 | directionIn_ = direction; |
| 972 | } |
| 973 | inline void setDirectionOut(int direction) { |
| 974 | directionOut_ = direction; |
| 975 | } |
| 976 | /// Value of Out variable |
| 977 | inline double valueOut() const { |
| 978 | return valueOut_; |
| 979 | } |
| 980 | /// Set value of out variable |
| 981 | inline void setValueOut(double value) { |
| 982 | valueOut_ = value; |
| 983 | } |
| 984 | /// Set lower of out variable |
| 985 | inline void setLowerOut(double value) { |
| 986 | lowerOut_ = value; |
| 987 | } |
| 988 | /// Set upper of out variable |
| 989 | inline void setUpperOut(double value) { |
| 990 | upperOut_ = value; |
| 991 | } |
| 992 | /// Set theta of out variable |
| 993 | inline void setTheta(double value) { |
| 994 | theta_ = value; |
| 995 | } |
| 996 | /// Returns 1 if sequence indicates column |
| 997 | inline int isColumn(int sequence) const { |
| 998 | return sequence < numberColumns_ ? 1 : 0; |
| 999 | } |
| 1000 | /// Returns sequence number within section |
| 1001 | inline int sequenceWithin(int sequence) const { |
| 1002 | return sequence < numberColumns_ ? sequence : sequence - numberColumns_; |
| 1003 | } |
| 1004 | /// Return row or column values |
| 1005 | inline double solution(int sequence) { |
| 1006 | return solution_[sequence]; |
| 1007 | } |
| 1008 | /// Return address of row or column values |
| 1009 | inline double & solutionAddress(int sequence) { |
| 1010 | return solution_[sequence]; |
| 1011 | } |
| 1012 | inline double reducedCost(int sequence) { |
| 1013 | return dj_[sequence]; |
| 1014 | } |
| 1015 | inline double & reducedCostAddress(int sequence) { |
| 1016 | return dj_[sequence]; |
| 1017 | } |
| 1018 | inline double lower(int sequence) { |
| 1019 | return lower_[sequence]; |
| 1020 | } |
| 1021 | /// Return address of row or column lower bound |
| 1022 | inline double & lowerAddress(int sequence) { |
| 1023 | return lower_[sequence]; |
| 1024 | } |
| 1025 | inline double upper(int sequence) { |
| 1026 | return upper_[sequence]; |
| 1027 | } |
| 1028 | /// Return address of row or column upper bound |
| 1029 | inline double & upperAddress(int sequence) { |
| 1030 | return upper_[sequence]; |
| 1031 | } |
| 1032 | inline double cost(int sequence) { |
| 1033 | return cost_[sequence]; |
| 1034 | } |
| 1035 | /// Return address of row or column cost |
| 1036 | inline double & costAddress(int sequence) { |
| 1037 | return cost_[sequence]; |
| 1038 | } |
| 1039 | /// Return original lower bound |
| 1040 | inline double originalLower(int iSequence) const { |
| 1041 | if (iSequence < numberColumns_) return columnLower_[iSequence]; |
| 1042 | else |
| 1043 | return rowLower_[iSequence-numberColumns_]; |
| 1044 | } |
| 1045 | /// Return original lower bound |
| 1046 | inline double originalUpper(int iSequence) const { |
| 1047 | if (iSequence < numberColumns_) return columnUpper_[iSequence]; |
| 1048 | else |
| 1049 | return rowUpper_[iSequence-numberColumns_]; |
| 1050 | } |
| 1051 | /// Theta (pivot change) |
| 1052 | inline double theta() const { |
| 1053 | return theta_; |
| 1054 | } |
| 1055 | /** Best possible improvement using djs (primal) or |
| 1056 | obj change by flipping bounds to make dual feasible (dual) */ |
| 1057 | inline double bestPossibleImprovement() const { |
| 1058 | return bestPossibleImprovement_; |
| 1059 | } |
| 1060 | /// Return pointer to details of costs |
| 1061 | inline ClpNonLinearCost * nonLinearCost() const { |
| 1062 | return nonLinearCost_; |
| 1063 | } |
| 1064 | /** Return more special options |
| 1065 | 1 bit - if presolve says infeasible in ClpSolve return |
| 1066 | 2 bit - if presolved problem infeasible return |
