| 1 | /* $Id: CoinOslFactorization2.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | /* |
| 3 | Copyright (C) 1987, 2009, International Business Machines |
| 4 | Corporation and others. All Rights Reserved. |
| 5 | |
| 6 | This code is licensed under the terms of the Eclipse Public License (EPL). |
| 7 | */ |
| 8 | /* |
| 9 | CLP_OSL - if defined use osl |
| 10 | 0 - don't unroll 2 and 3 - don't use in Gomory |
| 11 | 1 - don't unroll - do use in Gomory |
| 12 | 2 - unroll - don't use in Gomory |
| 13 | 3 - unroll and use in Gomory |
| 14 | */ |
| 15 | #include "CoinOslFactorization.hpp" |
| 16 | #include "CoinOslC.h" |
| 17 | #include "CoinFinite.hpp" |
| 18 | |
| 19 | #ifndef NDEBUG |
| 20 | extern int ets_count; |
| 21 | extern int ets_check; |
| 22 | #endif |
| 23 | #ifdef COIN_USE_RESTRICT |
| 24 | # define COIN_RESTRICT2 __restrict |
| 25 | #else |
| 26 | # define COIN_RESTRICT2 |
| 27 | #endif |
| 28 | static int c_ekkshfpo_scan2zero(const EKKfactinfo * COIN_RESTRICT2 fact,const int * COIN_RESTRICT mpermu, |
| 29 | double *COIN_RESTRICT worki, double *COIN_RESTRICT worko, int * COIN_RESTRICT mptr) |
| 30 | { |
| 31 | |
| 32 | /* Local variables */ |
| 33 | int irow; |
| 34 | double tolerance = fact->zeroTolerance; |
| 35 | int nin=fact->nrow; |
| 36 | int * COIN_RESTRICT mptrX=mptr; |
| 37 | if ((nin&1)!=0) { |
| 38 | irow=1; |
| 39 | if (fact->packedMode) { |
| 40 | int irow0= *mpermu; |
| 41 | double dval; |
| 42 | assert (irow0>=1&&irow0<=nin); |
| 43 | mpermu++; |
| 44 | dval=worki[irow0]; |
| 45 | if (NOT_ZERO(dval)) { |
| 46 | worki[irow0]=0.0; |
| 47 | if (fabs(dval) >= tolerance) { |
| 48 | *(worko++)=dval; |
| 49 | *(mptrX++) = 0; |
| 50 | } |
| 51 | } |
| 52 | } else { |
| 53 | int irow0= *mpermu; |
| 54 | double dval; |
| 55 | assert (irow0>=1&&irow0<=nin); |
| 56 | mpermu++; |
| 57 | dval=worki[irow0]; |
| 58 | if (NOT_ZERO(dval)) { |
| 59 | worki[irow0]=0.0; |
| 60 | if (fabs(dval) >= tolerance) { |
| 61 | *worko=dval; |
| 62 | *(mptrX++) = 0; |
| 63 | } |
| 64 | } |
| 65 | worko++; |
| 66 | } |
| 67 | } else { |
| 68 | irow=0; |
| 69 | } |
| 70 | if (fact->packedMode) { |
| 71 | for (; irow < nin; irow+=2) { |
| 72 | int irow0,irow1; |
| 73 | double dval0,dval1; |
| 74 | irow0=mpermu[0]; |
| 75 | irow1=mpermu[1]; |
| 76 | assert (irow0>=1&&irow0<=nin); |
| 77 | assert (irow1>=1&&irow1<=nin); |
| 78 | dval0=worki[irow0]; |
| 79 | dval1=worki[irow1]; |
| 80 | if (NOT_ZERO(dval0)) { |
| 81 | worki[irow0]=0.0; |
| 82 | if (fabs(dval0) >= tolerance) { |
| 83 | *(worko++)=dval0; |
| 84 | *(mptrX++) = irow+0; |
| 85 | } |
| 86 | } |
| 87 | if (NOT_ZERO(dval1)) { |
| 88 | worki[irow1]=0.0; |
| 89 | if (fabs(dval1) >= tolerance) { |
| 90 | *(worko++)=dval1; |
| 91 | *(mptrX++) = irow+1; |
| 92 | } |
| 93 | } |
| 94 | mpermu+=2; |
| 95 | } |
| 96 | } else { |
| 97 | for (; irow < nin; irow+=2) { |
| 98 | int irow0,irow1; |
| 99 | double dval0,dval1; |
| 100 | irow0=mpermu[0]; |
| 101 | irow1=mpermu[1]; |
| 102 | assert (irow0>=1&&irow0<=nin); |
| 103 | assert (irow1>=1&&irow1<=nin); |
| 104 | dval0=worki[irow0]; |
| 105 | dval1=worki[irow1]; |
| 106 | if (NOT_ZERO(dval0)) { |
| 107 | worki[irow0]=0.0; |
| 108 | if (fabs(dval0) >= tolerance) { |
| 109 | worko[0]=dval0; |
| 110 | *(mptrX++) = irow+0; |
| 111 | } |
| 112 | } |
| 113 | if (NOT_ZERO(dval1)) { |
| 114 | worki[irow1]=0.0; |
| 115 | if (fabs(dval1) >= tolerance) { |
| 116 | worko[1]=dval1; |
| 117 | *(mptrX++) = irow+1; |
| 118 | } |
| 119 | } |
| 120 | mpermu+=2; |
| 121 | worko+=2; |
| 122 | } |
| 123 | } |
| 124 | return static_cast<int>(mptrX-mptr); |
| 125 | } |
| 126 | /* |
| 127 | * c_ekkshfpi_list executes the following loop: |
| 128 | * |
| 129 | * for (k=nincol, i=1; k; k--, i++) { |
| 130 | * int ipt = mptr[i]; |
| 131 | * int irow = mpermu[ipt]; |
| 132 | * worko[mpermu[irow]] = worki[i]; |
| 133 | * worki[i] = 0.0; |
| 134 | * } |
| 135 | */ |
| 136 | static int c_ekkshfpi_list(const int *COIN_RESTRICT mpermu, |
| 137 | double *COIN_RESTRICT worki, |
| 138 | double *COIN_RESTRICT worko, |
| 139 | const int * COIN_RESTRICT mptr, int nincol, |
| 140 | int * lastNonZero) |
| 141 | { |
| 142 | int i,k,irow0,irow1; |
| 143 | int first=COIN_INT_MAX; |
| 144 | int last=0; |
| 145 | /* worko was zeroed out outside */ |
| 146 | k = nincol; |
| 147 | i = 0; |
| 148 | if ((k&1)!=0) { |
| 149 | int ipt=mptr[i]; |
| 150 | irow0=mpermu[ipt]; |
| 151 | first = CoinMin(irow0,first); |
| 152 | last = CoinMax(irow0,last); |
| 153 | i++; |
| 154 | worko[irow0]=*worki; |
| 155 | *worki++=0.0; |
| 156 | } |
| 157 | k=k>>1; |
| 158 | for (; k; k--) { |
| 159 | int ipt0 = mptr[i]; |
| 160 | int ipt1 = mptr[i+1]; |
| 161 | irow0 = mpermu[ipt0]; |
| 162 | irow1 = mpermu[ipt1]; |
| 163 | i+=2; |
| 164 | first = CoinMin(irow0,first); |
| 165 | last = CoinMax(irow0,last); |
| 166 | first = CoinMin(irow1,first); |
| 167 | last = CoinMax(irow1,last); |
| 168 | worko[irow0] = worki[0]; |
| 169 | worko[irow1] = worki[1]; |
| 170 | worki[0]=0.0; |
| 171 | worki[1]=0.0; |
| 172 | worki+=2; |
| 173 | } |
| 174 | *lastNonZero=last; |
| 175 | return first; |
| 176 | } |
| 177 | /* |
| 178 | * c_ekkshfpi_list2 executes the following loop: |
| 179 | * |
| 180 | * for (k=nincol, i=1; k; k--, i++) { |
| 181 | * int ipt = mptr[i]; |
