| 1 | /* $Id: CoinOslFactorization.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 1987, 2009, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinUtilsConfig.h" |
| 7 | |
| 8 | #include <cassert> |
| 9 | #include "CoinPragma.hpp" |
| 10 | #include "CoinOslFactorization.hpp" |
| 11 | #include "CoinOslC.h" |
| 12 | #include "CoinIndexedVector.hpp" |
| 13 | #include "CoinHelperFunctions.hpp" |
| 14 | #include "CoinPackedMatrix.hpp" |
| 15 | #include "CoinTypes.hpp" |
| 16 | #include "CoinFinite.hpp" |
| 17 | #include <stdio.h> |
| 18 | static void c_ekksmem(EKKfactinfo *fact,int numberRows,int maximumPivots); |
| 19 | static void c_ekksmem_copy(EKKfactinfo *fact,const EKKfactinfo * rhsFact); |
| 20 | static void c_ekksmem_delete(EKKfactinfo *fact); |
| 21 | //:class CoinOslFactorization. Deals with Factorization and Updates |
| 22 | // CoinOslFactorization. Constructor |
| 23 | CoinOslFactorization::CoinOslFactorization ( ) |
| 24 | : CoinOtherFactorization() |
| 25 | { |
| 26 | gutsOfInitialize(); |
| 27 | } |
| 28 | |
| 29 | /// Copy constructor |
| 30 | CoinOslFactorization::CoinOslFactorization ( const CoinOslFactorization &other) |
| 31 | : CoinOtherFactorization(other) |
| 32 | { |
| 33 | gutsOfInitialize(); |
| 34 | gutsOfCopy(other); |
| 35 | } |
| 36 | // Clone |
| 37 | CoinOtherFactorization * |
| 38 | CoinOslFactorization::clone() const |
| 39 | { |
| 40 | return new CoinOslFactorization(*this); |
| 41 | } |
| 42 | /// The real work of constructors etc |
| 43 | void CoinOslFactorization::gutsOfDestructor(bool clearFact) |
| 44 | { |
| 45 | delete [] elements_; |
| 46 | delete [] pivotRow_; |
| 47 | delete [] workArea_; |
| 48 | elements_ = NULL; |
| 49 | pivotRow_ = NULL; |
| 50 | workArea_ = NULL; |
| 51 | numberRows_ = 0; |
| 52 | numberColumns_ = 0; |
| 53 | numberGoodU_ = 0; |
| 54 | status_ = -1; |
| 55 | maximumRows_=0; |
| 56 | maximumSpace_=0; |
| 57 | solveMode_=0; |
| 58 | if (clearFact) |
| 59 | c_ekksmem_delete(&factInfo_); |
| 60 | } |
| 61 | void CoinOslFactorization::gutsOfInitialize(bool zapFact) |
| 62 | { |
| 63 | pivotTolerance_ = 1.0e-1; |
| 64 | zeroTolerance_ = 1.0e-13; |
| 65 | #ifndef COIN_FAST_CODE |
| 66 | slackValue_ = -1.0; |
| 67 | #endif |
| 68 | maximumPivots_=200; |
| 69 | relaxCheck_=1.0; |
| 70 | numberRows_ = 0; |
| 71 | numberColumns_ = 0; |
| 72 | numberGoodU_ = 0; |
| 73 | status_ = -1; |
| 74 | numberPivots_ = 0; |
| 75 | maximumRows_=0; |
| 76 | maximumSpace_=0; |
| 77 | elements_ = NULL; |
| 78 | pivotRow_ = NULL; |
| 79 | workArea_ = NULL; |
| 80 | solveMode_=0; |
| 81 | if (zapFact) { |
| 82 | memset(&factInfo_,0,sizeof(factInfo_)); |
| 83 | factInfo_.maxinv=100; |
| 84 | factInfo_.drtpiv=1.0e-10; |
| 85 | factInfo_.zeroTolerance=1.0e-12; |
| 86 | factInfo_.zpivlu=0.1; |
| 87 | factInfo_.areaFactor=1.0; |
| 88 | factInfo_.nbfinv=100; |
| 89 | } |
| 90 | } |
| 91 | // ~CoinOslFactorization. Destructor |
| 92 | CoinOslFactorization::~CoinOslFactorization ( ) |
| 93 | { |
| 94 | gutsOfDestructor(); |
| 95 | } |
| 96 | // = |
| 97 | CoinOslFactorization & CoinOslFactorization::operator = ( const CoinOslFactorization & other ) { |
| 98 | if (this != &other) { |
| 99 | bool noGood = factInfo_.nrowmx!=other.factInfo_.nrowmx&& |
| 100 | factInfo_.eta_size!=other.factInfo_.eta_size; |
| 101 | gutsOfDestructor(noGood); |
| 102 | gutsOfInitialize(noGood); |
| 103 | gutsOfCopy(other); |
| 104 | } |
| 105 | return *this; |
| 106 | } |
| 107 | #define WORK_MULT 2 |
| 108 | void CoinOslFactorization::gutsOfCopy(const CoinOslFactorization &other) |
| 109 | { |
| 110 | pivotTolerance_ = other.pivotTolerance_; |
| 111 | zeroTolerance_ = other.zeroTolerance_; |
| 112 | #ifndef COIN_FAST_CODE |
| 113 | slackValue_ = other.slackValue_; |
| 114 | #endif |
| 115 | relaxCheck_ = other.relaxCheck_; |
| 116 | numberRows_ = other.numberRows_; |
| 117 | numberColumns_ = other.numberColumns_; |
| 118 | maximumRows_ = other.maximumRows_; |
| 119 | maximumSpace_ = other.maximumSpace_; |
| 120 | solveMode_ = other.solveMode_; |
| 121 | numberGoodU_ = other.numberGoodU_; |
| 122 | maximumPivots_ = other.maximumPivots_; |
| 123 | numberPivots_ = other.numberPivots_; |
| 124 | factorElements_ = other.factorElements_; |
| 125 | status_ = other.status_; |
| 126 | elements_ = NULL; |
| 127 | pivotRow_ = NULL; |
| 128 | workArea_ = NULL; |
| 129 | c_ekksmem_copy(&factInfo_,&other.factInfo_); |
| 130 | } |
| 131 | |
| 132 | // getAreas. Gets space for a factorization |
| 133 | //called by constructors |
| 134 | void |
| 135 | CoinOslFactorization::getAreas ( int numberOfRows, |
| 136 | int numberOfColumns, |
| 137 | CoinBigIndex maximumL, |
| 138 | CoinBigIndex maximumU ) |
| 139 | { |
| 140 | |
| 141 | numberRows_ = numberOfRows; |
| 142 | numberColumns_ = numberOfColumns; |
| 143 | CoinBigIndex size = static_cast<CoinBigIndex>(factInfo_.areaFactor* |
| 144 | (maximumL+maximumU)); |
| 145 | factInfo_.zeroTolerance=zeroTolerance_; |
| 146 | // If wildly out redo |
| 147 | if (maximumRows_>numberRows_+1000) { |
| 148 | maximumRows_=0; |
| 149 | maximumSpace_=0; |
| 150 | factInfo_.last_eta_size=0; |
| 151 | } |
| 152 | if (size>maximumSpace_) { |
| 153 | //delete [] elements_; |
| 154 | //elements_ = new CoinFactorizationDouble [size]; |
| 155 | maximumSpace_ = size; |
| 156 | } |
| 157 | factInfo_.lastEtaCount = factInfo_.nnentu+factInfo_.nnentl; |
| 158 | int oldnnetas=factInfo_.last_eta_size; |
| 159 | // If we are going to increase then be on safe side |
| 160 | if (size>oldnnetas) |
| 161 | size = static_cast<int>(1.1*size); |
| 162 | factInfo_.eta_size=CoinMax(size,oldnnetas); |
| 163 | //printf("clp size %d, old %d now %d - iteration %d - last count %d - rows %d,%d,%d\n", |
| 164 | // size,oldnnetas,factInfo_.eta_size,factInfo_.iterno,factInfo_.lastEtaCount, |
| 165 | //numberRows_,factInfo_.nrowmx,factInfo_.nrow); |
| 166 | //if (!factInfo_.iterno) { |
| 167 | //printf("here\n"); |
| 168 | //} |
| 169 | /** Get solve mode e.g. 0 C++ code, 1 Lapack, 2 choose |
| 170 | If 4 set then values pass |
| 171 | if 8 set then has iterated |
| 172 | */ |
| 173 | solveMode_ &= 4+8; // clear bottom bits |
| 174 | factInfo_.ifvsol= ((solveMode_&4)!=0) ? 1 : 0; |
| 175 | if ((solveMode_&8)!=0) { |
| 176 | factInfo_.ifvsol=0; |
| 177 | factInfo_.invok=1; |
| 178 | } else { |
| 179 | factInfo_.iter0=factInfo_.iterno; |
| 180 | factInfo_.invok=-1; |
| 181 | factInfo_.if_sparse_update=0; |
| 182 | } |
| 183 | #if 0 |
| 184 | if (!factInfo_.if_sparse_update && |
| 185 | factInfo_.iterno>factInfo_.iter0 && |
| 186 | numberRows_>=C_EKK_GO_SPARSE) { |
| 187 | printf("count %d rows %d etasize %d\n" , |
| 188 | factInfo_.lastEtaCount,factInfo_.nrow,factInfo_.eta_size); |
| 189 | |
| 190 | } |
| 191 | #endif |
| 192 | if (!factInfo_.if_sparse_update && |
| 193 | factInfo_.iterno>factInfo_.iter0 && |
| 194 | numberRows_>=C_EKK_GO_SPARSE && |
