| 1 | /* $Id: CoinFactorization1.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #if defined(_MSC_VER) |
| 7 | // Turn off compiler warning about long names |
| 8 | # pragma warning(disable:4786) |
| 9 | #endif |
| 10 | |
| 11 | #include "CoinUtilsConfig.h" |
| 12 | |
| 13 | #include <cassert> |
| 14 | #include "CoinFactorization.hpp" |
| 15 | #include "CoinIndexedVector.hpp" |
| 16 | #include "CoinHelperFunctions.hpp" |
| 17 | #include "CoinPackedMatrix.hpp" |
| 18 | #include "CoinFinite.hpp" |
| 19 | #include <stdio.h> |
| 20 | //:class CoinFactorization. Deals with Factorization and Updates |
| 21 | // CoinFactorization. Constructor |
| 22 | CoinFactorization::CoinFactorization ( ) |
| 23 | { |
| 24 | persistenceFlag_=0; |
| 25 | gutsOfInitialize(7); |
| 26 | } |
| 27 | |
| 28 | /// Copy constructor |
| 29 | CoinFactorization::CoinFactorization ( const CoinFactorization &other) |
| 30 | { |
| 31 | persistenceFlag_=0; |
| 32 | gutsOfInitialize(3); |
| 33 | persistenceFlag_=other.persistenceFlag_; |
| 34 | gutsOfCopy(other); |
| 35 | } |
| 36 | /// The real work of constructors etc |
| 37 | void CoinFactorization::gutsOfDestructor(int ) |
| 38 | { |
| 39 | delete [] denseArea_; |
| 40 | delete [] densePermute_; |
| 41 | |
| 42 | elementU_.conditionalDelete(); |
| 43 | startRowU_.conditionalDelete(); |
| 44 | convertRowToColumnU_.conditionalDelete(); |
| 45 | indexRowU_.conditionalDelete(); |
| 46 | indexColumnU_.conditionalDelete(); |
| 47 | startColumnU_.conditionalDelete(); |
| 48 | elementL_.conditionalDelete(); |
| 49 | indexRowL_.conditionalDelete(); |
| 50 | startColumnL_.conditionalDelete(); |
| 51 | startColumnR_.conditionalDelete(); |
| 52 | numberInRow_.conditionalDelete(); |
| 53 | numberInColumn_.conditionalDelete(); |
| 54 | numberInColumnPlus_.conditionalDelete(); |
| 55 | pivotColumn_.conditionalDelete(); |
| 56 | pivotColumnBack_.conditionalDelete(); |
| 57 | firstCount_.conditionalDelete(); |
| 58 | nextCount_.conditionalDelete(); |
| 59 | lastCount_.conditionalDelete(); |
| 60 | permute_.conditionalDelete(); |
| 61 | permuteBack_.conditionalDelete(); |
| 62 | nextColumn_.conditionalDelete(); |
| 63 | lastColumn_.conditionalDelete(); |
| 64 | nextRow_.conditionalDelete(); |
| 65 | lastRow_.conditionalDelete(); |
| 66 | saveColumn_.conditionalDelete(); |
| 67 | markRow_.conditionalDelete(); |
| 68 | pivotRowL_.conditionalDelete(); |
| 69 | pivotRegion_.conditionalDelete(); |
| 70 | elementByRowL_.conditionalDelete(); |
| 71 | startRowL_.conditionalDelete(); |
| 72 | indexColumnL_.conditionalDelete(); |
| 73 | sparse_.conditionalDelete(); |
| 74 | workArea_.conditionalDelete(); |
| 75 | workArea2_.conditionalDelete(); |
| 76 | numberCompressions_ = 0; |
| 77 | biggerDimension_ = 0; |
| 78 | numberRows_ = 0; |
| 79 | numberRowsExtra_ = 0; |
| 80 | maximumRowsExtra_ = 0; |
| 81 | numberColumns_ = 0; |
| 82 | numberColumnsExtra_ = 0; |
| 83 | maximumColumnsExtra_ = 0; |
| 84 | numberGoodU_ = 0; |
| 85 | numberGoodL_ = 0; |
| 86 | totalElements_ = 0; |
| 87 | factorElements_ = 0; |
| 88 | status_ = -1; |
| 89 | numberSlacks_ = 0; |
| 90 | numberU_ = 0; |
| 91 | maximumU_=0; |
| 92 | lengthU_ = 0; |
| 93 | lengthAreaU_ = 0; |
| 94 | numberL_ = 0; |
| 95 | baseL_ = 0; |
| 96 | lengthL_ = 0; |
| 97 | lengthAreaL_ = 0; |
| 98 | numberR_ = 0; |
| 99 | lengthR_ = 0; |
| 100 | lengthAreaR_ = 0; |
| 101 | denseArea_=NULL; |
| 102 | densePermute_=NULL; |
| 103 | // next two offsets but this makes cleaner |
| 104 | elementR_=NULL; |
| 105 | indexRowR_=NULL; |
| 106 | numberDense_=0; |
| 107 | //persistenceFlag_=0; |
| 108 | ////denseThreshold_=0; |
| 109 | |
| 110 | } |
| 111 | // type - 1 bit tolerances etc, 2 rest |
| 112 | void CoinFactorization::gutsOfInitialize(int type) |
| 113 | { |
| 114 | if ((type&2)!=0) { |
| 115 | numberCompressions_ = 0; |
| 116 | biggerDimension_ = 0; |
| 117 | numberRows_ = 0; |
| 118 | numberRowsExtra_ = 0; |
| 119 | maximumRowsExtra_ = 0; |
| 120 | numberColumns_ = 0; |
| 121 | numberColumnsExtra_ = 0; |
| 122 | maximumColumnsExtra_ = 0; |
| 123 | numberGoodU_ = 0; |
| 124 | numberGoodL_ = 0; |
| 125 | totalElements_ = 0; |
| 126 | factorElements_ = 0; |
| 127 | status_ = -1; |
| 128 | numberPivots_ = 0; |
| 129 | numberSlacks_ = 0; |
| 130 | numberU_ = 0; |
| 131 | maximumU_=0; |
| 132 | lengthU_ = 0; |
| 133 | lengthAreaU_ = 0; |
| 134 | numberL_ = 0; |
| 135 | baseL_ = 0; |
| 136 | lengthL_ = 0; |
| 137 | lengthAreaL_ = 0; |
| 138 | numberR_ = 0; |
| 139 | lengthR_ = 0; |
| 140 | lengthAreaR_ = 0; |
| 141 | elementR_ = NULL; |
| 142 | indexRowR_ = NULL; |
| 143 | // always switch off sparse |
| 144 | sparseThreshold_=0; |
| 145 | sparseThreshold2_= 0; |
| 146 | denseArea_ = NULL; |
| 147 | densePermute_=NULL; |
| 148 | numberDense_=0; |
| 149 | if (!persistenceFlag_) { |
| 150 | workArea_=CoinFactorizationDoubleArrayWithLength(); |
| 151 | workArea2_=CoinUnsignedIntArrayWithLength(); |
| 152 | pivotColumn_=CoinIntArrayWithLength(); |
| 153 | } |
| 154 | } |
| 155 | // after 2 because of persistenceFlag_ |
| 156 | if ((type&1)!=0) { |
| 157 | areaFactor_ = 0.0; |
| 158 | pivotTolerance_ = 1.0e-1; |
| 159 | zeroTolerance_ = 1.0e-13; |
| 160 | #ifndef COIN_FAST_CODE |
| 161 | slackValue_ = -1.0; |
| 162 | #endif |
| 163 | messageLevel_=0; |
| 164 | maximumPivots_=200; |
| 165 | numberTrials_ = 4; |
| 166 | relaxCheck_=1.0; |
| 167 | #if DENSE_CODE==1 |
| 168 | denseThreshold_=31; |
| 169 | denseThreshold_=71; |
| 170 | #else |
| 171 | denseThreshold_=0; |
| 172 | #endif |
| 173 | biasLU_=2; |
| 174 | doForrestTomlin_=true; |
| 175 | persistenceFlag_=0; |
| 176 | } |
| 177 | if ((type&4)!=0) { |
| 178 | // we need to get 1 element arrays for any with length n+1 !! |
| 179 | startColumnL_.conditionalNew (1); |
| 180 | startColumnR_.conditionalNew( 1 ); |
| 181 | startRowU_.conditionalNew(1); |
| 182 | numberInRow_.conditionalNew(1); |
| 183 | nextRow_.conditionalNew(1); |
| 184 | lastRow_.conditionalNew( 1 ); |
| 185 | pivotRegion_.conditionalNew(1); |
| 186 | permuteBack_.conditionalNew(1); |
| 187 | permute_.conditionalNew(1); |
| 188 | pivotColumnBack_.conditionalNew(1); |
| 189 | startColumnU_.conditionalNew( 1 ); |
| 190 | numberInColumn_.conditionalNew(1); |
| 191 | numberInColumnPlus_.conditionalNew(1); |
| 192 | pivotColumn_.conditionalNew(1); |
| 193 | nextColumn_.conditionalNew(1); |
| 194 | lastColumn_.conditionalNew(1); |
| 195 | collectStatistics_=false; |
| 196 | |
| 197 | // Below are all to collect |
| 198 | ftranCountInput_=0.0; |
| 199 | ftranCountAfterL_=0.0; |
| 200 | ftranCountAfterR_=0.0; |
| 201 | ftranCountAfterU_=0.0; |
| 202 | btranCountInput_=0.0; |
| 203 | btranCountAfterU_=0.0; |
| 204 | btranCountAfterR_=0.0; |
| 205 | btranCountAfterL_=0.0; |
| 206 | |
| 207 | // We can roll over factorizations |
| 208 | numberFtranCounts_=0; |
| 209 | numberBtranCounts_=0; |
| 210 | |
| 211 | // While these are averages collected over last |
| 212 | ftranAverageAfterL_=0; |
| 213 | ftranAverageAfterR_=0; |
| 214 | ftranAverageAfterU_=0; |
| 215 | btranAverageAfterU_=0; |
| 216 | btranAverageAfterR_=0; |
| 217 | btranAverageAfterL_=0; |
| 218 | #ifdef ZEROFAULT |
| 219 | startColumnL_.array()[0] = 0; |
| 220 | startColumnR_.array()[0] = 0; |
| 221 | startRowU_.array()[0] = 0; |
| 222 | numberInRow_.array()[0] = 0; |
| 223 | nextRow_.array()[0] = 0; |
| 224 | lastRow_.array()[0] = 0; |
| 225 | pivotRegion_.array()[0] = 0.0; |
| 226 | permuteBack_.array()[0] = 0; |
| 227 | permute_.array()[0] = 0; |
| 228 | pivotColumnBack_.array()[0] = 0; |
| 229 | startColumnU_.array()[0] = 0; |
| 230 | numberInColumn_.array()[0] = 0; |
| 231 | numberInColumnPlus_.array()[0] = 0; |
| 232 | pivotColumn_.array()[0] = 0; |
| 233 | nextColumn_.array()[0] = 0; |
| 234 | lastColumn_.array()[0] = 0; |
| 235 | #endif |
| 236 | } |
| 237 | } |
| 238 | //Part of LP |
| 239 | int CoinFactorization::factorize ( |
| 240 | const CoinPackedMatrix & matrix, |
| 241 | int rowIsBasic[], |
| 242 | int columnIsBasic[], |
| 243 | double areaFactor ) |
| 244 | { |
| 245 | // maybe for speed will be better to leave as many regions as possible |
| 246 | gutsOfDestructor(); |
| 247 | gutsOfInitialize(2); |
| 248 | // ? is this correct |
| 249 | //if (biasLU_==2) |
| 250 | //biasLU_=3; |
| 251 | if (areaFactor) |
| 252 | areaFactor_ = areaFactor; |
| 253 | const int * row = matrix.getIndices(); |
| 254 | const CoinBigIndex * columnStart = matrix.getVectorStarts(); |
| 255 | const int * columnLength = matrix.getVectorLengths(); |
| 256 | const double * element = matrix.getElements(); |
| 257 | int numberRows=matrix.getNumRows(); |
| 258 | int numberColumns=matrix.getNumCols(); |
| 259 | int numberBasic = 0; |
| 260 | CoinBigIndex numberElements=0; |
| 261 | int numberRowBasic=0; |
| 262 | |
| 263 | // compute how much in basis |
| 264 | |
| 265 | int i; |
| 266 | |
| 267 | for (i=0;i<numberRows;i++) { |
| 268 | if (rowIsBasic[i]>=0) |
| 269 | numberRowBasic++; |
| 270 | } |
| 271 | |
| 272 | numberBasic = numberRowBasic; |
| 273 | |
| 274 | for (i=0;i<numberColumns;i++) { |
| 275 | if (columnIsBasic[i]>=0) { |
| 276 | numberBasic++; |
| 277 | numberElements += columnLength[i]; |
| 278 | } |
| 279 | } |
| 280 | if ( numberBasic > numberRows ) { |
| 281 | return -2; // say too many in basis |
| 282 | } |
| 283 | numberElements = 3 * numberBasic + 3 * numberElements + 20000; |
| 284 | getAreas ( numberRows, numberBasic, numberElements, |
| 285 | 2 * numberElements ); |
| 286 | //fill |
| 287 | //copy |
| 288 | numberBasic=0; |
| 289 | numberElements=0; |
| 290 | int * indexColumnU = indexColumnU_.array(); |
| 291 | int * indexRowU = indexRowU_.array(); |
| 292 | CoinFactorizationDouble * elementU = elementU_.array(); |
| 293 | for (i=0;i<numberRows;i++) { |
| 294 | if (rowIsBasic[i]>=0) { |
| 295 | indexRowU[numberElements]=i; |
| 296 | indexColumnU[numberElements]=numberBasic; |
| 297 | elementU[numberElements++]=slackValue_; |
| 298 | numberBasic++; |
| 299 | } |
| 300 | } |
| 301 | for (i=0;i<numberColumns;i++) { |
| 302 | if (columnIsBasic[i]>=0) { |
| 303 | CoinBigIndex j; |
| 304 | for (j=columnStart[i];j<columnStart[i]+columnLength[i];j++) { |
| 305 | indexRowU[numberElements]=row[j]; |
| 306 | indexColumnU[numberElements]=numberBasic; |
| 307 | elementU[numberElements++]=element[j]; |
| 308 | } |
| 309 | numberBasic++; |
| 310 | } |
| 311 | } |
| 312 | lengthU_ = numberElements; |
| 313 | maximumU_ = numberElements; |
| 314 | |
| 315 | preProcess ( 0 ); |
| 316 | factor ( ); |
| 317 | numberBasic=0; |
| 318 | if (status_ == 0) { |
| 319 | int * permuteBack = permuteBack_.array(); |
| 320 | int * back = pivotColumnBack(); |
| 321 | for (i=0;i<numberRows;i++) { |
| 322 | if (rowIsBasic[i]>=0) { |
| 323 | rowIsBasic[i]=permuteBack[back[numberBasic++]]; |
| 324 | } |
| 325 | } |
| 326 | for (i=0;i<numberColumns;i++) { |
| 327 | if (columnIsBasic[i]>=0) { |
| 328 | columnIsBasic[i]=permuteBack[back[numberBasic++]]; |
| 329 | } |
| 330 | } |
| 331 | // Set up permutation vector |
| 332 | // these arrays start off as copies of permute |
| 333 | // (and we could use permute_ instead of pivotColumn (not back though)) |