| 182 | * int irow = mpermu[ipt]; |
| 183 | * worko[mpermu[irow]] = worki[ipt]; |
| 184 | * worki[ipt] = 0.0; |
| 185 | * } |
| 186 | */ |
| 187 | static int c_ekkshfpi_list2(const int *COIN_RESTRICT mpermu, double *COIN_RESTRICT worki, double *COIN_RESTRICT worko, |
| 188 | const int * COIN_RESTRICT mptr, int nincol, |
| 189 | int * lastNonZero) |
| 190 | { |
| 191 | #if 1 |
| 192 | int i,k,irow0,irow1; |
| 193 | int first=COIN_INT_MAX; |
| 194 | int last=0; |
| 195 | /* worko was zeroed out outside */ |
| 196 | k = nincol; |
| 197 | i = 0; |
| 198 | if ((k&1)!=0) { |
| 199 | int ipt=mptr[i]; |
| 200 | irow0=mpermu[ipt]; |
| 201 | first = CoinMin(irow0,first); |
| 202 | last = CoinMax(irow0,last); |
| 203 | i++; |
| 204 | worko[irow0]=worki[ipt]; |
| 205 | worki[ipt]=0.0; |
| 206 | } |
| 207 | k=k>>1; |
| 208 | for (; k; k--) { |
| 209 | int ipt0 = mptr[i]; |
| 210 | int ipt1 = mptr[i+1]; |
| 211 | irow0 = mpermu[ipt0]; |
| 212 | irow1 = mpermu[ipt1]; |
| 213 | i+=2; |
| 214 | first = CoinMin(irow0,first); |
| 215 | last = CoinMax(irow0,last); |
| 216 | first = CoinMin(irow1,first); |
| 217 | last = CoinMax(irow1,last); |
| 218 | worko[irow0] = worki[ipt0]; |
| 219 | worko[irow1] = worki[ipt1]; |
| 220 | worki[ipt0]=0.0; |
| 221 | worki[ipt1]=0.0; |
| 222 | } |
| 223 | #else |
| 224 | int first=COIN_INT_MAX; |
| 225 | int last=0; |
| 226 | /* worko was zeroed out outside */ |
| 227 | for (int i=0; i<nincol; i++) { |
| 228 | int ipt = mptr[i]; |
| 229 | int irow = mpermu[ipt]; |
| 230 | first = CoinMin(irow,first); |
| 231 | last = CoinMax(irow,last); |
| 232 | worko[irow] = worki[ipt]; |
| 233 | worki[ipt]=0.0; |
| 234 | } |
| 235 | #endif |
| 236 | *lastNonZero=last; |
| 237 | return first; |
| 238 | } |
| 239 | /* |
| 240 | * c_ekkshfpi_list3 executes the following loop: |
| 241 | * |
| 242 | * for (k=nincol, i=1; k; k--, i++) { |
| 243 | * int ipt = mptr[i]; |
| 244 | * int irow = mpermu[ipt]; |
| 245 | * worko[irow] = worki[i]; |
| 246 | * worki[i] = 0.0; |
| 247 | * mptr[i] = mpermu[ipt]; |
| 248 | * } |
| 249 | */ |
| 250 | static void c_ekkshfpi_list3(const int *COIN_RESTRICT mpermu, |
| 251 | double *COIN_RESTRICT worki, double *COIN_RESTRICT worko, |
| 252 | int * COIN_RESTRICT mptr, int nincol) |
| 253 | { |
| 254 | int i,k,irow0,irow1; |
| 255 | /* worko was zeroed out outside */ |
| 256 | k = nincol; |
| 257 | i = 0; |
| 258 | if ((k&1)!=0) { |
| 259 | int ipt=mptr[i]; |
| 260 | irow0=mpermu[ipt]; |
| 261 | mptr[i] = irow0; |
| 262 | i++; |
| 263 | worko[irow0]=*worki; |
| 264 | *worki++=0.0; |
| 265 | } |
| 266 | k=k>>1; |
| 267 | for (; k; k--) { |
| 268 | int ipt0 = mptr[i]; |
| 269 | int ipt1 = mptr[i+1]; |
| 270 | irow0 = mpermu[ipt0]; |
| 271 | irow1 = mpermu[ipt1]; |
| 272 | mptr[i] = irow0; |
| 273 | mptr[i+1] = irow1; |
| 274 | i+=2; |
| 275 | worko[irow0] = worki[0]; |
| 276 | worko[irow1] = worki[1]; |
| 277 | worki[0]=0.0; |
| 278 | worki[1]=0.0; |
| 279 | worki+=2; |
| 280 | } |
| 281 | } |
| 282 | static int c_ekkscmv(const EKKfactinfo * COIN_RESTRICT2 fact,int n, double *COIN_RESTRICT dwork, int *COIN_RESTRICT mptr, |
| 283 | double *COIN_RESTRICT dwork2) |
| 284 | { |
| 285 | double tolerance = fact->zeroTolerance; |
| 286 | int irow; |
| 287 | const int * COIN_RESTRICT mptrsave = mptr; |
| 288 | double * COIN_RESTRICT dwhere = dwork+1; |
| 289 | if ((n&1)!=0) { |
| 290 | if (NOT_ZERO(*dwhere)) { |
| 291 | if (fabs(*dwhere) >= tolerance) { |
| 292 | *++dwork2 = *dwhere; |
| 293 | *++mptr = SHIFT_INDEX(1); |
| 294 | } else { |
| 295 | *dwhere = 0.0; |
| 296 | } |
| 297 | } |
| 298 | dwhere++; |
| 299 | irow=2; |
| 300 | } else { |
| 301 | irow=1; |
| 302 | } |
| 303 | for (n=n>>1;n;n--) { |
| 304 | int second = NOT_ZERO(*(dwhere+1)); |
| 305 | if (NOT_ZERO(*dwhere)) { |
| 306 | if (fabs(*dwhere) >= tolerance) { |
| 307 | *++dwork2 = *dwhere; |
| 308 | *++mptr = SHIFT_INDEX(irow); |
| 309 | } else { |
| 310 | *dwhere = 0.0; |
| 311 | } |
| 312 | } |
| 313 | if (second) { |
| 314 | if (fabs(*(dwhere+1)) >= tolerance) { |
| 315 | *++dwork2 = *(dwhere+1); |
| 316 | *++mptr = SHIFT_INDEX(irow+1); |
| 317 | } else { |
| 318 | *(dwhere+1) = 0.0; |
| 319 | } |
| 320 | } |
| 321 | dwhere+=2; |
| 322 | irow+=2; |
| 323 | } |
| 324 | |
| 325 | return static_cast<int>(mptr-mptrsave); |
| 326 | } /* c_ekkscmv */ |
| 327 | double c_ekkputl(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 328 | const int *COIN_RESTRICT mpt2, |
| 329 | double *COIN_RESTRICT dwork1, |
| 330 | double del3, |
| 331 | int nincol, int nuspik) |
| 332 | { |
| 333 | double * COIN_RESTRICT dwork3 = fact->xeeadr+fact->nnentu; |
| 334 | int * COIN_RESTRICT hrowi = fact->xeradr+fact->nnentu; |
| 335 | int offset = fact->R_etas_start[fact->nR_etas+1]; |
| 336 | int *COIN_RESTRICT hrowiR = fact->R_etas_index+offset; |
| 337 | double *COIN_RESTRICT dluval = fact->R_etas_element+offset; |
| 338 | int i, j; |
| 339 | |
| 340 | /* dwork1 is r', the new R transform |
| 341 | * dwork3 is the updated incoming column, alpha_p |
| 342 | * del3 apparently has the pivot of the incoming column (???). |
| 343 | * Here, we compute the p'th element of R^-1 alpha_p |
| 344 | * (as described on p. 273), which is just a dot product. |
| 345 | * I don't know why we subtract. |
| 346 | */ |