| 1067 | 4 bit - keep arrays like upper_ around |
| 1068 | 8 bit - if factorization kept can still declare optimal at once |
| 1069 | 16 bit - if checking replaceColumn accuracy before updating |
| 1070 | 32 bit - say optimal if primal feasible! |
| 1071 | 64 bit - give up easily in dual (and say infeasible) |
| 1072 | 128 bit - no objective, 0-1 and in B&B |
| 1073 | 256 bit - in primal from dual or vice versa |
| 1074 | 512 bit - alternative use of solveType_ |
| 1075 | 1024 bit - don't do row copy of factorization |
| 1076 | 2048 bit - perturb in complete fathoming |
| 1077 | 4096 bit - try more for complete fathoming |
| 1078 | 8192 bit - don't even think of using primal if user asks for dual (and vv) |
| 1079 | */ |
| 1080 | inline int moreSpecialOptions() const { |
| 1081 | return moreSpecialOptions_; |
| 1082 | } |
| 1083 | /** Set more special options |
| 1084 | 1 bit - if presolve says infeasible in ClpSolve return |
| 1085 | 2 bit - if presolved problem infeasible return |
| 1086 | 4 bit - keep arrays like upper_ around |
| 1087 | 8 bit - no free or superBasic variables |
| 1088 | 16 bit - if checking replaceColumn accuracy before updating |
| 1089 | 32 bit - say optimal if primal feasible! |
| 1090 | 64 bit - give up easily in dual (and say infeasible) |
| 1091 | 128 bit - no objective, 0-1 and in B&B |
| 1092 | 256 bit - in primal from dual or vice versa |
| 1093 | 512 bit - alternative use of solveType_ |
| 1094 | 1024 bit - don't do row copy of factorization |
| 1095 | 2048 bit - perturb in complete fathoming |
| 1096 | 4096 bit - try more for complete fathoming |
| 1097 | 8192 bit - don't even think of using primal if user asks for dual (and vv) |
| 1098 | */ |
| 1099 | inline void setMoreSpecialOptions(int value) { |
| 1100 | moreSpecialOptions_ = value; |
| 1101 | } |
| 1102 | //@} |
| 1103 | /**@name status methods */ |
| 1104 | //@{ |
| 1105 | inline void setFakeBound(int sequence, FakeBound fakeBound) { |
| 1106 | unsigned char & st_byte = status_[sequence]; |
| 1107 | st_byte = static_cast<unsigned char>(st_byte & ~24); |
| 1108 | st_byte = static_cast<unsigned char>(st_byte | (fakeBound << 3)); |
| 1109 | } |
| 1110 | inline FakeBound getFakeBound(int sequence) const { |
| 1111 | return static_cast<FakeBound> ((status_[sequence] >> 3) & 3); |
| 1112 | } |
| 1113 | inline void setRowStatus(int sequence, Status newstatus) { |
| 1114 | unsigned char & st_byte = status_[sequence+numberColumns_]; |
| 1115 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
| 1116 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
| 1117 | } |
| 1118 | inline Status getRowStatus(int sequence) const { |
| 1119 | return static_cast<Status> (status_[sequence+numberColumns_] & 7); |
| 1120 | } |
| 1121 | inline void setColumnStatus(int sequence, Status newstatus) { |
| 1122 | unsigned char & st_byte = status_[sequence]; |
| 1123 | st_byte = static_cast<unsigned char>(st_byte & ~7); |
| 1124 | st_byte = static_cast<unsigned char>(st_byte | newstatus); |
| 1125 | } |
| 1126 | inline Status getColumnStatus(int sequence) const { |
| 1127 | return static_cast<Status> (status_[sequence] & 7); |
| 1128 | } |
| 1129 | inline void setPivoted( int sequence) { |
| 1130 | status_[sequence] = static_cast<unsigned char>(status_[sequence] | 32); |
| 1131 | } |
| 1132 | inline void clearPivoted( int sequence) { |
| 1133 | status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~32); |
| 1134 | } |
| 1135 | inline bool pivoted(int sequence) const { |
| 1136 | return (((status_[sequence] >> 5) & 1) != 0); |
| 1137 | } |
| 1138 | /// To flag a variable (not inline to allow for column generation) |
| 1139 | void setFlagged( int sequence); |
| 1140 | inline void clearFlagged( int sequence) { |