| 195 | (factInfo_.lastEtaCount>>2)<factInfo_.nrow&& |
| 196 | !factInfo_.switch_off_sparse_update) { |
| 197 | #if PRINT_DEBUG |
| 198 | printf("**** Switching on sparse update - etacount\n" ); |
| 199 | #endif |
| 200 | /* I suspect this can go into c_ekksslvf; |
| 201 | * if c_ekkshff decides to switch sparse_update off, |
| 202 | * then it problably always switches it off (?) |
| 203 | */ |
| 204 | factInfo_.if_sparse_update=2; |
| 205 | } |
| 206 | c_ekksmem(&factInfo_,numberRows_,maximumPivots_); |
| 207 | if (numberRows_>maximumRows_) { |
| 208 | maximumRows_ = numberRows_; |
| 209 | //delete [] pivotRow_; |
| 210 | //delete [] workArea_; |
| 211 | //pivotRow_ = new int [2*maximumRows_+maximumPivots_]; |
| 212 | //workArea_ = new CoinFactorizationDouble [maximumRows_*WORK_MULT]; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | // preProcess. |
| 217 | void |
| 218 | CoinOslFactorization::preProcess () |
| 219 | { |
| 220 | factInfo_.zpivlu=pivotTolerance_; |
| 221 | // Go to Fortran |
| 222 | int * hcoli=factInfo_.xecadr+1; |
| 223 | int * indexRowU = factInfo_.xeradr+1; |
| 224 | CoinBigIndex * startColumnU=factInfo_.xcsadr+1; |
| 225 | for (int i=0;i<numberRows_;i++) { |
| 226 | int start = startColumnU[i]; |
| 227 | startColumnU[i]++; // to Fortran |
| 228 | for (int j=start;j<startColumnU[i+1];j++) { |
| 229 | indexRowU[j]++; // to Fortran |
| 230 | hcoli[j]=i+1; // to Fortran |
| 231 | } |
| 232 | } |
| 233 | startColumnU[numberRows_]++; // to Fortran |
| 234 | |
| 235 | /* can do in column order - no zeros or duplicates */ |
| 236 | #ifndef NDEBUG |
| 237 | int ninbas = |
| 238 | #endif |
| 239 | c_ekkslcf(&factInfo_); |
| 240 | assert (ninbas>0); |
| 241 | } |
| 242 | |
| 243 | //Does factorization |
| 244 | int |
| 245 | CoinOslFactorization::factor ( ) |
| 246 | { |
| 247 | /* Uwe's factorization (sort of) */ |
| 248 | int irtcod = c_ekklfct(&factInfo_); |
| 249 | |
| 250 | /* Check return code */ |
| 251 | /* 0 - Fine , 1 - Backtrack, 2 - Singularities on initial, 3-Fatal */ |
| 252 | /* now 5-Need more memory */ |
| 253 | |
| 254 | status_= 0; |
| 255 | if (factInfo_.eta_size>factInfo_.last_eta_size) { |
| 256 | factInfo_.areaFactor *= factInfo_.eta_size; |
| 257 | factInfo_.areaFactor /= factInfo_.last_eta_size; |
| 258 | #ifdef CLP_INVESTIGATE |
| 259 | printf("areaFactor increased to %g\n" ,factInfo_.areaFactor); |
| 260 | #endif |
| 261 | } |
| 262 | if (irtcod==5) { |
| 263 | status_=-99; |
| 264 | assert (factInfo_.eta_size>factInfo_.last_eta_size) ; |
| 265 | #ifdef CLP_INVESTIGATE |
| 266 | printf("need more memory\n" ); |
| 267 | #endif |
| 268 | } else if (irtcod) { |
| 269 | status_=-1; |
| 270 | //printf("singular %d\n",irtcod); |
| 271 | } |
| 272 | return status_; |
| 273 | } |
| 274 | // Makes a non-singular basis by replacing variables |
| 275 | void |
| 276 | CoinOslFactorization::makeNonSingular(int * sequence, int numberColumns) |
| 277 | { |
| 278 | const EKKHlink *rlink = factInfo_.kp1adr; |
| 279 | const EKKHlink *clink = factInfo_.kp2adr; |
| 280 | int nextRow=0; |
| 281 | //int * mark = reinterpret_cast<int *>(factInfo_.kw1adr); |
| 282 | //int nr=0; |
| 283 | //int nc=0; |
| 284 | #if 0 |
| 285 | for (int i=0;i<numberRows_;i++) { |
| 286 | //mark[i]=-1; |
| 287 | if (rlink[i].pre>=0||rlink[i].pre==-(numberRows_+1)) { |
| 288 | nr++; |
| 289 | printf("%d rl %d cl %d\n" ,i,rlink[i].pre,clink[i].pre); |
| 290 | } |
| 291 | if (clink[i].pre>=0||clink[i].pre==-(numberRows_+1)) { |
| 292 | nc++; |
| 293 | printf("%d rl %d cl %d\n" ,i,rlink[i].pre,clink[i].pre); |
| 294 | } |
| 295 | } |
| 296 | #endif |
| 297 | //printf("nr %d nc %d\n",nr,nc); |
| 298 | bool goodPass=true; |
| 299 | int numberDone=0; |
| 300 | for (int i=0;i<numberRows_;i++) { |
| 301 | int cRow =(-clink[i].pre)-1; |
| 302 | if (cRow==numberRows_||cRow<0) { |
| 303 | // throw out |
| 304 | for (;nextRow<numberRows_;nextRow++) { |
| 305 | int rRow =(-rlink[nextRow].pre)-1; |
| 306 | if (rRow==numberRows_||rRow<0) |
| 307 | break; |
| 308 | } |
| 309 | if (nextRow<numberRows_) { |
| 310 | sequence[i]=nextRow+numberColumns; |
| 311 | nextRow++; |
| 312 | numberDone++; |
| 313 | } else { |
| 314 | goodPass=false; |
| 315 | assert(numberDone); |
| 316 | //printf("BAD singular at row %d\n",i); |
| 317 | break; |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | #ifndef NDEBUG |
| 322 | if (goodPass) { |
| 323 | for (;nextRow<numberRows_;nextRow++) { |
| 324 | int rRow =(-rlink[nextRow].pre)-1; |
| 325 | assert (!(rRow==numberRows_||rRow<0)); |
| 326 | } |
| 327 | } |
| 328 | #endif |
| 329 | } |
| 330 | // Does post processing on valid factorization - putting variables on correct rows |
| 331 | void |
| 332 | CoinOslFactorization::postProcess(const int * sequence, int * pivotVariable) |
| 333 | { |
| 334 | factInfo_.iterin=factInfo_.iterno; |
| 335 | factInfo_.npivots=0; |
| 336 | numberPivots_=0; |
| 337 | const int * permute3 = factInfo_.mpermu+1; |
| 338 | assert (permute3==reinterpret_cast<const int *> |
| 339 | (factInfo_.kadrpm+numberRows_+1)); |
| 340 | // this is ridiculous - must be better way |
| 341 | int * permute2 = reinterpret_cast<int *>(factInfo_.kw1adr); |
| 342 | const int * permute = reinterpret_cast<const int *>(factInfo_.kp2adr); |
| 343 | for (int i=0;i<numberRows_;i++) { |
| 344 | permute2[permute[i]-1]=i; |
| 345 | } |
| 346 | for (int i=0;i<numberRows_;i++) { |
| 347 | // the row is i |
| 348 | // the column is whatever matches k3[i] in k1 |
| 349 | int look=permute3[i]-1; |
| 350 | int j=permute2[look]; |
| 351 | int k = sequence[j]; |
| 352 | pivotVariable[i]=k; |
| 353 | } |
| 354 | #ifdef CLP_REUSE_ETAS |
| 355 | int * start = factInfo_.xcsadr+1; |
| 356 | int * putSeq = factInfo_.xrsadr+2*factInfo_.nrowmx+2; |
| 357 | int * position = putSeq+factInfo_.maxinv; |
| 358 | int * putStart = position+factInfo_.maxinv; |
| 359 | memcpy(putStart,start,numberRows_*sizeof(int)); |
| 360 | int iLast=start[numberRows_-1]; |
| 361 | putStart[numberRows_]=iLast+factInfo_.xeradr[iLast]+1; |
| 362 | factInfo_.save_nnentu=factInfo_.nnentu; |
| 363 | #endif |
| 364 | #ifndef NDEBUG |
| 365 | { |
| 366 | int lstart=numberRows_+factInfo_.maxinv+5; |
| 367 | int ndo = factInfo_.xnetal-lstart; |
| 368 | double * dluval=factInfo_.xeeadr; |
| 369 | int * mcstrt = factInfo_.xcsadr+lstart; |
| 370 | if (ndo) |
| 371 | assert (dluval[mcstrt[ndo]+1]<1.0e50); |
| 372 | } |
| 373 | #endif |
| 374 | } |
| 375 | /* Replaces one Column to basis, |
| 376 | returns 0=OK, 1=Probably OK, 2=singular, 3=no room |
| 377 | If checkBeforeModifying is true will do all accuracy checks |
| 378 | before modifying factorization. Whether to set this depends on |
| 379 | speed considerations. You could just do this on first iteration |
| 380 | after factorization and thereafter re-factorize |
| 381 | partial update already in U */ |
| 382 | int |