| 347 | for (i = 1; i <= nuspik; ++i) { |
| 348 | j = UNSHIFT_INDEX(hrowi[ i]); |
| 349 | del3 -= dwork3[i] * dwork1[j]; |
| 350 | } |
| 351 | |
| 352 | /* here we finally copy the r' to where we want it, the end */ |
| 353 | /* also take into account that the p'th row of R^-1 is -(p'th row of R). */ |
| 354 | /* also zero out dwork1 as we go */ |
| 355 | for (i = 0; i < nincol; ++i) { |
| 356 | j = mpt2[i]; |
| 357 | hrowiR[ - i ] = SHIFT_INDEX(j); |
| 358 | dluval[ - i ] = -dwork1[j]; |
| 359 | dwork1[j] = 0.; |
| 360 | } |
| 361 | |
| 362 | return del3; |
| 363 | } /* c_ekkputl */ |
| 364 | /* making this static seems to slow code down! |
| 365 | may be being inlined |
| 366 | */ |
| 367 | int c_ekkputl2( const EKKfactinfo * COIN_RESTRICT2 fact, |
| 368 | double *COIN_RESTRICT dwork1, |
| 369 | double *del3p, |
| 370 | int nuspik) |
| 371 | { |
| 372 | double * COIN_RESTRICT dwork3 = fact->xeeadr+fact->nnentu; |
| 373 | int * COIN_RESTRICT hrowi = fact->xeradr+fact->nnentu; |
| 374 | int offset = fact->R_etas_start[fact->nR_etas+1]; |
| 375 | int *COIN_RESTRICT hrowiR = fact->R_etas_index+offset; |
| 376 | double *COIN_RESTRICT dluval = fact->R_etas_element+offset; |
| 377 | int i, j; |
| 378 | #if 0 |
| 379 | int nincol=c_ekksczr(fact,fact->nrow,dwork1,hrowiR); |
| 380 | #else |
| 381 | int nrow=fact->nrow; |
| 382 | const double tolerance = fact->zeroTolerance; |
| 383 | int * COIN_RESTRICT mptrX=hrowiR; |
| 384 | for (i = 1; i <= nrow; ++i) { |
| 385 | if (dwork1[i] != 0.) { |
| 386 | if (fabs(dwork1[i]) >= tolerance) { |
| 387 | *(mptrX--) = SHIFT_INDEX(i); |
| 388 | } else { |
| 389 | dwork1[i] = 0.0; |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | int nincol=static_cast<int>(hrowiR-mptrX); |
| 394 | #endif |
| 395 | double del3 = *del3p; |
| 396 | /* dwork1 is r', the new R transform |
| 397 | * dwork3 is the updated incoming column, alpha_p |
| 398 | * del3 apparently has the pivot of the incoming column (???). |
| 399 | * Here, we compute the p'th element of R^-1 alpha_p |
| 400 | * (as described on p. 273), which is just a dot product. |
| 401 | * I don't know why we subtract. |
| 402 | */ |
| 403 | for (i = 1; i <= nuspik; ++i) { |
| 404 | j = UNSHIFT_INDEX(hrowi[ i]); |
| 405 | del3 -= dwork3[i] * dwork1[j]; |
| 406 | } |
| 407 | |
| 408 | /* here we finally copy the r' to where we want it, the end */ |
| 409 | /* also take into account that the p'th row of R^-1 is -(p'th row of R). */ |
| 410 | /* also zero out dwork1 as we go */ |
| 411 | for (i = 0; i < nincol; ++i) { |
| 412 | j = UNSHIFT_INDEX(hrowiR[-i]); |
| 413 | dluval[ - i ] = -dwork1[j]; |
| 414 | dwork1[j] = 0.; |
| 415 | } |
| 416 | |
| 417 | *del3p = del3; |
| 418 | return nincol; |
| 419 | } /* c_ekkputl */ |
| 420 | static void c_ekkbtj4p_no_dense(const int nrow,const double * COIN_RESTRICT dluval, |
| 421 | const int * COIN_RESTRICT hrowi, |
| 422 | const int * COIN_RESTRICT mcstrt, |
| 423 | double * COIN_RESTRICT dwork1, int ndo,int jpiv) |
| 424 | { |
| 425 | int i; |
| 426 | double dv1; |
| 427 | int iel; |
| 428 | int irow; |
| 429 | int i1,i2; |
| 430 | |
| 431 | /* count down to first nonzero */ |
| 432 | for (i=nrow;i >=1;i--) { |
| 433 | if (dwork1[i]) { |
| 434 | break; |
| 435 | } |
| 436 | } |
| 437 | i--; /* as pivot is just 1.0 */ |
| 438 | if (i>ndo+jpiv) { |
| 439 | i=ndo+jpiv; |
| 440 | } |
| 441 | mcstrt -= jpiv; |
| 442 | i2=mcstrt[i+1]; |
| 443 | for (; i > jpiv; --i) { |
| 444 | double dv1b=0.0; |
| 445 | int nel; |
| 446 | i1 = mcstrt[i]; |
| 447 | nel= i1-i2; |
| 448 | dv1 = dwork1[i]; |
| 449 | iel=i2; |
| 450 | if ((nel&1)!=0) { |
| 451 | irow = hrowi[iel]; |
| 452 | dv1b = SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 453 | iel++; |
| 454 | } |
| 455 | for ( ; iel < i1; iel+=2) { |
| 456 | int irow = hrowi[iel]; |
| 457 | int irowb = hrowi[iel+1]; |
| 458 | dv1 += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 459 | dv1b += SHIFT_REF(dwork1, irowb) * dluval[iel+1]; |
| 460 | } |
| 461 | i2=i1; |
| 462 | dwork1[i] = dv1+dv1b; |
| 463 | } |
| 464 | } /* c_ekkbtj4 */ |
| 465 | |
| 466 | static int c_ekkbtj4p_dense(const int nrow,const double * COIN_RESTRICT dluval, |
| 467 | const int * COIN_RESTRICT hrowi, |
| 468 | const int * COIN_RESTRICT mcstrt, double * COIN_RESTRICT dwork1, |
| 469 | int ndenuc, |
| 470 | int ndo,int jpiv) |
| 471 | { |
| 472 | int i; |
| 473 | int i2; |
| 474 | |
| 475 | int last=ndo-ndenuc+1; |
| 476 | double * COIN_RESTRICT densew = &dwork1[nrow-1]; |
| 477 | int nincol=0; |
| 478 | const double * COIN_RESTRICT dlu1; |
| 479 | dluval--; |
| 480 | hrowi--; |
| 481 | /* count down to first nonzero */ |
| 482 | for (i=nrow;i >=1;i--) { |
| 483 | if (dwork1[i]) { |
| 484 | break; |
| 485 | } |
| 486 | } |
| 487 | if (i<ndo+jpiv) { |
| 488 | int diff = ndo+jpiv-i; |
| 489 | ndo -= diff; |
| 490 | densew-=diff; |
| 491 | nincol=diff; |
| 492 | } |
| 493 | i2=mcstrt[ndo+1]; |
| 494 | dlu1=&dluval[i2+1]; |
| 495 | for (i = ndo; i >last; i-=2) { |
| 496 | int k; |
| 497 | double dv1,dv2; |
| 498 | const double * COIN_RESTRICT dlu2; |
| 499 | dv1=densew[1]; |
| 500 | dlu2=dlu1+nincol; |
| 501 | dv2=densew[0]; |
| 502 | for (k=0;k<nincol;k++) { |
| 503 | #ifdef DEBUG |
| 504 | int kk=dlu1-dluval; |