| 1141 | status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~64); |
| 1142 | } |
| 1143 | inline bool flagged(int sequence) const { |
| 1144 | return ((status_[sequence] & 64) != 0); |
| 1145 | } |
| 1146 | /// To say row active in primal pivot row choice |
| 1147 | inline void setActive( int iRow) { |
| 1148 | status_[iRow] = static_cast<unsigned char>(status_[iRow] | 128); |
| 1149 | } |
| 1150 | inline void clearActive( int iRow) { |
| 1151 | status_[iRow] = static_cast<unsigned char>(status_[iRow] & ~128); |
| 1152 | } |
| 1153 | inline bool active(int iRow) const { |
| 1154 | return ((status_[iRow] & 128) != 0); |
| 1155 | } |
| 1156 | /** Set up status array (can be used by OsiClp). |
| 1157 | Also can be used to set up all slack basis */ |
| 1158 | void createStatus() ; |
| 1159 | /** Sets up all slack basis and resets solution to |
| 1160 | as it was after initial load or readMps */ |
| 1161 | void allSlackBasis(bool resetSolution = false); |
| 1162 | |
| 1163 | /// So we know when to be cautious |
| 1164 | inline int lastBadIteration() const { |
| 1165 | return lastBadIteration_; |
| 1166 | } |
| 1167 | /// Progress flag - at present 0 bit says artificials out |
| 1168 | inline int progressFlag() const { |
| 1169 | return (progressFlag_ & 3); |
| 1170 | } |
| 1171 | /// Force re-factorization early |
| 1172 | inline void forceFactorization(int value) { |
| 1173 | forceFactorization_ = value; |
| 1174 | } |
| 1175 | /// Raw objective value (so always minimize in primal) |
| 1176 | inline double rawObjectiveValue() const { |
| 1177 | return objectiveValue_; |
| 1178 | } |
| 1179 | /// Compute objective value from solution and put in objectiveValue_ |
| 1180 | void computeObjectiveValue(bool useWorkingSolution = false); |
| 1181 | /// Compute minimization objective value from internal solution without perturbation |
| 1182 | double computeInternalObjectiveValue(); |
| 1183 | /** Number of extra rows. These are ones which will be dynamically created |
| 1184 | each iteration. This is for GUB but may have other uses. |
| 1185 | */ |
| 1186 | inline int () const { |
| 1187 | return numberExtraRows_; |
| 1188 | } |
| 1189 | /** Maximum number of basic variables - can be more than number of rows if GUB |
| 1190 | */ |
| 1191 | inline int maximumBasic() const { |
| 1192 | return maximumBasic_; |
| 1193 | } |
| 1194 | /// Iteration when we entered dual or primal |
| 1195 | inline int baseIteration() const { |
| 1196 | return baseIteration_; |
| 1197 | } |
| 1198 | /// Create C++ lines to get to current state |
| 1199 | void generateCpp( FILE * fp, bool defaultFactor = false); |
| 1200 | /// Gets clean and emptyish factorization |
| 1201 | ClpFactorization * getEmptyFactorization(); |
| 1202 | /// May delete or may make clean and emptyish factorization |
| 1203 | void setEmptyFactorization(); |
| 1204 | /// Move status and solution across |
| 1205 | void moveInfo(const ClpSimplex & rhs, bool justStatus = false); |
| 1206 | //@} |
| 1207 | |
| 1208 | ///@name Basis handling |
| 1209 | // These are only to be used using startFinishOptions (ClpSimplexDual, ClpSimplexPrimal) |
| 1210 | // *** At present only without scaling |
| 1211 | // *** Slacks havve -1.0 element (so == row activity) - take care |
| 1212 | ///Get a row of the tableau (slack part in slack if not NULL) |
| 1213 | void getBInvARow(int row, double* z, double * slack = nullptr); |
| 1214 | |
| 1215 | ///Get a row of the basis inverse |
| 1216 | void getBInvRow(int row, double* z); |
| 1217 | |
| 1218 | ///Get a column of the tableau |
| 1219 | void getBInvACol(int col, double* vec); |
| 1220 | |
| 1221 | ///Get a column of the basis inverse |
