1 | /** \file |
2 | * \brief Declaration and implementation of EdgeArray class. |
3 | * |
4 | * \author Carsten Gutwenger |
5 | * |
6 | * \par License: |
7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
8 | * |
9 | * \par |
10 | * Copyright (C)<br> |
11 | * See README.md in the OGDF root directory for details. |
12 | * |
13 | * \par |
14 | * This program is free software; you can redistribute it and/or |
15 | * modify it under the terms of the GNU General Public License |
16 | * Version 2 or 3 as published by the Free Software Foundation; |
17 | * see the file LICENSE.txt included in the packaging of this file |
18 | * for details. |
19 | * |
20 | * \par |
21 | * This program is distributed in the hope that it will be useful, |
22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
24 | * GNU General Public License for more details. |
25 | * |
26 | * \par |
27 | * You should have received a copy of the GNU General Public |
28 | * License along with this program; if not, see |
29 | * http://www.gnu.org/copyleft/gpl.html |
30 | */ |
31 | |
32 | #pragma once |
33 | |
34 | #include <ogdf/basic/Graph_d.h> |
35 | |
36 | |
37 | namespace ogdf { |
38 | |
39 | |
40 | //! Abstract base class for edge arrays. |
41 | /** |
42 | * Defines the interface for event handling used by the Graph class. |
43 | * Use the parameterized class EdgeArray for creating edge arrays. |
44 | */ |
45 | class EdgeArrayBase { |
46 | /** |
47 | * Pointer to list element in the list of all registered edge |
48 | * arrays which references this array. |
49 | */ |
50 | ListIterator<EdgeArrayBase*> m_it; |
51 | |
52 | public: |
53 | const Graph *m_pGraph; //!< The associated graph. |
54 | |
55 | //! Initializes an edge array not associated with a graph. |
56 | EdgeArrayBase() : m_pGraph(nullptr) { } |
57 | |
58 | //! Initializes an edge array associated with \p pG. |
59 | explicit EdgeArrayBase(const Graph *pG) : m_pGraph(pG) { |
60 | if(pG) m_it = pG->registerArray(this); |
61 | } |
62 | |
63 | //! Moves edge array \p base to this edge array. |
64 | EdgeArrayBase(EdgeArrayBase &base) : m_it(base.m_it), m_pGraph(base.m_pGraph) { |
65 | if(m_pGraph) m_pGraph->moveRegisterArray(m_it, this); |
66 | base.m_pGraph = nullptr; |
67 | base.m_it = ListIterator<EdgeArrayBase*>(); |
68 | } |
69 | |
70 | // destructor, unregisters the array |
71 | virtual ~EdgeArrayBase() { |
72 | if (m_pGraph) m_pGraph->unregisterArray(m_it); |
73 | } |
74 | |
75 | // event interface used by Graph |
76 | //! Virtual function called when table size has to be enlarged. |
77 | virtual void enlargeTable(int newTableSize) = 0; |
78 | //! Virtual function called when table has to be reinitialized. |
79 | virtual void reinit(int initTableSize) = 0; |
80 | //! Virtual function called when array is disconnected from the graph. |
81 | virtual void disconnect() = 0; |
82 | |
83 | //! Associates the array with a new graph. |
84 | void reregister(const Graph *pG) { |
85 | if (m_pGraph) m_pGraph->unregisterArray(m_it); |
86 | if ((m_pGraph = pG) != nullptr) m_it = pG->registerArray(this); |
87 | } |
88 | |
89 | //! Moves array registration from \p base to this array. |
90 | void moveRegister(EdgeArrayBase &base) { |
91 | if (m_pGraph) m_pGraph->unregisterArray(m_it); |
92 | m_pGraph = base.m_pGraph; |
93 | m_it = base.m_it; |
94 | base.m_pGraph = nullptr; |
95 | base.m_it = ListIterator<EdgeArrayBase*>(); |