| 505 | int jj = (densew+(nincol-k+1))-dwork1; |
| 506 | int ll=hrowi[k+kk]; |
| 507 | if (ll!=jj) abort(); |
| 508 | #endif |
| 509 | dv1 += densew[nincol-k+1]*dlu1[k]; |
| 510 | dv2 += densew[nincol-k+1]*dlu2[k]; |
| 511 | } |
| 512 | densew[1]=dv1; |
| 513 | dlu1=dlu2+nincol; |
| 514 | dv2 += dv1*dlu1[0]; |
| 515 | dlu1++; |
| 516 | nincol+=2; |
| 517 | densew[0]=dv2; |
| 518 | densew-=2; |
| 519 | } |
| 520 | return i; |
| 521 | } /* c_ekkbtj4 */ |
| 522 | |
| 523 | static void c_ekkbtj4p_after_dense(const double * COIN_RESTRICT dluval, |
| 524 | const int * COIN_RESTRICT hrowi, |
| 525 | const int * COIN_RESTRICT mcstrt, |
| 526 | double * COIN_RESTRICT dwork1, int i,int jpiv) |
| 527 | { |
| 528 | int iel; |
| 529 | mcstrt -= jpiv; |
| 530 | i += jpiv; |
| 531 | iel=mcstrt[i+1]; |
| 532 | for (; i > jpiv+1; i-=2) { |
| 533 | int i1 = mcstrt[i]; |
| 534 | double dv1 = dwork1[i]; |
| 535 | double dv2; |
| 536 | for (; iel < i1; iel++) { |
| 537 | int irow = hrowi[iel]; |
| 538 | dv1 += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 539 | } |
| 540 | i1 = mcstrt[i-1]; |
| 541 | dv2 = dwork1[i-1]; |
| 542 | dwork1[i] = dv1; |
| 543 | for (; iel < i1; iel++) { |
| 544 | int irow = hrowi[iel]; |
| 545 | dv2 += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 546 | } |
| 547 | dwork1[i-1] = dv2; |
| 548 | } |
| 549 | if (i>jpiv) { |
| 550 | int i1 = mcstrt[i]; |
| 551 | double dv1 = dwork1[i]; |
| 552 | for (; iel < i1; iel++) { |
| 553 | int irow = hrowi[iel]; |
| 554 | dv1 += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 555 | } |
| 556 | dwork1[i] = dv1; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | static void c_ekkbtj4p(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 561 | double * COIN_RESTRICT dwork1) |
| 562 | { |
| 563 | int lstart=fact->lstart; |
| 564 | const int * COIN_RESTRICT hpivco = fact->kcpadr; |
| 565 | const double * COIN_RESTRICT dluval = fact->xeeadr+1; |
| 566 | const int * COIN_RESTRICT hrowi = fact->xeradr+1; |
| 567 | const int * COIN_RESTRICT mcstrt = fact->xcsadr+lstart-1; |
| 568 | int jpiv=hpivco[lstart]-1; |
| 569 | int ndo=fact->xnetalval; |
| 570 | /* see if dense enough to unroll */ |
| 571 | if (fact->ndenuc<5) { |
| 572 | c_ekkbtj4p_no_dense(fact->nrow,dluval,hrowi,mcstrt,dwork1,ndo,jpiv); |
| 573 | } else { |
| 574 | int i = c_ekkbtj4p_dense(fact->nrow,dluval,hrowi,mcstrt,dwork1, |
| 575 | fact->ndenuc, ndo,jpiv); |
| 576 | c_ekkbtj4p_after_dense(dluval,hrowi,mcstrt,dwork1,i,jpiv); |
| 577 | } |
| 578 | } /* c_ekkbtj4p */ |
| 579 | |
| 580 | static int c_ekkbtj4_sparse(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 581 | double * COIN_RESTRICT dwork1, |
| 582 | int * COIN_RESTRICT mpt, /* C style */ |
| 583 | double * COIN_RESTRICT dworko, |
| 584 | int nincol, int * COIN_RESTRICT spare) |
| 585 | { |
| 586 | const int nrow = fact->nrow; |
| 587 | const int * COIN_RESTRICT hcoli = fact->xecadr; |
| 588 | const int * COIN_RESTRICT mrstrt = fact->xrsadr+nrow; |
| 589 | char * COIN_RESTRICT nonzero = fact->nonzero; |
| 590 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 591 | const double * COIN_RESTRICT de2val = fact->xe2adr-1; |
| 592 | double tolerance = fact->zeroTolerance; |
| 593 | double dv; |
| 594 | int iel; |
| 595 | |
| 596 | int k,nStack,kx; |
| 597 | int nList=0; |
| 598 | int * COIN_RESTRICT list = spare; |
| 599 | int * COIN_RESTRICT stack = spare+nrow; |
| 600 | int * COIN_RESTRICT next = stack+nrow; |
| 601 | int iPivot,kPivot; |
| 602 | int iput,nput=0,kput=nrow; |
| 603 | int j; |
| 604 | int firstDoRow=fact->firstDoRow; |
| 605 | |
| 606 | for (k=0;k<nincol;k++) { |
| 607 | nStack=1; |
| 608 | iPivot=mpt[k]; |
| 609 | if (nonzero[iPivot]!=1&&iPivot>=firstDoRow) { |
| 610 | stack[0]=iPivot; |
| 611 | next[0]=mrstrt[iPivot]; |
| 612 | while (nStack) { |
| 613 | /* take off stack */ |
| 614 | kPivot=stack[--nStack]; |
| 615 | if (nonzero[kPivot]!=1&&kPivot>=firstDoRow) { |
| 616 | j=next[nStack]; |
| 617 | if (j==mrstrt[kPivot+1]) { |
| 618 | /* finished so mark */ |
| 619 | list[nList++]=kPivot; |
| 620 | nonzero[kPivot]=1; |
| 621 | } else { |
| 622 | kPivot=hcoli[j]; |
| 623 | /* put back on stack */ |
| 624 | next[nStack++] ++; |
| 625 | if (!nonzero[kPivot]) { |
| 626 | /* and new one */ |
| 627 | stack[nStack]=kPivot; |
| 628 | nonzero[kPivot]=2; |
| 629 | next[nStack++]=mrstrt[kPivot]; |
| 630 | } |
| 631 | } |
| 632 | } else if (kPivot<firstDoRow) { |
| 633 | list[--kput]=kPivot; |
| 634 | nonzero[kPivot]=1; |
| 635 | } |
| 636 | } |
| 637 | } else if (nonzero[iPivot]!=1) { |
| 638 | /* nothing to do (except check size at end) */ |
| 639 | list[--kput]=iPivot; |
| 640 | nonzero[iPivot]=1; |
| 641 | } |
| 642 | } |
| 643 | if (fact->packedMode) { |
| 644 | dworko++; |
| 645 | for (k=nList-1;k>=0;k--) { |
| 646 | double dv; |
| 647 | iPivot = list[k]; |
| 648 | dv = dwork1[iPivot]; |
| 649 | dwork1[iPivot]=0.0; |
| 650 | nonzero[iPivot]=0; |
| 651 | if (fabs(dv) > tolerance) { |
| 652 | iput=hpivro[iPivot]; |
| 653 | kx=mrstrt[iPivot]; |
| 654 | dworko[nput]=dv; |
| 655 | for (iel = kx; iel < mrstrt[iPivot+1]; iel++) { |
| 656 | double dval; |
| 657 | int irow = hcoli[iel]; |
| 658 | dval=de2val[iel]; |
| 659 | dwork1[irow] += dv*dval; |
| 660 | } |
| 661 | mpt[nput++]=iput-1; |
| 662 | } else { |