| 1222 | void getBInvCol(int col, double* vec); |
| 1223 | |
| 1224 | /** Get basic indices (order of indices corresponds to the |
| 1225 | order of elements in a vector retured by getBInvACol() and |
| 1226 | getBInvCol()). |
| 1227 | */ |
| 1228 | void getBasics(int* index); |
| 1229 | |
| 1230 | //@} |
| 1231 | //------------------------------------------------------------------------- |
| 1232 | /**@name Changing bounds on variables and constraints */ |
| 1233 | //@{ |
| 1234 | /** Set an objective function coefficient */ |
| 1235 | void setObjectiveCoefficient( int elementIndex, double elementValue ); |
| 1236 | /** Set an objective function coefficient */ |
| 1237 | inline void setObjCoeff( int elementIndex, double elementValue ) { |
| 1238 | setObjectiveCoefficient( elementIndex, elementValue); |
| 1239 | } |
| 1240 | |
| 1241 | /** Set a single column lower bound<br> |
| 1242 | Use -DBL_MAX for -infinity. */ |
| 1243 | void setColumnLower( int elementIndex, double elementValue ); |
| 1244 | |
| 1245 | /** Set a single column upper bound<br> |
| 1246 | Use DBL_MAX for infinity. */ |
| 1247 | void setColumnUpper( int elementIndex, double elementValue ); |
| 1248 | |
| 1249 | /** Set a single column lower and upper bound */ |
| 1250 | void setColumnBounds( int elementIndex, |
| 1251 | double lower, double upper ); |
| 1252 | |
| 1253 | /** Set the bounds on a number of columns simultaneously<br> |
| 1254 | The default implementation just invokes setColLower() and |
| 1255 | setColUpper() over and over again. |
| 1256 | @param indexFirst,indexLast pointers to the beginning and after the |
| 1257 | end of the array of the indices of the variables whose |
| 1258 | <em>either</em> bound changes |
| 1259 | @param boundList the new lower/upper bound pairs for the variables |
| 1260 | */ |
| 1261 | void setColumnSetBounds(const int* indexFirst, |
| 1262 | const int* indexLast, |
| 1263 | const double* boundList); |
| 1264 | |
| 1265 | /** Set a single column lower bound<br> |
| 1266 | Use -DBL_MAX for -infinity. */ |
| 1267 | inline void setColLower( int elementIndex, double elementValue ) { |
| 1268 | setColumnLower(elementIndex, elementValue); |
| 1269 | } |
| 1270 | /** Set a single column upper bound<br> |
| 1271 | Use DBL_MAX for infinity. */ |
| 1272 | inline void setColUpper( int elementIndex, double elementValue ) { |
| 1273 | setColumnUpper(elementIndex, elementValue); |
| 1274 | } |
| 1275 | |
| 1276 | /** Set a single column lower and upper bound */ |
| 1277 | inline void setColBounds( int elementIndex, |
| 1278 | double newlower, double newupper ) { |
| 1279 | setColumnBounds(elementIndex, newlower, newupper); |
| 1280 | } |
| 1281 | |
| 1282 | /** Set the bounds on a number of columns simultaneously<br> |
| 1283 | @param indexFirst,indexLast pointers to the beginning and after the |
| 1284 | end of the array of the indices of the variables whose |
| 1285 | <em>either</em> bound changes |
| 1286 | @param boundList the new lower/upper bound pairs for the variables |
| 1287 | */ |
| 1288 | inline void setColSetBounds(const int* indexFirst, |
| 1289 | const int* indexLast, |
| 1290 | const double* boundList) { |
| 1291 | setColumnSetBounds(indexFirst, indexLast, boundList); |
| 1292 | } |
| 1293 | |
| 1294 | /** Set a single row lower bound<br> |
| 1295 | Use -DBL_MAX for -infinity. */ |
| 1296 | void setRowLower( int elementIndex, double elementValue ); |
| 1297 | |
| 1298 | /** Set a single row upper bound<br> |
| 1299 | Use DBL_MAX for infinity. */ |
| 1300 | void setRowUpper( int elementIndex, double elementValue ) ; |
| 1301 | |
| 1302 | /** Set a single row lower and upper bound */ |