96 | if (m_pGraph != nullptr) |
97 | m_pGraph->moveRegisterArray(m_it, this); |
98 | } |
99 | }; |
100 | |
101 | //! Dynamic arrays indexed with edges. |
102 | /** |
103 | * @ingroup graph-containers |
104 | * |
105 | * Edge arrays represent a mapping from edges to data of type \a T. |
106 | * They adjust their table size automatically when the graph grows. |
107 | * |
108 | * @warn_undef_behavior_array |
109 | * |
110 | * @tparam T is the element type. |
111 | */ |
112 | template<class T> class EdgeArray : private Array<T>, protected EdgeArrayBase { |
113 | T m_x; //!< The default value for array elements. |
114 | |
115 | public: |
116 | //! The type for array keys. |
117 | using key_type = edge; |
118 | //! The type for array entries. |
119 | using value_type = T; |
120 | |
121 | //! The type for edge array iterators. |
122 | using iterator = internal::GraphArrayIterator<EdgeArray<T>>; |
123 | //! The type for edge array const iterators. |
124 | using const_iterator = internal::GraphArrayConstIterator<EdgeArray<T>>; |
125 | |
126 | |
127 | //! Constructs an empty edge array associated with no graph. |
128 | EdgeArray() : Array<T>(), EdgeArrayBase() { } |
129 | |
130 | //! Constructs an edge array associated with \p G. |
131 | explicit EdgeArray(const Graph &G) : Array<T>(G.edgeArrayTableSize()), EdgeArrayBase(&G) { } |
132 | |
133 | //! Constructs an edge array associated with \p G. |
134 | /** |
135 | * @param G is the associated graph. |
136 | * @param x is the default value for all array elements. |
137 | */ |
138 | EdgeArray(const Graph &G, const T &x) : |
139 | Array<T>(0,G.edgeArrayTableSize()-1,x), EdgeArrayBase(&G), m_x(x) { } |
140 | |
141 | //! Constructs an edge array that is a copy of \p A. |
142 | /** |
143 | * Associates the array with the same graph as \p A and copies all elements. |
144 | */ |
145 | EdgeArray(const EdgeArray<T> &A) : Array<T>(A), EdgeArrayBase(A.m_pGraph), m_x(A.m_x) { } |
146 | |
147 | //! Constructs an edge array containing the elements of \p A (move semantics). |
148 | /** |
149 | * Edge array \p A is empty afterwards and not associated with any graph. |
150 | */ |
151 | EdgeArray(EdgeArray<T> &&A) : Array<T>(std::move(A)), EdgeArrayBase(A), m_x(A.m_x) { } |
152 | |
153 | |
154 | /** |
155 | * @name Access methods |
156 | * These methods provide access to elements, size, and corresponding graph. |
157 | */ |
158 | //@{ |
159 | |
160 | //! Returns true iff the array is associated with a graph. |
161 | bool valid() const { return Array<T>::low() <= Array<T>::high(); } |
162 | |
163 | //! Returns a pointer to the associated graph. |
164 | const Graph *graphOf() const { |
165 | return m_pGraph; |
166 | } |
167 | |
168 | //! Returns a reference to the element with index \p e. |
169 | const T &operator[](edge e) const { |
170 | OGDF_ASSERT(e != nullptr); |
171 | OGDF_ASSERT(e->graphOf() == m_pGraph); |
172 | return Array<T>::operator [](e->index()); |
173 | } |
174 | |
175 | //! Returns a reference to the element with index \p e. |
176 | T &operator[](edge e) { |
177 | OGDF_ASSERT(e != nullptr); |
178 | OGDF_ASSERT(e->graphOf() == m_pGraph); |
179 | return Array<T>::operator [](e->index()); |
180 | } |
181 | |
182 | //! Returns a reference to the element with index \p e. |
183 | const T &operator()(edge e) const { |
184 | OGDF_ASSERT(e != nullptr); |
185 | OGDF_ASSERT(e->graphOf() == m_pGraph); |
