1 | /* $Id: CoinFactorization1.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #if defined(_MSC_VER) |
7 | // Turn off compiler warning about long names |
8 | # pragma warning(disable:4786) |
9 | #endif |
10 | |
11 | #include "CoinUtilsConfig.h" |
12 | |
13 | #include <cassert> |
14 | #include "CoinFactorization.hpp" |
15 | #include "CoinIndexedVector.hpp" |
16 | #include "CoinHelperFunctions.hpp" |
17 | #include "CoinPackedMatrix.hpp" |
18 | #include "CoinFinite.hpp" |
19 | #include <stdio.h> |
20 | //:class CoinFactorization. Deals with Factorization and Updates |
21 | // CoinFactorization. Constructor |
22 | CoinFactorization::CoinFactorization ( ) |
23 | { |
24 | persistenceFlag_=0; |
25 | gutsOfInitialize(7); |
26 | } |
27 | |
28 | /// Copy constructor |
29 | CoinFactorization::CoinFactorization ( const CoinFactorization &other) |
30 | { |
31 | persistenceFlag_=0; |
32 | gutsOfInitialize(3); |
33 | persistenceFlag_=other.persistenceFlag_; |
34 | gutsOfCopy(other); |
35 | } |
36 | /// The real work of constructors etc |
37 | void CoinFactorization::gutsOfDestructor(int ) |
38 | { |
39 | delete [] denseArea_; |
40 | delete [] densePermute_; |
41 | |
42 | elementU_.conditionalDelete(); |
43 | startRowU_.conditionalDelete(); |
44 | convertRowToColumnU_.conditionalDelete(); |
45 | indexRowU_.conditionalDelete(); |
46 | indexColumnU_.conditionalDelete(); |
47 | startColumnU_.conditionalDelete(); |
48 | elementL_.conditionalDelete(); |
49 | indexRowL_.conditionalDelete(); |
50 | startColumnL_.conditionalDelete(); |
51 | startColumnR_.conditionalDelete(); |
52 | numberInRow_.conditionalDelete(); |
53 | numberInColumn_.conditionalDelete(); |
54 | numberInColumnPlus_.conditionalDelete(); |
55 | pivotColumn_.conditionalDelete(); |
56 | pivotColumnBack_.conditionalDelete(); |
57 | firstCount_.conditionalDelete(); |
58 | nextCount_.conditionalDelete(); |
59 | lastCount_.conditionalDelete(); |
60 | permute_.conditionalDelete(); |
61 | permuteBack_.conditionalDelete(); |
62 | nextColumn_.conditionalDelete(); |
63 | lastColumn_.conditionalDelete(); |
64 | nextRow_.conditionalDelete(); |
65 | lastRow_.conditionalDelete(); |
66 | saveColumn_.conditionalDelete(); |
67 | markRow_.conditionalDelete(); |
68 | pivotRowL_.conditionalDelete(); |
69 | pivotRegion_.conditionalDelete(); |
70 | elementByRowL_.conditionalDelete(); |
71 | startRowL_.conditionalDelete(); |
72 | indexColumnL_.conditionalDelete(); |
73 | sparse_.conditionalDelete(); |
74 | workArea_.conditionalDelete(); |
75 | workArea2_.conditionalDelete(); |
76 | numberCompressions_ = 0; |
77 | biggerDimension_ = 0; |
78 | numberRows_ = 0; |
79 | numberRowsExtra_ = 0; |
80 | maximumRowsExtra_ = 0; |
81 | numberColumns_ = 0; |
82 | numberColumnsExtra_ = 0; |
83 | maximumColumnsExtra_ = 0; |
84 | numberGoodU_ = 0; |
85 | numberGoodL_ = 0; |
86 | totalElements_ = 0; |
87 | factorElements_ = 0; |
88 | status_ = -1; |
89 | numberSlacks_ = 0; |
90 | numberU_ = 0; |
91 | maximumU_=0; |
92 | lengthU_ = 0; |
93 | lengthAreaU_ = 0; |
94 | numberL_ = 0; |
95 | baseL_ = 0; |
96 | lengthL_ = 0; |
97 | lengthAreaL_ = 0; |
98 | numberR_ = 0; |
99 | lengthR_ = 0; |
100 | lengthAreaR_ = 0; |
101 | denseArea_=NULL; |
102 | densePermute_=NULL; |
103 | // next two offsets but this makes cleaner |
104 | elementR_=NULL; |
105 | indexRowR_=NULL; |
106 | numberDense_=0; |
107 | //persistenceFlag_=0; |
108 | ////denseThreshold_=0; |
109 | |
110 | } |
111 | // type - 1 bit tolerances etc, 2 rest |
112 | void CoinFactorization::gutsOfInitialize(int type) |
113 | { |
114 | if ((type&2)!=0) { |
115 | numberCompressions_ = 0; |
116 | biggerDimension_ = 0; |
117 | numberRows_ = 0; |
118 | numberRowsExtra_ = 0; |
119 | maximumRowsExtra_ = 0; |
120 | numberColumns_ = 0; |
121 | numberColumnsExtra_ = 0; |
122 | maximumColumnsExtra_ = 0; |
123 | numberGoodU_ = 0; |
124 | numberGoodL_ = 0; |
125 | totalElements_ = 0; |
126 | factorElements_ = 0; |
127 | status_ = -1; |
128 | numberPivots_ = 0; |
129 | numberSlacks_ = 0; |
130 | numberU_ = 0; |
131 | maximumU_=0; |
132 | lengthU_ = 0; |
133 | lengthAreaU_ = 0; |
134 | numberL_ = 0; |
135 | baseL_ = 0; |
136 | lengthL_ = 0; |
137 | lengthAreaL_ = 0; |
138 | numberR_ = 0; |
139 | lengthR_ = 0; |
140 | lengthAreaR_ = 0; |
141 | elementR_ = NULL; |
142 | indexRowR_ = NULL; |
143 | // always switch off sparse |
144 | sparseThreshold_=0; |
145 | sparseThreshold2_= 0; |
146 | denseArea_ = NULL; |
147 | densePermute_=NULL; |
148 | numberDense_=0; |
149 | if (!persistenceFlag_) { |
150 | workArea_=CoinFactorizationDoubleArrayWithLength(); |
151 | workArea2_=CoinUnsignedIntArrayWithLength(); |
152 | pivotColumn_=CoinIntArrayWithLength(); |
153 | } |
154 | } |
155 | // after 2 because of persistenceFlag_ |
156 | if ((type&1)!=0) { |
157 | areaFactor_ = 0.0; |
158 | pivotTolerance_ = 1.0e-1; |
159 | zeroTolerance_ = 1.0e-13; |
160 | #ifndef COIN_FAST_CODE |
161 | slackValue_ = -1.0; |
162 | #endif |
163 | messageLevel_=0; |
164 | maximumPivots_=200; |
165 | numberTrials_ = 4; |
166 | relaxCheck_=1.0; |
167 | #if DENSE_CODE==1 |
168 | denseThreshold_=31; |
169 | denseThreshold_=71; |
170 | #else |
171 | denseThreshold_=0; |
172 | #endif |
173 | biasLU_=2; |
174 | doForrestTomlin_=true; |
175 | persistenceFlag_=0; |
176 | } |
177 | if ((type&4)!=0) { |
178 | // we need to get 1 element arrays for any with length n+1 !! |
179 | startColumnL_.conditionalNew (1); |
180 | startColumnR_.conditionalNew( 1 ); |
181 | startRowU_.conditionalNew(1); |
182 | numberInRow_.conditionalNew(1); |
183 | nextRow_.conditionalNew(1); |
184 | lastRow_.conditionalNew( 1 ); |
185 | pivotRegion_.conditionalNew(1); |
186 | permuteBack_.conditionalNew(1); |
187 | permute_.conditionalNew(1); |
188 | pivotColumnBack_.conditionalNew(1); |
189 | startColumnU_.conditionalNew( 1 ); |
190 | numberInColumn_.conditionalNew(1); |
191 | numberInColumnPlus_.conditionalNew(1); |
192 | pivotColumn_.conditionalNew(1); |
193 | nextColumn_.conditionalNew(1); |
194 | lastColumn_.conditionalNew(1); |
195 | collectStatistics_=false; |
196 | |
197 | // Below are all to collect |
198 | ftranCountInput_=0.0; |
199 | ftranCountAfterL_=0.0; |
200 | ftranCountAfterR_=0.0; |
201 | ftranCountAfterU_=0.0; |
202 | btranCountInput_=0.0; |
203 | btranCountAfterU_=0.0; |
204 | btranCountAfterR_=0.0; |
205 | btranCountAfterL_=0.0; |
206 | |
207 | // We can roll over factorizations |
208 | numberFtranCounts_=0; |
209 | numberBtranCounts_=0; |
210 | |
211 | // While these are averages collected over last |
212 | ftranAverageAfterL_=0; |
213 | ftranAverageAfterR_=0; |
214 | ftranAverageAfterU_=0; |
215 | btranAverageAfterU_=0; |
216 | btranAverageAfterR_=0; |
217 | btranAverageAfterL_=0; |
218 | #ifdef ZEROFAULT |
219 | startColumnL_.array()[0] = 0; |
220 | startColumnR_.array()[0] = 0; |
221 | startRowU_.array()[0] = 0; |
222 | numberInRow_.array()[0] = 0; |
223 | nextRow_.array()[0] = 0; |
224 | lastRow_.array()[0] = 0; |
225 | pivotRegion_.array()[0] = 0.0; |
226 | permuteBack_.array()[0] = 0; |
227 | permute_.array()[0] = 0; |
228 | pivotColumnBack_.array()[0] = 0; |
229 | startColumnU_.array()[0] = 0; |
230 | numberInColumn_.array()[0] = 0; |
231 | numberInColumnPlus_.array()[0] = 0; |
232 | pivotColumn_.array()[0] = 0; |
233 | nextColumn_.array()[0] = 0; |
234 | lastColumn_.array()[0] = 0; |
235 | #endif |
236 | } |
237 | } |
238 | //Part of LP |
239 | int CoinFactorization::factorize ( |
240 | const CoinPackedMatrix & matrix, |
241 | int rowIsBasic[], |
242 | int columnIsBasic[], |
243 | double areaFactor ) |
244 | { |
245 | // maybe for speed will be better to leave as many regions as possible |
246 | gutsOfDestructor(); |
247 | gutsOfInitialize(2); |
248 | // ? is this correct |
249 | //if (biasLU_==2) |
250 | //biasLU_=3; |
251 | if (areaFactor) |
252 | areaFactor_ = areaFactor; |
253 | const int * row = matrix.getIndices(); |
254 | const CoinBigIndex * columnStart = matrix.getVectorStarts(); |
255 | const int * columnLength = matrix.getVectorLengths(); |
256 | const double * element = matrix.getElements(); |
257 | int numberRows=matrix.getNumRows(); |
258 | int numberColumns=matrix.getNumCols(); |
259 | int numberBasic = 0; |
260 | CoinBigIndex numberElements=0; |
261 | int numberRowBasic=0; |
262 | |
263 | // compute how much in basis |
264 | |
265 | int i; |
266 | |
267 | for (i=0;i<numberRows;i++) { |
268 | if (rowIsBasic[i]>=0) |
269 | numberRowBasic++; |
270 | } |
271 | |
272 | numberBasic = numberRowBasic; |
273 | |
274 | for (i=0;i<numberColumns;i++) { |
275 | if (columnIsBasic[i]>=0) { |
276 | numberBasic++; |
277 | numberElements += columnLength[i]; |
278 | } |
279 | } |
280 | if ( numberBasic > numberRows ) { |
281 | return -2; // say too many in basis |
282 | } |
283 | numberElements = 3 * numberBasic + 3 * numberElements + 20000; |
284 | getAreas ( numberRows, numberBasic, numberElements, |
285 | 2 * numberElements ); |
286 | //fill |
287 | //copy |
288 | numberBasic=0; |
289 | numberElements=0; |
290 | int * indexColumnU = indexColumnU_.array(); |
291 | int * indexRowU = indexRowU_.array(); |
292 | CoinFactorizationDouble * elementU = elementU_.array(); |
293 | for (i=0;i<numberRows;i++) { |
294 | if (rowIsBasic[i]>=0) { |
295 | indexRowU[numberElements]=i; |
296 | indexColumnU[numberElements]=numberBasic; |
297 | elementU[numberElements++]=slackValue_; |
298 | numberBasic++; |
299 | } |
300 | } |
301 | for (i=0;i<numberColumns;i++) { |
302 | if (columnIsBasic[i]>=0) { |
303 | CoinBigIndex j; |
304 | for (j=columnStart[i];j<columnStart[i]+columnLength[i];j++) { |
305 | indexRowU[numberElements]=row[j]; |
306 | indexColumnU[numberElements]=numberBasic; |
307 | elementU[numberElements++]=element[j]; |
308 | } |
309 | numberBasic++; |
310 | } |
311 | } |
312 | lengthU_ = numberElements; |
313 | maximumU_ = numberElements; |
314 | |
315 | preProcess ( 0 ); |
316 | factor ( ); |
317 | numberBasic=0; |
318 | if (status_ == 0) { |
319 | int * permuteBack = permuteBack_.array(); |
320 | int * back = pivotColumnBack(); |
321 | for (i=0;i<numberRows;i++) { |
322 | if (rowIsBasic[i]>=0) { |
323 | rowIsBasic[i]=permuteBack[back[numberBasic++]]; |
324 | } |
325 | } |
326 | for (i=0;i<numberColumns;i++) { |
327 | if (columnIsBasic[i]>=0) { |
328 | columnIsBasic[i]=permuteBack[back[numberBasic++]]; |
329 | } |
330 | } |
331 | // Set up permutation vector |
332 | // these arrays start off as copies of permute |
333 | // (and we could use permute_ instead of pivotColumn (not back though)) |
334 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