| 1303 | void setRowBounds( int elementIndex, |
| 1304 | double lower, double upper ) ; |
| 1305 | |
| 1306 | /** Set the bounds on a number of rows simultaneously<br> |
| 1307 | @param indexFirst,indexLast pointers to the beginning and after the |
| 1308 | end of the array of the indices of the constraints whose |
| 1309 | <em>either</em> bound changes |
| 1310 | @param boundList the new lower/upper bound pairs for the constraints |
| 1311 | */ |
| 1312 | void setRowSetBounds(const int* indexFirst, |
| 1313 | const int* indexLast, |
| 1314 | const double* boundList); |
| 1315 | /// Resizes rim part of model |
| 1316 | void resize (int newNumberRows, int newNumberColumns); |
| 1317 | |
| 1318 | //@} |
| 1319 | |
| 1320 | ////////////////// data ////////////////// |
| 1321 | protected: |
| 1322 | |
| 1323 | /**@name data. Many arrays have a row part and a column part. |
| 1324 | There is a single array with both - columns then rows and |
| 1325 | then normally two arrays pointing to rows and columns. The |
| 1326 | single array is the owner of memory |
| 1327 | */ |
| 1328 | //@{ |
| 1329 | /** Best possible improvement using djs (primal) or |
| 1330 | obj change by flipping bounds to make dual feasible (dual) */ |
| 1331 | double bestPossibleImprovement_; |
| 1332 | /// Zero tolerance |
| 1333 | double zeroTolerance_; |
| 1334 | /// Sequence of worst (-1 if feasible) |
| 1335 | int columnPrimalSequence_; |
| 1336 | /// Sequence of worst (-1 if feasible) |
| 1337 | int rowPrimalSequence_; |
| 1338 | /// "Best" objective value |
| 1339 | double bestObjectiveValue_; |
| 1340 | /// More special options - see set for details |
| 1341 | int moreSpecialOptions_; |
| 1342 | /// Iteration when we entered dual or primal |
| 1343 | int baseIteration_; |
| 1344 | /// Primal tolerance needed to make dual feasible (<largeTolerance) |
| 1345 | double primalToleranceToGetOptimal_; |
| 1346 | /// Large bound value (for complementarity etc) |
| 1347 | double largeValue_; |
| 1348 | /// Largest error on Ax-b |
| 1349 | double largestPrimalError_; |
| 1350 | /// Largest error on basic duals |
| 1351 | double largestDualError_; |
| 1352 | /// For computing whether to re-factorize |
| 1353 | double alphaAccuracy_; |
| 1354 | /// Dual bound |
| 1355 | double dualBound_; |
| 1356 | /// Alpha (pivot element) |
| 1357 | double alpha_; |
| 1358 | /// Theta (pivot change) |
| 1359 | double theta_; |
| 1360 | /// Lower Bound on In variable |
| 1361 | double lowerIn_; |
| 1362 | /// Value of In variable |
| 1363 | double valueIn_; |
| 1364 | /// Upper Bound on In variable |
| 1365 | double upperIn_; |
| 1366 | /// Reduced cost of In variable |
| 1367 | double dualIn_; |
| 1368 | /// Lower Bound on Out variable |
| 1369 | double lowerOut_; |
| 1370 | /// Value of Out variable |
| 1371 | double valueOut_; |
| 1372 | /// Upper Bound on Out variable |
| 1373 | double upperOut_; |
| 1374 | /// Infeasibility (dual) or ? (primal) of Out variable |
| 1375 | double dualOut_; |
| 1376 | /// Current dual tolerance for algorithm |
| 1377 | double dualTolerance_; |
| 1378 | /// Current primal tolerance for algorithm |
| 1379 | double primalTolerance_; |
| 1380 | /// Sum of dual infeasibilities |
| 1381 | double sumDualInfeasibilities_; |
| 1382 | /// Sum of primal infeasibilities |
| 1383 | double sumPrimalInfeasibilities_; |
| 1384 | /// Weight assigned to being infeasible in primal |
| 1385 | double infeasibilityCost_; |
| 1386 | /// Sum of Dual infeasibilities using tolerance based on error in duals |
| 1387 | double sumOfRelaxedDualInfeasibilities_; |
| 1388 | /// Sum of Primal infeasibilities using tolerance based on error in primals |
| 1389 | double sumOfRelaxedPrimalInfeasibilities_; |