| 334 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
| 335 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
| 336 | } else if (status_ == -1) { |
| 337 | const int * pivotColumn = pivotColumn_.array(); |
| 338 | // mark as basic or non basic |
| 339 | for (i=0;i<numberRows_;i++) { |
| 340 | if (rowIsBasic[i]>=0) { |
| 341 | if (pivotColumn[numberBasic]>=0) |
| 342 | rowIsBasic[i]=pivotColumn[numberBasic]; |
| 343 | else |
| 344 | rowIsBasic[i]=-1; |
| 345 | numberBasic++; |
| 346 | } |
| 347 | } |
| 348 | for (i=0;i<numberColumns;i++) { |
| 349 | if (columnIsBasic[i]>=0) { |
| 350 | if (pivotColumn[numberBasic]>=0) |
| 351 | columnIsBasic[i]=pivotColumn[numberBasic]; |
| 352 | else |
| 353 | columnIsBasic[i]=-1; |
| 354 | numberBasic++; |
| 355 | } |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | return status_; |
| 360 | } |
| 361 | //Given as triplets |
| 362 | int CoinFactorization::factorize ( |
| 363 | int numberOfRows, |
| 364 | int numberOfColumns, |
| 365 | CoinBigIndex numberOfElements, |
| 366 | CoinBigIndex maximumL, |
| 367 | CoinBigIndex maximumU, |
| 368 | const int indicesRow[], |
| 369 | const int indicesColumn[], |
| 370 | const double elements[] , |
| 371 | int permutation[], |
| 372 | double areaFactor) |
| 373 | { |
| 374 | gutsOfDestructor(); |
| 375 | gutsOfInitialize(2); |
| 376 | if (areaFactor) |
| 377 | areaFactor_ = areaFactor; |
| 378 | getAreas ( numberOfRows, numberOfColumns, maximumL, maximumU ); |
| 379 | //copy |
| 380 | CoinMemcpyN ( indicesRow, numberOfElements, indexRowU_.array() ); |
| 381 | CoinMemcpyN ( indicesColumn, numberOfElements, indexColumnU_.array() ); |
| 382 | int i; |
| 383 | CoinFactorizationDouble * elementU = elementU_.array(); |
| 384 | for (i=0;i<numberOfElements;i++) |
| 385 | elementU[i] = elements[i]; |
| 386 | lengthU_ = numberOfElements; |
| 387 | maximumU_ = numberOfElements; |
| 388 | preProcess ( 0 ); |
| 389 | factor ( ); |
| 390 | //say which column is pivoting on which row |
| 391 | if (status_ == 0) { |
| 392 | int * permuteBack = permuteBack_.array(); |
| 393 | int * back = pivotColumnBack(); |
| 394 | // permute so slacks on own rows etc |
| 395 | for (i=0;i<numberOfColumns;i++) { |
| 396 | permutation[i]=permuteBack[back[i]]; |
| 397 | } |
| 398 | // Set up permutation vector |
| 399 | // these arrays start off as copies of permute |
| 400 | // (and we could use permute_ instead of pivotColumn (not back though)) |
| 401 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
| 402 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
| 403 | } else if (status_ == -1) { |
| 404 | const int * pivotColumn = pivotColumn_.array(); |
| 405 | // mark as basic or non basic |
| 406 | for (i=0;i<numberOfColumns;i++) { |
| 407 | if (pivotColumn[i]>=0) { |
| 408 | permutation[i]=pivotColumn[i]; |
| 409 | } else { |
| 410 | permutation[i]=-1; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | return status_; |
| 416 | } |
| 417 | /* Two part version for flexibility |
| 418 | This part creates arrays for user to fill. |
| 419 | maximumL is guessed maximum size of L part of |
| 420 | final factorization, maximumU of U part. These are multiplied by |
| 421 | areaFactor which can be computed by user or internally. |
| 422 | returns 0 -okay, -99 memory */ |
| 423 | int |
| 424 | CoinFactorization::factorizePart1 ( int numberOfRows, |
| 425 | int , |
| 426 | CoinBigIndex numberOfElements, |
| 427 | int * indicesRow[], |
| 428 | int * indicesColumn[], |
| 429 | CoinFactorizationDouble * elements[], |
| 430 | double areaFactor) |
| 431 | { |
| 432 | // maybe for speed will be better to leave as many regions as possible |
| 433 | gutsOfDestructor(); |
| 434 | gutsOfInitialize(2); |
| 435 | if (areaFactor) |
| 436 | areaFactor_ = areaFactor; |
| 437 | CoinBigIndex numberElements = 3 * numberOfRows + 3 * numberOfElements + 20000; |
| 438 | getAreas ( numberOfRows, numberOfRows, numberElements, |
| 439 | 2 * numberElements ); |
| 440 | // need to trap memory for -99 code |
| 441 | *indicesRow = indexRowU_.array() ; |
| 442 | *indicesColumn = indexColumnU_.array() ; |
| 443 | *elements = elementU_.array() ; |
| 444 | lengthU_ = numberOfElements; |
| 445 | maximumU_ = numberElements; |
| 446 | return 0; |
| 447 | } |
| 448 | /* This is part two of factorization |
| 449 | Arrays belong to factorization and were returned by part 1 |
| 450 | If status okay, permutation has pivot rows. |
| 451 | If status is singular, then basic variables have +1 and ones thrown out have -COIN_INT_MAX |
| 452 | to say thrown out. |
| 453 | returns 0 -okay, -1 singular, -99 memory */ |
| 454 | int |
| 455 | CoinFactorization::factorizePart2 (int permutation[],int exactNumberElements) |
| 456 | { |
| 457 | lengthU_ = exactNumberElements; |
| 458 | preProcess ( 0 ); |
| 459 | factor ( ); |
| 460 | //say which column is pivoting on which row |
| 461 | int i; |
| 462 | int * permuteBack = permuteBack_.array(); |
| 463 | int * back = pivotColumnBack(); |
| 464 | // permute so slacks on own rows etc |
| 465 | for (i=0;i<numberColumns_;i++) { |
| 466 | permutation[i]=permuteBack[back[i]]; |
| 467 | } |
| 468 | if (status_ == 0) { |
| 469 | // Set up permutation vector |
| 470 | // these arrays start off as copies of permute |
| 471 | // (and we could use permute_ instead of pivotColumn (not back though)) |
| 472 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
| 473 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
| 474 | } else if (status_ == -1) { |
| 475 | const int * pivotColumn = pivotColumn_.array(); |
| 476 | // mark as basic or non basic |
| 477 | for (i=0;i<numberColumns_;i++) { |
| 478 | if (pivotColumn[i]>=0) { |
| 479 | permutation[i]=pivotColumn[i]; |
| 480 | } else { |
| 481 | permutation[i]=-1; |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | return status_; |
| 487 | } |
| 488 | |
| 489 | // ~CoinFactorization. Destructor |
| 490 | CoinFactorization::~CoinFactorization ( ) |
| 491 | { |
| 492 | gutsOfDestructor(); |
| 493 | } |
| 494 | |
| 495 | // show_self. Debug show object |
| 496 | void |
| 497 | CoinFactorization::show_self ( ) const |
| 498 | { |
| 499 | int i; |
| 500 | |
| 501 | const int * pivotColumn = pivotColumn_.array(); |
| 502 | for ( i = 0; i < numberRows_; i++ ) { |
| 503 | std::cout << "r " << i << " " << pivotColumn[i]; |
| 504 | if (pivotColumnBack()) std::cout<< " " << pivotColumnBack()[i]; |
| 505 | std::cout<< " " << permute_.array()[i]; |
| 506 | if (permuteBack_.array()) std::cout<< " " << permuteBack_.array()[i]; |
| 507 | std::cout<< " " << pivotRegion_.array()[i]; |
| 508 | std::cout << std::endl; |
| 509 | } |
| 510 | for ( i = 0; i < numberRows_; i++ ) { |
| 511 | std::cout << "u " << i << " " << numberInColumn_.array()[i] << std::endl; |
| 512 | int j; |
| 513 | CoinSort_2(indexRowU_.array()+startColumnU_.array()[i], |
| 514 | indexRowU_.array()+startColumnU_.array()[i]+numberInColumn_.array()[i], |
| 515 | elementU_.array()+startColumnU_.array()[i]); |
| 516 | for ( j = startColumnU_.array()[i]; j < startColumnU_.array()[i] + numberInColumn_.array()[i]; |
| 517 | j++ ) { |
| 518 | assert (indexRowU_.array()[j]>=0&&indexRowU_.array()[j]<numberRows_); |
| 519 | assert (elementU_.array()[j]>-1.0e50&&elementU_.array()[j]<1.0e50); |
| 520 | std::cout << indexRowU_.array()[j] << " " << elementU_.array()[j] << std::endl; |
| 521 | } |
| 522 | } |
| 523 | for ( i = 0; i < numberRows_; i++ ) { |
| 524 | std::cout << "l " << i << " " << startColumnL_.array()[i + 1] - |
| 525 | startColumnL_.array()[i] << std::endl; |
| 526 | CoinSort_2(indexRowL_.array()+startColumnL_.array()[i], |
| 527 | indexRowL_.array()+startColumnL_.array()[i+1], |
| 528 | elementL_.array()+startColumnL_.array()[i]); |
| 529 | int j; |
| 530 | for ( j = startColumnL_.array()[i]; j < startColumnL_.array()[i + 1]; j++ ) { |
| 531 | std::cout << indexRowL_.array()[j] << " " << elementL_.array()[j] << std::endl; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | } |
| 536 | // sort so can compare |
| 537 | void |
| 538 | CoinFactorization::sort ( ) const |
| 539 | { |
| 540 | int i; |
| 541 | |
| 542 | for ( i = 0; i < numberRows_; i++ ) { |
| 543 | CoinSort_2(indexRowU_.array()+startColumnU_.array()[i], |
| 544 | indexRowU_.array()+startColumnU_.array()[i]+numberInColumn_.array()[i], |
| 545 | elementU_.array()+startColumnU_.array()[i]); |
| 546 | } |
| 547 | for ( i = 0; i < numberRows_; i++ ) { |
| 548 | CoinSort_2(indexRowL_.array()+startColumnL_.array()[i], |
| 549 | indexRowL_.array()+startColumnL_.array()[i+1], |
| 550 | elementL_.array()+startColumnL_.array()[i]); |
| 551 | } |
| 552 | |
| 553 | } |
| 554 | |
| 555 | // getAreas. Gets space for a factorization |
| 556 | //called by constructors |
| 557 | void |
| 558 | CoinFactorization::getAreas ( int numberOfRows, |
| 559 | int numberOfColumns, |
| 560 | CoinBigIndex maximumL, |
| 561 | CoinBigIndex maximumU ) |
| 562 | { |
| 563 | |
| 564 | numberRows_ = numberOfRows; |
| 565 | numberColumns_ = numberOfColumns; |
| 566 | maximumRowsExtra_ = numberRows_ + maximumPivots_; |
| 567 | numberRowsExtra_ = numberRows_; |
| 568 | maximumColumnsExtra_ = numberColumns_ + maximumPivots_; |
| 569 | numberColumnsExtra_ = numberColumns_; |
| 570 | lengthAreaU_ = maximumU; |
| 571 | lengthAreaL_ = maximumL; |
| 572 | if ( !areaFactor_ ) { |
| 573 | areaFactor_ = 1.0; |
| 574 | } |
| 575 | if ( areaFactor_ != 1.0 ) { |
| 576 | if ((messageLevel_&16)!=0) |
| 577 | printf("Increasing factorization areas by %g\n" ,areaFactor_); |
| 578 | lengthAreaU_ = static_cast<CoinBigIndex> (areaFactor_*lengthAreaU_); |
| 579 | lengthAreaL_ = static_cast<CoinBigIndex> (areaFactor_*lengthAreaL_); |
| 580 | } |
| 581 | elementU_.conditionalNew( lengthAreaU_ ); |
| 582 | indexRowU_.conditionalNew( lengthAreaU_ ); |
| 583 | indexColumnU_.conditionalNew( lengthAreaU_ ); |
| 584 | elementL_.conditionalNew( lengthAreaL_ ); |
| 585 | indexRowL_.conditionalNew( lengthAreaL_ ); |
| 586 | if (persistenceFlag_) { |
| 587 | // But we can use all we have if bigger |
| 588 | int length; |
| 589 | length = CoinMin(elementU_.getSize(),indexRowU_.getSize()); |
| 590 | if (length>lengthAreaU_) { |
| 591 | lengthAreaU_=length; |
| 592 | assert (indexColumnU_.getSize()==indexRowU_.getSize()); |
| 593 | } |
| 594 | length = CoinMin(elementL_.getSize(),indexRowL_.getSize()); |
| 595 | if (length>lengthAreaL_) { |
| 596 | lengthAreaL_=length; |
| 597 | } |
| 598 | } |
| 599 | startColumnL_.conditionalNew( numberRows_ + 1 ); |
| 600 | startColumnL_.array()[0] = 0; |
| 601 | startRowU_.conditionalNew( maximumRowsExtra_ + 1); |
| 602 | // make sure this is valid |
| 603 | startRowU_.array()[maximumRowsExtra_]=0; |
| 604 | numberInRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
| 605 | markRow_.conditionalNew( numberRows_ ); |
| 606 | pivotRowL_.conditionalNew( numberRows_ + 1 ); |
| 607 | nextRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
| 608 | lastRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
| 609 | permute_.conditionalNew( maximumRowsExtra_ + 1 ); |