335 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
336 | } else if (status_ == -1) { |
337 | const int * pivotColumn = pivotColumn_.array(); |
338 | // mark as basic or non basic |
339 | for (i=0;i<numberRows_;i++) { |
340 | if (rowIsBasic[i]>=0) { |
341 | if (pivotColumn[numberBasic]>=0) |
342 | rowIsBasic[i]=pivotColumn[numberBasic]; |
343 | else |
344 | rowIsBasic[i]=-1; |
345 | numberBasic++; |
346 | } |
347 | } |
348 | for (i=0;i<numberColumns;i++) { |
349 | if (columnIsBasic[i]>=0) { |
350 | if (pivotColumn[numberBasic]>=0) |
351 | columnIsBasic[i]=pivotColumn[numberBasic]; |
352 | else |
353 | columnIsBasic[i]=-1; |
354 | numberBasic++; |
355 | } |
356 | } |
357 | } |
358 | |
359 | return status_; |
360 | } |
361 | //Given as triplets |
362 | int CoinFactorization::factorize ( |
363 | int numberOfRows, |
364 | int numberOfColumns, |
365 | CoinBigIndex numberOfElements, |
366 | CoinBigIndex maximumL, |
367 | CoinBigIndex maximumU, |
368 | const int indicesRow[], |
369 | const int indicesColumn[], |
370 | const double elements[] , |
371 | int permutation[], |
372 | double areaFactor) |
373 | { |
374 | gutsOfDestructor(); |
375 | gutsOfInitialize(2); |
376 | if (areaFactor) |
377 | areaFactor_ = areaFactor; |
378 | getAreas ( numberOfRows, numberOfColumns, maximumL, maximumU ); |
379 | //copy |
380 | CoinMemcpyN ( indicesRow, numberOfElements, indexRowU_.array() ); |
381 | CoinMemcpyN ( indicesColumn, numberOfElements, indexColumnU_.array() ); |
382 | int i; |
383 | CoinFactorizationDouble * elementU = elementU_.array(); |
384 | for (i=0;i<numberOfElements;i++) |
385 | elementU[i] = elements[i]; |
386 | lengthU_ = numberOfElements; |
387 | maximumU_ = numberOfElements; |
388 | preProcess ( 0 ); |
389 | factor ( ); |
390 | //say which column is pivoting on which row |
391 | if (status_ == 0) { |
392 | int * permuteBack = permuteBack_.array(); |
393 | int * back = pivotColumnBack(); |
394 | // permute so slacks on own rows etc |
395 | for (i=0;i<numberOfColumns;i++) { |
396 | permutation[i]=permuteBack[back[i]]; |
397 | } |
398 | // Set up permutation vector |
399 | // these arrays start off as copies of permute |
400 | // (and we could use permute_ instead of pivotColumn (not back though)) |
401 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
402 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
403 | } else if (status_ == -1) { |
404 | const int * pivotColumn = pivotColumn_.array(); |
405 | // mark as basic or non basic |
406 | for (i=0;i<numberOfColumns;i++) { |
407 | if (pivotColumn[i]>=0) { |
408 | permutation[i]=pivotColumn[i]; |
409 | } else { |
410 | permutation[i]=-1; |
411 | } |
412 | } |
413 | } |
414 | |
415 | return status_; |
416 | } |
417 | /* Two part version for flexibility |
418 | This part creates arrays for user to fill. |
419 | maximumL is guessed maximum size of L part of |
420 | final factorization, maximumU of U part. These are multiplied by |
421 | areaFactor which can be computed by user or internally. |
422 | returns 0 -okay, -99 memory */ |
423 | int |
424 | CoinFactorization::factorizePart1 ( int numberOfRows, |
425 | int , |
426 | CoinBigIndex numberOfElements, |
427 | int * indicesRow[], |
428 | int * indicesColumn[], |
429 | CoinFactorizationDouble * elements[], |
430 | double areaFactor) |
431 | { |
432 | // maybe for speed will be better to leave as many regions as possible |
433 | gutsOfDestructor(); |
434 | gutsOfInitialize(2); |
435 | if (areaFactor) |
436 | areaFactor_ = areaFactor; |
437 | CoinBigIndex numberElements = 3 * numberOfRows + 3 * numberOfElements + 20000; |
438 | getAreas ( numberOfRows, numberOfRows, numberElements, |
439 | 2 * numberElements ); |
440 | // need to trap memory for -99 code |
441 | *indicesRow = indexRowU_.array() ; |
442 | *indicesColumn = indexColumnU_.array() ; |
443 | *elements = elementU_.array() ; |
444 | lengthU_ = numberOfElements; |
445 | maximumU_ = numberElements; |
446 | return 0; |
447 | } |
448 | /* This is part two of factorization |
449 | Arrays belong to factorization and were returned by part 1 |
450 | If status okay, permutation has pivot rows. |
451 | If status is singular, then basic variables have +1 and ones thrown out have -COIN_INT_MAX |
452 | to say thrown out. |
453 | returns 0 -okay, -1 singular, -99 memory */ |
454 | int |
455 | CoinFactorization::factorizePart2 (int permutation[],int exactNumberElements) |
456 | { |
457 | lengthU_ = exactNumberElements; |
458 | preProcess ( 0 ); |
459 | factor ( ); |
460 | //say which column is pivoting on which row |
461 | int i; |
462 | int * permuteBack = permuteBack_.array(); |
463 | int * back = pivotColumnBack(); |
464 | // permute so slacks on own rows etc |
465 | for (i=0;i<numberColumns_;i++) { |
466 | permutation[i]=permuteBack[back[i]]; |
467 | } |
468 | if (status_ == 0) { |
469 | // Set up permutation vector |
470 | // these arrays start off as copies of permute |
471 | // (and we could use permute_ instead of pivotColumn (not back though)) |
472 | CoinMemcpyN ( permute_.array(), numberRows_ , pivotColumn_.array() ); |
473 | CoinMemcpyN ( permuteBack_.array(), numberRows_ , pivotColumnBack() ); |
474 | } else if (status_ == -1) { |
475 | const int * pivotColumn = pivotColumn_.array(); |
476 | // mark as basic or non basic |
477 | for (i=0;i<numberColumns_;i++) { |
478 | if (pivotColumn[i]>=0) { |
479 | permutation[i]=pivotColumn[i]; |
480 | } else { |
481 | permutation[i]=-1; |
482 | } |
483 | } |
484 | } |
485 | |
486 | return status_; |
487 | } |
488 | |
489 | // ~CoinFactorization. Destructor |
490 | CoinFactorization::~CoinFactorization ( ) |
491 | { |
492 | gutsOfDestructor(); |
493 | } |
494 | |
495 | // show_self. Debug show object |
496 | void |
497 | CoinFactorization::show_self ( ) const |
498 | { |
499 | int i; |
500 | |
501 | const int * pivotColumn = pivotColumn_.array(); |
502 | for ( i = 0; i < numberRows_; i++ ) { |
503 | std::cout << "r " << i << " " << pivotColumn[i]; |
504 | if (pivotColumnBack()) std::cout<< " " << pivotColumnBack()[i]; |
505 | std::cout<< " " << permute_.array()[i]; |
506 | if (permuteBack_.array()) std::cout<< " " << permuteBack_.array()[i]; |
507 | std::cout<< " " << pivotRegion_.array()[i]; |
508 | std::cout << std::endl; |
509 | } |
510 | for ( i = 0; i < numberRows_; i++ ) { |
511 | std::cout << "u " << i << " " << numberInColumn_.array()[i] << std::endl; |
512 | int j; |
513 | CoinSort_2(indexRowU_.array()+startColumnU_.array()[i], |
514 | indexRowU_.array()+startColumnU_.array()[i]+numberInColumn_.array()[i], |
515 | elementU_.array()+startColumnU_.array()[i]); |
516 | for ( j = startColumnU_.array()[i]; j < startColumnU_.array()[i] + numberInColumn_.array()[i]; |
517 | j++ ) { |
518 | assert (indexRowU_.array()[j]>=0&&indexRowU_.array()[j]<numberRows_); |
519 | assert (elementU_.array()[j]>-1.0e50&&elementU_.array()[j]<1.0e50); |
520 | std::cout << indexRowU_.array()[j] << " " << elementU_.array()[j] << std::endl; |
521 | } |
522 | } |
523 | for ( i = 0; i < numberRows_; i++ ) { |
524 | std::cout << "l " << i << " " << startColumnL_.array()[i + 1] - |
525 | startColumnL_.array()[i] << std::endl; |
526 | CoinSort_2(indexRowL_.array()+startColumnL_.array()[i], |
527 | indexRowL_.array()+startColumnL_.array()[i+1], |
528 | elementL_.array()+startColumnL_.array()[i]); |
529 | int j; |
530 | for ( j = startColumnL_.array()[i]; j < startColumnL_.array()[i + 1]; j++ ) { |
531 | std::cout << indexRowL_.array()[j] << " " << elementL_.array()[j] << std::endl; |
532 | } |
533 | } |
534 | |
535 | } |
536 | // sort so can compare |
537 | void |
538 | CoinFactorization::sort ( ) const |
539 | { |
540 | int i; |
541 | |
542 | for ( i = 0; i < numberRows_; i++ ) { |
543 | CoinSort_2(indexRowU_.array()+startColumnU_.array()[i], |
544 | indexRowU_.array()+startColumnU_.array()[i]+numberInColumn_.array()[i], |
545 | elementU_.array()+startColumnU_.array()[i]); |
546 | } |
547 | for ( i = 0; i < numberRows_; i++ ) { |
548 | CoinSort_2(indexRowL_.array()+startColumnL_.array()[i], |
549 | indexRowL_.array()+startColumnL_.array()[i+1], |
550 | elementL_.array()+startColumnL_.array()[i]); |
551 | } |
552 | |
553 | } |
554 | |
555 | // getAreas. Gets space for a factorization |
556 | //called by constructors |
557 | void |
558 | CoinFactorization::getAreas ( int numberOfRows, |
559 | int numberOfColumns, |
560 | CoinBigIndex maximumL, |
561 | CoinBigIndex maximumU ) |
562 | { |
563 | |
564 | numberRows_ = numberOfRows; |
565 | numberColumns_ = numberOfColumns; |
566 | maximumRowsExtra_ = numberRows_ + maximumPivots_; |
567 | numberRowsExtra_ = numberRows_; |
568 | maximumColumnsExtra_ = numberColumns_ + maximumPivots_; |
569 | numberColumnsExtra_ = numberColumns_; |
570 | lengthAreaU_ = maximumU; |
571 | lengthAreaL_ = maximumL; |
572 | if ( !areaFactor_ ) { |
573 | areaFactor_ = 1.0; |
574 | } |
575 | if ( areaFactor_ != 1.0 ) { |
576 | if ((messageLevel_&16)!=0) |
577 | printf("Increasing factorization areas by %g\n" ,areaFactor_); |
578 | lengthAreaU_ = static_cast<CoinBigIndex> (areaFactor_*lengthAreaU_); |
579 | lengthAreaL_ = static_cast<CoinBigIndex> (areaFactor_*lengthAreaL_); |
580 | } |
581 | elementU_.conditionalNew( lengthAreaU_ ); |
582 | indexRowU_.conditionalNew( lengthAreaU_ ); |
583 | indexColumnU_.conditionalNew( lengthAreaU_ ); |
584 | elementL_.conditionalNew( lengthAreaL_ ); |
585 | indexRowL_.conditionalNew( lengthAreaL_ ); |
586 | if (persistenceFlag_) { |
587 | // But we can use all we have if bigger |
588 | int length; |
589 | length = CoinMin(elementU_.getSize(),indexRowU_.getSize()); |
590 | if (length>lengthAreaU_) { |
591 | lengthAreaU_=length; |
592 | assert (indexColumnU_.getSize()==indexRowU_.getSize()); |
593 | } |
594 | length = CoinMin(elementL_.getSize(),indexRowL_.getSize()); |
595 | if (length>lengthAreaL_) { |
596 | lengthAreaL_=length; |
597 | } |
598 | } |
599 | startColumnL_.conditionalNew( numberRows_ + 1 ); |
600 | startColumnL_.array()[0] = 0; |
601 | startRowU_.conditionalNew( maximumRowsExtra_ + 1); |
602 | // make sure this is valid |
603 | startRowU_.array()[maximumRowsExtra_]=0; |
604 | numberInRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
605 | markRow_.conditionalNew( numberRows_ ); |
606 | pivotRowL_.conditionalNew( numberRows_ + 1 ); |
607 | nextRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
608 | lastRow_.conditionalNew( maximumRowsExtra_ + 1 ); |
609 | permute_.conditionalNew( maximumRowsExtra_ + 1 ); |
610 | pivotRegion_.conditionalNew( maximumRowsExtra_ + 1 ); |