| 1390 | /// Acceptable pivot value just after factorization |
| 1391 | double acceptablePivot_; |
| 1392 | /// Working copy of lower bounds (Owner of arrays below) |
| 1393 | double * lower_; |
| 1394 | /// Row lower bounds - working copy |
| 1395 | double * rowLowerWork_; |
| 1396 | /// Column lower bounds - working copy |
| 1397 | double * columnLowerWork_; |
| 1398 | /// Working copy of upper bounds (Owner of arrays below) |
| 1399 | double * upper_; |
| 1400 | /// Row upper bounds - working copy |
| 1401 | double * rowUpperWork_; |
| 1402 | /// Column upper bounds - working copy |
| 1403 | double * columnUpperWork_; |
| 1404 | /// Working copy of objective (Owner of arrays below) |
| 1405 | double * cost_; |
| 1406 | /// Row objective - working copy |
| 1407 | double * rowObjectiveWork_; |
| 1408 | /// Column objective - working copy |
| 1409 | double * objectiveWork_; |
| 1410 | /// Useful row length arrays |
| 1411 | CoinIndexedVector * rowArray_[6]; |
| 1412 | /// Useful column length arrays |
| 1413 | CoinIndexedVector * columnArray_[6]; |
| 1414 | /// Sequence of In variable |
| 1415 | int sequenceIn_; |
| 1416 | /// Direction of In, 1 going up, -1 going down, 0 not a clude |
| 1417 | int directionIn_; |
| 1418 | /// Sequence of Out variable |
| 1419 | int sequenceOut_; |
| 1420 | /// Direction of Out, 1 to upper bound, -1 to lower bound, 0 - superbasic |
| 1421 | int directionOut_; |
| 1422 | /// Pivot Row |
| 1423 | int pivotRow_; |
| 1424 | /// Last good iteration (immediately after a re-factorization) |
| 1425 | int lastGoodIteration_; |
| 1426 | /// Working copy of reduced costs (Owner of arrays below) |
| 1427 | double * dj_; |
| 1428 | /// Reduced costs of slacks not same as duals (or - duals) |
| 1429 | double * rowReducedCost_; |
| 1430 | /// Possible scaled reduced costs |
| 1431 | double * reducedCostWork_; |
| 1432 | /// Working copy of primal solution (Owner of arrays below) |
| 1433 | double * solution_; |
| 1434 | /// Row activities - working copy |
| 1435 | double * rowActivityWork_; |
| 1436 | /// Column activities - working copy |
| 1437 | double * columnActivityWork_; |
| 1438 | /// Number of dual infeasibilities |
| 1439 | int numberDualInfeasibilities_; |
| 1440 | /// Number of dual infeasibilities (without free) |
| 1441 | int numberDualInfeasibilitiesWithoutFree_; |
| 1442 | /// Number of primal infeasibilities |
| 1443 | int numberPrimalInfeasibilities_; |
| 1444 | /// How many iterative refinements to do |
| 1445 | int numberRefinements_; |
| 1446 | /// dual row pivot choice |
| 1447 | ClpDualRowPivot * dualRowPivot_; |
| 1448 | /// primal column pivot choice |
| 1449 | ClpPrimalColumnPivot * primalColumnPivot_; |
| 1450 | /// Basic variables pivoting on which rows |
| 1451 | int * pivotVariable_; |
| 1452 | /// factorization |
| 1453 | ClpFactorization * factorization_; |
| 1454 | /// Saved version of solution |
| 1455 | double * savedSolution_; |
| 1456 | /// Number of times code has tentatively thought optimal |
| 1457 | int numberTimesOptimal_; |
| 1458 | /// Disaster handler |
| 1459 | ClpDisasterHandler * disasterArea_; |
| 1460 | /// If change has been made (first attempt at stopping looping) |
| 1461 | int changeMade_; |
| 1462 | /// Algorithm >0 == Primal, <0 == Dual |
| 1463 | int algorithm_; |
| 1464 | /** Now for some reliability aids |
| 1465 | This forces re-factorization early */ |
| 1466 | int forceFactorization_; |
| 1467 | /** Perturbation: |
| 1468 | -50 to +50 - perturb by this power of ten (-6 sounds good) |
| 1469 | 100 - auto perturb if takes too long (1.0e-6 largest nonzero) |
| 1470 | 101 - we are perturbed |
| 1471 | 102 - don't try perturbing again |
| 1472 | default is 100 |