| 663 | dwork1[iPivot]=0.0; /* force to zero, not just near zero */ |
| 664 | } |
| 665 | } |
| 666 | /* check remainder */ |
| 667 | for (k=kput;k<nrow;k++) { |
| 668 | iPivot = list[k]; |
| 669 | nonzero[iPivot]=0; |
| 670 | dv = dwork1[iPivot]; |
| 671 | dwork1[iPivot]=0.0; |
| 672 | iput=hpivro[iPivot]; |
| 673 | if (fabs(dv) > tolerance) { |
| 674 | dworko[nput]=dv; |
| 675 | mpt[nput++]=iput-1; |
| 676 | } |
| 677 | } |
| 678 | } else { |
| 679 | /* not packed */ |
| 680 | for (k=nList-1;k>=0;k--) { |
| 681 | double dv; |
| 682 | iPivot = list[k]; |
| 683 | dv = dwork1[iPivot]; |
| 684 | dwork1[iPivot]=0.0; |
| 685 | nonzero[iPivot]=0; |
| 686 | if (fabs(dv) > tolerance) { |
| 687 | iput=hpivro[iPivot]; |
| 688 | kx=mrstrt[iPivot]; |
| 689 | dworko[iput]=dv; |
| 690 | for (iel = kx; iel < mrstrt[iPivot+1]; iel++) { |
| 691 | double dval; |
| 692 | int irow = hcoli[iel]; |
| 693 | dval=de2val[iel]; |
| 694 | dwork1[irow] += dv*dval; |
| 695 | } |
| 696 | mpt[nput++]=iput-1; |
| 697 | } else { |
| 698 | dwork1[iPivot]=0.0; /* force to zero, not just near zero */ |
| 699 | } |
| 700 | } |
| 701 | /* check remainder */ |
| 702 | for (k=kput;k<nrow;k++) { |
| 703 | iPivot = list[k]; |
| 704 | nonzero[iPivot]=0; |
| 705 | dv = dwork1[iPivot]; |
| 706 | dwork1[iPivot]=0.0; |
| 707 | iput=hpivro[iPivot]; |
| 708 | if (fabs(dv) > tolerance) { |
| 709 | dworko[iput]=dv; |
| 710 | mpt[nput++]=iput-1; |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | return (nput); |
| 716 | } /* c_ekkbtj4 */ |
| 717 | |
| 718 | static void c_ekkbtjl(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 719 | double * COIN_RESTRICT dwork1) |
| 720 | { |
| 721 | int i, j, k, k1; |
| 722 | int l1; |
| 723 | const double * COIN_RESTRICT dluval = fact->R_etas_element; |
| 724 | const int * COIN_RESTRICT hrowi = fact->R_etas_index; |
| 725 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 726 | const int * COIN_RESTRICT hpivco = fact->hpivcoR; |
| 727 | int ndo=fact->nR_etas; |
| 728 | #ifndef UNROLL1 |
| 729 | #define UNROLL1 4 |
| 730 | #endif |
| 731 | #if UNROLL1>2 |
| 732 | int l2; |
| 733 | #endif |
| 734 | int kn; |
| 735 | double dv; |
| 736 | int iel; |
| 737 | int ipiv; |
| 738 | int knext; |
| 739 | |
| 740 | knext = mcstrt[ndo + 1]; |
| 741 | #if UNROLL1>2 |
| 742 | for (i = ndo; i > 0; --i) { |
| 743 | k1 = knext; |
| 744 | knext = mcstrt[i]; |
| 745 | ipiv = hpivco[i]; |
| 746 | dv = dwork1[ipiv]; |
| 747 | /* fast floating */ |
| 748 | k = knext - k1; |
| 749 | kn = k >> 2; |
| 750 | iel = k1 + 1; |
| 751 | if (dv != 0.) { |
| 752 | l1 = (k & 1) != 0; |
| 753 | l2 = (k & 2) != 0; |
| 754 | for (j = 1; j <= kn; j++) { |
| 755 | int irow0 = hrowi[iel + 0]; |
| 756 | int irow1 = hrowi[iel + 1]; |
| 757 | int irow2 = hrowi[iel + 2]; |
| 758 | int irow3 = hrowi[iel + 3]; |
| 759 | double dval0 = dv * dluval[iel + 0] + SHIFT_REF(dwork1, irow0); |
| 760 | double dval1 = dv * dluval[iel + 1] + SHIFT_REF(dwork1, irow1); |
| 761 | double dval2 = dv * dluval[iel + 2] + SHIFT_REF(dwork1, irow2); |
| 762 | double dval3 = dv * dluval[iel + 3] + SHIFT_REF(dwork1, irow3); |
| 763 | SHIFT_REF(dwork1, irow0) = dval0; |
| 764 | SHIFT_REF(dwork1, irow1) = dval1; |
| 765 | SHIFT_REF(dwork1, irow2) = dval2; |
| 766 | SHIFT_REF(dwork1, irow3) = dval3; |
| 767 | iel+=4; |
| 768 | } |
| 769 | if (l1) { |
| 770 | int irow0 = hrowi[iel]; |
| 771 | SHIFT_REF(dwork1, irow0) += dv* dluval[iel]; |
| 772 | ++iel; |
| 773 | } |
| 774 | if (l2) { |
| 775 | int irow0 = hrowi[iel + 0]; |
| 776 | int irow1 = hrowi[iel + 1]; |
| 777 | SHIFT_REF(dwork1, irow0) += dv* dluval[iel]; |
| 778 | SHIFT_REF(dwork1, irow1) += dv* dluval[iel+1]; |
| 779 | } |
| 780 | } |
| 781 | } |
| 782 | #else |
| 783 | for (i = ndo; i > 0; --i) { |
| 784 | k1 = knext; |
| 785 | knext = mcstrt[i]; |
| 786 | ipiv = hpivco[i]; |
| 787 | dv = dwork1[ipiv]; |
| 788 | k = knext - k1; |
| 789 | kn = k >> 1; |
| 790 | iel = k1 + 1; |
| 791 | if (dv != 0.) { |
| 792 | l1 = (k & 1) != 0; |
| 793 | for (j = 1; j <= kn; j++) { |
| 794 | int irow0 = hrowi[iel + 0]; |
| 795 | int irow1 = hrowi[iel + 1]; |
| 796 | double dval0 = dv * dluval[iel + 0] + SHIFT_REF(dwork1, irow0); |
| 797 | double dval1 = dv * dluval[iel + 1] + SHIFT_REF(dwork1, irow1); |
| 798 | SHIFT_REF(dwork1, irow0) = dval0; |
| 799 | SHIFT_REF(dwork1, irow1) = dval1; |
| 800 | iel+=2; |
| 801 | } |
| 802 | if (l1) { |
| 803 | int irow0 = hrowi[iel]; |
| 804 | SHIFT_REF(dwork1, irow0) += dv* dluval[iel]; |
| 805 | ++iel; |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | #endif |
| 810 | } /* c_ekkbtjl */ |
| 811 | |
| 812 | static int c_ekkbtjl_sparse(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 813 | double * COIN_RESTRICT dwork1, |
| 814 | int * COIN_RESTRICT mpt , int nincol) |
| 815 | { |
| 816 | const double * COIN_RESTRICT dluval = fact->R_etas_element; |
| 817 | const int * COIN_RESTRICT hrowi = fact->R_etas_index; |
| 818 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 819 | const int * COIN_RESTRICT hpivco = fact->hpivcoR; |
| 820 | char * COIN_RESTRICT nonzero = fact->nonzero; |
| 821 | int ndo=fact->nR_etas; |
| 822 | int i, j, k1; |
| 823 | double dv; |
| 824 | int ipiv; |
| 825 | int irow0, irow1; |
| 826 | int knext; |
| 827 | int number=nincol; |