| 610 | pivotRegion_.conditionalNew( maximumRowsExtra_ + 1 ); |
| 611 | #ifdef ZEROFAULT |
| 612 | memset(elementU_.array(),'a',lengthAreaU_*sizeof(CoinFactorizationDouble)); |
| 613 | memset(indexRowU_.array(),'b',lengthAreaU_*sizeof(int)); |
| 614 | memset(indexColumnU_.array(),'c',lengthAreaU_*sizeof(int)); |
| 615 | memset(elementL_.array(),'d',lengthAreaL_*sizeof(CoinFactorizationDouble)); |
| 616 | memset(indexRowL_.array(),'e',lengthAreaL_*sizeof(int)); |
| 617 | memset(startColumnL_.array()+1,'f',numberRows_*sizeof(CoinBigIndex)); |
| 618 | memset(startRowU_.array(),'g',maximumRowsExtra_*sizeof(CoinBigIndex)); |
| 619 | memset(numberInRow_.array(),'h',(maximumRowsExtra_+1)*sizeof(int)); |
| 620 | memset(markRow_.array(),'i',numberRows_*sizeof(int)); |
| 621 | memset(pivotRowL_.array(),'j',(numberRows_+1)*sizeof(int)); |
| 622 | memset(nextRow_.array(),'k',(maximumRowsExtra_+1)*sizeof(int)); |
| 623 | memset(lastRow_.array(),'l',(maximumRowsExtra_+1)*sizeof(int)); |
| 624 | memset(permute_.array(),'l',(maximumRowsExtra_+1)*sizeof(int)); |
| 625 | memset(pivotRegion_.array(),'m',(maximumRowsExtra_+1)*sizeof(CoinFactorizationDouble)); |
| 626 | #endif |
| 627 | startColumnU_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 628 | numberInColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 629 | numberInColumnPlus_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 630 | pivotColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 631 | nextColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 632 | lastColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
| 633 | saveColumn_.conditionalNew( numberColumns_); |
| 634 | #ifdef ZEROFAULT |
| 635 | memset(startColumnU_.array(),'a',(maximumColumnsExtra_+1)*sizeof(CoinBigIndex)); |
| 636 | memset(numberInColumn_.array(),'b',(maximumColumnsExtra_+1)*sizeof(int)); |
| 637 | memset(numberInColumnPlus_.array(),'c',(maximumColumnsExtra_+1)*sizeof(int)); |
| 638 | memset(pivotColumn_.array(),'d',(maximumColumnsExtra_+1)*sizeof(int)); |
| 639 | memset(nextColumn_.array(),'e',(maximumColumnsExtra_+1)*sizeof(int)); |
| 640 | memset(lastColumn_.array(),'f',(maximumColumnsExtra_+1)*sizeof(int)); |
| 641 | #endif |
| 642 | if ( numberRows_ + numberColumns_ ) { |
| 643 | if ( numberRows_ > numberColumns_ ) { |
| 644 | biggerDimension_ = numberRows_; |
| 645 | } else { |
| 646 | biggerDimension_ = numberColumns_; |
| 647 | } |
| 648 | firstCount_.conditionalNew( CoinMax(biggerDimension_ + 2, maximumRowsExtra_+1) ); |
| 649 | nextCount_.conditionalNew( numberRows_ + numberColumns_ ); |
| 650 | lastCount_.conditionalNew( numberRows_ + numberColumns_ ); |
| 651 | #ifdef ZEROFAULT |
| 652 | memset(firstCount_.array(),'g',(biggerDimension_ + 2 )*sizeof(int)); |
| 653 | memset(nextCount_.array(),'h',(numberRows_+numberColumns_)*sizeof(int)); |
| 654 | memset(lastCount_.array(),'i',(numberRows_+numberColumns_)*sizeof(int)); |
| 655 | #endif |
| 656 | } else { |
| 657 | firstCount_.conditionalNew( 2 ); |
| 658 | nextCount_.conditionalNew( 0 ); |
| 659 | lastCount_.conditionalNew( 0 ); |
| 660 | #ifdef ZEROFAULT |
| 661 | memset(firstCount_.array(),'g', 2 *sizeof(int)); |
| 662 | #endif |
| 663 | biggerDimension_ = 0; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | // preProcess. PreProcesses raw triplet data |
| 668 | //state is 0 - triplets, 1 - some counts etc , 2 - .. |
| 669 | void |
| 670 | CoinFactorization::preProcess ( int state, |
| 671 | int ) |
| 672 | { |
| 673 | int *indexRow = indexRowU_.array(); |
| 674 | int *indexColumn = indexColumnU_.array(); |
| 675 | CoinFactorizationDouble *element = elementU_.array(); |
| 676 | CoinBigIndex numberElements = lengthU_; |
| 677 | int *numberInRow = numberInRow_.array(); |
| 678 | int *numberInColumn = numberInColumn_.array(); |
| 679 | int *numberInColumnPlus = numberInColumnPlus_.array(); |
| 680 | CoinBigIndex *startRow = startRowU_.array(); |
| 681 | CoinBigIndex *startColumn = startColumnU_.array(); |
| 682 | int numberRows = numberRows_; |
| 683 | int numberColumns = numberColumns_; |
| 684 | |
| 685 | if (state<4) |
| 686 | totalElements_ = numberElements; |
| 687 | //state falls through to next state |
| 688 | switch ( state ) { |
| 689 | case 0: //counts |
| 690 | { |
| 691 | CoinZeroN ( numberInRow, numberRows + 1 ); |
| 692 | CoinZeroN ( numberInColumn, maximumColumnsExtra_ + 1 ); |
| 693 | CoinBigIndex i; |
| 694 | for ( i = 0; i < numberElements; i++ ) { |
| 695 | int iRow = indexRow[i]; |
| 696 | int iColumn = indexColumn[i]; |
| 697 | |
| 698 | numberInRow[iRow]++; |
| 699 | numberInColumn[iColumn]++; |
| 700 | } |
| 701 | } |
| 702 | case -1: //sort |
| 703 | case 1: //sort |
| 704 | { |
| 705 | CoinBigIndex i, k; |
| 706 | |
| 707 | i = 0; |
| 708 | int iColumn; |
| 709 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
| 710 | //position after end of Column |
| 711 | i += numberInColumn[iColumn]; |
| 712 | startColumn[iColumn] = i; |
| 713 | } |
| 714 | for ( k = numberElements - 1; k >= 0; k-- ) { |
| 715 | int iColumn = indexColumn[k]; |
| 716 | |
| 717 | if ( iColumn >= 0 ) { |
| 718 | CoinFactorizationDouble value = element[k]; |
| 719 | int iRow = indexRow[k]; |
| 720 | |
| 721 | indexColumn[k] = -1; |
| 722 | while ( true ) { |
| 723 | CoinBigIndex iLook = startColumn[iColumn] - 1; |
| 724 | |
| 725 | startColumn[iColumn] = iLook; |
| 726 | CoinFactorizationDouble valueSave = element[iLook]; |
| 727 | int iColumnSave = indexColumn[iLook]; |
| 728 | int iRowSave = indexRow[iLook]; |
| 729 | |
| 730 | element[iLook] = value; |
| 731 | indexRow[iLook] = iRow; |
| 732 | indexColumn[iLook] = -1; |
| 733 | if ( iColumnSave >= 0 ) { |
| 734 | iColumn = iColumnSave; |
| 735 | value = valueSave; |
| 736 | iRow = iRowSave; |
| 737 | } else { |
| 738 | break; |
| 739 | } |
| 740 | } /* endwhile */ |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | case 2: //move largest in column to beginning |
| 745 | //and do row part |
| 746 | { |
| 747 | CoinBigIndex i, k; |
| 748 | |
| 749 | i = 0; |
| 750 | int iRow; |
| 751 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
| 752 | startRow[iRow] = i; |
| 753 | i += numberInRow[iRow]; |
| 754 | } |
| 755 | CoinZeroN ( numberInRow, numberRows ); |
| 756 | int iColumn; |
| 757 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
| 758 | int number = numberInColumn[iColumn]; |
| 759 | |
| 760 | if ( number ) { |
| 761 | CoinBigIndex first = startColumn[iColumn]; |
| 762 | CoinBigIndex largest = first; |
| 763 | int iRowSave = indexRow[first]; |
| 764 | CoinFactorizationDouble valueSave = element[first]; |
| 765 | double valueLargest = fabs ( valueSave ); |
| 766 | int iLook = numberInRow[iRowSave]; |
| 767 | |
| 768 | numberInRow[iRowSave] = iLook + 1; |
| 769 | indexColumn[startRow[iRowSave] + iLook] = iColumn; |
| 770 | for ( k = first + 1; k < first + number; k++ ) { |
| 771 | int iRow = indexRow[k]; |
| 772 | int iLook = numberInRow[iRow]; |
| 773 | |
| 774 | numberInRow[iRow] = iLook + 1; |
| 775 | indexColumn[startRow[iRow] + iLook] = iColumn; |
| 776 | CoinFactorizationDouble value = element[k]; |
| 777 | double valueAbs = fabs ( value ); |
| 778 | |
| 779 | if ( valueAbs > valueLargest ) { |
| 780 | valueLargest = valueAbs; |
| 781 | largest = k; |
| 782 | } |
| 783 | } |
| 784 | indexRow[first] = indexRow[largest]; |
| 785 | element[first] = element[largest]; |
| 786 | indexRow[largest] = iRowSave; |
| 787 | element[largest] = valueSave; |
| 788 | } |
| 789 | } |
| 790 | } |
| 791 | case 3: //links and initialize pivots |
| 792 | { |
| 793 | int *lastRow = lastRow_.array(); |
| 794 | int *nextRow = nextRow_.array(); |
| 795 | int *lastColumn = lastColumn_.array(); |
| 796 | int *nextColumn = nextColumn_.array(); |
| 797 | |
| 798 | CoinFillN ( firstCount_.array(), biggerDimension_ + 2, -1 ); |
| 799 | CoinFillN ( pivotColumn_.array(), numberColumns_, -1 ); |
| 800 | CoinZeroN ( numberInColumnPlus, maximumColumnsExtra_ + 1 ); |
| 801 | int iRow; |
| 802 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
| 803 | lastRow[iRow] = iRow - 1; |
| 804 | nextRow[iRow] = iRow + 1; |
| 805 | int number = numberInRow[iRow]; |
| 806 | |
| 807 | addLink ( iRow, number ); |
| 808 | } |
| 809 | lastRow[maximumRowsExtra_] = numberRows - 1; |
| 810 | nextRow[maximumRowsExtra_] = 0; |
| 811 | lastRow[0] = maximumRowsExtra_; |
| 812 | nextRow[numberRows - 1] = maximumRowsExtra_; |
| 813 | startRow[maximumRowsExtra_] = numberElements; |
| 814 | int iColumn; |
| 815 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
| 816 | lastColumn[iColumn] = iColumn - 1; |
| 817 | nextColumn[iColumn] = iColumn + 1; |
| 818 | int number = numberInColumn[iColumn]; |
| 819 | |
| 820 | addLink ( iColumn + numberRows, number ); |
| 821 | } |
| 822 | lastColumn[maximumColumnsExtra_] = numberColumns - 1; |
| 823 | nextColumn[maximumColumnsExtra_] = 0; |
| 824 | lastColumn[0] = maximumColumnsExtra_; |
| 825 | if (numberColumns) |
| 826 | nextColumn[numberColumns - 1] = maximumColumnsExtra_; |
| 827 | startColumn[maximumColumnsExtra_] = numberElements; |
| 828 | } |
| 829 | break; |
| 830 | case 4: //move largest in column to beginning |
| 831 | { |
| 832 | CoinBigIndex i, k; |
| 833 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
| 834 | int iColumn; |
| 835 | int iRow; |
| 836 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
| 837 | if( numberInRow[iRow]>=0) { |
| 838 | // zero count |
| 839 | numberInRow[iRow]=0; |
| 840 | } else { |
| 841 | // empty |
| 842 | //numberInRow[iRow]=-1; already that |
| 843 | } |
| 844 | } |
| 845 | //CoinZeroN ( numberInColumnPlus, maximumColumnsExtra_ + 1 ); |
| 846 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
| 847 | int number = numberInColumn[iColumn]; |
| 848 | |
| 849 | if ( number ) { |
| 850 | // use pivotRegion and startRow for remaining elements |
| 851 | CoinBigIndex first = startColumn[iColumn]; |
| 852 | CoinBigIndex largest = -1; |
| 853 | |
| 854 | double valueLargest = -1.0; |
| 855 | int nOther=0; |
| 856 | k = first; |
| 857 | CoinBigIndex end = first+number; |
| 858 | for ( ; k < end; k++ ) { |
| 859 | int iRow = indexRow[k]; |
| 860 | assert (iRow<numberRows_); |
| 861 | CoinFactorizationDouble value = element[k]; |
| 862 | if (numberInRow[iRow]>=0) { |
| 863 | numberInRow[iRow]++; |
| 864 | double valueAbs = fabs ( value ); |
| 865 | if ( valueAbs > valueLargest ) { |
| 866 | valueLargest = valueAbs; |
| 867 | largest = nOther; |
| 868 | } |
| 869 | startRow[nOther]=iRow; |
| 870 | pivotRegion[nOther++]=value; |
| 871 | } else { |
| 872 | indexRow[first] = iRow; |
| 873 | element[first++] = value; |
| 874 | } |
| 875 | } |
| 876 | numberInColumnPlus[iColumn]=first-startColumn[iColumn]; |
| 877 | startColumn[iColumn]=first; |
| 878 | //largest |
| 879 | if (largest>=0) { |
| 880 | indexRow[first] = startRow[largest]; |
| 881 | element[first++] = pivotRegion[largest]; |
| 882 | } |
| 883 | for (k=0;k<nOther;k++) { |
| 884 | if (k!=largest) { |
| 885 | indexRow[first] = startRow[k]; |
| 886 | element[first++] = pivotRegion[k]; |
| 887 | } |
| 888 | } |
| 889 | numberInColumn[iColumn]=first-startColumn[iColumn]; |