611 | #ifdef ZEROFAULT |
612 | memset(elementU_.array(),'a',lengthAreaU_*sizeof(CoinFactorizationDouble)); |
613 | memset(indexRowU_.array(),'b',lengthAreaU_*sizeof(int)); |
614 | memset(indexColumnU_.array(),'c',lengthAreaU_*sizeof(int)); |
615 | memset(elementL_.array(),'d',lengthAreaL_*sizeof(CoinFactorizationDouble)); |
616 | memset(indexRowL_.array(),'e',lengthAreaL_*sizeof(int)); |
617 | memset(startColumnL_.array()+1,'f',numberRows_*sizeof(CoinBigIndex)); |
618 | memset(startRowU_.array(),'g',maximumRowsExtra_*sizeof(CoinBigIndex)); |
619 | memset(numberInRow_.array(),'h',(maximumRowsExtra_+1)*sizeof(int)); |
620 | memset(markRow_.array(),'i',numberRows_*sizeof(int)); |
621 | memset(pivotRowL_.array(),'j',(numberRows_+1)*sizeof(int)); |
622 | memset(nextRow_.array(),'k',(maximumRowsExtra_+1)*sizeof(int)); |
623 | memset(lastRow_.array(),'l',(maximumRowsExtra_+1)*sizeof(int)); |
624 | memset(permute_.array(),'l',(maximumRowsExtra_+1)*sizeof(int)); |
625 | memset(pivotRegion_.array(),'m',(maximumRowsExtra_+1)*sizeof(CoinFactorizationDouble)); |
626 | #endif |
627 | startColumnU_.conditionalNew( maximumColumnsExtra_ + 1 ); |
628 | numberInColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
629 | numberInColumnPlus_.conditionalNew( maximumColumnsExtra_ + 1 ); |
630 | pivotColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
631 | nextColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
632 | lastColumn_.conditionalNew( maximumColumnsExtra_ + 1 ); |
633 | saveColumn_.conditionalNew( numberColumns_); |
634 | #ifdef ZEROFAULT |
635 | memset(startColumnU_.array(),'a',(maximumColumnsExtra_+1)*sizeof(CoinBigIndex)); |
636 | memset(numberInColumn_.array(),'b',(maximumColumnsExtra_+1)*sizeof(int)); |
637 | memset(numberInColumnPlus_.array(),'c',(maximumColumnsExtra_+1)*sizeof(int)); |
638 | memset(pivotColumn_.array(),'d',(maximumColumnsExtra_+1)*sizeof(int)); |
639 | memset(nextColumn_.array(),'e',(maximumColumnsExtra_+1)*sizeof(int)); |
640 | memset(lastColumn_.array(),'f',(maximumColumnsExtra_+1)*sizeof(int)); |
641 | #endif |
642 | if ( numberRows_ + numberColumns_ ) { |
643 | if ( numberRows_ > numberColumns_ ) { |
644 | biggerDimension_ = numberRows_; |
645 | } else { |
646 | biggerDimension_ = numberColumns_; |
647 | } |
648 | firstCount_.conditionalNew( CoinMax(biggerDimension_ + 2, maximumRowsExtra_+1) ); |
649 | nextCount_.conditionalNew( numberRows_ + numberColumns_ ); |
650 | lastCount_.conditionalNew( numberRows_ + numberColumns_ ); |
651 | #ifdef ZEROFAULT |
652 | memset(firstCount_.array(),'g',(biggerDimension_ + 2 )*sizeof(int)); |
653 | memset(nextCount_.array(),'h',(numberRows_+numberColumns_)*sizeof(int)); |
654 | memset(lastCount_.array(),'i',(numberRows_+numberColumns_)*sizeof(int)); |
655 | #endif |
656 | } else { |
657 | firstCount_.conditionalNew( 2 ); |
658 | nextCount_.conditionalNew( 0 ); |
659 | lastCount_.conditionalNew( 0 ); |
660 | #ifdef ZEROFAULT |
661 | memset(firstCount_.array(),'g', 2 *sizeof(int)); |
662 | #endif |
663 | biggerDimension_ = 0; |
664 | } |
665 | } |
666 | |
667 | // preProcess. PreProcesses raw triplet data |
668 | //state is 0 - triplets, 1 - some counts etc , 2 - .. |
669 | void |
670 | CoinFactorization::preProcess ( int state, |
671 | int ) |
672 | { |
673 | int *indexRow = indexRowU_.array(); |
674 | int *indexColumn = indexColumnU_.array(); |
675 | CoinFactorizationDouble *element = elementU_.array(); |
676 | CoinBigIndex numberElements = lengthU_; |
677 | int *numberInRow = numberInRow_.array(); |
678 | int *numberInColumn = numberInColumn_.array(); |
679 | int *numberInColumnPlus = numberInColumnPlus_.array(); |
680 | CoinBigIndex *startRow = startRowU_.array(); |
681 | CoinBigIndex *startColumn = startColumnU_.array(); |
682 | int numberRows = numberRows_; |
683 | int numberColumns = numberColumns_; |
684 | |
685 | if (state<4) |
686 | totalElements_ = numberElements; |
687 | //state falls through to next state |
688 | switch ( state ) { |
689 | case 0: //counts |
690 | { |
691 | CoinZeroN ( numberInRow, numberRows + 1 ); |
692 | CoinZeroN ( numberInColumn, maximumColumnsExtra_ + 1 ); |
693 | CoinBigIndex i; |
694 | for ( i = 0; i < numberElements; i++ ) { |
695 | int iRow = indexRow[i]; |
696 | int iColumn = indexColumn[i]; |
697 | |
698 | numberInRow[iRow]++; |
699 | numberInColumn[iColumn]++; |
700 | } |
701 | } |
702 | case -1: //sort |
703 | case 1: //sort |
704 | { |
705 | CoinBigIndex i, k; |
706 | |
707 | i = 0; |
708 | int iColumn; |
709 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
710 | //position after end of Column |
711 | i += numberInColumn[iColumn]; |
712 | startColumn[iColumn] = i; |
713 | } |
714 | for ( k = numberElements - 1; k >= 0; k-- ) { |
715 | int iColumn = indexColumn[k]; |
716 | |
717 | if ( iColumn >= 0 ) { |
718 | CoinFactorizationDouble value = element[k]; |
719 | int iRow = indexRow[k]; |
720 | |
721 | indexColumn[k] = -1; |
722 | while ( true ) { |
723 | CoinBigIndex iLook = startColumn[iColumn] - 1; |
724 | |
725 | startColumn[iColumn] = iLook; |
726 | CoinFactorizationDouble valueSave = element[iLook]; |
727 | int iColumnSave = indexColumn[iLook]; |
728 | int iRowSave = indexRow[iLook]; |
729 | |
730 | element[iLook] = value; |
731 | indexRow[iLook] = iRow; |
732 | indexColumn[iLook] = -1; |
733 | if ( iColumnSave >= 0 ) { |
734 | iColumn = iColumnSave; |
735 | value = valueSave; |
736 | iRow = iRowSave; |
737 | } else { |
738 | break; |
739 | } |
740 | } /* endwhile */ |
741 | } |
742 | } |
743 | } |
744 | case 2: //move largest in column to beginning |
745 | //and do row part |
746 | { |
747 | CoinBigIndex i, k; |
748 | |
749 | i = 0; |
750 | int iRow; |
751 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
752 | startRow[iRow] = i; |
753 | i += numberInRow[iRow]; |
754 | } |
755 | CoinZeroN ( numberInRow, numberRows ); |
756 | int iColumn; |
757 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
758 | int number = numberInColumn[iColumn]; |
759 | |
760 | if ( number ) { |
761 | CoinBigIndex first = startColumn[iColumn]; |
762 | CoinBigIndex largest = first; |
763 | int iRowSave = indexRow[first]; |
764 | CoinFactorizationDouble valueSave = element[first]; |
765 | double valueLargest = fabs ( valueSave ); |
766 | int iLook = numberInRow[iRowSave]; |
767 | |
768 | numberInRow[iRowSave] = iLook + 1; |
769 | indexColumn[startRow[iRowSave] + iLook] = iColumn; |
770 | for ( k = first + 1; k < first + number; k++ ) { |
771 | int iRow = indexRow[k]; |
772 | int iLook = numberInRow[iRow]; |
773 | |
774 | numberInRow[iRow] = iLook + 1; |
775 | indexColumn[startRow[iRow] + iLook] = iColumn; |
776 | CoinFactorizationDouble value = element[k]; |
777 | double valueAbs = fabs ( value ); |
778 | |
779 | if ( valueAbs > valueLargest ) { |
780 | valueLargest = valueAbs; |
781 | largest = k; |
782 | } |
783 | } |
784 | indexRow[first] = indexRow[largest]; |
785 | element[first] = element[largest]; |
786 | indexRow[largest] = iRowSave; |
787 | element[largest] = valueSave; |
788 | } |
789 | } |
790 | } |
791 | case 3: //links and initialize pivots |
792 | { |
793 | int *lastRow = lastRow_.array(); |
794 | int *nextRow = nextRow_.array(); |
795 | int *lastColumn = lastColumn_.array(); |
796 | int *nextColumn = nextColumn_.array(); |
797 | |
798 | CoinFillN ( firstCount_.array(), biggerDimension_ + 2, -1 ); |
799 | CoinFillN ( pivotColumn_.array(), numberColumns_, -1 ); |
800 | CoinZeroN ( numberInColumnPlus, maximumColumnsExtra_ + 1 ); |
801 | int iRow; |
802 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
803 | lastRow[iRow] = iRow - 1; |
804 | nextRow[iRow] = iRow + 1; |
805 | int number = numberInRow[iRow]; |
806 | |
807 | addLink ( iRow, number ); |
808 | } |
809 | lastRow[maximumRowsExtra_] = numberRows - 1; |
810 | nextRow[maximumRowsExtra_] = 0; |
811 | lastRow[0] = maximumRowsExtra_; |
812 | nextRow[numberRows - 1] = maximumRowsExtra_; |
813 | startRow[maximumRowsExtra_] = numberElements; |
814 | int iColumn; |
815 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
816 | lastColumn[iColumn] = iColumn - 1; |
817 | nextColumn[iColumn] = iColumn + 1; |
818 | int number = numberInColumn[iColumn]; |
819 | |
820 | addLink ( iColumn + numberRows, number ); |
821 | } |
822 | lastColumn[maximumColumnsExtra_] = numberColumns - 1; |
823 | nextColumn[maximumColumnsExtra_] = 0; |
824 | lastColumn[0] = maximumColumnsExtra_; |
825 | if (numberColumns) |
826 | nextColumn[numberColumns - 1] = maximumColumnsExtra_; |
827 | startColumn[maximumColumnsExtra_] = numberElements; |
828 | } |
829 | break; |
830 | case 4: //move largest in column to beginning |
831 | { |
832 | CoinBigIndex i, k; |
833 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
834 | int iColumn; |
835 | int iRow; |
836 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
837 | if( numberInRow[iRow]>=0) { |
838 | // zero count |
839 | numberInRow[iRow]=0; |
840 | } else { |
841 | // empty |
842 | //numberInRow[iRow]=-1; already that |
843 | } |
844 | } |
845 | //CoinZeroN ( numberInColumnPlus, maximumColumnsExtra_ + 1 ); |
846 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
847 | int number = numberInColumn[iColumn]; |
848 | |
849 | if ( number ) { |
850 | // use pivotRegion and startRow for remaining elements |
851 | CoinBigIndex first = startColumn[iColumn]; |
852 | CoinBigIndex largest = -1; |
853 | |
854 | double valueLargest = -1.0; |
855 | int nOther=0; |
856 | k = first; |
857 | CoinBigIndex end = first+number; |
858 | for ( ; k < end; k++ ) { |
859 | int iRow = indexRow[k]; |
860 | assert (iRow<numberRows_); |
861 | CoinFactorizationDouble value = element[k]; |
862 | if (numberInRow[iRow]>=0) { |
863 | numberInRow[iRow]++; |
864 | double valueAbs = fabs ( value ); |
865 | if ( valueAbs > valueLargest ) { |
866 | valueLargest = valueAbs; |
867 | largest = nOther; |
868 | } |
869 | startRow[nOther]=iRow; |
870 | pivotRegion[nOther++]=value; |
871 | } else { |
872 | indexRow[first] = iRow; |
873 | element[first++] = value; |
874 | } |
875 | } |
876 | numberInColumnPlus[iColumn]=first-startColumn[iColumn]; |
877 | startColumn[iColumn]=first; |
878 | //largest |
879 | if (largest>=0) { |
880 | indexRow[first] = startRow[largest]; |
881 | element[first++] = pivotRegion[largest]; |
882 | } |
883 | for (k=0;k<nOther;k++) { |
884 | if (k!=largest) { |
885 | indexRow[first] = startRow[k]; |
886 | element[first++] = pivotRegion[k]; |
887 | } |
888 | } |
889 | numberInColumn[iColumn]=first-startColumn[iColumn]; |