| 383 | CoinOslFactorization::replaceColumn ( CoinIndexedVector * regionSparse, |
| 384 | int pivotRow, |
| 385 | double pivotCheck , |
| 386 | bool /*checkBeforeModifying*/, |
| 387 | double acceptablePivot) |
| 388 | { |
| 389 | if (numberPivots_+1==maximumPivots_) |
| 390 | return 3; |
| 391 | int *regionIndex = regionSparse->getIndices ( ); |
| 392 | double *region = regionSparse->denseVector ( ); |
| 393 | int orig_nincol=0; |
| 394 | double saveTolerance = factInfo_.drtpiv; |
| 395 | factInfo_.drtpiv=acceptablePivot; |
| 396 | int returnCode=c_ekketsj(&factInfo_,region-1, |
| 397 | regionIndex, |
| 398 | pivotCheck,orig_nincol, |
| 399 | numberPivots_,&factInfo_.nuspike, |
| 400 | pivotRow+1, |
| 401 | reinterpret_cast<int *>(factInfo_.kw1adr)); |
| 402 | factInfo_.drtpiv=saveTolerance; |
| 403 | if (returnCode!=2) |
| 404 | numberPivots_++; |
| 405 | #ifndef NDEBUG |
| 406 | { |
| 407 | int lstart=numberRows_+factInfo_.maxinv+5; |
| 408 | int ndo = factInfo_.xnetal-lstart; |
| 409 | double * dluval=factInfo_.xeeadr; |
| 410 | int * mcstrt = factInfo_.xcsadr+lstart; |
| 411 | if (ndo) |
| 412 | assert (dluval[mcstrt[ndo]+1]<1.0e50); |
| 413 | } |
| 414 | #endif |
| 415 | return returnCode; |
| 416 | } |
| 417 | /* This version has same effect as above with FTUpdate==false |
| 418 | so number returned is always >=0 */ |
| 419 | int |
| 420 | CoinOslFactorization::updateColumn ( CoinIndexedVector * regionSparse, |
| 421 | CoinIndexedVector * regionSparse2, |
| 422 | bool /*noPermute*/) const |
| 423 | { |
| 424 | #ifndef NDEBUG |
| 425 | { |
| 426 | int lstart=numberRows_+factInfo_.maxinv+5; |
| 427 | int ndo = factInfo_.xnetal-lstart; |
| 428 | double * dluval=factInfo_.xeeadr; |
| 429 | int * mcstrt = factInfo_.xcsadr+lstart; |
| 430 | if (ndo) |
| 431 | assert (dluval[mcstrt[ndo]+1]<1.0e50); |
| 432 | } |
| 433 | #endif |
| 434 | assert (numberRows_==numberColumns_); |
| 435 | double *region2 = regionSparse2->denseVector ( ); |
| 436 | int *regionIndex2 = regionSparse2->getIndices ( ); |
| 437 | int numberNonZero = regionSparse2->getNumElements ( ); |
| 438 | double *region = regionSparse->denseVector ( ); |
| 439 | //const int * permuteIn = factInfo_.mpermu+1; |
| 440 | // Stuff is put one up so won't get illegal read |
| 441 | assert (!region[numberRows_]); |
| 442 | assert (!regionSparse2->packedMode()); |
| 443 | #if 0 |
| 444 | int first=numberRows_; |
| 445 | for (int j=0;j<numberNonZero;j++) { |
| 446 | int jRow = regionIndex2[j]; |
| 447 | int iRow = permuteIn[jRow]; |
| 448 | region[iRow]=region2[jRow]; |
| 449 | first=CoinMin(first,iRow); |
| 450 | region2[jRow]=0.0; |
| 451 | } |
| 452 | #endif |
| 453 | numberNonZero=c_ekkftrn(&factInfo_, |
| 454 | region2-1,region,regionIndex2,numberNonZero); |
| 455 | regionSparse2->setNumElements(numberNonZero); |
| 456 | return 0; |
| 457 | } |
| 458 | /* Updates one column (FTRAN) from regionSparse2 |
| 459 | Tries to do FT update |
| 460 | number returned is negative if no room |
| 461 | regionSparse starts as zero and is zero at end. |
| 462 | Note - if regionSparse2 packed on input - will be packed on output |
| 463 | */ |
| 464 | int |
| 465 | CoinOslFactorization::updateColumnFT ( CoinIndexedVector * regionSparse, |
| 466 | CoinIndexedVector * regionSparse2, |
| 467 | bool /*noPermute*/) |
| 468 | { |
| 469 | assert (numberRows_==numberColumns_); |
| 470 | double *region2 = regionSparse2->denseVector ( ); |
| 471 | int *regionIndex2 = regionSparse2->getIndices ( ); |
| 472 | int numberNonZero = regionSparse2->getNumElements ( ); |
| 473 | assert (regionSparse2->packedMode()); |
| 474 | // packed mode |
| 475 | //int numberNonInOriginal=numberNonZero; |
| 476 | //double *dpermu = factInfo_.kadrpm; |
| 477 | // Use region instead of dpermu |
| 478 | double * save =factInfo_.kadrpm; |
| 479 | factInfo_.kadrpm=regionSparse->denseVector()-1; |
| 480 | int nuspike=c_ekkftrn_ft(&factInfo_, region2,regionIndex2, |
| 481 | &numberNonZero); |
| 482 | factInfo_.kadrpm=save; |
| 483 | regionSparse2->setNumElements(numberNonZero); |
| 484 | //regionSparse2->print(); |
| 485 | factInfo_.nuspike=nuspike; |
| 486 | return nuspike; |
| 487 | } |
| 488 | |
| 489 | |
| 490 | int |
| 491 | CoinOslFactorization::updateTwoColumnsFT(CoinIndexedVector * regionSparse1, |
| 492 | CoinIndexedVector * regionSparse2, |
| 493 | CoinIndexedVector * regionSparse3, |
| 494 | bool /*noPermute*/) |
| 495 | { |
| 496 | #if 1 |
| 497 | // probably best to merge on a LU part by part |
| 498 | // but can try full merge |
| 499 | double *region2 = regionSparse2->denseVector ( ); |
| 500 | int *regionIndex2 = regionSparse2->getIndices ( ); |
| 501 | int numberNonZero2 = regionSparse2->getNumElements ( ); |
| 502 | assert (regionSparse2->packedMode()); |
| 503 | |
| 504 | assert (numberRows_==numberColumns_); |
| 505 | double *region3 = regionSparse3->denseVector ( ); |
| 506 | int *regionIndex3 = regionSparse3->getIndices ( ); |
| 507 | int numberNonZero3 = regionSparse3->getNumElements ( ); |
| 508 | double *region = regionSparse1->denseVector ( ); |
| 509 | // Stuff is put one up so won't get illegal read |
| 510 | assert (!region[numberRows_]); |
| 511 | assert (!regionSparse3->packedMode()); |
| 512 | // packed mode |
| 513 | //double *dpermu = factInfo_.kadrpm; |
| 514 | #if 0 |
| 515 | factInfo_.nuspike=c_ekkftrn_ft(&factInfo_, region2,regionIndex2, |
| 516 | &numberNonZero2); |
| 517 | numberNonZero3=c_ekkftrn(&factInfo_, |
| 518 | region3-1,region,regionIndex3,numberNonZero3); |
| 519 | #else |
| 520 | c_ekkftrn2(&factInfo_,region3-1,region,regionIndex3,&numberNonZero3, |
| 521 | region2,regionIndex2,&numberNonZero2); |
| 522 | #endif |
| 523 | regionSparse2->setNumElements(numberNonZero2); |
| 524 | regionSparse3->setNumElements(numberNonZero3); |
| 525 | return factInfo_.nuspike; |
| 526 | #else |
| 527 | // probably best to merge on a LU part by part |
| 528 | // but can try full merge |
| 529 | int returnCode= updateColumnFT(regionSparse1, |
| 530 | regionSparse2); |
| 531 | updateColumn(regionSparse1, |
| 532 | regionSparse3, |
| 533 | noPermute); |
| 534 | return returnCode; |
| 535 | #endif |
| 536 | } |
| 537 | |
| 538 | /* Updates one column (BTRAN) from regionSparse2 |
| 539 | regionSparse starts as zero and is zero at end |
| 540 | Note - if regionSparse2 packed on input - will be packed on output |
| 541 | */ |
| 542 | int |
| 543 | CoinOslFactorization::updateColumnTranspose ( CoinIndexedVector * regionSparse, |
| 544 | CoinIndexedVector * regionSparse2) const |
| 545 | { |
| 546 | assert (numberRows_==numberColumns_); |
| 547 | double *region2 = regionSparse2->denseVector ( ); |
| 548 | int *regionIndex2 = regionSparse2->getIndices ( ); |
| 549 | int numberNonZero = regionSparse2->getNumElements ( ); |
| 550 | //double *region = regionSparse->denseVector ( ); |
| 551 | /*int *regionIndex = regionSparse->getIndices ( );*/ |