| 890 | } |
| 891 | } |
| 892 | //and do row part |
| 893 | i = 0; |
| 894 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
| 895 | startRow[iRow] = i; |
| 896 | int n=numberInRow[iRow]; |
| 897 | if (n>0) { |
| 898 | numberInRow[iRow]=0; |
| 899 | i += n; |
| 900 | } |
| 901 | } |
| 902 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
| 903 | int number = numberInColumn[iColumn]; |
| 904 | |
| 905 | if ( number ) { |
| 906 | CoinBigIndex first = startColumn[iColumn]; |
| 907 | for ( k = first; k < first + number; k++ ) { |
| 908 | int iRow = indexRow[k]; |
| 909 | int iLook = numberInRow[iRow]; |
| 910 | |
| 911 | numberInRow[iRow] = iLook + 1; |
| 912 | indexColumn[startRow[iRow] + iLook] = iColumn; |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | } |
| 917 | // modified 3 |
| 918 | { |
| 919 | //set markRow so no rows updated |
| 920 | //CoinFillN ( markRow_.array(), numberRows_, -1 ); |
| 921 | int *lastColumn = lastColumn_.array(); |
| 922 | int *nextColumn = nextColumn_.array(); |
| 923 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
| 924 | |
| 925 | int iRow; |
| 926 | int numberGood=0; |
| 927 | startColumnL_.array()[0] = 0; //for luck |
| 928 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
| 929 | int number = numberInRow[iRow]; |
| 930 | if (number<0) { |
| 931 | numberInRow[iRow]=0; |
| 932 | pivotRegion[numberGood++]=slackValue_; |
| 933 | } |
| 934 | } |
| 935 | int iColumn; |
| 936 | for ( iColumn = 0 ; iColumn < numberColumns_; iColumn++ ) { |
| 937 | lastColumn[iColumn] = iColumn - 1; |
| 938 | nextColumn[iColumn] = iColumn + 1; |
| 939 | int number = numberInColumn[iColumn]; |
| 940 | deleteLink(iColumn+numberRows); |
| 941 | addLink ( iColumn + numberRows, number ); |
| 942 | } |
| 943 | lastColumn[maximumColumnsExtra_] = numberColumns - 1; |
| 944 | nextColumn[maximumColumnsExtra_] = 0; |
| 945 | lastColumn[0] = maximumColumnsExtra_; |
| 946 | if (numberColumns) |
| 947 | nextColumn[numberColumns - 1] = maximumColumnsExtra_; |
| 948 | startColumn[maximumColumnsExtra_] = numberElements; |
| 949 | } |
| 950 | } /* endswitch */ |
| 951 | } |
| 952 | |
| 953 | //Does most of factorization |
| 954 | int |
| 955 | CoinFactorization::factor ( ) |
| 956 | { |
| 957 | int * lastColumn = lastColumn_.array(); |
| 958 | int * lastRow = lastRow_.array(); |
| 959 | //sparse |
| 960 | status_ = factorSparse ( ); |
| 961 | switch ( status_ ) { |
| 962 | case 0: //finished |
| 963 | totalElements_ = 0; |
| 964 | { |
| 965 | int * pivotColumn = pivotColumn_.array(); |
| 966 | if ( numberGoodU_ < numberRows_ ) { |
| 967 | int i, k; |
| 968 | // Clean out unset nextRow |
| 969 | int * nextRow = nextRow_.array(); |
| 970 | //int nSing =0; |
| 971 | k=nextRow[maximumRowsExtra_]; |
| 972 | while (k!=maximumRowsExtra_) { |
| 973 | int iRow = k; |
| 974 | k=nextRow[k]; |
| 975 | //nSing++; |
| 976 | nextRow[iRow]=-1; |
| 977 | } |
| 978 | //assert (nSing); |
| 979 | //printf("%d singularities - good %d rows %d\n",nSing, |
| 980 | // numberGoodU_,numberRows_); |
| 981 | // Now nextRow has -1 or sequence into numberGoodU_; |
| 982 | int * permuteA = permute_.array(); |
| 983 | for ( i = 0; i < numberRows_; i++ ) { |
| 984 | int iGood= nextRow[i]; |
| 985 | if (iGood>=0) |
| 986 | permuteA[iGood]=i; |
| 987 | } |
| 988 | |
| 989 | // swap arrays |
| 990 | permute_.swap(nextRow_); |
| 991 | int * permute = permute_.array(); |
| 992 | for ( i = 0; i < numberRows_; i++ ) { |
| 993 | lastRow[i] = -1; |
| 994 | } |
| 995 | for ( i = 0; i < numberColumns_; i++ ) { |
| 996 | lastColumn[i] = -1; |
| 997 | } |
| 998 | for ( i = 0; i < numberGoodU_; i++ ) { |
| 999 | int goodRow = permuteA[i]; //valid pivot row |
| 1000 | int goodColumn = pivotColumn[i]; |
| 1001 | |
| 1002 | lastRow[goodRow] = goodColumn; //will now have -1 or column sequence |
| 1003 | lastColumn[goodColumn] = goodRow; //will now have -1 or row sequence |
| 1004 | } |
| 1005 | nextRow_.conditionalDelete(); |
| 1006 | k = 0; |
| 1007 | //copy back and count |
| 1008 | for ( i = 0; i < numberRows_; i++ ) { |
| 1009 | permute[i] = lastRow[i]; |
| 1010 | if ( permute[i] < 0 ) { |
| 1011 | //std::cout << i << " " <<permute[i] << std::endl; |
| 1012 | } else { |
| 1013 | k++; |
| 1014 | } |
| 1015 | } |
| 1016 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1017 | pivotColumn[i] = lastColumn[i]; |
| 1018 | } |
| 1019 | if ((messageLevel_&4)!=0) |
| 1020 | std::cout <<"Factorization has " <<numberRows_-k |
| 1021 | <<" singularities" <<std::endl; |
| 1022 | status_ = -1; |
| 1023 | } |
| 1024 | } |
| 1025 | break; |
| 1026 | // dense |
| 1027 | case 2: |
| 1028 | status_=factorDense(); |
| 1029 | if(!status_) |
| 1030 | break; |
| 1031 | default: |
| 1032 | //singular ? or some error |
| 1033 | if ((messageLevel_&4)!=0) |
| 1034 | std::cout << "Error " << status_ << std::endl; |
| 1035 | break; |
| 1036 | } /* endswitch */ |
| 1037 | //clean up |
| 1038 | if ( !status_ ) { |
| 1039 | if ( (messageLevel_ & 16)&&numberCompressions_) |
| 1040 | std::cout<<" Factorization did " <<numberCompressions_ |
| 1041 | <<" compressions" <<std::endl; |
| 1042 | if ( numberCompressions_ > 10 ) { |
| 1043 | areaFactor_ *= 1.1; |
| 1044 | } |
| 1045 | numberCompressions_=0; |
| 1046 | cleanup ( ); |
| 1047 | } |
| 1048 | return status_; |
| 1049 | } |
| 1050 | |
| 1051 | |
| 1052 | // pivotRowSingleton. Does one pivot on Row Singleton in factorization |
| 1053 | bool |
| 1054 | CoinFactorization::pivotRowSingleton ( int pivotRow, |
| 1055 | int pivotColumn ) |
| 1056 | { |
| 1057 | //store pivot columns (so can easily compress) |
| 1058 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1059 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
| 1060 | int * numberInRow = numberInRow_.array(); |
| 1061 | int * numberInColumn = numberInColumn_.array(); |
| 1062 | int numberDoColumn = numberInColumn[pivotColumn] - 1; |
| 1063 | CoinBigIndex endColumn = startColumn + numberDoColumn + 1; |
| 1064 | CoinBigIndex pivotRowPosition = startColumn; |
| 1065 | int * indexRowU = indexRowU_.array(); |
| 1066 | int iRow = indexRowU[pivotRowPosition]; |
| 1067 | CoinBigIndex * startRowU = startRowU_.array(); |
| 1068 | int * nextRow = nextRow_.array(); |
| 1069 | int * lastRow = lastRow_.array(); |
| 1070 | |
| 1071 | while ( iRow != pivotRow ) { |
| 1072 | pivotRowPosition++; |
| 1073 | iRow = indexRowU[pivotRowPosition]; |
| 1074 | } /* endwhile */ |
| 1075 | assert ( pivotRowPosition < endColumn ); |
| 1076 | //store column in L, compress in U and take column out |
| 1077 | CoinBigIndex l = lengthL_; |
| 1078 | |
| 1079 | if ( l + numberDoColumn > lengthAreaL_ ) { |
| 1080 | //need more memory |
| 1081 | if ((messageLevel_&4)!=0) |
| 1082 | std::cout << "more memory needed in middle of invert" << std::endl; |
| 1083 | return false; |
| 1084 | } |
| 1085 | CoinBigIndex * startColumnL = startColumnL_.array(); |
| 1086 | CoinFactorizationDouble * elementL = elementL_.array(); |
| 1087 | int * indexRowL = indexRowL_.array(); |
| 1088 | startColumnL[numberGoodL_] = l; //for luck and first time |
| 1089 | numberGoodL_++; |
| 1090 | startColumnL[numberGoodL_] = l + numberDoColumn; |
| 1091 | lengthL_ += numberDoColumn; |
| 1092 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 1093 | CoinFactorizationDouble pivotElement = elementU[pivotRowPosition]; |
| 1094 | CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement; |
| 1095 | |
| 1096 | pivotRegion_.array()[numberGoodU_] = pivotMultiplier; |
| 1097 | CoinBigIndex i; |
| 1098 | |
| 1099 | int * indexColumnU = indexColumnU_.array(); |
| 1100 | for ( i = startColumn; i < pivotRowPosition; i++ ) { |
| 1101 | int iRow = indexRowU[i]; |
| 1102 | |
| 1103 | indexRowL[l] = iRow; |
| 1104 | elementL[l] = elementU[i] * pivotMultiplier; |
| 1105 | l++; |
| 1106 | //take out of row list |
| 1107 | CoinBigIndex start = startRowU[iRow]; |
| 1108 | int iNumberInRow = numberInRow[iRow]; |
| 1109 | CoinBigIndex end = start + iNumberInRow; |
| 1110 | CoinBigIndex where = start; |
| 1111 | |
| 1112 | while ( indexColumnU[where] != pivotColumn ) { |
| 1113 | where++; |
| 1114 | } /* endwhile */ |
| 1115 | assert ( where < end ); |
| 1116 | indexColumnU[where] = indexColumnU[end - 1]; |
| 1117 | iNumberInRow--; |
| 1118 | numberInRow[iRow] = iNumberInRow; |
| 1119 | deleteLink ( iRow ); |
| 1120 | addLink ( iRow, iNumberInRow ); |
| 1121 | } |
| 1122 | for ( i = pivotRowPosition + 1; i < endColumn; i++ ) { |
| 1123 | int iRow = indexRowU[i]; |
| 1124 | |
| 1125 | indexRowL[l] = iRow; |
| 1126 | elementL[l] = elementU[i] * pivotMultiplier; |
| 1127 | l++; |
| 1128 | //take out of row list |
| 1129 | CoinBigIndex start = startRowU[iRow]; |
| 1130 | int iNumberInRow = numberInRow[iRow]; |
| 1131 | CoinBigIndex end = start + iNumberInRow; |
| 1132 | CoinBigIndex where = start; |
| 1133 | |
| 1134 | while ( indexColumnU[where] != pivotColumn ) { |
| 1135 | where++; |
| 1136 | } /* endwhile */ |
| 1137 | assert ( where < end ); |
| 1138 | indexColumnU[where] = indexColumnU[end - 1]; |
| 1139 | iNumberInRow--; |
| 1140 | numberInRow[iRow] = iNumberInRow; |
| 1141 | deleteLink ( iRow ); |
| 1142 | addLink ( iRow, iNumberInRow ); |
| 1143 | } |
| 1144 | numberInColumn[pivotColumn] = 0; |
| 1145 | //modify linked list for pivots |
| 1146 | numberInRow[pivotRow] = 0; |
| 1147 | deleteLink ( pivotRow ); |
| 1148 | deleteLink ( pivotColumn + numberRows_ ); |
| 1149 | //take out this bit of indexColumnU |
| 1150 | int next = nextRow[pivotRow]; |
| 1151 | int last = lastRow[pivotRow]; |
| 1152 | |
| 1153 | nextRow[last] = next; |
| 1154 | lastRow[next] = last; |
| 1155 | lastRow[pivotRow] =-2; |
| 1156 | nextRow[pivotRow] = numberGoodU_; //use for permute |
| 1157 | return true; |
| 1158 | } |
| 1159 | |
| 1160 | // pivotColumnSingleton. Does one pivot on Column Singleton in factorization |
| 1161 | bool |
| 1162 | CoinFactorization::pivotColumnSingleton ( int pivotRow, |
| 1163 | int pivotColumn ) |
| 1164 | { |
| 1165 | int * numberInRow = numberInRow_.array(); |
| 1166 | int * numberInColumn = numberInColumn_.array(); |
| 1167 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
| 1168 | //store pivot columns (so can easily compress) |
| 1169 | int numberDoRow = numberInRow[pivotRow] - 1; |
| 1170 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1171 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
| 1172 | int put = 0; |
| 1173 | CoinBigIndex * startRowU = startRowU_.array(); |
| 1174 | CoinBigIndex startRow = startRowU[pivotRow]; |
| 1175 | CoinBigIndex endRow = startRow + numberDoRow + 1; |
| 1176 | int * indexColumnU = indexColumnU_.array(); |
| 1177 | int * indexRowU = indexRowU_.array(); |
| 1178 | int * saveColumn = saveColumn_.array(); |
| 1179 | CoinBigIndex i; |
| 1180 | |
| 1181 | for ( i = startRow; i < endRow; i++ ) { |
| 1182 | int iColumn = indexColumnU[i]; |
| 1183 | |
| 1184 | if ( iColumn != pivotColumn ) { |
| 1185 | saveColumn[put++] = iColumn; |
| 1186 | } |
| 1187 | } |
| 1188 | int * nextRow = nextRow_.array(); |
| 1189 | int * lastRow = lastRow_.array(); |
| 1190 | //take out this bit of indexColumnU |