890 | } |
891 | } |
892 | //and do row part |
893 | i = 0; |
894 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
895 | startRow[iRow] = i; |
896 | int n=numberInRow[iRow]; |
897 | if (n>0) { |
898 | numberInRow[iRow]=0; |
899 | i += n; |
900 | } |
901 | } |
902 | for ( iColumn = 0; iColumn < numberColumns; iColumn++ ) { |
903 | int number = numberInColumn[iColumn]; |
904 | |
905 | if ( number ) { |
906 | CoinBigIndex first = startColumn[iColumn]; |
907 | for ( k = first; k < first + number; k++ ) { |
908 | int iRow = indexRow[k]; |
909 | int iLook = numberInRow[iRow]; |
910 | |
911 | numberInRow[iRow] = iLook + 1; |
912 | indexColumn[startRow[iRow] + iLook] = iColumn; |
913 | } |
914 | } |
915 | } |
916 | } |
917 | // modified 3 |
918 | { |
919 | //set markRow so no rows updated |
920 | //CoinFillN ( markRow_.array(), numberRows_, -1 ); |
921 | int *lastColumn = lastColumn_.array(); |
922 | int *nextColumn = nextColumn_.array(); |
923 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
924 | |
925 | int iRow; |
926 | int numberGood=0; |
927 | startColumnL_.array()[0] = 0; //for luck |
928 | for ( iRow = 0; iRow < numberRows; iRow++ ) { |
929 | int number = numberInRow[iRow]; |
930 | if (number<0) { |
931 | numberInRow[iRow]=0; |
932 | pivotRegion[numberGood++]=slackValue_; |
933 | } |
934 | } |
935 | int iColumn; |
936 | for ( iColumn = 0 ; iColumn < numberColumns_; iColumn++ ) { |
937 | lastColumn[iColumn] = iColumn - 1; |
938 | nextColumn[iColumn] = iColumn + 1; |
939 | int number = numberInColumn[iColumn]; |
940 | deleteLink(iColumn+numberRows); |
941 | addLink ( iColumn + numberRows, number ); |
942 | } |
943 | lastColumn[maximumColumnsExtra_] = numberColumns - 1; |
944 | nextColumn[maximumColumnsExtra_] = 0; |
945 | lastColumn[0] = maximumColumnsExtra_; |
946 | if (numberColumns) |
947 | nextColumn[numberColumns - 1] = maximumColumnsExtra_; |
948 | startColumn[maximumColumnsExtra_] = numberElements; |
949 | } |
950 | } /* endswitch */ |
951 | } |
952 | |
953 | //Does most of factorization |
954 | int |
955 | CoinFactorization::factor ( ) |
956 | { |
957 | int * lastColumn = lastColumn_.array(); |
958 | int * lastRow = lastRow_.array(); |
959 | //sparse |
960 | status_ = factorSparse ( ); |
961 | switch ( status_ ) { |
962 | case 0: //finished |
963 | totalElements_ = 0; |
964 | { |
965 | int * pivotColumn = pivotColumn_.array(); |
966 | if ( numberGoodU_ < numberRows_ ) { |
967 | int i, k; |
968 | // Clean out unset nextRow |
969 | int * nextRow = nextRow_.array(); |
970 | //int nSing =0; |
971 | k=nextRow[maximumRowsExtra_]; |
972 | while (k!=maximumRowsExtra_) { |
973 | int iRow = k; |
974 | k=nextRow[k]; |
975 | //nSing++; |
976 | nextRow[iRow]=-1; |
977 | } |
978 | //assert (nSing); |
979 | //printf("%d singularities - good %d rows %d\n",nSing, |
980 | // numberGoodU_,numberRows_); |
981 | // Now nextRow has -1 or sequence into numberGoodU_; |
982 | int * permuteA = permute_.array(); |
983 | for ( i = 0; i < numberRows_; i++ ) { |
984 | int iGood= nextRow[i]; |
985 | if (iGood>=0) |
986 | permuteA[iGood]=i; |
987 | } |
988 | |
989 | // swap arrays |
990 | permute_.swap(nextRow_); |
991 | int * permute = permute_.array(); |
992 | for ( i = 0; i < numberRows_; i++ ) { |
993 | lastRow[i] = -1; |
994 | } |
995 | for ( i = 0; i < numberColumns_; i++ ) { |
996 | lastColumn[i] = -1; |
997 | } |
998 | for ( i = 0; i < numberGoodU_; i++ ) { |
999 | int goodRow = permuteA[i]; //valid pivot row |
1000 | int goodColumn = pivotColumn[i]; |
1001 | |
1002 | lastRow[goodRow] = goodColumn; //will now have -1 or column sequence |
1003 | lastColumn[goodColumn] = goodRow; //will now have -1 or row sequence |
1004 | } |
1005 | nextRow_.conditionalDelete(); |
1006 | k = 0; |
1007 | //copy back and count |
1008 | for ( i = 0; i < numberRows_; i++ ) { |
1009 | permute[i] = lastRow[i]; |
1010 | if ( permute[i] < 0 ) { |
1011 | //std::cout << i << " " <<permute[i] << std::endl; |
1012 | } else { |
1013 | k++; |
1014 | } |
1015 | } |
1016 | for ( i = 0; i < numberColumns_; i++ ) { |
1017 | pivotColumn[i] = lastColumn[i]; |
1018 | } |
1019 | if ((messageLevel_&4)!=0) |
1020 | std::cout <<"Factorization has " <<numberRows_-k |
1021 | <<" singularities" <<std::endl; |
1022 | status_ = -1; |
1023 | } |
1024 | } |
1025 | break; |
1026 | // dense |
1027 | case 2: |
1028 | status_=factorDense(); |
1029 | if(!status_) |
1030 | break; |
1031 | default: |
1032 | //singular ? or some error |
1033 | if ((messageLevel_&4)!=0) |
1034 | std::cout << "Error " << status_ << std::endl; |
1035 | break; |
1036 | } /* endswitch */ |
1037 | //clean up |
1038 | if ( !status_ ) { |
1039 | if ( (messageLevel_ & 16)&&numberCompressions_) |
1040 | std::cout<<" Factorization did " <<numberCompressions_ |
1041 | <<" compressions" <<std::endl; |
1042 | if ( numberCompressions_ > 10 ) { |
1043 | areaFactor_ *= 1.1; |
1044 | } |
1045 | numberCompressions_=0; |
1046 | cleanup ( ); |
1047 | } |
1048 | return status_; |
1049 | } |
1050 | |
1051 | |
1052 | // pivotRowSingleton. Does one pivot on Row Singleton in factorization |
1053 | bool |
1054 | CoinFactorization::pivotRowSingleton ( int pivotRow, |
1055 | int pivotColumn ) |
1056 | { |
1057 | //store pivot columns (so can easily compress) |
1058 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1059 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
1060 | int * numberInRow = numberInRow_.array(); |
1061 | int * numberInColumn = numberInColumn_.array(); |
1062 | int numberDoColumn = numberInColumn[pivotColumn] - 1; |
1063 | CoinBigIndex endColumn = startColumn + numberDoColumn + 1; |
1064 | CoinBigIndex pivotRowPosition = startColumn; |
1065 | int * indexRowU = indexRowU_.array(); |
1066 | int iRow = indexRowU[pivotRowPosition]; |
1067 | CoinBigIndex * startRowU = startRowU_.array(); |
1068 | int * nextRow = nextRow_.array(); |
1069 | int * lastRow = lastRow_.array(); |
1070 | |
1071 | while ( iRow != pivotRow ) { |
1072 | pivotRowPosition++; |
1073 | iRow = indexRowU[pivotRowPosition]; |
1074 | } /* endwhile */ |
1075 | assert ( pivotRowPosition < endColumn ); |
1076 | //store column in L, compress in U and take column out |
1077 | CoinBigIndex l = lengthL_; |
1078 | |
1079 | if ( l + numberDoColumn > lengthAreaL_ ) { |
1080 | //need more memory |
1081 | if ((messageLevel_&4)!=0) |
1082 | std::cout << "more memory needed in middle of invert" << std::endl; |
1083 | return false; |
1084 | } |
1085 | CoinBigIndex * startColumnL = startColumnL_.array(); |
1086 | CoinFactorizationDouble * elementL = elementL_.array(); |
1087 | int * indexRowL = indexRowL_.array(); |
1088 | startColumnL[numberGoodL_] = l; //for luck and first time |
1089 | numberGoodL_++; |
1090 | startColumnL[numberGoodL_] = l + numberDoColumn; |
1091 | lengthL_ += numberDoColumn; |
1092 | CoinFactorizationDouble *elementU = elementU_.array(); |
1093 | CoinFactorizationDouble pivotElement = elementU[pivotRowPosition]; |
1094 | CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement; |
1095 | |
1096 | pivotRegion_.array()[numberGoodU_] = pivotMultiplier; |
1097 | CoinBigIndex i; |
1098 | |
1099 | int * indexColumnU = indexColumnU_.array(); |
1100 | for ( i = startColumn; i < pivotRowPosition; i++ ) { |
1101 | int iRow = indexRowU[i]; |
1102 | |
1103 | indexRowL[l] = iRow; |
1104 | elementL[l] = elementU[i] * pivotMultiplier; |
1105 | l++; |
1106 | //take out of row list |
1107 | CoinBigIndex start = startRowU[iRow]; |
1108 | int iNumberInRow = numberInRow[iRow]; |
1109 | CoinBigIndex end = start + iNumberInRow; |
1110 | CoinBigIndex where = start; |
1111 | |
1112 | while ( indexColumnU[where] != pivotColumn ) { |
1113 | where++; |
1114 | } /* endwhile */ |
1115 | assert ( where < end ); |
1116 | indexColumnU[where] = indexColumnU[end - 1]; |
1117 | iNumberInRow--; |
1118 | numberInRow[iRow] = iNumberInRow; |
1119 | deleteLink ( iRow ); |
1120 | addLink ( iRow, iNumberInRow ); |
1121 | } |
1122 | for ( i = pivotRowPosition + 1; i < endColumn; i++ ) { |
1123 | int iRow = indexRowU[i]; |
1124 | |
1125 | indexRowL[l] = iRow; |
1126 | elementL[l] = elementU[i] * pivotMultiplier; |
1127 | l++; |
1128 | //take out of row list |
1129 | CoinBigIndex start = startRowU[iRow]; |
1130 | int iNumberInRow = numberInRow[iRow]; |
1131 | CoinBigIndex end = start + iNumberInRow; |
1132 | CoinBigIndex where = start; |
1133 | |
1134 | while ( indexColumnU[where] != pivotColumn ) { |
1135 | where++; |
1136 | } /* endwhile */ |
1137 | assert ( where < end ); |
1138 | indexColumnU[where] = indexColumnU[end - 1]; |
1139 | iNumberInRow--; |
1140 | numberInRow[iRow] = iNumberInRow; |
1141 | deleteLink ( iRow ); |
1142 | addLink ( iRow, iNumberInRow ); |
1143 | } |
1144 | numberInColumn[pivotColumn] = 0; |
1145 | //modify linked list for pivots |
1146 | numberInRow[pivotRow] = 0; |
1147 | deleteLink ( pivotRow ); |
1148 | deleteLink ( pivotColumn + numberRows_ ); |
1149 | //take out this bit of indexColumnU |
1150 | int next = nextRow[pivotRow]; |
1151 | int last = lastRow[pivotRow]; |
1152 | |
1153 | nextRow[last] = next; |
1154 | lastRow[next] = last; |
1155 | lastRow[pivotRow] =-2; |
1156 | nextRow[pivotRow] = numberGoodU_; //use for permute |
1157 | return true; |
1158 | } |
1159 | |
1160 | // pivotColumnSingleton. Does one pivot on Column Singleton in factorization |
1161 | bool |
1162 | CoinFactorization::pivotColumnSingleton ( int pivotRow, |
1163 | int pivotColumn ) |
1164 | { |
1165 | int * numberInRow = numberInRow_.array(); |
1166 | int * numberInColumn = numberInColumn_.array(); |
1167 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
1168 | //store pivot columns (so can easily compress) |
1169 | int numberDoRow = numberInRow[pivotRow] - 1; |
1170 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1171 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
1172 | int put = 0; |
1173 | CoinBigIndex * startRowU = startRowU_.array(); |
1174 | CoinBigIndex startRow = startRowU[pivotRow]; |
1175 | CoinBigIndex endRow = startRow + numberDoRow + 1; |
1176 | int * indexColumnU = indexColumnU_.array(); |
1177 | int * indexRowU = indexRowU_.array(); |
1178 | int * saveColumn = saveColumn_.array(); |
1179 | CoinBigIndex i; |
1180 | |
1181 | for ( i = startRow; i < endRow; i++ ) { |
1182 | int iColumn = indexColumnU[i]; |
1183 | |
1184 | if ( iColumn != pivotColumn ) { |
1185 | saveColumn[put++] = iColumn; |
1186 | } |
1187 | } |
1188 | int * nextRow = nextRow_.array(); |
1189 | int * lastRow = lastRow_.array(); |
1190 | //take out this bit of indexColumnU |