| 552 | const int * permuteIn = factInfo_.mpermu+1; |
| 553 | factInfo_.packedMode = regionSparse2->packedMode() ? 1 : 0; |
| 554 | // Use region instead of dpermu |
| 555 | double * save =factInfo_.kadrpm; |
| 556 | factInfo_.kadrpm=regionSparse->denseVector()-1; |
| 557 | // use internal one for now (address is one off) |
| 558 | double * region = factInfo_.kadrpm; |
| 559 | if (numberNonZero<2) { |
| 560 | if (numberNonZero) { |
| 561 | int ipivrw=regionIndex2[0]; |
| 562 | if (factInfo_.packedMode) { |
| 563 | double value=region2[0]; |
| 564 | region2[0]=0.0; |
| 565 | region2[ipivrw]=value; |
| 566 | } |
| 567 | numberNonZero=c_ekkbtrn_ipivrw(&factInfo_, region2-1, |
| 568 | regionIndex2-1,ipivrw+1, |
| 569 | reinterpret_cast<int *>(factInfo_.kp1adr)); |
| 570 | } |
| 571 | } else { |
| 572 | #ifndef NDEBUG |
| 573 | { |
| 574 | int *mcstrt = factInfo_.xcsadr; |
| 575 | int * hpivco_new=factInfo_.kcpadr+1; |
| 576 | int nrow=factInfo_.nrow; |
| 577 | int i; |
| 578 | int ipiv = hpivco_new[0]; |
| 579 | int last = mcstrt[ipiv]; |
| 580 | for (i=0;i<nrow-1;i++) { |
| 581 | ipiv=hpivco_new[ipiv]; |
| 582 | assert (mcstrt[ipiv]>last); |
| 583 | last=mcstrt[ipiv]; |
| 584 | } |
| 585 | } |
| 586 | #endif |
| 587 | int iSmallest = COIN_INT_MAX; |
| 588 | int iPiv=0; |
| 589 | const int *mcstrt = factInfo_.xcsadr; |
| 590 | // permute and save where nonzeros are |
| 591 | if (!factInfo_.packedMode) { |
| 592 | if ((numberRows_<200||(numberNonZero<<4)>numberRows_)) { |
| 593 | for (int j=0;j<numberNonZero;j++) { |
| 594 | int jRow = regionIndex2[j]; |
| 595 | int iRow = permuteIn[jRow]; |
| 596 | regionIndex2[j]=iRow; |
| 597 | region[iRow]=region2[jRow]; |
| 598 | region2[jRow]=0.0; |
| 599 | } |
| 600 | } else { |
| 601 | for (int j=0;j<numberNonZero;j++) { |
| 602 | int jRow = regionIndex2[j]; |
| 603 | int iRow = permuteIn[jRow]; |
| 604 | regionIndex2[j]=iRow; |
| 605 | region[iRow]=region2[jRow]; |
| 606 | if (mcstrt[iRow]<iSmallest) { |
| 607 | iPiv=iRow; |
| 608 | iSmallest=mcstrt[iRow]; |
| 609 | } |
| 610 | region2[jRow]=0.0; |
| 611 | } |
| 612 | } |
| 613 | } else { |
| 614 | for (int j=0;j<numberNonZero;j++) { |
| 615 | int jRow = regionIndex2[j]; |
| 616 | int iRow = permuteIn[jRow]; |
| 617 | regionIndex2[j]=iRow; |
| 618 | region[iRow]=region2[j]; |
| 619 | region2[j]=0.0; |
| 620 | } |
| 621 | } |
| 622 | assert (iPiv>=0); |
| 623 | numberNonZero=c_ekkbtrn(&factInfo_, region2-1,regionIndex2-1,iPiv); |
| 624 | } |
| 625 | factInfo_.kadrpm=save; |
| 626 | factInfo_.packedMode=0; |
| 627 | regionSparse2->setNumElements(numberNonZero); |
| 628 | return 0; |
| 629 | } |
| 630 | // Number of entries in each row |
| 631 | int * |
| 632 | CoinOslFactorization::numberInRow() const |
| 633 | { return reinterpret_cast<int *> (factInfo_.xrnadr+1);} |
| 634 | // Number of entries in each column |
| 635 | int * |
| 636 | CoinOslFactorization::numberInColumn() const |
| 637 | { return reinterpret_cast<int *> (factInfo_.xcnadr+1);} |
| 638 | // Returns array to put basis starts in |
| 639 | CoinBigIndex * |
| 640 | CoinOslFactorization::starts() const |
| 641 | { return reinterpret_cast<CoinBigIndex *> (factInfo_.xcsadr+1);} |
| 642 | // Returns array to put basis elements in |
| 643 | CoinFactorizationDouble * |
| 644 | CoinOslFactorization::elements() const |
| 645 | { return factInfo_.xeeadr+1;} |
| 646 | // Returns pivot row |
| 647 | int * |
| 648 | CoinOslFactorization::pivotRow() const |
| 649 | { return factInfo_.krpadr+1;} |
| 650 | // Returns work area |
| 651 | CoinFactorizationDouble * |
| 652 | CoinOslFactorization::workArea() const |
| 653 | { return factInfo_.kw1adr;} |
| 654 | // Returns int work area |
| 655 | int * |
| 656 | CoinOslFactorization::intWorkArea() const |
| 657 | { return reinterpret_cast<int *> (factInfo_.kw1adr);} |
| 658 | // Returns permute back |
| 659 | int * |
| 660 | CoinOslFactorization::permuteBack() const |
| 661 | { return factInfo_.kcpadr+1;} |
| 662 | // Returns array to put basis indices in |
| 663 | int * |
| 664 | CoinOslFactorization::indices() const |
| 665 | { return factInfo_.xeradr+1;} |
| 666 | // Returns true if wants tableauColumn in replaceColumn |
| 667 | bool |
| 668 | CoinOslFactorization::wantsTableauColumn() const |
| 669 | { return false;} |
| 670 | /* Useful information for factorization |
| 671 | 0 - iteration number |
| 672 | whereFrom is 0 for factorize and 1 for replaceColumn |
| 673 | */ |
| 674 | #ifdef CLP_REUSE_ETAS |
| 675 | void |
| 676 | CoinOslFactorization::setUsefulInformation(const int * info,int whereFrom) |
| 677 | { |
| 678 | factInfo_.iterno=info[0]; |
| 679 | if (whereFrom) { |
| 680 | factInfo_.reintro=-1; |
| 681 | if( factInfo_.first_dense>=factInfo_.last_dense) { |
| 682 | int * putSeq = factInfo_.xrsadr+2*factInfo_.nrowmx+2; |
| 683 | int * position = putSeq+factInfo_.maxinv; |
| 684 | //int * putStart = position+factInfo_.maxinv; |
| 685 | int iSequence=info[1]; |
| 686 | if (whereFrom==1) { |
| 687 | putSeq[factInfo_.npivots]=iSequence; |
| 688 | } else { |
| 689 | int i; |
| 690 | for (i=factInfo_.npivots-1;i>=0;i--) { |
| 691 | if (putSeq[i]==iSequence) |
| 692 | break; |
| 693 | } |
| 694 | if (i>=0) { |
| 695 | factInfo_.reintro=position[i]; |
| 696 | } else { |
| 697 | factInfo_.reintro=-1; |
| 698 | } |
| 699 | factInfo_.nnentu=factInfo_.save_nnentu; |
| 700 | } |
| 701 | } |
| 702 | } |
| 703 | } |
| 704 | #else |
| 705 | void |
| 706 | CoinOslFactorization::setUsefulInformation(const int * info,int /*whereFrom*/) |
| 707 | { factInfo_.iterno=info[0]; } |
| 708 | #endif |
| 709 | |
| 710 | // Get rid of all memory |
| 711 | void |
| 712 | CoinOslFactorization::clearArrays() |
| 713 | { |
| 714 | factInfo_.nR_etas=0; |
| 715 | factInfo_.nnentu=0; |
| 716 | factInfo_.nnentl=0; |
| 717 | maximumRows_=0; |
| 718 | maximumSpace_=0; |
| 719 | factInfo_.last_eta_size=0; |
| 720 | gutsOfDestructor(false); |
| 721 | } |
| 722 | void |
| 723 | CoinOslFactorization::maximumPivots ( int value ) |
| 724 | { |
| 725 | maximumPivots_ = value; |
| 726 | } |
| 727 | #define CLP_FILL 15 |
| 728 | /*#undef NDEBUG*/ |
| 729 | //#define CLP_DEBUG_MALLOC 1000000 |
| 730 | #if CLP_DEBUG_MALLOC |
| 731 | static int malloc_number=0; |
| 732 | static int malloc_check=-1; |
| 733 | static int malloc_counts_on=0; |
| 734 | struct malloc_struct { |
| 735 | void * previous; |
| 736 | void * next; |
| 737 | int size; |
| 738 | int when; |
| 739 | int type; |
| 740 | }; |
| 741 | static double malloc_times=0.0; |
| 742 | static double malloc_total=0.0; |
| 743 | static double malloc_current=0.0; |
| 744 | static double malloc_max=0.0; |
| 745 | static int malloc_amount[]={0,32,128,256,1024,4096,16384,65536,262144, |
| 746 | 2000000000}; |
| 747 | static int malloc_n=10; |
| 748 | double malloc_counts[10]={0,0,0,0,0,0,0,0,0,0}; |