| 1191 | int next = nextRow[pivotRow]; |
| 1192 | int last = lastRow[pivotRow]; |
| 1193 | |
| 1194 | nextRow[last] = next; |
| 1195 | lastRow[next] = last; |
| 1196 | nextRow[pivotRow] = numberGoodU_; //use for permute |
| 1197 | lastRow[pivotRow] =-2; //mark |
| 1198 | //clean up counts |
| 1199 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 1200 | CoinFactorizationDouble pivotElement = elementU[startColumn]; |
| 1201 | |
| 1202 | pivotRegion_.array()[numberGoodU_] = 1.0 / pivotElement; |
| 1203 | numberInColumn[pivotColumn] = 0; |
| 1204 | //totalElements_ --; |
| 1205 | //numberInColumnPlus[pivotColumn]++; |
| 1206 | //move pivot row in other columns to safe zone |
| 1207 | for ( i = 0; i < numberDoRow; i++ ) { |
| 1208 | int iColumn = saveColumn[i]; |
| 1209 | |
| 1210 | if ( numberInColumn[iColumn] ) { |
| 1211 | int number = numberInColumn[iColumn] - 1; |
| 1212 | |
| 1213 | //modify linked list |
| 1214 | deleteLink ( iColumn + numberRows_ ); |
| 1215 | addLink ( iColumn + numberRows_, number ); |
| 1216 | //move pivot row element |
| 1217 | if ( number ) { |
| 1218 | CoinBigIndex start = startColumnU[iColumn]; |
| 1219 | CoinBigIndex pivot = start; |
| 1220 | int iRow = indexRowU[pivot]; |
| 1221 | while ( iRow != pivotRow ) { |
| 1222 | pivot++; |
| 1223 | iRow = indexRowU[pivot]; |
| 1224 | } |
| 1225 | assert (pivot < startColumnU[iColumn] + |
| 1226 | numberInColumn[iColumn]); |
| 1227 | if ( pivot != start ) { |
| 1228 | //move largest one up |
| 1229 | CoinFactorizationDouble value = elementU[start]; |
| 1230 | |
| 1231 | iRow = indexRowU[start]; |
| 1232 | elementU[start] = elementU[pivot]; |
| 1233 | indexRowU[start] = indexRowU[pivot]; |
| 1234 | elementU[pivot] = elementU[start + 1]; |
| 1235 | indexRowU[pivot] = indexRowU[start + 1]; |
| 1236 | elementU[start + 1] = value; |
| 1237 | indexRowU[start + 1] = iRow; |
| 1238 | } else { |
| 1239 | //find new largest element |
| 1240 | int iRowSave = indexRowU[start + 1]; |
| 1241 | CoinFactorizationDouble valueSave = elementU[start + 1]; |
| 1242 | double valueLargest = fabs ( valueSave ); |
| 1243 | CoinBigIndex end = start + numberInColumn[iColumn]; |
| 1244 | CoinBigIndex largest = start + 1; |
| 1245 | |
| 1246 | CoinBigIndex k; |
| 1247 | for ( k = start + 2; k < end; k++ ) { |
| 1248 | CoinFactorizationDouble value = elementU[k]; |
| 1249 | double valueAbs = fabs ( value ); |
| 1250 | |
| 1251 | if ( valueAbs > valueLargest ) { |
| 1252 | valueLargest = valueAbs; |
| 1253 | largest = k; |
| 1254 | } |
| 1255 | } |
| 1256 | indexRowU[start + 1] = indexRowU[largest]; |
| 1257 | elementU[start + 1] = elementU[largest]; |
| 1258 | indexRowU[largest] = iRowSave; |
| 1259 | elementU[largest] = valueSave; |
| 1260 | } |
| 1261 | } |
| 1262 | //clean up counts |
| 1263 | numberInColumn[iColumn]--; |
| 1264 | numberInColumnPlus[iColumn]++; |
| 1265 | startColumnU[iColumn]++; |
| 1266 | //totalElements_--; |
| 1267 | } |
| 1268 | } |
| 1269 | //modify linked list for pivots |
| 1270 | deleteLink ( pivotRow ); |
| 1271 | deleteLink ( pivotColumn + numberRows_ ); |
| 1272 | numberInRow[pivotRow] = 0; |
| 1273 | //put in dummy pivot in L |
| 1274 | CoinBigIndex l = lengthL_; |
| 1275 | |
| 1276 | CoinBigIndex * startColumnL = startColumnL_.array(); |
| 1277 | startColumnL[numberGoodL_] = l; //for luck and first time |
| 1278 | numberGoodL_++; |
| 1279 | startColumnL[numberGoodL_] = l; |
| 1280 | return true; |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | // getColumnSpace. Gets space for one Column with given length |
| 1285 | //may have to do compression (returns true) |
| 1286 | //also moves existing vector |
| 1287 | bool |
| 1288 | CoinFactorization::getColumnSpace ( int iColumn, |
| 1289 | int ) |
| 1290 | { |
| 1291 | int * numberInColumn = numberInColumn_.array(); |
| 1292 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
| 1293 | int * nextColumn = nextColumn_.array(); |
| 1294 | int * lastColumn = lastColumn_.array(); |
| 1295 | int number = numberInColumnPlus[iColumn] + |
| 1296 | numberInColumn[iColumn]; |
| 1297 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1298 | CoinBigIndex space = lengthAreaU_ - startColumnU[maximumColumnsExtra_]; |
| 1299 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 1300 | int * indexRowU = indexRowU_.array(); |
| 1301 | |
| 1302 | if ( space < extraNeeded + number + 4 ) { |
| 1303 | //compression |
| 1304 | int iColumn = nextColumn[maximumColumnsExtra_]; |
| 1305 | CoinBigIndex put = 0; |
| 1306 | |
| 1307 | while ( iColumn != maximumColumnsExtra_ ) { |
| 1308 | //move |
| 1309 | CoinBigIndex get; |
| 1310 | CoinBigIndex getEnd; |
| 1311 | |
| 1312 | if ( startColumnU[iColumn] >= 0 ) { |
| 1313 | get = startColumnU[iColumn] |
| 1314 | - numberInColumnPlus[iColumn]; |
| 1315 | getEnd = startColumnU[iColumn] + numberInColumn[iColumn]; |
| 1316 | startColumnU[iColumn] = put + numberInColumnPlus[iColumn]; |
| 1317 | } else { |
| 1318 | get = -startColumnU[iColumn]; |
| 1319 | getEnd = get + numberInColumn[iColumn]; |
| 1320 | startColumnU[iColumn] = -put; |
| 1321 | } |
| 1322 | CoinBigIndex i; |
| 1323 | for ( i = get; i < getEnd; i++ ) { |
| 1324 | indexRowU[put] = indexRowU[i]; |
| 1325 | elementU[put] = elementU[i]; |
| 1326 | put++; |
| 1327 | } |
| 1328 | iColumn = nextColumn[iColumn]; |
| 1329 | } /* endwhile */ |
| 1330 | numberCompressions_++; |
| 1331 | startColumnU[maximumColumnsExtra_] = put; |
| 1332 | space = lengthAreaU_ - put; |
| 1333 | if ( extraNeeded == COIN_INT_MAX >> 1 ) { |
| 1334 | return true; |
| 1335 | } |
| 1336 | if ( space < extraNeeded + number + 2 ) { |
| 1337 | //need more space |
| 1338 | //if we can allocate bigger then do so and copy |
| 1339 | //if not then return so code can start again |
| 1340 | status_ = -99; |
| 1341 | return false; |
| 1342 | } |
| 1343 | } |
| 1344 | CoinBigIndex put = startColumnU[maximumColumnsExtra_]; |
| 1345 | int next = nextColumn[iColumn]; |
| 1346 | int last = lastColumn[iColumn]; |
| 1347 | |
| 1348 | if ( extraNeeded || next != maximumColumnsExtra_ ) { |
| 1349 | //out |
| 1350 | nextColumn[last] = next; |
| 1351 | lastColumn[next] = last; |
| 1352 | //in at end |
| 1353 | last = lastColumn[maximumColumnsExtra_]; |
| 1354 | nextColumn[last] = iColumn; |
| 1355 | lastColumn[maximumColumnsExtra_] = iColumn; |
| 1356 | lastColumn[iColumn] = last; |
| 1357 | nextColumn[iColumn] = maximumColumnsExtra_; |
| 1358 | //move |
| 1359 | CoinBigIndex get = startColumnU[iColumn] |
| 1360 | - numberInColumnPlus[iColumn]; |
| 1361 | |
| 1362 | startColumnU[iColumn] = put + numberInColumnPlus[iColumn]; |
| 1363 | if ( number < 50 ) { |
| 1364 | int *indexRow = indexRowU; |
| 1365 | CoinFactorizationDouble *element = elementU; |
| 1366 | int i = 0; |
| 1367 | |
| 1368 | if ( ( number & 1 ) != 0 ) { |
| 1369 | element[put] = element[get]; |
| 1370 | indexRow[put] = indexRow[get]; |
| 1371 | i = 1; |
| 1372 | } |
| 1373 | for ( ; i < number; i += 2 ) { |
| 1374 | CoinFactorizationDouble value0 = element[get + i]; |
| 1375 | CoinFactorizationDouble value1 = element[get + i + 1]; |
| 1376 | int index0 = indexRow[get + i]; |
| 1377 | int index1 = indexRow[get + i + 1]; |
| 1378 | |
| 1379 | element[put + i] = value0; |
| 1380 | element[put + i + 1] = value1; |
| 1381 | indexRow[put + i] = index0; |
| 1382 | indexRow[put + i + 1] = index1; |
| 1383 | } |
| 1384 | } else { |
| 1385 | CoinMemcpyN ( &indexRowU[get], number, &indexRowU[put] ); |
| 1386 | CoinMemcpyN ( &elementU[get], number, &elementU[put] ); |
| 1387 | } |
| 1388 | put += number; |
| 1389 | get += number; |
| 1390 | //add 2 for luck |
| 1391 | startColumnU[maximumColumnsExtra_] = put + extraNeeded + 2; |
| 1392 | if (startColumnU[maximumColumnsExtra_]>lengthAreaU_) { |
| 1393 | // get more memory |
| 1394 | #ifdef CLP_DEVELOP |
| 1395 | printf("put %d, needed %d, start %d, length %d\n" , |
| 1396 | put,extraNeeded,startColumnU[maximumColumnsExtra_], |
| 1397 | lengthAreaU_); |
| 1398 | #endif |
| 1399 | return false; |
| 1400 | } |
| 1401 | } else { |
| 1402 | //take off space |
| 1403 | startColumnU[maximumColumnsExtra_] = startColumnU[last] + |
| 1404 | numberInColumn[last]; |
| 1405 | } |
| 1406 | return true; |
| 1407 | } |
| 1408 | |
| 1409 | // getRowSpace. Gets space for one Row with given length |
| 1410 | //may have to do compression (returns true) |
| 1411 | //also moves existing vector |
| 1412 | bool |
| 1413 | CoinFactorization::getRowSpace ( int iRow, |
| 1414 | int ) |
| 1415 | { |
| 1416 | int * numberInRow = numberInRow_.array(); |
| 1417 | int number = numberInRow[iRow]; |
| 1418 | CoinBigIndex * startRowU = startRowU_.array(); |
| 1419 | CoinBigIndex space = lengthAreaU_ - startRowU[maximumRowsExtra_]; |
| 1420 | int * nextRow = nextRow_.array(); |
| 1421 | int * lastRow = lastRow_.array(); |
| 1422 | int * indexColumnU = indexColumnU_.array(); |
| 1423 | |
| 1424 | if ( space < extraNeeded + number + 2 ) { |
| 1425 | //compression |
| 1426 | int iRow = nextRow[maximumRowsExtra_]; |
| 1427 | CoinBigIndex put = 0; |
| 1428 | |
| 1429 | while ( iRow != maximumRowsExtra_ ) { |
| 1430 | //move |
| 1431 | CoinBigIndex get = startRowU[iRow]; |
| 1432 | CoinBigIndex getEnd = startRowU[iRow] + numberInRow[iRow]; |
| 1433 | |
| 1434 | startRowU[iRow] = put; |
| 1435 | CoinBigIndex i; |
| 1436 | for ( i = get; i < getEnd; i++ ) { |
| 1437 | indexColumnU[put] = indexColumnU[i]; |
| 1438 | put++; |
| 1439 | } |
| 1440 | iRow = nextRow[iRow]; |
| 1441 | } /* endwhile */ |
| 1442 | numberCompressions_++; |
| 1443 | startRowU[maximumRowsExtra_] = put; |
| 1444 | space = lengthAreaU_ - put; |
| 1445 | if ( space < extraNeeded + number + 2 ) { |
| 1446 | //need more space |
| 1447 | //if we can allocate bigger then do so and copy |
| 1448 | //if not then return so code can start again |
| 1449 | status_ = -99; |
| 1450 | return false; |
| 1451 | } |
| 1452 | } |
| 1453 | CoinBigIndex put = startRowU[maximumRowsExtra_]; |
| 1454 | int next = nextRow[iRow]; |
| 1455 | int last = lastRow[iRow]; |
| 1456 | |
| 1457 | //out |
| 1458 | nextRow[last] = next; |
| 1459 | lastRow[next] = last; |
| 1460 | //in at end |
| 1461 | last = lastRow[maximumRowsExtra_]; |
| 1462 | nextRow[last] = iRow; |
| 1463 | lastRow[maximumRowsExtra_] = iRow; |
| 1464 | lastRow[iRow] = last; |
| 1465 | nextRow[iRow] = maximumRowsExtra_; |
| 1466 | //move |
| 1467 | CoinBigIndex get = startRowU[iRow]; |
| 1468 | |
| 1469 | startRowU[iRow] = put; |
| 1470 | while ( number ) { |
| 1471 | number--; |
| 1472 | indexColumnU[put] = indexColumnU[get]; |
| 1473 | put++; |
| 1474 | get++; |
| 1475 | } /* endwhile */ |
| 1476 | //add 4 for luck |
| 1477 | startRowU[maximumRowsExtra_] = put + extraNeeded + 4; |
| 1478 | return true; |
| 1479 | } |
| 1480 | |
| 1481 | #if COIN_ONE_ETA_COPY |
| 1482 | /* Reorders U so contiguous and in order (if there is space) |
| 1483 | Returns true if it could */ |
| 1484 | bool |
| 1485 | CoinFactorization::reorderU() |
| 1486 | { |
| 1487 | #if 1 |
| 1488 | return false; |
| 1489 | #else |
| 1490 | if (numberRows_!=numberColumns_) |
| 1491 | return false; |