186 | return Array<T>::operator [](e->index()); |
187 | } |
188 | |
189 | //! Returns a reference to the element with index \p e. |
190 | T &operator()(edge e) { |
191 | OGDF_ASSERT(e != nullptr); |
192 | OGDF_ASSERT(e->graphOf() == m_pGraph); |
193 | return Array<T>::operator [](e->index()); |
194 | } |
195 | |
196 | //! Returns a reference to the element with index edge of \p adj. |
197 | const T &operator[](adjEntry adj) const { |
198 | OGDF_ASSERT(adj != nullptr); |
199 | return Array<T>::operator [](adj->index() >> 1); |
200 | } |
201 | |
202 | //! Returns a reference to the element with index edge of \p adj. |
203 | T &operator[](adjEntry adj) { |
204 | OGDF_ASSERT(adj != nullptr); |
205 | return Array<T>::operator [](adj->index() >> 1); |
206 | } |
207 | |
208 | //! Returns a reference to the element with index edge of \p adj. |
209 | const T &operator()(adjEntry adj) const { |
210 | OGDF_ASSERT(adj != nullptr); |
211 | return Array<T>::operator [](adj->index() >> 1); |
212 | } |
213 | |
214 | //! Returns a reference to the element with index edge of \p adj. |
215 | T &operator()(adjEntry adj) { |
216 | OGDF_ASSERT(adj != nullptr); |
217 | return Array<T>::operator [](adj->index() >> 1); |
218 | } |
219 | |
220 | //! Returns a reference to the element with index \p index. |
221 | //! \attention Make sure that \p index is a valid index for an edge in the associated graph! |
222 | OGDF_DEPRECATED("Edge arrays should be indexed by an edge, not an integer index." ) |
223 | const T &operator[](int index) const |
224 | { return Array<T>::operator [](index); } |
225 | |
226 | //! Returns a reference to the element with index \p index. |
227 | //! \attention Make sure that \p index is a valid index for an edge in the associated graph! |
228 | OGDF_DEPRECATED("Edge arrays should be indexed by an edge, not an integer index." ) |
229 | T &operator[](int index) |
230 | { return Array<T>::operator [](index); } |
231 | |
232 | //@} |
233 | /** |
234 | * @name Iterators |
235 | * These methods return bidirectional iterators to elements in the array. |
236 | */ |
237 | //@{ |
238 | |
239 | //! Returns an iterator to the first entry in the edge array. |
240 | /** |
241 | * If the edge array is empty, a null pointer iterator is returned. |
242 | */ |
243 | iterator begin() { return iterator(m_pGraph->firstEdge(), this); } |
244 | |
245 | //! Returns a const iterator to the first entry in the edge array. |
246 | /** |
247 | * If the edge array is empty, a null pointer iterator is returned. |
248 | */ |
249 | const_iterator begin() const { return const_iterator(m_pGraph->firstEdge(), this); } |
250 | |
251 | //! Returns a const iterator to the first entry in the edge array. |
252 | /** |
253 | * If the edge array is empty, a null pointer iterator is returned. |
254 | */ |
255 | const_iterator cbegin() const { return const_iterator(m_pGraph->firstEdge(), this); } |
256 | |
257 | //! Returns an iterator to one-past-last entry in the edge array. |
258 | /** |
259 | * This is always a null pointer iterator. |
260 | */ |
261 | iterator end() { return iterator(nullptr, this); } |
262 | |
263 | //! Returns a const iterator to one-past-last entry in the edge array. |
264 | /** |
265 | * This is always a null pointer iterator. |
266 | */ |
267 | const_iterator end() const { return const_iterator(nullptr, this); } |
268 | |
269 | //! Returns a const iterator to one-past-last entry in the edge array. |