| 828 | |
| 829 | /* ------------------------------------------- */ |
| 830 | /* adjust back */ |
| 831 | hrowi++; |
| 832 | dluval++; |
| 833 | |
| 834 | /* DO ANY ROW TRANSFORMATIONS */ |
| 835 | |
| 836 | /* Function Body */ |
| 837 | knext = mcstrt[ndo + 1]; |
| 838 | for (i = ndo; i > 0; --i) { |
| 839 | k1 = knext; |
| 840 | knext = mcstrt[i]; |
| 841 | ipiv = hpivco[i]; |
| 842 | dv = dwork1[ipiv]; |
| 843 | if (dv) { |
| 844 | for (j = k1; j <knext-1; j+=2) { |
| 845 | irow0 = hrowi[j]; |
| 846 | irow1 = hrowi[j+1]; |
| 847 | SHIFT_REF(dwork1, irow0) += dv * dluval[j]; |
| 848 | SHIFT_REF(dwork1, irow1) += dv * dluval[j+1]; |
| 849 | if (!nonzero[irow0]) { |
| 850 | nonzero[irow0]=1; |
| 851 | mpt[++number]=UNSHIFT_INDEX(irow0); |
| 852 | } |
| 853 | if (!nonzero[irow1]) { |
| 854 | nonzero[irow1]=1; |
| 855 | mpt[++number]=UNSHIFT_INDEX(irow1); |
| 856 | } |
| 857 | } |
| 858 | if (j<knext) { |
| 859 | irow0 = hrowi[j]; |
| 860 | SHIFT_REF(dwork1, irow0) += dv * dluval[j]; |
| 861 | if (!nonzero[irow0]) { |
| 862 | nonzero[irow0]=1; |
| 863 | mpt[++number]=UNSHIFT_INDEX(irow0); |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | } |
| 868 | return (number); |
| 869 | } /* c_ekkbtjl */ |
| 870 | |
| 871 | |
| 872 | |
| 873 | static void c_ekkbtju_dense(const int nrow, |
| 874 | const double * COIN_RESTRICT dluval, |
| 875 | const int * COIN_RESTRICT hrowi, |
| 876 | const int * COIN_RESTRICT mcstrt, |
| 877 | int * COIN_RESTRICT hpivco, |
| 878 | double * COIN_RESTRICT dwork1, |
| 879 | int * COIN_RESTRICT start,int last,int offset, |
| 880 | double * COIN_RESTRICT densew) |
| 881 | { |
| 882 | /* Local variables */ |
| 883 | int ipiv1,ipiv2; |
| 884 | int save=hpivco[last]; |
| 885 | |
| 886 | hpivco[last]=nrow+1; |
| 887 | |
| 888 | ipiv1=*start; |
| 889 | ipiv2=hpivco[ipiv1]; |
| 890 | while(ipiv2<last) { |
| 891 | int iel,k; |
| 892 | const int kx1 = mcstrt[ipiv1]; |
| 893 | const int kx2 = mcstrt[ipiv2]; |
| 894 | const int nel1 = hrowi[kx1-1]; |
| 895 | const int nel2 = hrowi[kx2-1]; |
| 896 | const double dpiv1 = dluval[kx1-1]; |
| 897 | const double dpiv2 = dluval[kx2-1]; |
| 898 | const int n1 = offset+ipiv1; /* number in dense part */ |
| 899 | const int nsparse1=nel1-n1; |
| 900 | const int nsparse2=nel2-n1-(ipiv2-ipiv1); |
| 901 | const int k1 = kx1+nsparse1; |
| 902 | const int k2 = kx2+nsparse2; |
| 903 | const double *dlu1 = &dluval[k1]; |
| 904 | const double *dlu2 = &dluval[k2]; |
| 905 | |
| 906 | double dv1 = dwork1[ipiv1]; |
| 907 | double dv2 = dwork1[ipiv2]; |
| 908 | |
| 909 | for (iel = kx1; iel < k1; ++iel) { |
| 910 | dv1 -= SHIFT_REF(dwork1, hrowi[iel]) * dluval[iel]; |
| 911 | } |
| 912 | for (iel = kx2; iel < k2; ++iel) { |
| 913 | dv2 -= SHIFT_REF(dwork1, hrowi[iel]) * dluval[iel]; |
| 914 | } |
| 915 | for (k=0;k<n1;k++) { |
| 916 | dv1 -= dlu1[k] * densew[k]; |
| 917 | dv2 -= dlu2[k] * densew[k]; |
| 918 | } |
| 919 | dv1 *= dpiv1; |
| 920 | dv2 -= dlu2[n1] * dv1; |
| 921 | dwork1[ipiv1] = dv1; |
| 922 | dwork1[ipiv2] = dv2*dpiv2; |
| 923 | ipiv1 = hpivco[ipiv2]; |
| 924 | ipiv2 = hpivco[ipiv1]; |
| 925 | } |
| 926 | hpivco[last]=save; |
| 927 | |
| 928 | *start=ipiv1; |
| 929 | return; |
| 930 | } |
| 931 | /* about 8-10% of execution time is spent in this routine */ |
| 932 | static int c_ekkbtju_aux(const double * COIN_RESTRICT dluval, |
| 933 | const int * COIN_RESTRICT hrowi, |
| 934 | const int * COIN_RESTRICT mcstrt, |
| 935 | const int * COIN_RESTRICT hpivco, |
| 936 | double * COIN_RESTRICT dwork1, |
| 937 | int ipiv, int loop_end) |
| 938 | { |
| 939 | #define UNROLL2 2 |
| 940 | #ifndef UNROLL2 |
| 941 | #if CLP_OSL==2||CLP_OSL==3 |
| 942 | #define UNROLL2 2 |
| 943 | #else |
| 944 | #define UNROLL2 1 |
| 945 | #endif |
| 946 | #endif |
| 947 | while (ipiv<=loop_end) { |
| 948 | int kx = mcstrt[ipiv]; |
| 949 | const int nel = hrowi[kx-1]; |
| 950 | #if UNROLL2<2 |
| 951 | const int kxe = kx + nel; |
| 952 | #endif |
| 953 | |
| 954 | double dv = dwork1[ipiv]; /* rhs */ |
| 955 | #if UNROLL2>1 |
| 956 | const int * hrowi2=hrowi+kx; |
| 957 | const int * hrowi2end=hrowi2+nel; |
| 958 | const double * dluval2=dluval+kx; |
| 959 | #else |
| 960 | int iel; |
| 961 | #endif |
| 962 | const double dpiv = dluval[kx-1]; /* inverse of pivot */ |
| 963 | |
| 964 | |
| 965 | /* subtract terms whose unknowns have been solved for */ |
| 966 | |
| 967 | /* a significant proportion of these loops may not modify dv at all. |
| 968 | * However, it seems to be just as expensive to check if the loop |
| 969 | * would modify dv as it is to just do it. |
| 970 | * The only difference would be that dluval wouldn't be referenced |
| 971 | * for those loops, would might save some cache paging, |
| 972 | * but unfortunately the code generated to search for zeros (on AIX) |
| 973 | * is *worse* than code that just multiplies by dval. |
| 974 | */ |
| 975 | #if UNROLL2<2 |
| 976 | for (iel = kx; iel < kxe; ++iel) { |
| 977 | const int irow = hrowi[iel]; |
| 978 | const double dval=dluval[iel]; |
| 979 | dv -= SHIFT_REF(dwork1, irow) * dval; |
| 980 | } |
| 981 | |
| 982 | dwork1[ipiv] = dv * dpiv; /* divide by the pivot */ |
| 983 | #else |
| 984 | if ((nel&1)!=0) { |
| 985 | int irow = *hrowi2; |
| 986 | double dval=*dluval2; |