1191 | int next = nextRow[pivotRow]; |
1192 | int last = lastRow[pivotRow]; |
1193 | |
1194 | nextRow[last] = next; |
1195 | lastRow[next] = last; |
1196 | nextRow[pivotRow] = numberGoodU_; //use for permute |
1197 | lastRow[pivotRow] =-2; //mark |
1198 | //clean up counts |
1199 | CoinFactorizationDouble *elementU = elementU_.array(); |
1200 | CoinFactorizationDouble pivotElement = elementU[startColumn]; |
1201 | |
1202 | pivotRegion_.array()[numberGoodU_] = 1.0 / pivotElement; |
1203 | numberInColumn[pivotColumn] = 0; |
1204 | //totalElements_ --; |
1205 | //numberInColumnPlus[pivotColumn]++; |
1206 | //move pivot row in other columns to safe zone |
1207 | for ( i = 0; i < numberDoRow; i++ ) { |
1208 | int iColumn = saveColumn[i]; |
1209 | |
1210 | if ( numberInColumn[iColumn] ) { |
1211 | int number = numberInColumn[iColumn] - 1; |
1212 | |
1213 | //modify linked list |
1214 | deleteLink ( iColumn + numberRows_ ); |
1215 | addLink ( iColumn + numberRows_, number ); |
1216 | //move pivot row element |
1217 | if ( number ) { |
1218 | CoinBigIndex start = startColumnU[iColumn]; |
1219 | CoinBigIndex pivot = start; |
1220 | int iRow = indexRowU[pivot]; |
1221 | while ( iRow != pivotRow ) { |
1222 | pivot++; |
1223 | iRow = indexRowU[pivot]; |
1224 | } |
1225 | assert (pivot < startColumnU[iColumn] + |
1226 | numberInColumn[iColumn]); |
1227 | if ( pivot != start ) { |
1228 | //move largest one up |
1229 | CoinFactorizationDouble value = elementU[start]; |
1230 | |
1231 | iRow = indexRowU[start]; |
1232 | elementU[start] = elementU[pivot]; |
1233 | indexRowU[start] = indexRowU[pivot]; |
1234 | elementU[pivot] = elementU[start + 1]; |
1235 | indexRowU[pivot] = indexRowU[start + 1]; |
1236 | elementU[start + 1] = value; |
1237 | indexRowU[start + 1] = iRow; |
1238 | } else { |
1239 | //find new largest element |
1240 | int iRowSave = indexRowU[start + 1]; |
1241 | CoinFactorizationDouble valueSave = elementU[start + 1]; |
1242 | double valueLargest = fabs ( valueSave ); |
1243 | CoinBigIndex end = start + numberInColumn[iColumn]; |
1244 | CoinBigIndex largest = start + 1; |
1245 | |
1246 | CoinBigIndex k; |
1247 | for ( k = start + 2; k < end; k++ ) { |
1248 | CoinFactorizationDouble value = elementU[k]; |
1249 | double valueAbs = fabs ( value ); |
1250 | |
1251 | if ( valueAbs > valueLargest ) { |
1252 | valueLargest = valueAbs; |
1253 | largest = k; |
1254 | } |
1255 | } |
1256 | indexRowU[start + 1] = indexRowU[largest]; |
1257 | elementU[start + 1] = elementU[largest]; |
1258 | indexRowU[largest] = iRowSave; |
1259 | elementU[largest] = valueSave; |
1260 | } |
1261 | } |
1262 | //clean up counts |
1263 | numberInColumn[iColumn]--; |
1264 | numberInColumnPlus[iColumn]++; |
1265 | startColumnU[iColumn]++; |
1266 | //totalElements_--; |
1267 | } |
1268 | } |
1269 | //modify linked list for pivots |
1270 | deleteLink ( pivotRow ); |
1271 | deleteLink ( pivotColumn + numberRows_ ); |
1272 | numberInRow[pivotRow] = 0; |
1273 | //put in dummy pivot in L |
1274 | CoinBigIndex l = lengthL_; |
1275 | |
1276 | CoinBigIndex * startColumnL = startColumnL_.array(); |
1277 | startColumnL[numberGoodL_] = l; //for luck and first time |
1278 | numberGoodL_++; |
1279 | startColumnL[numberGoodL_] = l; |
1280 | return true; |
1281 | } |
1282 | |
1283 | |
1284 | // getColumnSpace. Gets space for one Column with given length |
1285 | //may have to do compression (returns true) |
1286 | //also moves existing vector |
1287 | bool |
1288 | CoinFactorization::getColumnSpace ( int iColumn, |
1289 | int ) |
1290 | { |
1291 | int * numberInColumn = numberInColumn_.array(); |
1292 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
1293 | int * nextColumn = nextColumn_.array(); |
1294 | int * lastColumn = lastColumn_.array(); |
1295 | int number = numberInColumnPlus[iColumn] + |
1296 | numberInColumn[iColumn]; |
1297 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1298 | CoinBigIndex space = lengthAreaU_ - startColumnU[maximumColumnsExtra_]; |
1299 | CoinFactorizationDouble *elementU = elementU_.array(); |
1300 | int * indexRowU = indexRowU_.array(); |
1301 | |
1302 | if ( space < extraNeeded + number + 4 ) { |
1303 | //compression |
1304 | int iColumn = nextColumn[maximumColumnsExtra_]; |
1305 | CoinBigIndex put = 0; |
1306 | |
1307 | while ( iColumn != maximumColumnsExtra_ ) { |
1308 | //move |
1309 | CoinBigIndex get; |
1310 | CoinBigIndex getEnd; |
1311 | |
1312 | if ( startColumnU[iColumn] >= 0 ) { |
1313 | get = startColumnU[iColumn] |
1314 | - numberInColumnPlus[iColumn]; |
1315 | getEnd = startColumnU[iColumn] + numberInColumn[iColumn]; |
1316 | startColumnU[iColumn] = put + numberInColumnPlus[iColumn]; |
1317 | } else { |
1318 | get = -startColumnU[iColumn]; |
1319 | getEnd = get + numberInColumn[iColumn]; |
1320 | startColumnU[iColumn] = -put; |
1321 | } |
1322 | CoinBigIndex i; |
1323 | for ( i = get; i < getEnd; i++ ) { |
1324 | indexRowU[put] = indexRowU[i]; |
1325 | elementU[put] = elementU[i]; |
1326 | put++; |
1327 | } |
1328 | iColumn = nextColumn[iColumn]; |
1329 | } /* endwhile */ |
1330 | numberCompressions_++; |
1331 | startColumnU[maximumColumnsExtra_] = put; |
1332 | space = lengthAreaU_ - put; |
1333 | if ( extraNeeded == COIN_INT_MAX >> 1 ) { |
1334 | return true; |
1335 | } |
1336 | if ( space < extraNeeded + number + 2 ) { |
1337 | //need more space |
1338 | //if we can allocate bigger then do so and copy |
1339 | //if not then return so code can start again |
1340 | status_ = -99; |
1341 | return false; |
1342 | } |
1343 | } |
1344 | CoinBigIndex put = startColumnU[maximumColumnsExtra_]; |
1345 | int next = nextColumn[iColumn]; |
1346 | int last = lastColumn[iColumn]; |
1347 | |
1348 | if ( extraNeeded || next != maximumColumnsExtra_ ) { |
1349 | //out |
1350 | nextColumn[last] = next; |
1351 | lastColumn[next] = last; |
1352 | //in at end |
1353 | last = lastColumn[maximumColumnsExtra_]; |
1354 | nextColumn[last] = iColumn; |
1355 | lastColumn[maximumColumnsExtra_] = iColumn; |
1356 | lastColumn[iColumn] = last; |
1357 | nextColumn[iColumn] = maximumColumnsExtra_; |
1358 | //move |
1359 | CoinBigIndex get = startColumnU[iColumn] |
1360 | - numberInColumnPlus[iColumn]; |
1361 | |
1362 | startColumnU[iColumn] = put + numberInColumnPlus[iColumn]; |
1363 | if ( number < 50 ) { |
1364 | int *indexRow = indexRowU; |
1365 | CoinFactorizationDouble *element = elementU; |
1366 | int i = 0; |
1367 | |
1368 | if ( ( number & 1 ) != 0 ) { |
1369 | element[put] = element[get]; |
1370 | indexRow[put] = indexRow[get]; |
1371 | i = 1; |
1372 | } |
1373 | for ( ; i < number; i += 2 ) { |
1374 | CoinFactorizationDouble value0 = element[get + i]; |
1375 | CoinFactorizationDouble value1 = element[get + i + 1]; |
1376 | int index0 = indexRow[get + i]; |
1377 | int index1 = indexRow[get + i + 1]; |
1378 | |
1379 | element[put + i] = value0; |
1380 | element[put + i + 1] = value1; |
1381 | indexRow[put + i] = index0; |
1382 | indexRow[put + i + 1] = index1; |
1383 | } |
1384 | } else { |
1385 | CoinMemcpyN ( &indexRowU[get], number, &indexRowU[put] ); |
1386 | CoinMemcpyN ( &elementU[get], number, &elementU[put] ); |
1387 | } |
1388 | put += number; |
1389 | get += number; |
1390 | //add 2 for luck |
1391 | startColumnU[maximumColumnsExtra_] = put + extraNeeded + 2; |
1392 | if (startColumnU[maximumColumnsExtra_]>lengthAreaU_) { |
1393 | // get more memory |
1394 | #ifdef CLP_DEVELOP |
1395 | printf("put %d, needed %d, start %d, length %d\n" , |
1396 | put,extraNeeded,startColumnU[maximumColumnsExtra_], |
1397 | lengthAreaU_); |
1398 | #endif |
1399 | return false; |
1400 | } |
1401 | } else { |
1402 | //take off space |
1403 | startColumnU[maximumColumnsExtra_] = startColumnU[last] + |
1404 | numberInColumn[last]; |
1405 | } |
1406 | return true; |
1407 | } |
1408 | |
1409 | // getRowSpace. Gets space for one Row with given length |
1410 | //may have to do compression (returns true) |
1411 | //also moves existing vector |
1412 | bool |
1413 | CoinFactorization::getRowSpace ( int iRow, |
1414 | int ) |
1415 | { |
1416 | int * numberInRow = numberInRow_.array(); |
1417 | int number = numberInRow[iRow]; |
1418 | CoinBigIndex * startRowU = startRowU_.array(); |
1419 | CoinBigIndex space = lengthAreaU_ - startRowU[maximumRowsExtra_]; |
1420 | int * nextRow = nextRow_.array(); |
1421 | int * lastRow = lastRow_.array(); |
1422 | int * indexColumnU = indexColumnU_.array(); |
1423 | |
1424 | if ( space < extraNeeded + number + 2 ) { |
1425 | //compression |
1426 | int iRow = nextRow[maximumRowsExtra_]; |
1427 | CoinBigIndex put = 0; |
1428 | |
1429 | while ( iRow != maximumRowsExtra_ ) { |
1430 | //move |
1431 | CoinBigIndex get = startRowU[iRow]; |
1432 | CoinBigIndex getEnd = startRowU[iRow] + numberInRow[iRow]; |
1433 | |
1434 | startRowU[iRow] = put; |
1435 | CoinBigIndex i; |
1436 | for ( i = get; i < getEnd; i++ ) { |
1437 | indexColumnU[put] = indexColumnU[i]; |
1438 | put++; |
1439 | } |
1440 | iRow = nextRow[iRow]; |
1441 | } /* endwhile */ |
1442 | numberCompressions_++; |
1443 | startRowU[maximumRowsExtra_] = put; |
1444 | space = lengthAreaU_ - put; |
1445 | if ( space < extraNeeded + number + 2 ) { |
1446 | //need more space |
1447 | //if we can allocate bigger then do so and copy |
1448 | //if not then return so code can start again |
1449 | status_ = -99; |
1450 | return false; |
1451 | } |
1452 | } |
1453 | CoinBigIndex put = startRowU[maximumRowsExtra_]; |
1454 | int next = nextRow[iRow]; |
1455 | int last = lastRow[iRow]; |
1456 | |
1457 | //out |
1458 | nextRow[last] = next; |
1459 | lastRow[next] = last; |
1460 | //in at end |
1461 | last = lastRow[maximumRowsExtra_]; |
1462 | nextRow[last] = iRow; |
1463 | lastRow[maximumRowsExtra_] = iRow; |
1464 | lastRow[iRow] = last; |
1465 | nextRow[iRow] = maximumRowsExtra_; |
1466 | //move |
1467 | CoinBigIndex get = startRowU[iRow]; |
1468 | |
1469 | startRowU[iRow] = put; |
1470 | while ( number ) { |
1471 | number--; |
1472 | indexColumnU[put] = indexColumnU[get]; |
1473 | put++; |
1474 | get++; |
1475 | } /* endwhile */ |
1476 | //add 4 for luck |
1477 | startRowU[maximumRowsExtra_] = put + extraNeeded + 4; |
1478 | return true; |
1479 | } |
1480 | |
1481 | #if COIN_ONE_ETA_COPY |
1482 | /* Reorders U so contiguous and in order (if there is space) |
1483 | Returns true if it could */ |
1484 | bool |
1485 | CoinFactorization::reorderU() |
1486 | { |
1487 | #if 1 |
1488 | return false; |
1489 | #else |
1490 | if (numberRows_!=numberColumns_) |
1491 | return false; |