| 749 | typedef struct malloc_struct malloc_struct; |
| 750 | static malloc_struct startM = {0,0,0,0}; |
| 751 | static malloc_struct endM = {0,0,0,0}; |
| 752 | static int extra=4; |
| 753 | void clp_memory(int type) |
| 754 | { |
| 755 | if (type==0) { |
| 756 | /* switch on */ |
| 757 | malloc_counts_on=1; |
| 758 | startM.next=&endM; |
| 759 | endM.previous=&startM; |
| 760 | } else { |
| 761 | /* summary */ |
| 762 | double average = malloc_total/malloc_times; |
| 763 | int i; |
| 764 | malloc_struct * previous = (malloc_struct *) endM.previous; |
| 765 | printf("count %g bytes %g - average %g\n" ,malloc_times,malloc_total,average); |
| 766 | printf("current bytes %g - maximum %g\n" ,malloc_current,malloc_max); |
| 767 | |
| 768 | for ( i=0;i<malloc_n;i++) |
| 769 | printf("%g " ,malloc_counts[i]); |
| 770 | printf("\n" ); |
| 771 | malloc_counts_on=0; |
| 772 | if (previous->previous!=&startM) { |
| 773 | int n=0; |
| 774 | printf("Allocated blocks\n" ); |
| 775 | while (previous->previous!=&startM) { |
| 776 | printf("(%d at %d) " ,previous->size,previous->when); |
| 777 | n++; |
| 778 | if ((n%5)==0) |
| 779 | printf("\n" ); |
| 780 | previous = (malloc_struct *) previous->previous; |
| 781 | } |
| 782 | printf("\n - total %d\n" ,n); |
| 783 | } |
| 784 | } |
| 785 | malloc_number=0; |
| 786 | malloc_times=0.0; |
| 787 | malloc_total=0.0; |
| 788 | malloc_current=0.0; |
| 789 | malloc_max=0.0; |
| 790 | memset(malloc_counts,0,sizeof(malloc_counts)); |
| 791 | } |
| 792 | static void clp_adjust(void * temp,int size,int type) |
| 793 | { |
| 794 | malloc_struct * itemp = (malloc_struct *) temp; |
| 795 | malloc_struct * first = (malloc_struct *) startM.next; |
| 796 | int i; |
| 797 | startM.next=temp; |
| 798 | first->previous=temp; |
| 799 | itemp->previous=&startM; |
| 800 | itemp->next=first; |
| 801 | malloc_number++; |
| 802 | if (malloc_number==malloc_check) { |
| 803 | printf("Allocation of %d bytes at %d (type %d) not freed\n" , |
| 804 | size,malloc_number,type); |
| 805 | } |
| 806 | itemp->when=malloc_number; |
| 807 | itemp->size=size; |
| 808 | itemp->type=type; |
| 809 | malloc_times ++; |
| 810 | malloc_total += size; |
| 811 | malloc_current += size; |
| 812 | malloc_max=CoinMax(malloc_max,malloc_current); |
| 813 | for (i=0;i<malloc_n;i++) { |
| 814 | if ((int) size<=malloc_amount[i]) { |
| 815 | malloc_counts[i]++; |
| 816 | break; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | #endif |
| 821 | /* covers */ |
| 822 | double * clp_double(int number_entries) |
| 823 | { |
| 824 | #if CLP_DEBUG_MALLOC==0 |
| 825 | return reinterpret_cast<double *>( malloc(number_entries*sizeof(double))); |
| 826 | #else |
| 827 | double * temp = reinterpret_cast<double *>( malloc((number_entries+extra)*sizeof(double))); |
| 828 | clp_adjust(temp,number_entries*sizeof(double),1); |
| 829 | #if CLP_DEBUG_MALLOC>1 |
| 830 | if (number_entries*sizeof(double)>=CLP_DEBUG_MALLOC) |
| 831 | printf("WWW %x malloced by double %d - size %d\n" , |
| 832 | temp+extra,malloc_number,number_entries); |
| 833 | #endif |
| 834 | return temp+extra; |
| 835 | #endif |
| 836 | } |
| 837 | int * clp_int(int number_entries) |
| 838 | { |
| 839 | #if CLP_DEBUG_MALLOC==0 |
| 840 | return reinterpret_cast<int *>( malloc(number_entries*sizeof(int))); |
| 841 | #else |
| 842 | double * temp = reinterpret_cast<double *>( malloc(((number_entries+1)/2+extra)*sizeof(double))); |
| 843 | clp_adjust(temp,number_entries*sizeof(int),2); |
| 844 | #if CLP_DEBUG_MALLOC>1 |
| 845 | if (number_entries*sizeof(int)>=CLP_DEBUG_MALLOC) |
| 846 | printf("WWW %x malloced by int %d - size %d\n" , |
| 847 | temp+extra,malloc_number,number_entries); |
| 848 | #endif |
| 849 | return reinterpret_cast<int *>( (temp+extra)); |
| 850 | #endif |
| 851 | } |
| 852 | void * clp_malloc(int number_entries) |
| 853 | { |
| 854 | #if CLP_DEBUG_MALLOC==0 |
| 855 | return malloc(number_entries); |
| 856 | #else |
| 857 | double * temp = reinterpret_cast<double *>( malloc(number_entries+extra*sizeof(double))); |
| 858 | clp_adjust(temp,number_entries,0); |
| 859 | #if CLP_DEBUG_MALLOC>1 |
| 860 | if (number_entries>=CLP_DEBUG_MALLOC) |
| 861 | printf("WWW %x malloced by void %d - size %d\n" , |
| 862 | temp+extra,malloc_number,number_entries); |
| 863 | #endif |
| 864 | return (void *) (temp+extra); |
| 865 | #endif |
| 866 | } |
| 867 | void clp_free(void * oldArray) |
| 868 | { |
| 869 | #if CLP_DEBUG_MALLOC==0 |
| 870 | free(oldArray); |
| 871 | #else |
| 872 | if (oldArray) { |
| 873 | double * temp = (reinterpret_cast<double *>( oldArray)-extra); |
| 874 | malloc_struct * itemp = (malloc_struct *) temp; |
| 875 | malloc_struct * next = (malloc_struct *) itemp->next; |
| 876 | malloc_struct * previous = (malloc_struct *) itemp->previous; |
| 877 | previous->next=next; |
| 878 | next->previous=previous; |
| 879 | malloc_current -= itemp->size; |
| 880 | #if CLP_DEBUG_MALLOC>1 |
| 881 | if (itemp->size>=CLP_DEBUG_MALLOC) |
| 882 | printf("WWW %x freed by free %d - old length %d - type %d\n" , |
| 883 | oldArray,itemp->when,itemp->size,itemp->type); |
| 884 | #endif |
| 885 | free(temp); |
| 886 | } |
| 887 | #endif |
| 888 | } |
| 889 | /*#define FIX_ADD 4*nrowmx+5 |
| 890 | #define FIX_ADD2 4*nrowmx+5*/ |
| 891 | #define FIX_ADD 1*nrowmx+5 |
| 892 | #define FIX_ADD2 1*nrowmx+5 |
| 893 | #define ALIGNMENT 32 |
| 894 | static void * clp_align (void * memory) |
| 895 | { |
| 896 | if (sizeof(int)==sizeof(void *)&&ALIGNMENT) { |
| 897 | CoinInt64 k = reinterpret_cast<CoinInt64> (memory); |
| 898 | if ((k&(ALIGNMENT-1))!=0) { |
| 899 | k &= ~(ALIGNMENT-1); |
| 900 | k += ALIGNMENT; |
| 901 | memory = reinterpret_cast<void *> (k); |
| 902 | } |
| 903 | return memory; |
| 904 | } else { |
| 905 | return memory; |
| 906 | } |
| 907 | } |
| 908 | void clp_setup_pointers(EKKfactinfo * fact) |
| 909 | { |
| 910 | /* do extra stuff */ |
| 911 | int nrow=fact->nrow; |
| 912 | int nrowmx=fact->nrowmx; |
| 913 | int maxinv=fact->maxinv; |
| 914 | fact->lstart = nrow + maxinv + 5; |
| 915 | /* this is the number of L transforms */ |
| 916 | fact->xnetalval = fact->xnetal - fact->lstart; |
| 917 | fact->mpermu = (reinterpret_cast<int*> (fact->kadrpm+nrow))+1; |
| 918 | fact->bitArray = fact->krpadr + ( nrowmx+2); |
| 919 | fact->back = fact->kcpadr+2*nrow + maxinv + 4; |
| 920 | fact->hpivcoR = fact->kcpadr+nrow+3; |
| 921 | fact->nonzero = (reinterpret_cast<char *>( &fact->mpermu[nrow+1]))-1; |
| 922 | } |
| 923 | #ifndef NDEBUG |
| 924 | int ets_count=0; |
| 925 | int ets_check=-1; |
| 926 | //static int adjust_count=0; |
| 927 | //static int adjust_check=-1; |
| 928 | #endif |
| 929 | static void clp_adjust_pointers(EKKfactinfo * fact, int adjust) |
| 930 | { |
| 931 | #if 0 //ndef NDEBUG |
| 932 | adjust_count++; |
| 933 | if (adjust_check>=0&&adjust_count>=adjust_check) { |
| 934 | printf("trouble\n" ); |
| 935 | } |