| 1492 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1493 | int * numberInColumn = numberInColumn_.array(); |
| 1494 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
| 1495 | int iColumn; |
| 1496 | CoinBigIndex put = 0; |
| 1497 | for (iColumn =0;iColumn<numberRows_;iColumn++) |
| 1498 | put += numberInColumnPlus[iColumn]; |
| 1499 | CoinBigIndex space = lengthAreaU_ - startColumnU[maximumColumnsExtra_]; |
| 1500 | if (space<put) { |
| 1501 | //printf("Space %d out of %d - needed %d\n", |
| 1502 | // space,lengthAreaU_,put); |
| 1503 | return false; |
| 1504 | } |
| 1505 | int *indexRowU = indexRowU_.array(); |
| 1506 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 1507 | int * pivotColumn = pivotColumn_.array(); |
| 1508 | put = startColumnU[maximumColumnsExtra_]; |
| 1509 | for (int jColumn =0;jColumn<numberRows_;jColumn++) { |
| 1510 | iColumn = pivotColumn[jColumn]; |
| 1511 | int n = numberInColumnPlus[iColumn]; |
| 1512 | CoinBigIndex getEnd = startColumnU[iColumn]; |
| 1513 | CoinBigIndex get = getEnd - n; |
| 1514 | startColumnU[iColumn] = put; |
| 1515 | numberInColumn[jColumn]=n; |
| 1516 | CoinBigIndex i; |
| 1517 | for ( i = get; i < getEnd; i++ ) { |
| 1518 | indexRowU[put] = indexRowU[i]; |
| 1519 | elementU[put] = elementU[i]; |
| 1520 | put++; |
| 1521 | } |
| 1522 | } |
| 1523 | // and pack down |
| 1524 | put = 0; |
| 1525 | for (int jColumn =0;jColumn<numberRows_;jColumn++) { |
| 1526 | iColumn = pivotColumn[jColumn]; |
| 1527 | int n = numberInColumn[jColumn]; |
| 1528 | CoinBigIndex get = startColumnU[iColumn]; |
| 1529 | CoinBigIndex getEnd = get+n; |
| 1530 | CoinBigIndex i; |
| 1531 | for ( i = get; i < getEnd; i++ ) { |
| 1532 | indexRowU[put] = indexRowU[i]; |
| 1533 | elementU[put] = elementU[i]; |
| 1534 | put++; |
| 1535 | } |
| 1536 | } |
| 1537 | put=0; |
| 1538 | for (iColumn =0;iColumn<numberRows_;iColumn++) { |
| 1539 | int n = numberInColumn[iColumn]; |
| 1540 | startColumnU[iColumn]=put; |
| 1541 | put += n; |
| 1542 | //numberInColumnPlus[iColumn]=n; |
| 1543 | //numberInColumn[iColumn]=0; // necessary? |
| 1544 | //pivotColumn[iColumn]=iColumn; |
| 1545 | } |
| 1546 | #if 0 |
| 1547 | // reset nextColumn - probably not necessary |
| 1548 | int * nextColumn = nextColumn_.array(); |
| 1549 | nextColumn[maximumColumnsExtra_]=0; |
| 1550 | nextColumn[numberRows_-1] = maximumColumnsExtra_; |
| 1551 | for (iColumn=0;iColumn<numberRows_-1;iColumn++) |
| 1552 | nextColumn[iColumn]=iColumn+1; |
| 1553 | // swap arrays |
| 1554 | numberInColumn_.swap(numberInColumnPlus_); |
| 1555 | #endif |
| 1556 | //return false; |
| 1557 | return true; |
| 1558 | #endif |
| 1559 | } |
| 1560 | #endif |
| 1561 | // cleanup. End of factorization |
| 1562 | void |
| 1563 | CoinFactorization::cleanup ( ) |
| 1564 | { |
| 1565 | #if COIN_ONE_ETA_COPY |
| 1566 | bool compressDone = reorderU(); |
| 1567 | if (!compressDone) { |
| 1568 | getColumnSpace ( 0, COIN_INT_MAX >> 1 ); //compress |
| 1569 | // swap arrays |
| 1570 | numberInColumn_.swap(numberInColumnPlus_); |
| 1571 | } |
| 1572 | #else |
| 1573 | getColumnSpace ( 0, COIN_INT_MAX >> 1 ); //compress |
| 1574 | // swap arrays |
| 1575 | numberInColumn_.swap(numberInColumnPlus_); |
| 1576 | #endif |
| 1577 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1578 | CoinBigIndex lastU = startColumnU[maximumColumnsExtra_]; |
| 1579 | |
| 1580 | //free some memory here |
| 1581 | saveColumn_.conditionalDelete(); |
| 1582 | markRow_.conditionalDelete() ; |
| 1583 | //firstCount_.conditionalDelete() ; |
| 1584 | nextCount_.conditionalDelete() ; |
| 1585 | lastCount_.conditionalDelete() ; |
| 1586 | int * numberInRow = numberInRow_.array(); |
| 1587 | int * numberInColumn = numberInColumn_.array(); |
| 1588 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
| 1589 | //make column starts OK |
| 1590 | //for best cache behavior get in order (last pivot at bottom of space) |
| 1591 | //that will need thinking about |
| 1592 | //use nextRow for permutation (as that is what it is) |
| 1593 | int i; |
| 1594 | |
| 1595 | #ifndef NDEBUG |
| 1596 | { |
| 1597 | if (numberGoodU_<numberRows_) |
| 1598 | abort(); |
| 1599 | char * mark = new char[numberRows_]; |
| 1600 | memset(mark,0,numberRows_); |
| 1601 | int * array; |
| 1602 | array = nextRow_.array(); |
| 1603 | for ( i = 0; i < numberRows_; i++ ) { |
| 1604 | int k = array[i]; |
| 1605 | if(k<0||k>=numberRows_) |
| 1606 | printf("Bad a %d %d\n" ,i,k); |
| 1607 | assert(k>=0&&k<numberRows_); |
| 1608 | if(mark[k]==1) |
| 1609 | printf("Bad a %d %d\n" ,i,k); |
| 1610 | mark[k]=1; |
| 1611 | } |
| 1612 | for ( i = 0; i < numberRows_; i++ ) { |
| 1613 | assert(mark[i]==1); |
| 1614 | if(mark[i]!=1) |
| 1615 | printf("Bad b %d\n" ,i); |
| 1616 | } |
| 1617 | delete [] mark; |
| 1618 | } |
| 1619 | #endif |
| 1620 | // swap arrays |
| 1621 | permute_.swap(nextRow_); |
| 1622 | //safety feature |
| 1623 | int * permute = permute_.array(); |
| 1624 | permute[numberRows_] = 0; |
| 1625 | permuteBack_.conditionalNew( maximumRowsExtra_ + 1); |
| 1626 | int * permuteBack = permuteBack_.array(); |
| 1627 | #ifdef ZEROFAULT |
| 1628 | memset(permuteBack_.array(),'w',(maximumRowsExtra_+1)*sizeof(int)); |
| 1629 | #endif |
| 1630 | for ( i = 0; i < numberRows_; i++ ) { |
| 1631 | int iRow = permute[i]; |
| 1632 | |
| 1633 | permuteBack[iRow] = i; |
| 1634 | } |
| 1635 | //redo nextRow_ |
| 1636 | |
| 1637 | #ifndef NDEBUG |
| 1638 | for ( i = 0; i < numberRows_; i++ ) { |
| 1639 | assert (permute[i]>=0&&permute[i]<numberRows_); |
| 1640 | assert (permuteBack[i]>=0&&permuteBack[i]<numberRows_); |
| 1641 | } |
| 1642 | #endif |
| 1643 | #if COIN_ONE_ETA_COPY |
| 1644 | if (!compressDone) { |
| 1645 | #endif |
| 1646 | // Redo total elements |
| 1647 | totalElements_=0; |
| 1648 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1649 | int number = numberInColumn[i]; |
| 1650 | totalElements_ += number; |
| 1651 | startColumnU[i] -= number; |
| 1652 | } |
| 1653 | #if COIN_ONE_ETA_COPY |
| 1654 | } |
| 1655 | #endif |
| 1656 | int numberU = 0; |
| 1657 | |
| 1658 | pivotColumnBack_.conditionalNew( maximumRowsExtra_ + 1); |
| 1659 | #ifdef ZEROFAULT |
| 1660 | memset(pivotColumnBack(),'q',(maximumRowsExtra_+1)*sizeof(int)); |
| 1661 | #endif |
| 1662 | const int * pivotColumn = pivotColumn_.array(); |
| 1663 | int * pivotColumnB = pivotColumnBack(); |
| 1664 | int *indexColumnU = indexColumnU_.array(); |
| 1665 | CoinBigIndex *startColumn = startColumnU; |
| 1666 | int *indexRowU = indexRowU_.array(); |
| 1667 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 1668 | #if COIN_ONE_ETA_COPY |
| 1669 | if (!compressDone) { |
| 1670 | #endif |
| 1671 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1672 | int iColumn = pivotColumn[i]; |
| 1673 | |
| 1674 | pivotColumnB[iColumn] = i; |
| 1675 | if ( iColumn >= 0 ) { |
| 1676 | //wanted |
| 1677 | if ( numberU != iColumn ) { |
| 1678 | numberInColumnPlus[iColumn] = numberU; |
| 1679 | } else { |
| 1680 | numberInColumnPlus[iColumn] = -1; //already in correct place |
| 1681 | } |
| 1682 | numberU++; |
| 1683 | } |
| 1684 | } |
| 1685 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1686 | int number = numberInColumn[i]; //always 0? |
| 1687 | int where = numberInColumnPlus[i]; |
| 1688 | |
| 1689 | numberInColumnPlus[i] = -1; |
| 1690 | CoinBigIndex start = startColumnU[i]; |
| 1691 | |
| 1692 | while ( where >= 0 ) { |
| 1693 | //put where it should be |
| 1694 | int numberNext = numberInColumn[where]; //always 0? |
| 1695 | int whereNext = numberInColumnPlus[where]; |
| 1696 | CoinBigIndex startNext = startColumnU[where]; |
| 1697 | |
| 1698 | numberInColumn[where] = number; |
| 1699 | numberInColumnPlus[where] = -1; |
| 1700 | startColumnU[where] = start; |
| 1701 | number = numberNext; |
| 1702 | where = whereNext; |
| 1703 | start = startNext; |
| 1704 | } /* endwhile */ |
| 1705 | } |
| 1706 | //sort - using indexColumn |
| 1707 | CoinFillN ( indexColumnU_.array(), lastU, -1 ); |
| 1708 | CoinBigIndex k = 0; |
| 1709 | |
| 1710 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
| 1711 | CoinBigIndex start = startColumn[i]; |
| 1712 | CoinBigIndex end = start + numberInColumn[i]; |
| 1713 | |
| 1714 | CoinBigIndex j; |
| 1715 | for ( j = start; j < end; j++ ) { |
| 1716 | indexColumnU[j] = k++; |
| 1717 | } |
| 1718 | } |
| 1719 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
| 1720 | CoinBigIndex start = startColumn[i]; |
| 1721 | CoinBigIndex end = start + numberInColumn[i]; |
| 1722 | |
| 1723 | CoinBigIndex j; |
| 1724 | for ( j = start; j < end; j++ ) { |
| 1725 | CoinBigIndex k = indexColumnU[j]; |
| 1726 | int iRow = indexRowU[j]; |
| 1727 | CoinFactorizationDouble element = elementU[j]; |
| 1728 | |
| 1729 | while ( k != -1 ) { |
| 1730 | CoinBigIndex kNext = indexColumnU[k]; |
| 1731 | int iRowNext = indexRowU[k]; |
| 1732 | CoinFactorizationDouble elementNext = elementU[k]; |
| 1733 | |
| 1734 | indexColumnU[k] = -1; |
| 1735 | indexRowU[k] = iRow; |
| 1736 | elementU[k] = element; |
| 1737 | k = kNext; |
| 1738 | iRow = iRowNext; |
| 1739 | element = elementNext; |
| 1740 | } /* endwhile */ |
| 1741 | } |
| 1742 | } |
| 1743 | CoinZeroN ( startColumnU, numberSlacks_ ); |
| 1744 | k = 0; |
| 1745 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
| 1746 | startColumnU[i] = k; |
| 1747 | k += numberInColumn[i]; |
| 1748 | } |
| 1749 | maximumU_=k; |
| 1750 | #if COIN_ONE_ETA_COPY |
| 1751 | } else { |
| 1752 | // U already OK |
| 1753 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1754 | int iColumn = pivotColumn[i]; |
| 1755 | pivotColumnB[iColumn] = i; |
| 1756 | } |
| 1757 | maximumU_=startColumnU[numberRows_-1]+ |
| 1758 | numberInColumn[numberRows_-1]; |
| 1759 | numberU=numberRows_; |
| 1760 | } |
| 1761 | #endif |
| 1762 | if ( (messageLevel_ & 8)) { |
| 1763 | std::cout<<" length of U " <<totalElements_<<", length of L " <<lengthL_; |
| 1764 | if (numberDense_) |
| 1765 | std::cout<<" plus " <<numberDense_*numberDense_<<" from " <<numberDense_<<" dense rows" ; |
| 1766 | std::cout<<std::endl; |
| 1767 | } |
| 1768 | // and add L and dense |
| 1769 | totalElements_ += numberDense_*numberDense_+lengthL_; |
| 1770 | int * nextColumn = nextColumn_.array(); |
| 1771 | int * lastColumn = lastColumn_.array(); |
| 1772 | // See whether to have extra copy of R |
| 1773 | if (maximumU_>10*numberRows_||numberRows_<200) { |
| 1774 | // NO |
| 1775 | numberInColumnPlus_.conditionalDelete() ; |
| 1776 | } else { |
| 1777 | for ( i = 0; i < numberColumns_; i++ ) { |
| 1778 | lastColumn[i] = i - 1; |
| 1779 | nextColumn[i] = i + 1; |
| 1780 | numberInColumnPlus[i]=0; |
| 1781 | } |
| 1782 | nextColumn[numberColumns_ - 1] = maximumColumnsExtra_; |
| 1783 | lastColumn[maximumColumnsExtra_] = numberColumns_ - 1; |
| 1784 | nextColumn[maximumColumnsExtra_] = 0; |
| 1785 | lastColumn[0] = maximumColumnsExtra_; |
| 1786 | } |
| 1787 | numberU_ = numberU; |
| 1788 | numberGoodU_ = numberU; |
| 1789 | numberL_ = numberGoodL_; |
| 1790 | #if COIN_DEBUG |
| 1791 | for ( i = 0; i < numberRows_; i++ ) { |