| 1473 | */ |
| 1474 | int perturbation_; |
| 1475 | /// Saved status regions |
| 1476 | unsigned char * saveStatus_; |
| 1477 | /** Very wasteful way of dealing with infeasibilities in primal. |
| 1478 | However it will allow non-linearities and use of dual |
| 1479 | analysis. If it doesn't work it can easily be replaced. |
| 1480 | */ |
| 1481 | ClpNonLinearCost * nonLinearCost_; |
| 1482 | /// So we know when to be cautious |
| 1483 | int lastBadIteration_; |
| 1484 | /// So we know when to open up again |
| 1485 | int lastFlaggedIteration_; |
| 1486 | /// Can be used for count of fake bounds (dual) or fake costs (primal) |
| 1487 | int numberFake_; |
| 1488 | /// Can be used for count of changed costs (dual) or changed bounds (primal) |
| 1489 | int numberChanged_; |
| 1490 | /// Progress flag - at present 0 bit says artificials out, 1 free in |
| 1491 | int progressFlag_; |
| 1492 | /// First free/super-basic variable (-1 if none) |
| 1493 | int firstFree_; |
| 1494 | /** Number of extra rows. These are ones which will be dynamically created |
| 1495 | each iteration. This is for GUB but may have other uses. |
| 1496 | */ |
| 1497 | int ; |
| 1498 | /** Maximum number of basic variables - can be more than number of rows if GUB |
| 1499 | */ |
| 1500 | int maximumBasic_; |
| 1501 | /// If may skip final factorize then allow up to this pivots (default 20) |
| 1502 | int dontFactorizePivots_; |
| 1503 | /** For advanced use. When doing iterative solves things can get |
| 1504 | nasty so on values pass if incoming solution has largest |
| 1505 | infeasibility < incomingInfeasibility throw out variables |
| 1506 | from basis until largest infeasibility < allowedInfeasibility. |
| 1507 | if allowedInfeasibility>= incomingInfeasibility this is |
| 1508 | always possible altough you may end up with an all slack basis. |
| 1509 | |
| 1510 | Defaults are 1.0,10.0 |
| 1511 | */ |
| 1512 | double incomingInfeasibility_; |
| 1513 | double allowedInfeasibility_; |
| 1514 | /// Automatic scaling of objective and rhs and bounds |
| 1515 | int automaticScale_; |
| 1516 | /// Maximum perturbation array size (take out when code rewritten) |
| 1517 | int maximumPerturbationSize_; |
| 1518 | /// Perturbation array (maximumPerturbationSize_) |
| 1519 | double * perturbationArray_; |
| 1520 | /// A copy of model with certain state - normally without cuts |
| 1521 | ClpSimplex * baseModel_; |
| 1522 | /// For dealing with all issues of cycling etc |
| 1523 | ClpSimplexProgress progress_; |
| 1524 | public: |
| 1525 | /// Spare int array for passing information [0]!=0 switches on |
| 1526 | mutable int spareIntArray_[4]; |
| 1527 | /// Spare double array for passing information [0]!=0 switches on |
| 1528 | mutable double spareDoubleArray_[4]; |
| 1529 | protected: |
| 1530 | /// Allow OsiClp certain perks |
| 1531 | friend class OsiClpSolverInterface; |
| 1532 | //@} |
| 1533 | }; |
| 1534 | //############################################################################# |
| 1535 | /** A function that tests the methods in the ClpSimplex class. The |
| 1536 | only reason for it not to be a member method is that this way it doesn't |
| 1537 | have to be compiled into the library. And that's a gain, because the |
| 1538 | library should be compiled with optimization on, but this method should be |
| 1539 | compiled with debugging. |
| 1540 | |
| 1541 | It also does some testing of ClpFactorization class |
| 1542 | */ |
| 1543 | void |
| 1544 | ClpSimplexUnitTest(const std::string & mpsDir); |
| 1545 | |
| 1546 | // For Devex stuff |
| 1547 | #define DEVEX_TRY_NORM 1.0e-4 |
| 1548 | #define DEVEX_ADD_ONE 1.0 |
| 1549 | #endif |
| 1550 | |