| 936 | #endif |
| 937 | if (fact->trueStart) { |
| 938 | fact->kadrpm += adjust; |
| 939 | fact->krpadr += adjust; |
| 940 | fact->kcpadr += adjust; |
| 941 | fact->xrsadr += adjust; |
| 942 | fact->xcsadr += adjust; |
| 943 | fact->xrnadr += adjust; |
| 944 | fact->xcnadr += adjust; |
| 945 | } |
| 946 | if (fact->xeradr) { |
| 947 | fact->xeradr += adjust; |
| 948 | fact->xecadr += adjust; |
| 949 | fact->xeeadr += adjust; |
| 950 | } |
| 951 | } |
| 952 | /* deals with memory for complicated array |
| 953 | 0 just do addresses |
| 954 | 1 just get memory */ |
| 955 | static double * |
| 956 | clp_alloc_memory(EKKfactinfo * fact,int type, int * length) |
| 957 | { |
| 958 | int nDouble=0; |
| 959 | int nInt=0; |
| 960 | int nrowmxp; |
| 961 | int ntot1; |
| 962 | int ntot2; |
| 963 | int ntot3; |
| 964 | int nrowmx; |
| 965 | int * tempI; |
| 966 | double * tempD; |
| 967 | nrowmx=fact->nrowmx; |
| 968 | nrowmxp = nrowmx + 2; |
| 969 | ntot1 = nrowmxp; |
| 970 | ntot2 = 3*nrowmx+5; /* space for three lists */ |
| 971 | ntot3 = 2*nrowmx; |
| 972 | if ((ntot1<<1)<ntot2) { |
| 973 | ntot1=ntot2>>1; |
| 974 | } |
| 975 | ntot3=CoinMax(ntot3,ntot1); |
| 976 | /* Row work regions */ |
| 977 | /* must be contiguous so allocate as one chunk */ |
| 978 | /* may only need 2.5 */ |
| 979 | /* now doing all at once - far too much - reduce later */ |
| 980 | tempD=fact->kw1adr; |
| 981 | tempD+=nrowmxp; |
| 982 | tempD = reinterpret_cast<double *>( clp_align(tempD)); |
| 983 | fact->kw2adr=tempD; |
| 984 | tempD+=nrowmxp; |
| 985 | tempD = reinterpret_cast<double *>( clp_align(tempD)); |
| 986 | fact->kw3adr=tempD-1; |
| 987 | tempD+=nrowmxp; |
| 988 | tempD = reinterpret_cast<double *>( clp_align(tempD)); |
| 989 | fact->kp1adr=reinterpret_cast<EKKHlink *>(tempD); |
| 990 | tempD+=nrowmxp; |
| 991 | tempD = reinterpret_cast<double *>( clp_align(tempD)); |
| 992 | fact->kp2adr=reinterpret_cast<EKKHlink *>(tempD); |
| 993 | //tempD+=ntot3; |
| 994 | tempD+=nrowmxp; |
| 995 | tempD = reinterpret_cast<double *>( clp_align(tempD)); |
| 996 | /*printf("zz %x %x\n",tempD,fact->kadrpm);*/ |
| 997 | fact->kadrpm = tempD; |
| 998 | /* seems a lot */ |
| 999 | tempD += ((6*nrowmx +8)*(sizeof(int))/sizeof(double)); |
| 1000 | /* integer arrays */ |
| 1001 | tempI = reinterpret_cast<int *>( tempD); |
| 1002 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1003 | fact->xrsadr = tempI; |
| 1004 | #ifdef CLP_REUSE_ETAS |
| 1005 | tempI +=( 3*(nrowmx+fact->maxinv+1)); |
| 1006 | #else |
| 1007 | tempI +=( (nrowmx<<1)+fact->maxinv+1); |
| 1008 | #endif |
| 1009 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1010 | fact->xcsadr = tempI; |
| 1011 | #if 1 //def CLP_REUSE_ETAS |
| 1012 | tempI += ( 2*nrowmx+8+2*fact->maxinv); |
| 1013 | #else |
| 1014 | tempI += ( 2*nrowmx+8+fact->maxinv); |
| 1015 | #endif |
| 1016 | tempI += FIX_ADD+FIX_ADD2; |
| 1017 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1018 | fact->xrnadr = tempI; |
| 1019 | tempI += nrowmx; |
| 1020 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1021 | fact->xcnadr = tempI; |
| 1022 | tempI += nrowmx; |
| 1023 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1024 | fact->krpadr = tempI; |
| 1025 | tempI += ( nrowmx+1) +((nrowmx+33)>>5); |
| 1026 | /*printf("zzz %x %x\n",tempI,fact->kcpadr);*/ |
| 1027 | tempI = reinterpret_cast<int *>( clp_align(tempI)); |
| 1028 | fact->kcpadr = tempI; |
| 1029 | tempI += 3*nrowmx+8+fact->maxinv; |
| 1030 | fact->R_etas_start = fact->xcsadr+nrowmx+fact->maxinv+4; |
| 1031 | fact->R_etas_start += FIX_ADD; |
| 1032 | nInt = static_cast<int>(tempI-(reinterpret_cast<int *>( fact->trueStart))); |
| 1033 | nDouble = static_cast<int>(sizeof(int)*(nInt+1)/sizeof(double)); |
| 1034 | *length = nDouble; |
| 1035 | /*printf("nDouble %d - type %d\n",nDouble,type);*/ |
| 1036 | nDouble += static_cast<int>((2*ALIGNMENT)/sizeof(double)); |
| 1037 | if (type) { |
| 1038 | /*printf("%d allocated\n",nDouble);*/ |
| 1039 | tempD = reinterpret_cast<double *>( clp_double(nDouble)); |
| 1040 | #ifndef NDEBUG |
| 1041 | memset(tempD,CLP_FILL,nDouble*sizeof(double)); |
| 1042 | #endif |
| 1043 | } |
| 1044 | return tempD; |
| 1045 | } |
| 1046 | static void c_ekksmem(EKKfactinfo *fact,int nrow,int maximumPivots) |
| 1047 | { |
| 1048 | /* space for invert */ |
| 1049 | int nnetas=fact->eta_size; |
| 1050 | fact->nrow=nrow; |
| 1051 | if (!(nnetas>fact->last_eta_size||(!fact->xe2adr&&fact->if_sparse_update)|| |
| 1052 | nrow>fact->nrowmx||maximumPivots>fact->maxinv)) |
| 1053 | return; |
| 1054 | clp_adjust_pointers(fact, +1); |
| 1055 | if (nrow>fact->nrowmx||maximumPivots>fact->maxinv) { |
| 1056 | int length; |
| 1057 | fact->nrowmx=CoinMax(nrow,fact->nrowmx); |
| 1058 | fact->maxinv=CoinMax(maximumPivots,fact->maxinv); |
| 1059 | clp_free(fact->trueStart); |
| 1060 | fact->trueStart=0; |
| 1061 | fact->kw1adr=0; |
| 1062 | fact->trueStart=clp_alloc_memory(fact,1,&length); |
| 1063 | fact->kw1adr=reinterpret_cast<double *>( clp_align(fact->trueStart)); |
| 1064 | clp_alloc_memory(fact,0,&length); |
| 1065 | } |
| 1066 | /*if (!fact->iterno) fact->eta_size+=1000000;*//* TEMP*/ |
| 1067 | if (nnetas>fact->last_eta_size||(!fact->xe2adr&&fact->if_sparse_update)) { |
| 1068 | fact->last_eta_size = nnetas; |
| 1069 | clp_free(reinterpret_cast<char *>(fact->xe2adr)); |
| 1070 | /* if malloc fails - we have lost memory - start again */ |
| 1071 | if (!fact->ndenuc &&fact->if_sparse_update) { |
| 1072 | /* allow second copy of elements */ |
| 1073 | fact->xe2adr = clp_double(nnetas); |
| 1074 | #ifndef NDEBUG |
| 1075 | memset(fact->xe2adr,CLP_FILL,nnetas*sizeof(double)); |
| 1076 | #endif |
| 1077 | if (!fact->xe2adr) { |
| 1078 | fact->maxNNetas=fact->last_eta_size; /* dont allow any increase */ |
| 1079 | nnetas=fact->last_eta_size; |
| 1080 | fact->eta_size=nnetas; |
| 1081 | #ifdef PRINT_DEBUG |
| 1082 | if (fact->if_sparse_update) { |
| 1083 | printf("*** Sparse update off due to memory\n" ); |
| 1084 | } |
| 1085 | #endif |
| 1086 | fact->if_sparse_update=0; |
| 1087 | fact->switch_off_sparse_update=1; |
| 1088 | } |
| 1089 | } else { |
| 1090 | fact->xe2adr = 0; |
| 1091 | fact->if_sparse_update=0; |
| 1092 | } |
| 1093 | clp_free(fact->xeradr); |
| 1094 | fact->xeradr= clp_int( nnetas); |
| 1095 | #ifndef NDEBUG |
| 1096 | memset(fact->xeradr,CLP_FILL,nnetas*sizeof(int)); |
| 1097 | #endif |
| 1098 | if (!fact->xeradr) { |
| 1099 | nnetas=0; |
| 1100 | } |
| 1101 | if (nnetas) { |
| 1102 | clp_free(fact->xecadr); |
| 1103 | fact->xecadr= clp_int( nnetas); |
| 1104 | #ifndef NDEBUG |
| 1105 | memset(fact->xecadr,CLP_FILL,nnetas*sizeof(int)); |
| 1106 | #endif |
| 1107 | if (!fact->xecadr) { |
| 1108 | nnetas=0; |
| 1109 | } |
| 1110 | } |
| 1111 | if (nnetas) { |
| 1112 | clp_free(fact->xeeadr); |
| 1113 | fact->xeeadr= clp_double(nnetas); |
| 1114 | #ifndef NDEBUG |