| 1792 | if ( permute[i] < 0 ) { |
| 1793 | std::cout << i << std::endl; |
| 1794 | abort ( ); |
| 1795 | } |
| 1796 | } |
| 1797 | #endif |
| 1798 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
| 1799 | for ( i = numberSlacks_; i < numberU; i++ ) { |
| 1800 | CoinBigIndex start = startColumnU[i]; |
| 1801 | CoinBigIndex end = start + numberInColumn[i]; |
| 1802 | |
| 1803 | totalElements_ += numberInColumn[i]; |
| 1804 | CoinBigIndex j; |
| 1805 | |
| 1806 | for ( j = start; j < end; j++ ) { |
| 1807 | int iRow = indexRowU[j]; |
| 1808 | iRow = permute[iRow]; |
| 1809 | indexRowU[j] = iRow; |
| 1810 | numberInRow[iRow]++; |
| 1811 | } |
| 1812 | } |
| 1813 | #if COIN_ONE_ETA_COPY |
| 1814 | if (numberRows_>=COIN_ONE_ETA_COPY) { |
| 1815 | #endif |
| 1816 | //space for cross reference |
| 1817 | convertRowToColumnU_.conditionalNew( lengthAreaU_ ); |
| 1818 | CoinBigIndex *convertRowToColumn = convertRowToColumnU_.array(); |
| 1819 | CoinBigIndex j = 0; |
| 1820 | CoinBigIndex *startRow = startRowU_.array(); |
| 1821 | |
| 1822 | int iRow; |
| 1823 | for ( iRow = 0; iRow < numberRows_; iRow++ ) { |
| 1824 | startRow[iRow] = j; |
| 1825 | j += numberInRow[iRow]; |
| 1826 | } |
| 1827 | CoinBigIndex numberInU = j; |
| 1828 | |
| 1829 | CoinZeroN ( numberInRow_.array(), numberRows_ ); |
| 1830 | |
| 1831 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
| 1832 | CoinBigIndex start = startColumnU[i]; |
| 1833 | CoinBigIndex end = start + numberInColumn[i]; |
| 1834 | |
| 1835 | CoinFactorizationDouble pivotValue = pivotRegion[i]; |
| 1836 | |
| 1837 | CoinBigIndex j; |
| 1838 | for ( j = start; j < end; j++ ) { |
| 1839 | int iRow = indexRowU[j]; |
| 1840 | int iLook = numberInRow[iRow]; |
| 1841 | |
| 1842 | numberInRow[iRow] = iLook + 1; |
| 1843 | CoinBigIndex k = startRow[iRow] + iLook; |
| 1844 | |
| 1845 | indexColumnU[k] = i; |
| 1846 | convertRowToColumn[k] = j; |
| 1847 | //multiply by pivot |
| 1848 | elementU[j] *= pivotValue; |
| 1849 | } |
| 1850 | } |
| 1851 | int * nextRow = nextRow_.array(); |
| 1852 | int * lastRow = lastRow_.array(); |
| 1853 | for ( j = 0; j < numberRows_; j++ ) { |
| 1854 | lastRow[j] = j - 1; |
| 1855 | nextRow[j] = j + 1; |
| 1856 | } |
| 1857 | nextRow[numberRows_ - 1] = maximumRowsExtra_; |
| 1858 | lastRow[maximumRowsExtra_] = numberRows_ - 1; |
| 1859 | nextRow[maximumRowsExtra_] = 0; |
| 1860 | lastRow[0] = maximumRowsExtra_; |
| 1861 | startRow[maximumRowsExtra_] = numberInU; |
| 1862 | #if COIN_ONE_ETA_COPY |
| 1863 | } else { |
| 1864 | // no row copy |
| 1865 | for ( i = numberSlacks_; i < numberU; i++ ) { |
| 1866 | CoinBigIndex start = startColumnU[i]; |
| 1867 | CoinBigIndex end = start + numberInColumn[i]; |
| 1868 | |
| 1869 | CoinBigIndex j; |
| 1870 | CoinFactorizationDouble pivotValue = pivotRegion[i]; |
| 1871 | |
| 1872 | for ( j = start; j < end; j++ ) { |
| 1873 | //multiply by pivot |
| 1874 | elementU[j] *= pivotValue; |
| 1875 | } |
| 1876 | } |
| 1877 | } |
| 1878 | #endif |
| 1879 | |
| 1880 | int firstReal = numberRows_; |
| 1881 | |
| 1882 | CoinBigIndex * startColumnL = startColumnL_.array(); |
| 1883 | int * indexRowL = indexRowL_.array(); |
| 1884 | for ( i = numberRows_ - 1; i >= 0; i-- ) { |
| 1885 | CoinBigIndex start = startColumnL[i]; |
| 1886 | CoinBigIndex end = startColumnL[i + 1]; |
| 1887 | |
| 1888 | totalElements_ += end - start; |
| 1889 | if ( end > start ) { |
| 1890 | firstReal = i; |
| 1891 | CoinBigIndex j; |
| 1892 | for ( j = start; j < end; j++ ) { |
| 1893 | int iRow = indexRowL[j]; |
| 1894 | iRow = permute[iRow]; |
| 1895 | assert (iRow>firstReal); |
| 1896 | indexRowL[j] = iRow; |
| 1897 | } |
| 1898 | } |
| 1899 | } |
| 1900 | baseL_ = firstReal; |
| 1901 | numberL_ -= firstReal; |
| 1902 | factorElements_ = totalElements_; |
| 1903 | //can delete pivotRowL_ as not used |
| 1904 | pivotRowL_.conditionalDelete() ; |
| 1905 | //use L for R if room |
| 1906 | CoinBigIndex space = lengthAreaL_ - lengthL_; |
| 1907 | CoinBigIndex spaceUsed = lengthL_ + lengthU_; |
| 1908 | |
| 1909 | int needed = ( spaceUsed + numberRows_ - 1 ) / numberRows_; |
| 1910 | |
| 1911 | needed = needed * 2 * maximumPivots_; |
| 1912 | if ( needed < 2 * numberRows_ ) { |
| 1913 | needed = 2 * numberRows_; |
| 1914 | } |
| 1915 | if (numberInColumnPlus_.array()) { |
| 1916 | // Need double the space for R |
| 1917 | space = space/2; |
| 1918 | startColumnR_.conditionalNew( maximumPivots_ + 1 + maximumColumnsExtra_ + 1 ); |
| 1919 | CoinBigIndex * startR = startColumnR_.array() + maximumPivots_+1; |
| 1920 | CoinZeroN (startR,(maximumColumnsExtra_+1)); |
| 1921 | } else { |
| 1922 | startColumnR_.conditionalNew(maximumPivots_ + 1 ); |
| 1923 | } |
| 1924 | #ifdef ZEROFAULT |
| 1925 | memset(startColumnR_.array(),'z',(maximumPivots_ + 1)*sizeof(CoinBigIndex)); |
| 1926 | #endif |
| 1927 | if ( space >= needed ) { |
| 1928 | lengthR_ = 0; |
| 1929 | lengthAreaR_ = space; |
| 1930 | elementR_ = elementL_.array() + lengthL_; |
| 1931 | indexRowR_ = indexRowL_.array() + lengthL_; |
| 1932 | } else { |
| 1933 | lengthR_ = 0; |
| 1934 | lengthAreaR_ = space; |
| 1935 | elementR_ = elementL_.array() + lengthL_; |
| 1936 | indexRowR_ = indexRowL_.array() + lengthL_; |
| 1937 | if ((messageLevel_&4)) |
| 1938 | std::cout<<"Factorization may need some increasing area space" |
| 1939 | <<std::endl; |
| 1940 | if ( areaFactor_ ) { |
| 1941 | areaFactor_ *= 1.1; |
| 1942 | } else { |
| 1943 | areaFactor_ = 1.1; |
| 1944 | } |
| 1945 | } |
| 1946 | numberR_ = 0; |
| 1947 | } |
| 1948 | // Returns areaFactor but adjusted for dense |
| 1949 | double |
| 1950 | CoinFactorization::adjustedAreaFactor() const |
| 1951 | { |
| 1952 | double factor = areaFactor_; |
| 1953 | if (numberDense_&&areaFactor_>1.0) { |
| 1954 | double dense = numberDense_; |
| 1955 | dense *= dense; |
| 1956 | double withoutDense = totalElements_ - dense +1.0; |
| 1957 | factor *= 1.0 +dense/withoutDense; |
| 1958 | } |
| 1959 | return factor; |
| 1960 | } |
| 1961 | |
| 1962 | // checkConsistency. Checks that row and column copies look OK |
| 1963 | void |
| 1964 | CoinFactorization::checkConsistency ( ) |
| 1965 | { |
| 1966 | bool bad = false; |
| 1967 | |
| 1968 | int iRow; |
| 1969 | CoinBigIndex * startRowU = startRowU_.array(); |
| 1970 | int * numberInRow = numberInRow_.array(); |
| 1971 | int * numberInColumn = numberInColumn_.array(); |
| 1972 | int * indexColumnU = indexColumnU_.array(); |
| 1973 | int * indexRowU = indexRowU_.array(); |
| 1974 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 1975 | for ( iRow = 0; iRow < numberRows_; iRow++ ) { |
| 1976 | if ( numberInRow[iRow] ) { |
| 1977 | CoinBigIndex startRow = startRowU[iRow]; |
| 1978 | CoinBigIndex endRow = startRow + numberInRow[iRow]; |
| 1979 | |
| 1980 | CoinBigIndex j; |
| 1981 | for ( j = startRow; j < endRow; j++ ) { |
| 1982 | int iColumn = indexColumnU[j]; |
| 1983 | CoinBigIndex startColumn = startColumnU[iColumn]; |
| 1984 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
| 1985 | bool found = false; |
| 1986 | |
| 1987 | CoinBigIndex k; |
| 1988 | for ( k = startColumn; k < endColumn; k++ ) { |
| 1989 | if ( indexRowU[k] == iRow ) { |
| 1990 | found = true; |
| 1991 | break; |
| 1992 | } |
| 1993 | } |
| 1994 | if ( !found ) { |
| 1995 | bad = true; |
| 1996 | std::cout << "row " << iRow << " column " << iColumn << " Rows" << std::endl; |
| 1997 | } |
| 1998 | } |
| 1999 | } |
| 2000 | } |
| 2001 | int iColumn; |
| 2002 | for ( iColumn = 0; iColumn < numberColumns_; iColumn++ ) { |
| 2003 | if ( numberInColumn[iColumn] ) { |
| 2004 | CoinBigIndex startColumn = startColumnU[iColumn]; |
| 2005 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
| 2006 | |
| 2007 | CoinBigIndex j; |
| 2008 | for ( j = startColumn; j < endColumn; j++ ) { |
| 2009 | int iRow = indexRowU[j]; |
| 2010 | CoinBigIndex startRow = startRowU[iRow]; |
| 2011 | CoinBigIndex endRow = startRow + numberInRow[iRow]; |
| 2012 | bool found = false; |
| 2013 | |
| 2014 | CoinBigIndex k; |
| 2015 | for ( k = startRow; k < endRow; k++ ) { |
| 2016 | if ( indexColumnU[k] == iColumn ) { |
| 2017 | found = true; |
| 2018 | break; |
| 2019 | } |
| 2020 | } |
| 2021 | if ( !found ) { |
| 2022 | bad = true; |
| 2023 | std::cout << "row " << iRow << " column " << iColumn << " Columns" << |
| 2024 | std::endl; |
| 2025 | } |
| 2026 | } |
| 2027 | } |
| 2028 | } |
| 2029 | if ( bad ) { |
| 2030 | abort ( ); |
| 2031 | } |
| 2032 | } |
| 2033 | // pivotOneOtherRow. When just one other row so faster |
| 2034 | bool |
| 2035 | CoinFactorization::pivotOneOtherRow ( int pivotRow, |
| 2036 | int pivotColumn ) |
| 2037 | { |
| 2038 | int * numberInRow = numberInRow_.array(); |
| 2039 | int * numberInColumn = numberInColumn_.array(); |
| 2040 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
| 2041 | int numberInPivotRow = numberInRow[pivotRow] - 1; |
| 2042 | CoinBigIndex * startRowU = startRowU_.array(); |
| 2043 | CoinBigIndex * startColumnU = startColumnU_.array(); |
| 2044 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
| 2045 | CoinBigIndex startRow = startRowU[pivotRow]; |
| 2046 | CoinBigIndex endRow = startRow + numberInPivotRow + 1; |
| 2047 | |
| 2048 | //take out this bit of indexColumnU |
| 2049 | int * nextRow = nextRow_.array(); |
| 2050 | int * lastRow = lastRow_.array(); |
| 2051 | int next = nextRow[pivotRow]; |
| 2052 | int last = lastRow[pivotRow]; |
| 2053 | |
| 2054 | nextRow[last] = next; |
| 2055 | lastRow[next] = last; |
| 2056 | nextRow[pivotRow] = numberGoodU_; //use for permute |
| 2057 | lastRow[pivotRow] = -2; |
| 2058 | numberInRow[pivotRow] = 0; |
| 2059 | //store column in L, compress in U and take column out |
| 2060 | CoinBigIndex l = lengthL_; |
| 2061 | |
| 2062 | if ( l + 1 > lengthAreaL_ ) { |
| 2063 | //need more memory |
| 2064 | if ((messageLevel_&4)!=0) |
| 2065 | std::cout << "more memory needed in middle of invert" << std::endl; |
| 2066 | return false; |
| 2067 | } |
| 2068 | //l+=currentAreaL_->elementByColumn-elementL_; |
| 2069 | //CoinBigIndex lSave=l; |
| 2070 | CoinBigIndex * startColumnL = startColumnL_.array(); |
| 2071 | CoinFactorizationDouble * elementL = elementL_.array(); |
| 2072 | int * indexRowL = indexRowL_.array(); |
| 2073 | startColumnL[numberGoodL_] = l; //for luck and first time |
| 2074 | numberGoodL_++; |
| 2075 | startColumnL[numberGoodL_] = l + 1; |
| 2076 | lengthL_++; |
| 2077 | CoinFactorizationDouble pivotElement; |
| 2078 | CoinFactorizationDouble otherMultiplier; |
| 2079 | int otherRow; |
| 2080 | int * saveColumn = saveColumn_.array(); |
| 2081 | CoinFactorizationDouble *elementU = elementU_.array(); |
| 2082 | int * indexRowU = indexRowU_.array(); |
| 2083 | |
| 2084 | if ( indexRowU[startColumn] == pivotRow ) { |
| 2085 | pivotElement = elementU[startColumn]; |
| 2086 | otherMultiplier = elementU[startColumn + 1]; |
| 2087 | otherRow = indexRowU[startColumn + 1]; |
| 2088 | } else { |
| 2089 | pivotElement = elementU[startColumn + 1]; |
| 2090 | otherMultiplier = elementU[startColumn]; |
| 2091 | otherRow = indexRowU[startColumn]; |
| 2092 | } |