| 987 | dv -= SHIFT_REF(dwork1, irow) * dval; |
| 988 | hrowi2++; |
| 989 | dluval2++; |
| 990 | } |
| 991 | for (; hrowi2 < hrowi2end; hrowi2 +=2,dluval2 +=2) { |
| 992 | int irow0 = hrowi2[0]; |
| 993 | int irow1 = hrowi2[1]; |
| 994 | double dval0=dluval2[0]; |
| 995 | double dval1=dluval2[1]; |
| 996 | double d0=SHIFT_REF(dwork1, irow0); |
| 997 | double d1=SHIFT_REF(dwork1, irow1); |
| 998 | dv -= d0 * dval0; |
| 999 | dv -= d1 * dval1; |
| 1000 | } |
| 1001 | dwork1[ipiv] = dv * dpiv; /* divide by the pivot */ |
| 1002 | #endif |
| 1003 | |
| 1004 | ipiv=hpivco[ipiv]; |
| 1005 | } |
| 1006 | |
| 1007 | return (ipiv); |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * We are given the upper diagonal matrix U from the LU factorization |
| 1012 | * and a rhs dwork1. |
| 1013 | * This solves the system U x = dwork1 |
| 1014 | * by back substitution, overwriting dwork1 with the solution x. |
| 1015 | * |
| 1016 | * It does this in textbook style by solving the equations "bottom" up, |
| 1017 | * so for each equation one new unknown is solved for by subtracting |
| 1018 | * from the rhs the sum of the terms whose unknowns have been solved for, |
| 1019 | * then dividing by the coefficient of the new unknown. |
| 1020 | * |
| 1021 | * Since we update the U matrix using F-T, the order of the columns |
| 1022 | * changes slightly each iteration. Initially, hpivco[i] == i+1, |
| 1023 | * and each iteration (generally) introduces one element where this |
| 1024 | * is no longer true. However, because we periodically refactorize, |
| 1025 | * it is much more common for hpivco[i] == i+1 than not. |
| 1026 | * |
| 1027 | * The one quirk is that value referred to as the pivot is actually |
| 1028 | * the reciprocal of the pivot, to avoid a division. |
| 1029 | * |
| 1030 | * Solving in this fashion is inappropriate if there are frequently |
| 1031 | * cases where all unknowns in an equation have value zero. |
| 1032 | * This seems to happen frequently if the sparsity of the rhs is, say, 10%. |
| 1033 | */ |
| 1034 | static void c_ekkbtju(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1035 | double * COIN_RESTRICT dwork1, |
| 1036 | int ipiv) |
| 1037 | { |
| 1038 | const int nrow = fact->nrow; |
| 1039 | double * COIN_RESTRICT dluval = fact->xeeadr; |
| 1040 | int * COIN_RESTRICT hrowi = fact->xeradr; |
| 1041 | int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 1042 | int * COIN_RESTRICT hpivco_new = fact->kcpadr+1; |
| 1043 | int ndenuc=fact->ndenuc; |
| 1044 | int first_dense = fact->first_dense; |
| 1045 | int last_dense = fact->last_dense; |
| 1046 | |
| 1047 | const int has_dense = (first_dense<last_dense && |
| 1048 | mcstrt[ipiv]<=mcstrt[last_dense]); |
| 1049 | |
| 1050 | /* Parameter adjustments */ |
| 1051 | /* dluval and hrowi were NOT decremented here. |
| 1052 | I believe that they are used as C-style arrays below. |
| 1053 | At this point, I am going to convert them from Fortran- to C-style |
| 1054 | here by incrementing them; at some later time, I will convert their |
| 1055 | uses in this file to Fortran-style. |
| 1056 | */ |
| 1057 | dluval++; |
| 1058 | hrowi++; |
| 1059 | |
| 1060 | if (has_dense) |
| 1061 | ipiv = c_ekkbtju_aux(dluval, hrowi, mcstrt, hpivco_new, dwork1, ipiv, |
| 1062 | first_dense - 1); |
| 1063 | |
| 1064 | if (has_dense) { |
| 1065 | int n=0; |
| 1066 | int firstDense = nrow-ndenuc+1; |
| 1067 | double *densew = &dwork1[firstDense]; |
| 1068 | |
| 1069 | /* check first dense to see where in triangle it is */ |
| 1070 | int last=first_dense; |
| 1071 | int j=mcstrt[last]-1; |
| 1072 | int k1=j; |
| 1073 | int k2=j+hrowi[j]; |
| 1074 | |
| 1075 | for (j=k2;j>k1;j--) { |
| 1076 | int irow=UNSHIFT_INDEX(hrowi[j]); |
| 1077 | if (irow<firstDense) { |
| 1078 | break; |
| 1079 | } else { |
| 1080 | #ifdef DEBUG |
| 1081 | if (irow!=last-1) { |
| 1082 | abort(); |
| 1083 | } |
| 1084 | #endif |
| 1085 | last=irow; |
| 1086 | n++; |
| 1087 | } |
| 1088 | } |
| 1089 | c_ekkbtju_dense(nrow,dluval,hrowi,mcstrt,const_cast<int *> (hpivco_new), |
| 1090 | dwork1,&ipiv,last_dense, n - first_dense, densew); |
| 1091 | } |
| 1092 | |
| 1093 | (void) c_ekkbtju_aux(dluval, hrowi, mcstrt, hpivco_new, dwork1, ipiv, nrow); |
| 1094 | } /* c_ekkbtju */ |
| 1095 | |
| 1096 | |
| 1097 | /* |
| 1098 | * mpt / *nincolp contain the indices of nonzeros in dwork1. |
| 1099 | * nonzero contains the same information as a byte-mask. |
| 1100 | * |
| 1101 | * currently, erase_nonzero is true iff this is called from c_ekketsj. |
| 1102 | */ |
| 1103 | static int c_ekkbtju_sparse(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1104 | double * COIN_RESTRICT dwork1, |
| 1105 | int * COIN_RESTRICT mpt, int nincol, |
| 1106 | int * COIN_RESTRICT spare) |
| 1107 | { |
| 1108 | const double * COIN_RESTRICT dluval = fact->xeeadr+1; |
| 1109 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 1110 | char * COIN_RESTRICT nonzero = fact->nonzero; |
| 1111 | const int * COIN_RESTRICT hcoli = fact->xecadr; |
| 1112 | const int * COIN_RESTRICT mrstrt = fact->xrsadr; |
| 1113 | const int * COIN_RESTRICT hinrow = fact->xrnadr; |
| 1114 | const double * COIN_RESTRICT de2val = fact->xe2adr-1; |
| 1115 | int i; |
| 1116 | int iPivot; |
| 1117 | int nList=0; |