| 1115 | memset(fact->xeeadr,CLP_FILL,nnetas*sizeof(double)); |
| 1116 | #endif |
| 1117 | if (!fact->xeeadr) { |
| 1118 | nnetas=0; |
| 1119 | } |
| 1120 | } |
| 1121 | } |
| 1122 | if (!nnetas) { |
| 1123 | char msg[100]; |
| 1124 | sprintf(msg,"Unable to allocate factorization memory for %d elements" , |
| 1125 | nnetas); |
| 1126 | throw(msg); |
| 1127 | } |
| 1128 | /*c_ekklplp->nnetas=nnetas;*/ |
| 1129 | fact->nnetas=nnetas; |
| 1130 | clp_adjust_pointers(fact, -1); |
| 1131 | } |
| 1132 | static void c_ekksmem_copy(EKKfactinfo *fact,const EKKfactinfo * rhsFact) |
| 1133 | { |
| 1134 | /* space for invert */ |
| 1135 | int nrowmx=rhsFact->nrowmx,nnetas=rhsFact->nnetas; |
| 1136 | int canReuseEtas= (fact->eta_size==rhsFact->eta_size) ? 1 : 0; |
| 1137 | int canReuseArrays = (fact->nrowmx==rhsFact->nrowmx) ? 1 : 0; |
| 1138 | clp_adjust_pointers(fact, +1); |
| 1139 | clp_adjust_pointers(const_cast<EKKfactinfo *>(rhsFact), +1); |
| 1140 | /*memset(fact,0,sizeof(EKKfactinfo));*/ |
| 1141 | /* copy scalars */ |
| 1142 | memcpy(&fact->drtpiv,&rhsFact->drtpiv,5*sizeof(double)); |
| 1143 | memcpy(&fact->nrow,&rhsFact->nrow,((&fact->maxNNetas-&fact->nrow)+1)* |
| 1144 | sizeof(int)); |
| 1145 | if (nrowmx) { |
| 1146 | int length; |
| 1147 | int kCopyEnd,nCopyEnd,nCopyStart; |
| 1148 | if (!canReuseEtas) { |
| 1149 | clp_free(fact->xeradr); |
| 1150 | clp_free(fact->xecadr); |
| 1151 | clp_free(fact->xeeadr); |
| 1152 | clp_free(fact->xe2adr); |
| 1153 | fact->xeradr = 0; |
| 1154 | fact->xecadr = 0; |
| 1155 | fact->xeeadr = 0; |
| 1156 | fact->xe2adr = 0; |
| 1157 | } |
| 1158 | if (!canReuseArrays) { |
| 1159 | clp_free(fact->trueStart); |
| 1160 | fact->trueStart=0; |
| 1161 | fact->kw1adr=0; |
| 1162 | fact->trueStart=clp_alloc_memory(fact,1,&length); |
| 1163 | fact->kw1adr=reinterpret_cast<double *>( clp_align(fact->trueStart)); |
| 1164 | } |
| 1165 | clp_alloc_memory(fact,0,&length); |
| 1166 | nnetas=fact->eta_size; |
| 1167 | assert (nnetas); |
| 1168 | { |
| 1169 | int n2 = rhsFact->nR_etas; |
| 1170 | int n3 = n2 ? rhsFact->R_etas_start[1+n2]: 0; |
| 1171 | int * startR = rhsFact->R_etas_index+n3; |
| 1172 | nCopyEnd=static_cast<int>((rhsFact->xeradr+nnetas)-startR); |
| 1173 | nCopyStart=rhsFact->nnentu; |
| 1174 | nCopyEnd = CoinMin(nCopyEnd+20,nnetas); |
| 1175 | kCopyEnd = nnetas-nCopyEnd; |
| 1176 | nCopyStart = CoinMin(nCopyStart+20,nnetas); |
| 1177 | if (!n2&&!rhsFact->nnentu&&!rhsFact->nnentl) { |
| 1178 | nCopyStart=nCopyEnd=0; |
| 1179 | } |
| 1180 | } |
| 1181 | /* copy */ |
| 1182 | if(nCopyStart||nCopyEnd||true) { |
| 1183 | #if 1 |
| 1184 | memcpy(fact->kw1adr,rhsFact->kw1adr,length*sizeof(double)); |
| 1185 | #else |
| 1186 | c_ekkscpy((length*sizeof(double))/sizeof(int), |
| 1187 | reinterpret_cast<int *>( rhsFact->kw1adr,reinterpret_cast<int *>( fact->kw1adr)); |
| 1188 | #endif |
| 1189 | } |
| 1190 | /* if malloc fails - we have lost memory - start again */ |
| 1191 | if (!fact->ndenuc &&fact->if_sparse_update) { |
| 1192 | /* allow second copy of elements */ |
| 1193 | if (!canReuseEtas) |
| 1194 | fact->xe2adr = clp_double(nnetas); |
| 1195 | if (!fact->xe2adr) { |
| 1196 | fact->maxNNetas=nnetas; /* dont allow any increase */ |
| 1197 | #ifdef PRINT_DEBUG |
| 1198 | if (fact->if_sparse_update) { |
| 1199 | printf("*** Sparse update off due to memory\n" ); |
| 1200 | } |
| 1201 | #endif |
| 1202 | fact->if_sparse_update=0; |
| 1203 | } else { |
| 1204 | #ifndef NDEBUG |
| 1205 | memset(fact->xe2adr,CLP_FILL,nnetas*sizeof(double)); |
| 1206 | #endif |
| 1207 | } |
| 1208 | } else { |
| 1209 | clp_free(fact->xe2adr); |
| 1210 | fact->xe2adr = 0; |
| 1211 | fact->if_sparse_update=0; |
| 1212 | } |
| 1213 | |
| 1214 | if (!canReuseEtas) |
| 1215 | fact->xeradr= clp_int(nnetas); |
| 1216 | if (!fact->xeradr) { |
| 1217 | nnetas=0; |
| 1218 | } else { |
| 1219 | #ifndef NDEBUG |
| 1220 | memset(fact->xeradr,CLP_FILL,nnetas*sizeof(int)); |
| 1221 | #endif |
| 1222 | |
| 1223 | /* copy */ |
| 1224 | if(nCopyStart||nCopyEnd) { |
| 1225 | #if 0 |
| 1226 | memcpy(fact->xeradr,rhsFact->xeradr,nCopyStart*sizeof(int)); |
| 1227 | memcpy(fact->xeradr+kCopyEnd,rhsFact->xeradr+kCopyEnd,nCopyEnd*sizeof(int)); |
| 1228 | #else |
| 1229 | c_ekkscpy(nCopyStart,rhsFact->xeradr,fact->xeradr); |
| 1230 | c_ekkscpy(nCopyEnd,rhsFact->xeradr+kCopyEnd,fact->xeradr+kCopyEnd); |
| 1231 | #endif |
| 1232 | } |
| 1233 | } |
| 1234 | if (nnetas) { |
| 1235 | if (!canReuseEtas) |
| 1236 | fact->xecadr= clp_int(nnetas); |
| 1237 | if (!fact->xecadr) { |
| 1238 | nnetas=0; |
| 1239 | } else { |
| 1240 | #ifndef NDEBUG |
| 1241 | memset(fact->xecadr,CLP_FILL,nnetas*sizeof(int)); |
| 1242 | #endif |
| 1243 | /* copy */ |
| 1244 | if (fact->rows_ok&&(nCopyStart||nCopyEnd)) { |
| 1245 | int i; |
| 1246 | int * hcoliR=rhsFact->xecadr-1; |
| 1247 | int * hcoli=fact->xecadr-1; |
| 1248 | int * mrstrt=fact->xrsadr; |
| 1249 | int * hinrow=fact->xrnadr; |
| 1250 | #if 0 |
| 1251 | memcpy(fact->xecadr+kCopyEnd,rhsFact->xecadr+kCopyEnd, |
| 1252 | nCopyEnd*sizeof(int)); |
| 1253 | #else |
| 1254 | c_ekkscpy(nCopyEnd,rhsFact->xecadr+kCopyEnd,fact->xecadr+kCopyEnd); |
| 1255 | #endif |
| 1256 | if (!fact->xe2adr) { |
| 1257 | for (i=0;i<fact->nrow;i++) { |
| 1258 | int istart = mrstrt[i]; |
| 1259 | assert (istart>0&&istart<=nnetas); |
| 1260 | assert (hinrow[i]>=0&&hinrow[i]<=fact->nrow); |
| 1261 | memcpy(hcoli+istart,hcoliR+istart,hinrow[i]*sizeof(int)); |
| 1262 | } |
| 1263 | } else { |
| 1264 | double * de2valR=rhsFact->xe2adr-1; |
| 1265 | double * de2val=fact->xe2adr-1; |
| 1266 | #if 0 |
| 1267 | memcpy(fact->xe2adr+kCopyEnd,rhsFact->xe2adr+kCopyEnd, |
| 1268 | nCopyEnd*sizeof(double)); |
| 1269 | #else |
| 1270 | c_ekkdcpy(nCopyEnd,rhsFact->xe2adr+kCopyEnd |
| 1271 | ,fact->xe2adr+kCopyEnd); |
| 1272 | #endif |
| 1273 | for (i=0;i<fact->nrow;i++) { |
| 1274 | int istart = mrstrt[i]; |
| 1275 | assert (istart>0&&istart<=nnetas); |
| 1276 | assert (hinrow[i]>=0&&hinrow[i]<=fact->nrow); |
| 1277 | memcpy(hcoli+istart,hcoliR+istart,hinrow[i]*sizeof(int)); |
| 1278 | memcpy(de2val+istart,de2valR+istart,hinrow[i]*sizeof(double)); |
| 1279 | #ifndef NDEBUG |
| 1280 | { |
| 1281 | int j; |
| 1282 | for (j=istart;j<istart+hinrow[i];j++) |
| 1283 | assert (fabs(de2val[j])<1.0e50); |
| 1284 | } |
| 1285 | #endif |
| 1286 | } |
| 1287 | } |
| 1288 | } |
| 1289 | } |
| 1290 | } |
| 1291 | if (nnetas) { |
| 1292 | if (!canReuseEtas) |
| 1293 | fact->xeeadr= clp_double(nnetas); |
| 1294 | if (!fact->xeeadr) { |
| 1295 | nnetas=0; |
| 1296 | } else { |
| 1297 | #ifndef NDEBUG |
| 1298 | memset(fact->xeeadr,CLP_FILL,nnetas*sizeof(double)); |
| 1299 | #endif |
| 1300 | /* copy */ |
| 1301 | if(nCopyStart||nCopyEnd) { |
| 1302 | #if 0 |
| 1303 | memcpy(fact->xeeadr,rhsFact->xeeadr,nCopyStart*sizeof(double)); |
| 1304 | memcpy(fact->xeeadr+kCopyEnd,rhsFact->xeeadr+kCopyEnd,nCopyEnd*sizeof(double)); |