| 2093 | int numberSave = numberInRow[otherRow]; |
| 2094 | CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement; |
| 2095 | |
| 2096 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
| 2097 | pivotRegion[numberGoodU_] = pivotMultiplier; |
| 2098 | numberInColumn[pivotColumn] = 0; |
| 2099 | otherMultiplier = otherMultiplier * pivotMultiplier; |
| 2100 | indexRowL[l] = otherRow; |
| 2101 | elementL[l] = otherMultiplier; |
| 2102 | //take out of row list |
| 2103 | CoinBigIndex start = startRowU[otherRow]; |
| 2104 | CoinBigIndex end = start + numberSave; |
| 2105 | CoinBigIndex where = start; |
| 2106 | int * indexColumnU = indexColumnU_.array(); |
| 2107 | |
| 2108 | while ( indexColumnU[where] != pivotColumn ) { |
| 2109 | where++; |
| 2110 | } /* endwhile */ |
| 2111 | assert ( where < end ); |
| 2112 | end--; |
| 2113 | indexColumnU[where] = indexColumnU[end]; |
| 2114 | int numberAdded = 0; |
| 2115 | int numberDeleted = 0; |
| 2116 | |
| 2117 | //pack down and move to work |
| 2118 | int j; |
| 2119 | const int * nextCount = nextCount_.array(); |
| 2120 | int * nextColumn = nextColumn_.array(); |
| 2121 | |
| 2122 | for ( j = startRow; j < endRow; j++ ) { |
| 2123 | int iColumn = indexColumnU[j]; |
| 2124 | |
| 2125 | if ( iColumn != pivotColumn ) { |
| 2126 | CoinBigIndex startColumn = startColumnU[iColumn]; |
| 2127 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
| 2128 | int iRow = indexRowU[startColumn]; |
| 2129 | CoinFactorizationDouble value = elementU[startColumn]; |
| 2130 | double largest; |
| 2131 | bool foundOther = false; |
| 2132 | |
| 2133 | //leave room for pivot |
| 2134 | CoinBigIndex put = startColumn + 1; |
| 2135 | CoinBigIndex positionLargest = -1; |
| 2136 | CoinFactorizationDouble thisPivotValue = 0.0; |
| 2137 | CoinFactorizationDouble otherElement = 0.0; |
| 2138 | CoinFactorizationDouble nextValue = elementU[put]; |
| 2139 | int nextIRow = indexRowU[put]; |
| 2140 | |
| 2141 | //compress column and find largest not updated |
| 2142 | if ( iRow != pivotRow ) { |
| 2143 | if ( iRow != otherRow ) { |
| 2144 | largest = fabs ( value ); |
| 2145 | elementU[put] = value; |
| 2146 | indexRowU[put] = iRow; |
| 2147 | positionLargest = put; |
| 2148 | put++; |
| 2149 | CoinBigIndex i; |
| 2150 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
| 2151 | iRow = nextIRow; |
| 2152 | value = nextValue; |
| 2153 | #ifdef ZEROFAULT |
| 2154 | // doesn't matter reading uninitialized but annoys checking |
| 2155 | if ( i + 1 < endColumn ) { |
| 2156 | #endif |
| 2157 | nextIRow = indexRowU[i + 1]; |
| 2158 | nextValue = elementU[i + 1]; |
| 2159 | #ifdef ZEROFAULT |
| 2160 | } |
| 2161 | #endif |
| 2162 | if ( iRow != pivotRow ) { |
| 2163 | if ( iRow != otherRow ) { |
| 2164 | //keep |
| 2165 | indexRowU[put] = iRow; |
| 2166 | elementU[put] = value; |
| 2167 | put++; |
| 2168 | } else { |
| 2169 | otherElement = value; |
| 2170 | foundOther = true; |
| 2171 | } |
| 2172 | } else { |
| 2173 | thisPivotValue = value; |
| 2174 | } |
| 2175 | } |
| 2176 | } else { |
| 2177 | otherElement = value; |
| 2178 | foundOther = true; |
| 2179 | //need to find largest |
| 2180 | largest = 0.0; |
| 2181 | CoinBigIndex i; |
| 2182 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
| 2183 | iRow = nextIRow; |
| 2184 | value = nextValue; |
| 2185 | #ifdef ZEROFAULT |
| 2186 | // doesn't matter reading uninitialized but annoys checking |
| 2187 | if ( i + 1 < endColumn ) { |
| 2188 | #endif |
| 2189 | nextIRow = indexRowU[i + 1]; |
| 2190 | nextValue = elementU[i + 1]; |
| 2191 | #ifdef ZEROFAULT |
| 2192 | } |
| 2193 | #endif |
| 2194 | if ( iRow != pivotRow ) { |
| 2195 | //keep |
| 2196 | indexRowU[put] = iRow; |
| 2197 | elementU[put] = value; |
| 2198 | double absValue = fabs ( value ); |
| 2199 | |
| 2200 | if ( absValue > largest ) { |
| 2201 | largest = absValue; |
| 2202 | positionLargest = put; |
| 2203 | } |
| 2204 | put++; |
| 2205 | } else { |
| 2206 | thisPivotValue = value; |
| 2207 | } |
| 2208 | } |
| 2209 | } |
| 2210 | } else { |
| 2211 | //need to find largest |
| 2212 | largest = 0.0; |
| 2213 | thisPivotValue = value; |
| 2214 | CoinBigIndex i; |
| 2215 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
| 2216 | iRow = nextIRow; |
| 2217 | value = nextValue; |
| 2218 | #ifdef ZEROFAULT |
| 2219 | // doesn't matter reading uninitialized but annoys checking |
| 2220 | if ( i + 1 < endColumn ) { |
| 2221 | #endif |
| 2222 | nextIRow = indexRowU[i + 1]; |
| 2223 | nextValue = elementU[i + 1]; |
| 2224 | #ifdef ZEROFAULT |
| 2225 | } |
| 2226 | #endif |
| 2227 | if ( iRow != otherRow ) { |
| 2228 | //keep |
| 2229 | indexRowU[put] = iRow; |
| 2230 | elementU[put] = value; |
| 2231 | double absValue = fabs ( value ); |
| 2232 | |
| 2233 | if ( absValue > largest ) { |
| 2234 | largest = absValue; |
| 2235 | positionLargest = put; |
| 2236 | } |
| 2237 | put++; |
| 2238 | } else { |
| 2239 | otherElement = value; |
| 2240 | foundOther = true; |
| 2241 | } |
| 2242 | } |
| 2243 | } |
| 2244 | //slot in pivot |
| 2245 | elementU[startColumn] = thisPivotValue; |
| 2246 | indexRowU[startColumn] = pivotRow; |
| 2247 | //clean up counts |
| 2248 | startColumn++; |
| 2249 | numberInColumn[iColumn] = put - startColumn; |
| 2250 | numberInColumnPlus[iColumn]++; |
| 2251 | startColumnU[iColumn]++; |
| 2252 | otherElement = otherElement - thisPivotValue * otherMultiplier; |
| 2253 | double absValue = fabs ( otherElement ); |
| 2254 | |
| 2255 | if ( absValue > zeroTolerance_ ) { |
| 2256 | if ( !foundOther ) { |
| 2257 | //have we space |
| 2258 | saveColumn[numberAdded++] = iColumn; |
| 2259 | int next = nextColumn[iColumn]; |
| 2260 | CoinBigIndex space; |
| 2261 | |
| 2262 | space = startColumnU[next] - put - numberInColumnPlus[next]; |
| 2263 | if ( space <= 0 ) { |
| 2264 | //getColumnSpace also moves fixed part |
| 2265 | int number = numberInColumn[iColumn]; |
| 2266 | |
| 2267 | if ( !getColumnSpace ( iColumn, number + 1 ) ) { |
| 2268 | return false; |
| 2269 | } |
| 2270 | //redo starts |
| 2271 | positionLargest = |
| 2272 | positionLargest + startColumnU[iColumn] - startColumn; |
| 2273 | startColumn = startColumnU[iColumn]; |
| 2274 | put = startColumn + number; |
| 2275 | } |
| 2276 | } |
| 2277 | elementU[put] = otherElement; |
| 2278 | indexRowU[put] = otherRow; |
| 2279 | if ( absValue > largest ) { |
| 2280 | largest = absValue; |
| 2281 | positionLargest = put; |
| 2282 | } |
| 2283 | put++; |
| 2284 | } else { |
| 2285 | if ( foundOther ) { |
| 2286 | numberDeleted++; |
| 2287 | //take out of row list |
| 2288 | CoinBigIndex where = start; |
| 2289 | |
| 2290 | while ( indexColumnU[where] != iColumn ) { |
| 2291 | where++; |
| 2292 | } /* endwhile */ |
| 2293 | assert ( where < end ); |
| 2294 | end--; |
| 2295 | indexColumnU[where] = indexColumnU[end]; |
| 2296 | } |
| 2297 | } |
| 2298 | numberInColumn[iColumn] = put - startColumn; |
| 2299 | //move largest |
| 2300 | if ( positionLargest >= 0 ) { |
| 2301 | value = elementU[positionLargest]; |
| 2302 | iRow = indexRowU[positionLargest]; |
| 2303 | elementU[positionLargest] = elementU[startColumn]; |
| 2304 | indexRowU[positionLargest] = indexRowU[startColumn]; |
| 2305 | elementU[startColumn] = value; |
| 2306 | indexRowU[startColumn] = iRow; |
| 2307 | } |
| 2308 | //linked list for column |
| 2309 | if ( nextCount[iColumn + numberRows_] != -2 ) { |
| 2310 | //modify linked list |
| 2311 | deleteLink ( iColumn + numberRows_ ); |
| 2312 | addLink ( iColumn + numberRows_, numberInColumn[iColumn] ); |
| 2313 | } |
| 2314 | } |
| 2315 | } |
| 2316 | //get space for row list |
| 2317 | next = nextRow[otherRow]; |
| 2318 | CoinBigIndex space; |
| 2319 | |
| 2320 | space = startRowU[next] - end; |
| 2321 | totalElements_ += numberAdded - numberDeleted; |
| 2322 | int number = numberAdded + ( end - start ); |
| 2323 | |
| 2324 | if ( space < numberAdded ) { |
| 2325 | numberInRow[otherRow] = end - start; |
| 2326 | if ( !getRowSpace ( otherRow, number ) ) { |
| 2327 | return false; |
| 2328 | } |
| 2329 | end = startRowU[otherRow] + end - start; |
| 2330 | } |
| 2331 | // do linked lists and update counts |
| 2332 | numberInRow[otherRow] = number; |
| 2333 | if ( number != numberSave ) { |
| 2334 | deleteLink ( otherRow ); |
| 2335 | addLink ( otherRow, number ); |
| 2336 | } |
| 2337 | for ( j = 0; j < numberAdded; j++ ) { |
| 2338 | indexColumnU[end++] = saveColumn[j]; |
| 2339 | } |
| 2340 | //modify linked list for pivots |
| 2341 | deleteLink ( pivotRow ); |
| 2342 | deleteLink ( pivotColumn + numberRows_ ); |
| 2343 | return true; |
| 2344 | } |
| 2345 | void |
| 2346 | CoinFactorization::setPersistenceFlag(int flag) |
| 2347 | { |
| 2348 | persistenceFlag_=flag; |
| 2349 | workArea_.setPersistence(flag,maximumRowsExtra_+1); |
| 2350 | workArea2_.setPersistence(flag,maximumRowsExtra_+1); |
| 2351 | pivotColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2352 | permute_.setPersistence(flag,maximumRowsExtra_+1); |
| 2353 | pivotColumnBack_.setPersistence(flag,maximumRowsExtra_+1); |
| 2354 | permuteBack_.setPersistence(flag,maximumRowsExtra_+1); |
| 2355 | nextRow_.setPersistence(flag,maximumRowsExtra_+1); |
| 2356 | startRowU_.setPersistence(flag,maximumRowsExtra_+1); |
| 2357 | numberInRow_.setPersistence(flag,maximumRowsExtra_+1); |
| 2358 | numberInColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2359 | numberInColumnPlus_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2360 | firstCount_.setPersistence(flag,CoinMax(biggerDimension_+2,maximumRowsExtra_+1)); |
| 2361 | nextCount_.setPersistence(flag,numberRows_+numberColumns_); |
| 2362 | lastCount_.setPersistence(flag,numberRows_+numberColumns_); |
| 2363 | nextColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2364 | lastColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2365 | lastRow_.setPersistence(flag,maximumRowsExtra_+1); |
| 2366 | markRow_.setPersistence(flag,numberRows_); |
| 2367 | saveColumn_.setPersistence(flag,numberColumns_); |
| 2368 | indexColumnU_.setPersistence(flag,lengthAreaU_); |
| 2369 | pivotRowL_.setPersistence(flag,numberRows_+1); |
| 2370 | pivotRegion_.setPersistence(flag,maximumRowsExtra_+1); |
| 2371 | elementU_.setPersistence(flag,lengthAreaU_); |
| 2372 | indexRowU_.setPersistence(flag,lengthAreaU_); |
| 2373 | startColumnU_.setPersistence(flag,maximumColumnsExtra_+1); |
| 2374 | convertRowToColumnU_.setPersistence( flag, lengthAreaU_ ); |
| 2375 | elementL_.setPersistence( flag, lengthAreaL_ ); |
| 2376 | indexRowL_.setPersistence( flag, lengthAreaL_ ); |
| 2377 | startColumnL_.setPersistence( flag, numberRows_ + 1 ); |
| 2378 | startColumnR_.setPersistence( flag, maximumPivots_ + 1 + maximumColumnsExtra_ + 1 ); |
| 2379 | startRowL_.setPersistence( flag,0 ); |
| 2380 | indexColumnL_.setPersistence( flag, 0 ); |
| 2381 | elementByRowL_.setPersistence( flag, 0 ); |
| 2382 | sparse_.setPersistence( flag, 0 ); |
| 2383 | } |
| 2384 | // Delete all stuff |
| 2385 | void |
| 2386 | CoinFactorization::almostDestructor() |
| 2387 | { |
| 2388 | gutsOfDestructor(1); |
| 2389 | } |
| 2390 | |