1492 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1493 | int * numberInColumn = numberInColumn_.array(); |
1494 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
1495 | int iColumn; |
1496 | CoinBigIndex put = 0; |
1497 | for (iColumn =0;iColumn<numberRows_;iColumn++) |
1498 | put += numberInColumnPlus[iColumn]; |
1499 | CoinBigIndex space = lengthAreaU_ - startColumnU[maximumColumnsExtra_]; |
1500 | if (space<put) { |
1501 | //printf("Space %d out of %d - needed %d\n", |
1502 | // space,lengthAreaU_,put); |
1503 | return false; |
1504 | } |
1505 | int *indexRowU = indexRowU_.array(); |
1506 | CoinFactorizationDouble *elementU = elementU_.array(); |
1507 | int * pivotColumn = pivotColumn_.array(); |
1508 | put = startColumnU[maximumColumnsExtra_]; |
1509 | for (int jColumn =0;jColumn<numberRows_;jColumn++) { |
1510 | iColumn = pivotColumn[jColumn]; |
1511 | int n = numberInColumnPlus[iColumn]; |
1512 | CoinBigIndex getEnd = startColumnU[iColumn]; |
1513 | CoinBigIndex get = getEnd - n; |
1514 | startColumnU[iColumn] = put; |
1515 | numberInColumn[jColumn]=n; |
1516 | CoinBigIndex i; |
1517 | for ( i = get; i < getEnd; i++ ) { |
1518 | indexRowU[put] = indexRowU[i]; |
1519 | elementU[put] = elementU[i]; |
1520 | put++; |
1521 | } |
1522 | } |
1523 | // and pack down |
1524 | put = 0; |
1525 | for (int jColumn =0;jColumn<numberRows_;jColumn++) { |
1526 | iColumn = pivotColumn[jColumn]; |
1527 | int n = numberInColumn[jColumn]; |
1528 | CoinBigIndex get = startColumnU[iColumn]; |
1529 | CoinBigIndex getEnd = get+n; |
1530 | CoinBigIndex i; |
1531 | for ( i = get; i < getEnd; i++ ) { |
1532 | indexRowU[put] = indexRowU[i]; |
1533 | elementU[put] = elementU[i]; |
1534 | put++; |
1535 | } |
1536 | } |
1537 | put=0; |
1538 | for (iColumn =0;iColumn<numberRows_;iColumn++) { |
1539 | int n = numberInColumn[iColumn]; |
1540 | startColumnU[iColumn]=put; |
1541 | put += n; |
1542 | //numberInColumnPlus[iColumn]=n; |
1543 | //numberInColumn[iColumn]=0; // necessary? |
1544 | //pivotColumn[iColumn]=iColumn; |
1545 | } |
1546 | #if 0 |
1547 | // reset nextColumn - probably not necessary |
1548 | int * nextColumn = nextColumn_.array(); |
1549 | nextColumn[maximumColumnsExtra_]=0; |
1550 | nextColumn[numberRows_-1] = maximumColumnsExtra_; |
1551 | for (iColumn=0;iColumn<numberRows_-1;iColumn++) |
1552 | nextColumn[iColumn]=iColumn+1; |
1553 | // swap arrays |
1554 | numberInColumn_.swap(numberInColumnPlus_); |
1555 | #endif |
1556 | //return false; |
1557 | return true; |
1558 | #endif |
1559 | } |
1560 | #endif |
1561 | // cleanup. End of factorization |
1562 | void |
1563 | CoinFactorization::cleanup ( ) |
1564 | { |
1565 | #if COIN_ONE_ETA_COPY |
1566 | bool compressDone = reorderU(); |
1567 | if (!compressDone) { |
1568 | getColumnSpace ( 0, COIN_INT_MAX >> 1 ); //compress |
1569 | // swap arrays |
1570 | numberInColumn_.swap(numberInColumnPlus_); |
1571 | } |
1572 | #else |
1573 | getColumnSpace ( 0, COIN_INT_MAX >> 1 ); //compress |
1574 | // swap arrays |
1575 | numberInColumn_.swap(numberInColumnPlus_); |
1576 | #endif |
1577 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1578 | CoinBigIndex lastU = startColumnU[maximumColumnsExtra_]; |
1579 | |
1580 | //free some memory here |
1581 | saveColumn_.conditionalDelete(); |
1582 | markRow_.conditionalDelete() ; |
1583 | //firstCount_.conditionalDelete() ; |
1584 | nextCount_.conditionalDelete() ; |
1585 | lastCount_.conditionalDelete() ; |
1586 | int * numberInRow = numberInRow_.array(); |
1587 | int * numberInColumn = numberInColumn_.array(); |
1588 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
1589 | //make column starts OK |
1590 | //for best cache behavior get in order (last pivot at bottom of space) |
1591 | //that will need thinking about |
1592 | //use nextRow for permutation (as that is what it is) |
1593 | int i; |
1594 | |
1595 | #ifndef NDEBUG |
1596 | { |
1597 | if (numberGoodU_<numberRows_) |
1598 | abort(); |
1599 | char * mark = new char[numberRows_]; |
1600 | memset(mark,0,numberRows_); |
1601 | int * array; |
1602 | array = nextRow_.array(); |
1603 | for ( i = 0; i < numberRows_; i++ ) { |
1604 | int k = array[i]; |
1605 | if(k<0||k>=numberRows_) |
1606 | printf("Bad a %d %d\n" ,i,k); |
1607 | assert(k>=0&&k<numberRows_); |
1608 | if(mark[k]==1) |
1609 | printf("Bad a %d %d\n" ,i,k); |
1610 | mark[k]=1; |
1611 | } |
1612 | for ( i = 0; i < numberRows_; i++ ) { |
1613 | assert(mark[i]==1); |
1614 | if(mark[i]!=1) |
1615 | printf("Bad b %d\n" ,i); |
1616 | } |
1617 | delete [] mark; |
1618 | } |
1619 | #endif |
1620 | // swap arrays |
1621 | permute_.swap(nextRow_); |
1622 | //safety feature |
1623 | int * permute = permute_.array(); |
1624 | permute[numberRows_] = 0; |
1625 | permuteBack_.conditionalNew( maximumRowsExtra_ + 1); |
1626 | int * permuteBack = permuteBack_.array(); |
1627 | #ifdef ZEROFAULT |
1628 | memset(permuteBack_.array(),'w',(maximumRowsExtra_+1)*sizeof(int)); |
1629 | #endif |
1630 | for ( i = 0; i < numberRows_; i++ ) { |
1631 | int iRow = permute[i]; |
1632 | |
1633 | permuteBack[iRow] = i; |
1634 | } |
1635 | //redo nextRow_ |
1636 | |
1637 | #ifndef NDEBUG |
1638 | for ( i = 0; i < numberRows_; i++ ) { |
1639 | assert (permute[i]>=0&&permute[i]<numberRows_); |
1640 | assert (permuteBack[i]>=0&&permuteBack[i]<numberRows_); |
1641 | } |
1642 | #endif |
1643 | #if COIN_ONE_ETA_COPY |
1644 | if (!compressDone) { |
1645 | #endif |
1646 | // Redo total elements |
1647 | totalElements_=0; |
1648 | for ( i = 0; i < numberColumns_; i++ ) { |
1649 | int number = numberInColumn[i]; |
1650 | totalElements_ += number; |
1651 | startColumnU[i] -= number; |
1652 | } |
1653 | #if COIN_ONE_ETA_COPY |
1654 | } |
1655 | #endif |
1656 | int numberU = 0; |
1657 | |
1658 | pivotColumnBack_.conditionalNew( maximumRowsExtra_ + 1); |
1659 | #ifdef ZEROFAULT |
1660 | memset(pivotColumnBack(),'q',(maximumRowsExtra_+1)*sizeof(int)); |
1661 | #endif |
1662 | const int * pivotColumn = pivotColumn_.array(); |
1663 | int * pivotColumnB = pivotColumnBack(); |
1664 | int *indexColumnU = indexColumnU_.array(); |
1665 | CoinBigIndex *startColumn = startColumnU; |
1666 | int *indexRowU = indexRowU_.array(); |
1667 | CoinFactorizationDouble *elementU = elementU_.array(); |
1668 | #if COIN_ONE_ETA_COPY |
1669 | if (!compressDone) { |
1670 | #endif |
1671 | for ( i = 0; i < numberColumns_; i++ ) { |
1672 | int iColumn = pivotColumn[i]; |
1673 | |
1674 | pivotColumnB[iColumn] = i; |
1675 | if ( iColumn >= 0 ) { |
1676 | //wanted |
1677 | if ( numberU != iColumn ) { |
1678 | numberInColumnPlus[iColumn] = numberU; |
1679 | } else { |
1680 | numberInColumnPlus[iColumn] = -1; //already in correct place |
1681 | } |
1682 | numberU++; |
1683 | } |
1684 | } |
1685 | for ( i = 0; i < numberColumns_; i++ ) { |
1686 | int number = numberInColumn[i]; //always 0? |
1687 | int where = numberInColumnPlus[i]; |
1688 | |
1689 | numberInColumnPlus[i] = -1; |
1690 | CoinBigIndex start = startColumnU[i]; |
1691 | |
1692 | while ( where >= 0 ) { |
1693 | //put where it should be |
1694 | int numberNext = numberInColumn[where]; //always 0? |
1695 | int whereNext = numberInColumnPlus[where]; |
1696 | CoinBigIndex startNext = startColumnU[where]; |
1697 | |
1698 | numberInColumn[where] = number; |
1699 | numberInColumnPlus[where] = -1; |
1700 | startColumnU[where] = start; |
1701 | number = numberNext; |
1702 | where = whereNext; |
1703 | start = startNext; |
1704 | } /* endwhile */ |
1705 | } |
1706 | //sort - using indexColumn |
1707 | CoinFillN ( indexColumnU_.array(), lastU, -1 ); |
1708 | CoinBigIndex k = 0; |
1709 | |
1710 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
1711 | CoinBigIndex start = startColumn[i]; |
1712 | CoinBigIndex end = start + numberInColumn[i]; |
1713 | |
1714 | CoinBigIndex j; |
1715 | for ( j = start; j < end; j++ ) { |
1716 | indexColumnU[j] = k++; |
1717 | } |
1718 | } |
1719 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
1720 | CoinBigIndex start = startColumn[i]; |
1721 | CoinBigIndex end = start + numberInColumn[i]; |
1722 | |
1723 | CoinBigIndex j; |
1724 | for ( j = start; j < end; j++ ) { |
1725 | CoinBigIndex k = indexColumnU[j]; |
1726 | int iRow = indexRowU[j]; |
1727 | CoinFactorizationDouble element = elementU[j]; |
1728 | |
1729 | while ( k != -1 ) { |
1730 | CoinBigIndex kNext = indexColumnU[k]; |
1731 | int iRowNext = indexRowU[k]; |
1732 | CoinFactorizationDouble elementNext = elementU[k]; |
1733 | |
1734 | indexColumnU[k] = -1; |
1735 | indexRowU[k] = iRow; |
1736 | elementU[k] = element; |
1737 | k = kNext; |
1738 | iRow = iRowNext; |
1739 | element = elementNext; |
1740 | } /* endwhile */ |
1741 | } |
1742 | } |
1743 | CoinZeroN ( startColumnU, numberSlacks_ ); |
1744 | k = 0; |
1745 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
1746 | startColumnU[i] = k; |
1747 | k += numberInColumn[i]; |
1748 | } |
1749 | maximumU_=k; |
1750 | #if COIN_ONE_ETA_COPY |
1751 | } else { |
1752 | // U already OK |
1753 | for ( i = 0; i < numberColumns_; i++ ) { |
1754 | int iColumn = pivotColumn[i]; |
1755 | pivotColumnB[iColumn] = i; |
1756 | } |
1757 | maximumU_=startColumnU[numberRows_-1]+ |
1758 | numberInColumn[numberRows_-1]; |
1759 | numberU=numberRows_; |
1760 | } |
1761 | #endif |
1762 | if ( (messageLevel_ & 8)) { |
1763 | std::cout<<" length of U " <<totalElements_<<", length of L " <<lengthL_; |
1764 | if (numberDense_) |
1765 | std::cout<<" plus " <<numberDense_*numberDense_<<" from " <<numberDense_<<" dense rows" ; |
1766 | std::cout<<std::endl; |
1767 | } |
1768 | // and add L and dense |
1769 | totalElements_ += numberDense_*numberDense_+lengthL_; |
1770 | int * nextColumn = nextColumn_.array(); |
1771 | int * lastColumn = lastColumn_.array(); |
1772 | // See whether to have extra copy of R |
1773 | if (maximumU_>10*numberRows_||numberRows_<200) { |
1774 | // NO |
1775 | numberInColumnPlus_.conditionalDelete() ; |
1776 | } else { |
1777 | for ( i = 0; i < numberColumns_; i++ ) { |
1778 | lastColumn[i] = i - 1; |
1779 | nextColumn[i] = i + 1; |
1780 | numberInColumnPlus[i]=0; |
1781 | } |
1782 | nextColumn[numberColumns_ - 1] = maximumColumnsExtra_; |
1783 | lastColumn[maximumColumnsExtra_] = numberColumns_ - 1; |
1784 | nextColumn[maximumColumnsExtra_] = 0; |
1785 | lastColumn[0] = maximumColumnsExtra_; |
1786 | } |
1787 | numberU_ = numberU; |
1788 | numberGoodU_ = numberU; |
1789 | numberL_ = numberGoodL_; |
1790 | #if COIN_DEBUG |
1791 | for ( i = 0; i < numberRows_; i++ ) { |
1792 | if ( permute[i] < 0 ) { |