| 1305 | #else |
| 1306 | c_ekkdcpy(nCopyStart, |
| 1307 | rhsFact->xeeadr,fact->xeeadr); |
| 1308 | c_ekkdcpy(nCopyEnd, |
| 1309 | rhsFact->xeeadr+kCopyEnd, |
| 1310 | fact->xeeadr+kCopyEnd); |
| 1311 | #endif |
| 1312 | } |
| 1313 | /*fact->R_etas_index = &XERADR1()[kdnspt - 1]; |
| 1314 | fact->R_etas_element = &XEEADR1()[kdnspt - 1];*/ |
| 1315 | fact->R_etas_start = fact->xcsadr+ |
| 1316 | (rhsFact->R_etas_start-rhsFact->xcsadr); |
| 1317 | fact->R_etas_index = fact->xeradr+ |
| 1318 | (rhsFact->R_etas_index-rhsFact->xeradr); |
| 1319 | fact->R_etas_element = fact->xeeadr+ |
| 1320 | (rhsFact->R_etas_element-rhsFact->xeeadr); |
| 1321 | } |
| 1322 | } |
| 1323 | } |
| 1324 | assert (nnetas||!nrowmx); |
| 1325 | fact->nnetas=nnetas; |
| 1326 | clp_adjust_pointers(fact, -1); |
| 1327 | clp_setup_pointers(fact); |
| 1328 | clp_adjust_pointers(const_cast<EKKfactinfo *>(rhsFact), -1); |
| 1329 | } |
| 1330 | static void c_ekksmem_delete(EKKfactinfo *fact) |
| 1331 | { |
| 1332 | clp_adjust_pointers(fact, +1); |
| 1333 | clp_free(fact->trueStart); |
| 1334 | clp_free(fact->xe2adr); |
| 1335 | clp_free(fact->xecadr); |
| 1336 | clp_free(fact->xeradr); |
| 1337 | clp_free(fact->xeeadr); |
| 1338 | fact->eta_size=0; |
| 1339 | fact->xrsadr = 0; |
| 1340 | fact->xcsadr = 0; |
| 1341 | fact->xrnadr = 0; |
| 1342 | fact->xcnadr = 0; |
| 1343 | fact->krpadr = 0; |
| 1344 | fact->kcpadr = 0; |
| 1345 | fact->xeradr = 0; |
| 1346 | fact->xecadr = 0; |
| 1347 | fact->xeeadr = 0; |
| 1348 | fact->xe2adr = 0; |
| 1349 | fact->trueStart = 0; |
| 1350 | fact->kw2adr = 0; |
| 1351 | fact->kw3adr = 0; |
| 1352 | fact->kp1adr = 0; |
| 1353 | fact->kp2adr = 0; |
| 1354 | fact->kadrpm = 0; |
| 1355 | fact->kw1adr = 0; |
| 1356 | } |
| 1357 | int c_ekk_IsSet(const int * array,int bit); |
| 1358 | void c_ekk_Set(int * array,int bit); |
| 1359 | void c_ekk_Unset(int * array,int bit); |
| 1360 | int c_ekk_IsSet(const int * array,int bit) |
| 1361 | { |
| 1362 | int iWord = bit>>5; |
| 1363 | int iBit = bit&31; |
| 1364 | int word = array[iWord]; |
| 1365 | return (word&(1<<iBit))!=0; |
| 1366 | } |
| 1367 | void c_ekk_Set(int * array,int bit) |
| 1368 | { |
| 1369 | int iWord = bit>>5; |
| 1370 | int iBit = bit&31; |
| 1371 | array[iWord] |= (1<<iBit); |
| 1372 | } |
| 1373 | void c_ekk_Unset(int * array,int bit) |
| 1374 | { |
| 1375 | int iWord = bit>>5; |
| 1376 | int iBit = bit&31; |
| 1377 | array[iWord] &= ~(1<<iBit); |
| 1378 | } |
| 1379 | int CoinOslFactorization::factorize ( |
| 1380 | const CoinPackedMatrix & matrix, |
| 1381 | int rowIsBasic[], |
| 1382 | int columnIsBasic[], |
| 1383 | double areaFactor ) |
| 1384 | { |
| 1385 | setSolveMode(10); |
| 1386 | if (areaFactor) |
| 1387 | factInfo_.areaFactor = areaFactor; |
| 1388 | const int * row = matrix.getIndices(); |
| 1389 | const CoinBigIndex * columnStart = matrix.getVectorStarts(); |
| 1390 | const int * columnLength = matrix.getVectorLengths(); |
| 1391 | const double * element = matrix.getElements(); |
| 1392 | int numberRows=matrix.getNumRows(); |
| 1393 | int numberColumns=matrix.getNumCols(); |
| 1394 | int numberBasic = 0; |
| 1395 | CoinBigIndex numberElements=0; |
| 1396 | int numberRowBasic=0; |
| 1397 | |
| 1398 | // compute how much in basis |
| 1399 | |
| 1400 | int i; |
| 1401 | // Move pivot variables across if they look good |
| 1402 | int * pivotTemp = new int [numberRows]; |
| 1403 | |
| 1404 | for (i=0;i<numberRows;i++) { |
| 1405 | if (rowIsBasic[i]>=0) |
| 1406 | pivotTemp[numberRowBasic++]=i; |
| 1407 | } |
| 1408 | |
| 1409 | numberBasic = numberRowBasic; |
| 1410 | |
| 1411 | for (i=0;i<numberColumns;i++) { |
| 1412 | if (columnIsBasic[i]>=0) { |
| 1413 | pivotTemp[numberBasic++]=i; |
| 1414 | numberElements += columnLength[i]; |
| 1415 | } |
| 1416 | } |
| 1417 | if ( numberBasic > numberRows ) { |
| 1418 | return -2; // say too many in basis |
| 1419 | } |
| 1420 | numberElements = 3 * numberRows + 3 * numberElements + 20000; |
| 1421 | setUsefulInformation(&numberRows,0); |
| 1422 | getAreas ( numberRows, numberRows, numberElements, |
| 1423 | 2 * numberElements ); |
| 1424 | //fill |
| 1425 | numberBasic=0; |
| 1426 | numberElements=0; |
| 1427 | // Fill in counts so we can skip part of preProcess |
| 1428 | double * elementU=elements(); |
| 1429 | int * indexRowU=indices(); |
| 1430 | int * startColumnU=starts(); |
| 1431 | int * numberInRow=this->numberInRow(); |
| 1432 | int * numberInColumn=this->numberInColumn(); |
| 1433 | CoinZeroN ( numberInRow, numberRows ); |
| 1434 | CoinZeroN ( numberInColumn, numberRows ); |
| 1435 | for (i=0;i<numberRowBasic;i++) { |
| 1436 | int iRow = pivotTemp[i]; |
| 1437 | // Change pivotTemp to correct sequence |
| 1438 | pivotTemp[i]=iRow+numberColumns; |
| 1439 | indexRowU[i]=iRow; |
| 1440 | startColumnU[i]=i; |
| 1441 | elementU[i]=-1.0; |
| 1442 | numberInRow[iRow]=1; |
| 1443 | numberInColumn[i]=1; |
| 1444 | } |
| 1445 | startColumnU[numberRowBasic]=numberRowBasic; |
| 1446 | numberElements=numberRowBasic; |
| 1447 | numberBasic=numberRowBasic; |
| 1448 | for (i=0;i<numberColumns;i++) { |
| 1449 | if (columnIsBasic[i]>=0) { |
| 1450 | CoinBigIndex j; |
| 1451 | for (j=columnStart[i];j<columnStart[i]+columnLength[i];j++) { |
| 1452 | int iRow=row[j]; |
| 1453 | numberInRow[iRow]++; |
| 1454 | indexRowU[numberElements]=iRow; |
| 1455 | elementU[numberElements++]=element[j]; |
| 1456 | } |
| 1457 | numberInColumn[numberBasic]=columnLength[i]; |
| 1458 | numberBasic++; |
| 1459 | startColumnU[numberBasic]=numberElements; |
| 1460 | } |
| 1461 | } |
| 1462 | preProcess ( ); |
| 1463 | factor ( ); |
| 1464 | if (status() == 0) { |
| 1465 | int * pivotVariable = new int [numberRows]; |
| 1466 | postProcess(pivotTemp,pivotVariable); |
| 1467 | for (i=0;i<numberRows;i++) { |
| 1468 | int iPivot=pivotVariable[i]; |
| 1469 | if (iPivot<numberColumns) { |
| 1470 | assert (columnIsBasic[iPivot]>=0); |
| 1471 | columnIsBasic[iPivot]=i; |
| 1472 | } else { |
| 1473 | iPivot-=numberColumns; |
| 1474 | assert (rowIsBasic[iPivot]>=0); |
| 1475 | rowIsBasic[iPivot]=i; |
| 1476 | } |
| 1477 | } |
| 1478 | delete [] pivotVariable; |
| 1479 | } |
| 1480 | delete [] pivotTemp; |
| 1481 | return status_; |
| 1482 | } |
| 1483 | // Condition number - product of pivots after factorization |
| 1484 | double |
| 1485 | CoinOslFactorization::conditionNumber() const |
| 1486 | { |
| 1487 | double condition = 1.0; |
| 1488 | const double *dluval = factInfo_.xeeadr+1-1; // stored before |
| 1489 | const int *mcstrt = factInfo_.xcsadr+1; |
| 1490 | for (int i=0;i<numberRows_;i++) { |
| 1491 | const int kx = mcstrt[i]; |
| 1492 | const double dpiv = dluval[kx]; |
| 1493 | condition *= dpiv; |
| 1494 | } |
| 1495 | condition = CoinMax(fabs(condition),1.0e-50); |
| 1496 | return 1.0/condition; |
| 1497 | } |
| 1498 | |