270 | /** |
271 | * This is always a null pointer iterator. |
272 | */ |
273 | const_iterator cend() const { return const_iterator(nullptr, this); } |
274 | |
275 | //@} |
276 | /** |
277 | * @name Initialization and assignment |
278 | * These methods can be used to reinitialize the array, or to initialize all elements with a given value. |
279 | */ |
280 | //@{ |
281 | |
282 | //! Reinitializes the array. Associates the array with no graph. |
283 | void init() { |
284 | Array<T>::init(); reregister(nullptr); |
285 | } |
286 | |
287 | //! Reinitializes the array. Associates the array with \p G. |
288 | void init(const Graph &G) { |
289 | Array<T>::init(G.edgeArrayTableSize()); reregister(&G); |
290 | } |
291 | |
292 | //! Reinitializes the array. Associates the array with \p G. |
293 | /** |
294 | * @param G is the associated graph. |
295 | * @param x is the default value. |
296 | */ |
297 | void init(const Graph &G, const T &x) { |
298 | Array<T>::init(0,G.edgeArrayTableSize()-1, m_x = x); reregister(&G); |
299 | } |
300 | |
301 | //! Sets all array elements to \p x. |
302 | void fill(const T &x) { |
303 | int high = m_pGraph->maxEdgeIndex(); |
304 | if(high >= 0) |
305 | Array<T>::fill(0,high,x); |
306 | } |
307 | |
308 | //! Assignment operator. |
309 | EdgeArray<T> &operator=(const EdgeArray<T> &a) { |
310 | Array<T>::operator=(a); |
311 | m_x = a.m_x; |
312 | reregister(a.m_pGraph); |
313 | return *this; |
314 | } |
315 | |
316 | //! Assignment operator (move semantics). |
317 | /** |
318 | * Edge array \p a is empty afterwards and not associated with any graph. |
319 | */ |
320 | EdgeArray<T> &operator=(EdgeArray<T> &&a) { |
321 | Array<T>::operator=(std::move(a)); |
322 | m_x = a.m_x; |
323 | moveRegister(a); |
324 | return *this; |
325 | } |
326 | |
327 | |
328 | //@} |
329 | /** |
330 | * @name Helper functions |
331 | * These methods are mainly intended for internal use. |
332 | */ |
333 | //@{ |
334 | |
335 | static key_type findSuccKey(key_type key) { return key->succ(); } |
336 | static key_type findPredKey(key_type key) { return key->pred(); } |
337 | |
338 | //@} |
339 | |
340 | private: |
341 | virtual void enlargeTable(int newTableSize) { |
342 | Array<T>::resize(newTableSize,m_x); |
343 | } |
344 | |
345 | virtual void reinit(int initTableSize) { |
346 | Array<T>::init(0,initTableSize-1,m_x); |
347 | } |
348 | |
349 | virtual void disconnect() { |
350 | Array<T>::init(); |
351 | m_pGraph = nullptr; |
352 | } |
353 | |
354 | OGDF_NEW_DELETE |
355 | }; |
356 | |
357 | //! Bucket function for edges. |
358 | /** |
359 | * The bucket of an edge is stored in an edge array which is passed |
360 | * by the user at construction; only a pointer is stored to that array. |
361 | */ |
362 | class OGDF_EXPORT BucketEdgeArray : public BucketFunc<edge> |
363 | { |
364 | const EdgeArray<int> *m_pEdgeArray; //!< Pointer to edge array. |
365 | |
366 | public: |
367 | //! Constructs a bucket function. |
368 | /** |
369 | * @param edgeArray contains the buckets for the edges. May not be deleted |
370 | * as long as the bucket function is used. |
371 | */ |
372 | explicit BucketEdgeArray(const EdgeArray<int> &edgeArray) : m_pEdgeArray(&edgeArray) { } |
373 | |
374 | //! Returns bucket of edge \p e. |
375 | int getBucket(const edge &e) override { return (*m_pEdgeArray)[e]; } |
376 | }; |
377 | |
378 | } |
379 | |