1793 | std::cout << i << std::endl; |
1794 | abort ( ); |
1795 | } |
1796 | } |
1797 | #endif |
1798 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
1799 | for ( i = numberSlacks_; i < numberU; i++ ) { |
1800 | CoinBigIndex start = startColumnU[i]; |
1801 | CoinBigIndex end = start + numberInColumn[i]; |
1802 | |
1803 | totalElements_ += numberInColumn[i]; |
1804 | CoinBigIndex j; |
1805 | |
1806 | for ( j = start; j < end; j++ ) { |
1807 | int iRow = indexRowU[j]; |
1808 | iRow = permute[iRow]; |
1809 | indexRowU[j] = iRow; |
1810 | numberInRow[iRow]++; |
1811 | } |
1812 | } |
1813 | #if COIN_ONE_ETA_COPY |
1814 | if (numberRows_>=COIN_ONE_ETA_COPY) { |
1815 | #endif |
1816 | //space for cross reference |
1817 | convertRowToColumnU_.conditionalNew( lengthAreaU_ ); |
1818 | CoinBigIndex *convertRowToColumn = convertRowToColumnU_.array(); |
1819 | CoinBigIndex j = 0; |
1820 | CoinBigIndex *startRow = startRowU_.array(); |
1821 | |
1822 | int iRow; |
1823 | for ( iRow = 0; iRow < numberRows_; iRow++ ) { |
1824 | startRow[iRow] = j; |
1825 | j += numberInRow[iRow]; |
1826 | } |
1827 | CoinBigIndex numberInU = j; |
1828 | |
1829 | CoinZeroN ( numberInRow_.array(), numberRows_ ); |
1830 | |
1831 | for ( i = numberSlacks_; i < numberRows_; i++ ) { |
1832 | CoinBigIndex start = startColumnU[i]; |
1833 | CoinBigIndex end = start + numberInColumn[i]; |
1834 | |
1835 | CoinFactorizationDouble pivotValue = pivotRegion[i]; |
1836 | |
1837 | CoinBigIndex j; |
1838 | for ( j = start; j < end; j++ ) { |
1839 | int iRow = indexRowU[j]; |
1840 | int iLook = numberInRow[iRow]; |
1841 | |
1842 | numberInRow[iRow] = iLook + 1; |
1843 | CoinBigIndex k = startRow[iRow] + iLook; |
1844 | |
1845 | indexColumnU[k] = i; |
1846 | convertRowToColumn[k] = j; |
1847 | //multiply by pivot |
1848 | elementU[j] *= pivotValue; |
1849 | } |
1850 | } |
1851 | int * nextRow = nextRow_.array(); |
1852 | int * lastRow = lastRow_.array(); |
1853 | for ( j = 0; j < numberRows_; j++ ) { |
1854 | lastRow[j] = j - 1; |
1855 | nextRow[j] = j + 1; |
1856 | } |
1857 | nextRow[numberRows_ - 1] = maximumRowsExtra_; |
1858 | lastRow[maximumRowsExtra_] = numberRows_ - 1; |
1859 | nextRow[maximumRowsExtra_] = 0; |
1860 | lastRow[0] = maximumRowsExtra_; |
1861 | startRow[maximumRowsExtra_] = numberInU; |
1862 | #if COIN_ONE_ETA_COPY |
1863 | } else { |
1864 | // no row copy |
1865 | for ( i = numberSlacks_; i < numberU; i++ ) { |
1866 | CoinBigIndex start = startColumnU[i]; |
1867 | CoinBigIndex end = start + numberInColumn[i]; |
1868 | |
1869 | CoinBigIndex j; |
1870 | CoinFactorizationDouble pivotValue = pivotRegion[i]; |
1871 | |
1872 | for ( j = start; j < end; j++ ) { |
1873 | //multiply by pivot |
1874 | elementU[j] *= pivotValue; |
1875 | } |
1876 | } |
1877 | } |
1878 | #endif |
1879 | |
1880 | int firstReal = numberRows_; |
1881 | |
1882 | CoinBigIndex * startColumnL = startColumnL_.array(); |
1883 | int * indexRowL = indexRowL_.array(); |
1884 | for ( i = numberRows_ - 1; i >= 0; i-- ) { |
1885 | CoinBigIndex start = startColumnL[i]; |
1886 | CoinBigIndex end = startColumnL[i + 1]; |
1887 | |
1888 | totalElements_ += end - start; |
1889 | if ( end > start ) { |
1890 | firstReal = i; |
1891 | CoinBigIndex j; |
1892 | for ( j = start; j < end; j++ ) { |
1893 | int iRow = indexRowL[j]; |
1894 | iRow = permute[iRow]; |
1895 | assert (iRow>firstReal); |
1896 | indexRowL[j] = iRow; |
1897 | } |
1898 | } |
1899 | } |
1900 | baseL_ = firstReal; |
1901 | numberL_ -= firstReal; |
1902 | factorElements_ = totalElements_; |
1903 | //can delete pivotRowL_ as not used |
1904 | pivotRowL_.conditionalDelete() ; |
1905 | //use L for R if room |
1906 | CoinBigIndex space = lengthAreaL_ - lengthL_; |
1907 | CoinBigIndex spaceUsed = lengthL_ + lengthU_; |
1908 | |
1909 | int needed = ( spaceUsed + numberRows_ - 1 ) / numberRows_; |
1910 | |
1911 | needed = needed * 2 * maximumPivots_; |
1912 | if ( needed < 2 * numberRows_ ) { |
1913 | needed = 2 * numberRows_; |
1914 | } |
1915 | if (numberInColumnPlus_.array()) { |
1916 | // Need double the space for R |
1917 | space = space/2; |
1918 | startColumnR_.conditionalNew( maximumPivots_ + 1 + maximumColumnsExtra_ + 1 ); |
1919 | CoinBigIndex * startR = startColumnR_.array() + maximumPivots_+1; |
1920 | CoinZeroN (startR,(maximumColumnsExtra_+1)); |
1921 | } else { |
1922 | startColumnR_.conditionalNew(maximumPivots_ + 1 ); |
1923 | } |
1924 | #ifdef ZEROFAULT |
1925 | memset(startColumnR_.array(),'z',(maximumPivots_ + 1)*sizeof(CoinBigIndex)); |
1926 | #endif |
1927 | if ( space >= needed ) { |
1928 | lengthR_ = 0; |
1929 | lengthAreaR_ = space; |
1930 | elementR_ = elementL_.array() + lengthL_; |
1931 | indexRowR_ = indexRowL_.array() + lengthL_; |
1932 | } else { |
1933 | lengthR_ = 0; |
1934 | lengthAreaR_ = space; |
1935 | elementR_ = elementL_.array() + lengthL_; |
1936 | indexRowR_ = indexRowL_.array() + lengthL_; |
1937 | if ((messageLevel_&4)) |
1938 | std::cout<<"Factorization may need some increasing area space" |
1939 | <<std::endl; |
1940 | if ( areaFactor_ ) { |
1941 | areaFactor_ *= 1.1; |
1942 | } else { |
1943 | areaFactor_ = 1.1; |
1944 | } |
1945 | } |
1946 | numberR_ = 0; |
1947 | } |
1948 | // Returns areaFactor but adjusted for dense |
1949 | double |
1950 | CoinFactorization::adjustedAreaFactor() const |
1951 | { |
1952 | double factor = areaFactor_; |
1953 | if (numberDense_&&areaFactor_>1.0) { |
1954 | double dense = numberDense_; |
1955 | dense *= dense; |
1956 | double withoutDense = totalElements_ - dense +1.0; |
1957 | factor *= 1.0 +dense/withoutDense; |
1958 | } |
1959 | return factor; |
1960 | } |
1961 | |
1962 | // checkConsistency. Checks that row and column copies look OK |
1963 | void |
1964 | CoinFactorization::checkConsistency ( ) |
1965 | { |
1966 | bool bad = false; |
1967 | |
1968 | int iRow; |
1969 | CoinBigIndex * startRowU = startRowU_.array(); |
1970 | int * numberInRow = numberInRow_.array(); |
1971 | int * numberInColumn = numberInColumn_.array(); |
1972 | int * indexColumnU = indexColumnU_.array(); |
1973 | int * indexRowU = indexRowU_.array(); |
1974 | CoinBigIndex * startColumnU = startColumnU_.array(); |
1975 | for ( iRow = 0; iRow < numberRows_; iRow++ ) { |
1976 | if ( numberInRow[iRow] ) { |
1977 | CoinBigIndex startRow = startRowU[iRow]; |
1978 | CoinBigIndex endRow = startRow + numberInRow[iRow]; |
1979 | |
1980 | CoinBigIndex j; |
1981 | for ( j = startRow; j < endRow; j++ ) { |
1982 | int iColumn = indexColumnU[j]; |
1983 | CoinBigIndex startColumn = startColumnU[iColumn]; |
1984 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
1985 | bool found = false; |
1986 | |
1987 | CoinBigIndex k; |
1988 | for ( k = startColumn; k < endColumn; k++ ) { |
1989 | if ( indexRowU[k] == iRow ) { |
1990 | found = true; |
1991 | break; |
1992 | } |
1993 | } |
1994 | if ( !found ) { |
1995 | bad = true; |
1996 | std::cout << "row " << iRow << " column " << iColumn << " Rows" << std::endl; |
1997 | } |
1998 | } |
1999 | } |
2000 | } |
2001 | int iColumn; |
2002 | for ( iColumn = 0; iColumn < numberColumns_; iColumn++ ) { |
2003 | if ( numberInColumn[iColumn] ) { |
2004 | CoinBigIndex startColumn = startColumnU[iColumn]; |
2005 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
2006 | |
2007 | CoinBigIndex j; |
2008 | for ( j = startColumn; j < endColumn; j++ ) { |
2009 | int iRow = indexRowU[j]; |
2010 | CoinBigIndex startRow = startRowU[iRow]; |
2011 | CoinBigIndex endRow = startRow + numberInRow[iRow]; |
2012 | bool found = false; |
2013 | |
2014 | CoinBigIndex k; |
2015 | for ( k = startRow; k < endRow; k++ ) { |
2016 | if ( indexColumnU[k] == iColumn ) { |
2017 | found = true; |
2018 | break; |
2019 | } |
2020 | } |
2021 | if ( !found ) { |
2022 | bad = true; |
2023 | std::cout << "row " << iRow << " column " << iColumn << " Columns" << |
2024 | std::endl; |
2025 | } |
2026 | } |
2027 | } |
2028 | } |
2029 | if ( bad ) { |
2030 | abort ( ); |
2031 | } |
2032 | } |
2033 | // pivotOneOtherRow. When just one other row so faster |
2034 | bool |
2035 | CoinFactorization::pivotOneOtherRow ( int pivotRow, |
2036 | int pivotColumn ) |
2037 | { |
2038 | int * numberInRow = numberInRow_.array(); |
2039 | int * numberInColumn = numberInColumn_.array(); |
2040 | int * numberInColumnPlus = numberInColumnPlus_.array(); |
2041 | int numberInPivotRow = numberInRow[pivotRow] - 1; |
2042 | CoinBigIndex * startRowU = startRowU_.array(); |
2043 | CoinBigIndex * startColumnU = startColumnU_.array(); |
2044 | CoinBigIndex startColumn = startColumnU[pivotColumn]; |
2045 | CoinBigIndex startRow = startRowU[pivotRow]; |
2046 | CoinBigIndex endRow = startRow + numberInPivotRow + 1; |
2047 | |
2048 | //take out this bit of indexColumnU |
2049 | int * nextRow = nextRow_.array(); |
2050 | int * lastRow = lastRow_.array(); |
2051 | int next = nextRow[pivotRow]; |
2052 | int last = lastRow[pivotRow]; |
2053 | |
2054 | nextRow[last] = next; |
2055 | lastRow[next] = last; |
2056 | nextRow[pivotRow] = numberGoodU_; //use for permute |
2057 | lastRow[pivotRow] = -2; |
2058 | numberInRow[pivotRow] = 0; |
2059 | //store column in L, compress in U and take column out |
2060 | CoinBigIndex l = lengthL_; |
2061 | |
2062 | if ( l + 1 > lengthAreaL_ ) { |
2063 | //need more memory |
2064 | if ((messageLevel_&4)!=0) |
2065 | std::cout << "more memory needed in middle of invert" << std::endl; |
2066 | return false; |
2067 | } |
2068 | //l+=currentAreaL_->elementByColumn-elementL_; |
2069 | //CoinBigIndex lSave=l; |
2070 | CoinBigIndex * startColumnL = startColumnL_.array(); |
2071 | CoinFactorizationDouble * elementL = elementL_.array(); |
2072 | int * indexRowL = indexRowL_.array(); |
2073 | startColumnL[numberGoodL_] = l; //for luck and first time |
2074 | numberGoodL_++; |
2075 | startColumnL[numberGoodL_] = l + 1; |
2076 | lengthL_++; |
2077 | CoinFactorizationDouble pivotElement; |
2078 | CoinFactorizationDouble otherMultiplier; |
2079 | int otherRow; |
2080 | int * saveColumn = saveColumn_.array(); |
2081 | CoinFactorizationDouble *elementU = elementU_.array(); |
2082 | int * indexRowU = indexRowU_.array(); |
2083 | |
2084 | if ( indexRowU[startColumn] == pivotRow ) { |
2085 | pivotElement = elementU[startColumn]; |
2086 | otherMultiplier = elementU[startColumn + 1]; |
2087 | otherRow = indexRowU[startColumn + 1]; |
2088 | } else { |
2089 | pivotElement = elementU[startColumn + 1]; |
2090 | otherMultiplier = elementU[startColumn]; |
2091 | otherRow = indexRowU[startColumn]; |
2092 | } |
2093 | int numberSave = numberInRow[otherRow]; |
2094 | CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement; |
2095 | |
2096 | CoinFactorizationDouble * pivotRegion = pivotRegion_.array(); |
2097 | pivotRegion[numberGoodU_] = pivotMultiplier; |
2098 | numberInColumn[pivotColumn] = 0; |
2099 | otherMultiplier = otherMultiplier * pivotMultiplier; |
2100 | indexRowL[l] = otherRow; |
2101 | elementL[l] = otherMultiplier; |
2102 | //take out of row list |
2103 | CoinBigIndex start = startRowU[otherRow]; |
2104 | CoinBigIndex end = start + numberSave; |
2105 | CoinBigIndex where = start; |
2106 | int * indexColumnU = indexColumnU_.array(); |
2107 | |
2108 | while ( indexColumnU[where] != pivotColumn ) { |
2109 | where++; |
2110 | } /* endwhile */ |
2111 | assert ( where < end ); |
2112 | end--; |
2113 | indexColumnU[where] = indexColumnU[end]; |
2114 | int numberAdded = 0; |
2115 | int numberDeleted = 0; |
2116 | |
2117 | //pack down and move to work |
2118 | int j; |
2119 | const int * nextCount = nextCount_.array(); |
2120 | int * nextColumn = nextColumn_.array(); |
2121 | |
2122 | for ( j = startRow; j < endRow; j++ ) { |
2123 | int iColumn = indexColumnU[j]; |
2124 | |
2125 | if ( iColumn != pivotColumn ) { |
2126 | CoinBigIndex startColumn = startColumnU[iColumn]; |
2127 | CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; |
2128 | int iRow = indexRowU[startColumn]; |
2129 | CoinFactorizationDouble value = elementU[startColumn]; |
2130 | double largest; |
2131 | bool foundOther = false; |
2132 | |
2133 | //leave room for pivot |
2134 | CoinBigIndex put = startColumn + 1; |
2135 | CoinBigIndex positionLargest = -1; |
2136 | CoinFactorizationDouble thisPivotValue = 0.0; |
2137 | CoinFactorizationDouble otherElement = 0.0; |
2138 | CoinFactorizationDouble nextValue = elementU[put]; |
2139 | int nextIRow = indexRowU[put]; |
2140 | |
2141 | //compress column and find largest not updated |
2142 | if ( iRow != pivotRow ) { |
2143 | if ( iRow != otherRow ) { |
2144 | largest = fabs ( value ); |
2145 | elementU[put] = value; |
2146 | indexRowU[put] = iRow; |
2147 | positionLargest = put; |
2148 | put++; |
2149 | CoinBigIndex i; |
2150 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
2151 | iRow = nextIRow; |
2152 | value = nextValue; |
2153 | #ifdef ZEROFAULT |
2154 | // doesn't matter reading uninitialized but annoys checking |
2155 | if ( i + 1 < endColumn ) { |
2156 | #endif |
2157 | nextIRow = indexRowU[i + 1]; |
2158 | nextValue = elementU[i + 1]; |
2159 | #ifdef ZEROFAULT |
2160 | } |
2161 | #endif |
2162 | if ( iRow != pivotRow ) { |
2163 | if ( iRow != otherRow ) { |
2164 | //keep |
2165 | indexRowU[put] = iRow; |
2166 | elementU[put] = value; |
2167 | put++; |
2168 | } else { |
2169 | otherElement = value; |
2170 | foundOther = true; |
2171 | } |
2172 | } else { |
2173 | thisPivotValue = value; |
2174 | } |
2175 | } |
2176 | } else { |
2177 | otherElement = value; |
2178 | foundOther = true; |
2179 | //need to find largest |
2180 | largest = 0.0; |
2181 | CoinBigIndex i; |
2182 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
2183 | iRow = nextIRow; |
2184 | value = nextValue; |
2185 | #ifdef ZEROFAULT |
2186 | // doesn't matter reading uninitialized but annoys checking |
2187 | if ( i + 1 < endColumn ) { |
2188 | #endif |
2189 | nextIRow = indexRowU[i + 1]; |
2190 | nextValue = elementU[i + 1]; |
2191 | #ifdef ZEROFAULT |
2192 | } |
2193 | #endif |
2194 | if ( iRow != pivotRow ) { |
2195 | //keep |
2196 | indexRowU[put] = iRow; |
2197 | elementU[put] = value; |
2198 | double absValue = fabs ( value ); |
2199 | |
2200 | if ( absValue > largest ) { |
2201 | largest = absValue; |
2202 | positionLargest = put; |
2203 | } |
2204 | put++; |
2205 | } else { |
2206 | thisPivotValue = value; |
2207 | } |
2208 | } |
2209 | } |
2210 | } else { |
2211 | //need to find largest |
2212 | largest = 0.0; |
2213 | thisPivotValue = value; |
2214 | CoinBigIndex i; |
2215 | for ( i = startColumn + 1; i < endColumn; i++ ) { |
2216 | iRow = nextIRow; |
2217 | value = nextValue; |
2218 | #ifdef ZEROFAULT |
2219 | // doesn't matter reading uninitialized but annoys checking |
2220 | if ( i + 1 < endColumn ) { |
2221 | #endif |
2222 | nextIRow = indexRowU[i + 1]; |
2223 | nextValue = elementU[i + 1]; |
2224 | #ifdef ZEROFAULT |
2225 | } |
2226 | #endif |
2227 | if ( iRow != otherRow ) { |
2228 | //keep |
2229 | indexRowU[put] = iRow; |
2230 | elementU[put] = value; |
2231 | double absValue = fabs ( value ); |
2232 | |
2233 | if ( absValue > largest ) { |
2234 | largest = absValue; |
2235 | positionLargest = put; |
2236 | } |
2237 | put++; |
2238 | } else { |
2239 | otherElement = value; |
2240 | foundOther = true; |
2241 | } |
2242 | } |
2243 | } |
2244 | //slot in pivot |
2245 | elementU[startColumn] = thisPivotValue; |
2246 | indexRowU[startColumn] = pivotRow; |
2247 | //clean up counts |
2248 | startColumn++; |
2249 | numberInColumn[iColumn] = put - startColumn; |
2250 | numberInColumnPlus[iColumn]++; |
2251 | startColumnU[iColumn]++; |
2252 | otherElement = otherElement - thisPivotValue * otherMultiplier; |
2253 | double absValue = fabs ( otherElement ); |
2254 | |
2255 | if ( absValue > zeroTolerance_ ) { |
2256 | if ( !foundOther ) { |
2257 | //have we space |
2258 | saveColumn[numberAdded++] = iColumn; |
2259 | int next = nextColumn[iColumn]; |
2260 | CoinBigIndex space; |
2261 | |
2262 | space = startColumnU[next] - put - numberInColumnPlus[next]; |
2263 | if ( space <= 0 ) { |
2264 | //getColumnSpace also moves fixed part |
2265 | int number = numberInColumn[iColumn]; |
2266 | |
2267 | if ( !getColumnSpace ( iColumn, number + 1 ) ) { |
2268 | return false; |
2269 | } |
2270 | //redo starts |
2271 | positionLargest = |
2272 | positionLargest + startColumnU[iColumn] - startColumn; |
2273 | startColumn = startColumnU[iColumn]; |
2274 | put = startColumn + number; |
2275 | } |
2276 | } |
2277 | elementU[put] = otherElement; |
2278 | indexRowU[put] = otherRow; |
2279 | if ( absValue > largest ) { |
2280 | largest = absValue; |
2281 | positionLargest = put; |
2282 | } |
2283 | put++; |
2284 | } else { |
2285 | if ( foundOther ) { |
2286 | numberDeleted++; |
2287 | //take out of row list |
2288 | CoinBigIndex where = start; |
2289 | |
2290 | while ( indexColumnU[where] != iColumn ) { |
2291 | where++; |
2292 | } /* endwhile */ |
2293 | assert ( where < end ); |
2294 | end--; |
2295 | indexColumnU[where] = indexColumnU[end]; |
2296 | } |
2297 | } |
2298 | numberInColumn[iColumn] = put - startColumn; |
2299 | //move largest |
2300 | if ( positionLargest >= 0 ) { |
2301 | value = elementU[positionLargest]; |
2302 | iRow = indexRowU[positionLargest]; |
2303 | elementU[positionLargest] = elementU[startColumn]; |
2304 | indexRowU[positionLargest] = indexRowU[startColumn]; |
2305 | elementU[startColumn] = value; |
2306 | indexRowU[startColumn] = iRow; |
2307 | } |
2308 | //linked list for column |
2309 | if ( nextCount[iColumn + numberRows_] != -2 ) { |
2310 | //modify linked list |
2311 | deleteLink ( iColumn + numberRows_ ); |
2312 | addLink ( iColumn + numberRows_, numberInColumn[iColumn] ); |
2313 | } |
2314 | } |
2315 | } |
2316 | //get space for row list |
2317 | next = nextRow[otherRow]; |
2318 | CoinBigIndex space; |
2319 | |
2320 | space = startRowU[next] - end; |
2321 | totalElements_ += numberAdded - numberDeleted; |
2322 | int number = numberAdded + ( end - start ); |
2323 | |
2324 | if ( space < numberAdded ) { |
2325 | numberInRow[otherRow] = end - start; |
2326 | if ( !getRowSpace ( otherRow, number ) ) { |
2327 | return false; |
2328 | } |
2329 | end = startRowU[otherRow] + end - start; |
2330 | } |
2331 | // do linked lists and update counts |
2332 | numberInRow[otherRow] = number; |
2333 | if ( number != numberSave ) { |
2334 | deleteLink ( otherRow ); |
2335 | addLink ( otherRow, number ); |
2336 | } |
2337 | for ( j = 0; j < numberAdded; j++ ) { |
2338 | indexColumnU[end++] = saveColumn[j]; |
2339 | } |
2340 | //modify linked list for pivots |
2341 | deleteLink ( pivotRow ); |
2342 | deleteLink ( pivotColumn + numberRows_ ); |
2343 | return true; |
2344 | } |
2345 | void |
2346 | CoinFactorization::setPersistenceFlag(int flag) |
2347 | { |
2348 | persistenceFlag_=flag; |
2349 | workArea_.setPersistence(flag,maximumRowsExtra_+1); |
2350 | workArea2_.setPersistence(flag,maximumRowsExtra_+1); |
2351 | pivotColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
2352 | permute_.setPersistence(flag,maximumRowsExtra_+1); |
2353 | pivotColumnBack_.setPersistence(flag,maximumRowsExtra_+1); |
2354 | permuteBack_.setPersistence(flag,maximumRowsExtra_+1); |
2355 | nextRow_.setPersistence(flag,maximumRowsExtra_+1); |
2356 | startRowU_.setPersistence(flag,maximumRowsExtra_+1); |
2357 | numberInRow_.setPersistence(flag,maximumRowsExtra_+1); |
2358 | numberInColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
2359 | numberInColumnPlus_.setPersistence(flag,maximumColumnsExtra_+1); |
2360 | firstCount_.setPersistence(flag,CoinMax(biggerDimension_+2,maximumRowsExtra_+1)); |
2361 | nextCount_.setPersistence(flag,numberRows_+numberColumns_); |
2362 | lastCount_.setPersistence(flag,numberRows_+numberColumns_); |
2363 | nextColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
2364 | lastColumn_.setPersistence(flag,maximumColumnsExtra_+1); |
2365 | lastRow_.setPersistence(flag,maximumRowsExtra_+1); |
2366 | markRow_.setPersistence(flag,numberRows_); |
2367 | saveColumn_.setPersistence(flag,numberColumns_); |
2368 | indexColumnU_.setPersistence(flag,lengthAreaU_); |
2369 | pivotRowL_.setPersistence(flag,numberRows_+1); |
2370 | pivotRegion_.setPersistence(flag,maximumRowsExtra_+1); |
2371 | elementU_.setPersistence(flag,lengthAreaU_); |
2372 | indexRowU_.setPersistence(flag,lengthAreaU_); |
2373 | startColumnU_.setPersistence(flag,maximumColumnsExtra_+1); |
2374 | convertRowToColumnU_.setPersistence( flag, lengthAreaU_ ); |
2375 | elementL_.setPersistence( flag, lengthAreaL_ ); |
2376 | indexRowL_.setPersistence( flag, lengthAreaL_ ); |
2377 | startColumnL_.setPersistence( flag, numberRows_ + 1 ); |
2378 | startColumnR_.setPersistence( flag, maximumPivots_ + 1 + maximumColumnsExtra_ + 1 ); |
2379 | startRowL_.setPersistence( flag,0 ); |
2380 | indexColumnL_.setPersistence( flag, 0 ); |
2381 | elementByRowL_.setPersistence( flag, 0 ); |
2382 | sparse_.setPersistence( flag, 0 ); |
2383 | } |
2384 | // Delete all stuff |
2385 | void |
2386 | CoinFactorization::almostDestructor() |
2387 | { |
2388 | gutsOfDestructor(1); |
2389 | } |
2390 | |