| 1118 | int nStack,k,kx; |
| 1119 | const int nrow=fact->nrow; |
| 1120 | const double tolerance = fact->zeroTolerance; |
| 1121 | int * COIN_RESTRICT list = spare; |
| 1122 | int * COIN_RESTRICT stack = spare+nrow; |
| 1123 | int * COIN_RESTRICT next = stack+nrow; |
| 1124 | /* |
| 1125 | * Examine all nonzero elements and determine which elements may be |
| 1126 | * nonzero in the result. |
| 1127 | * Any row in U that contains terms that may have nonzero variable values |
| 1128 | * may produce a nonzero value. |
| 1129 | */ |
| 1130 | for (k=0;k<nincol;k++) { |
| 1131 | nStack=1; |
| 1132 | iPivot=mpt[k]; |
| 1133 | stack[0]=iPivot; |
| 1134 | next[0]=0; |
| 1135 | while (nStack) { |
| 1136 | int kPivot,ninrow,j; |
| 1137 | /* take off stack */ |
| 1138 | kPivot=stack[--nStack]; |
| 1139 | /*printf("nStack %d kPivot %d, ninrow %d, j %d, nList %d\n", |
| 1140 | nStack,kPivot,hinrow[kPivot], |
| 1141 | next[nStack],nList);*/ |
| 1142 | if (nonzero[kPivot]!=1) { |
| 1143 | ninrow = hinrow[kPivot]; |
| 1144 | j=next[nStack]; |
| 1145 | if (j!=ninrow) { |
| 1146 | kx = mrstrt[kPivot]; |
| 1147 | kPivot=hcoli[kx+j]; |
| 1148 | /* put back on stack */ |
| 1149 | next[nStack++] ++; |
| 1150 | if (!nonzero[kPivot]) { |
| 1151 | /* and new one */ |
| 1152 | stack[nStack]=kPivot; |
| 1153 | nonzero[kPivot]=2; |
| 1154 | next[nStack++]=0; |
| 1155 | } |
| 1156 | } else { |
| 1157 | /* finished so mark */ |
| 1158 | list[nList++]=kPivot; |
| 1159 | nonzero[kPivot]=1; |
| 1160 | } |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | i=nList-1; |
| 1166 | nList=0; |
| 1167 | for (;i>=0;i--) { |
| 1168 | double dpiv; |
| 1169 | double dv; |
| 1170 | iPivot = list[i]; |
| 1171 | kx = mcstrt[iPivot]; |
| 1172 | dpiv = dluval[kx-1]; |
| 1173 | dv = dpiv * dwork1[iPivot]; |
| 1174 | nonzero[iPivot] = 0; |
| 1175 | if (fabs(dv)>=tolerance) { |
| 1176 | int iel; |
| 1177 | int krx = mrstrt[iPivot]; |
| 1178 | int krxe = krx+hinrow[iPivot]; |
| 1179 | dwork1[iPivot]=dv; |
| 1180 | mpt[nList++]=iPivot; |
| 1181 | for (iel = krx; iel < krxe; iel++) { |
| 1182 | int irow0 = hcoli[iel]; |
| 1183 | double dval=de2val[iel]; |
| 1184 | dwork1[irow0] -= dv*dval; |
| 1185 | } |
| 1186 | } else { |
| 1187 | dwork1[iPivot]=0.0; |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | return (nList); |
| 1192 | } /* c_ekkbtjuRow */ |
| 1193 | |
| 1194 | /* |
| 1195 | * dpermu is supposed to be zeroed on entry to this routine. |
| 1196 | * It is used as a working buffer. |
| 1197 | * The input vector dwork1 is permuted into dpermu, operated on, |
| 1198 | * and the answer is permuted back into dwork1, zeroing dpermu in |
| 1199 | * the process. |
| 1200 | */ |
| 1201 | /* |
| 1202 | * nincol > 0 ==> mpt contains indices of non-zeros in dpermu |
| 1203 | * |
| 1204 | * first_nonzero contains index of first (last??)nonzero; |
| 1205 | * only used if nincol==0. |
| 1206 | * |
| 1207 | * dpermu contains permuted input; dwork1 is now zero |
| 1208 | */ |
| 1209 | int c_ekkbtrn(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1210 | double * COIN_RESTRICT dwork1, |
| 1211 | int * COIN_RESTRICT mpt, int first_nonzero) |
| 1212 | { |
| 1213 | double * COIN_RESTRICT dpermu = fact->kadrpm; |
| 1214 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 1215 | const int * COIN_RESTRICT hpivco_new= fact->kcpadr+1; |
| 1216 | |
| 1217 | const int nrow = fact->nrow; |
| 1218 | int i; |
| 1219 | int nincol; |
| 1220 | /* find the first non-zero input */ |
| 1221 | int ipiv; |
| 1222 | if (first_nonzero) { |
| 1223 | ipiv = first_nonzero; |
| 1224 | #if 1 |
| 1225 | if (c_ekk_IsSet(fact->bitArray,ipiv)) { |
| 1226 | /* slack */ |
| 1227 | int lastSlack = fact->lastSlack; |
| 1228 | int firstDo=hpivco_new[lastSlack]; |
| 1229 | assert (dpermu[ipiv]); |
| 1230 | while (ipiv!=firstDo) { |
| 1231 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 1232 | if (dpermu[ipiv]) |
| 1233 | dpermu[ipiv]=-dpermu[ipiv]; |
| 1234 | ipiv=hpivco_new[ipiv]; |
| 1235 | } |
| 1236 | } |
| 1237 | #endif |
| 1238 | } else { |
| 1239 | int lastSlack = fact->numberSlacks; |
| 1240 | ipiv=hpivco_new[0]; |
| 1241 | for (i=0;i<lastSlack;i++) { |
| 1242 | int next_piv = hpivco_new[ipiv]; |
| 1243 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 1244 | if (dpermu[ipiv]) { |
| 1245 | break; |
| 1246 | } else { |
| 1247 | ipiv=next_piv; |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | /* usually, there is a non-zero slack entry... */ |
| 1252 | if (i==lastSlack) { |
| 1253 | /* but if there isn't... */ |
| 1254 | for (;i<nrow;i++) { |
| 1255 | if (!dpermu[ipiv]) { |
| 1256 | ipiv=hpivco_new[ipiv]; |
| 1257 | } else { |
| 1258 | break; |
| 1259 | } |
| 1260 | } |
| 1261 | } else { |
| 1262 | /* reverse signs for slacks */ |
| 1263 | for (;i<lastSlack;i++) { |
| 1264 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 1265 | if (dpermu[ipiv]) |
| 1266 | dpermu[ipiv]=-dpermu[ipiv]; |
| 1267 | ipiv=hpivco_new[ipiv]; |
| 1268 | } |
| 1269 | assert (!c_ekk_IsSet(fact->bitArray,ipiv)||ipiv>fact->nrow); |
| 1270 | |
| 1271 | /* this is presumably the first non-zero non slack */ |
| 1272 | /*ipiv=firstDo;*/ |
| 1273 | } |
| 1274 | } |
| 1275 | if (ipiv<=fact->nrow) { |
| 1276 | /* skipBtju is always (?) 0 first the first call, |
| 1277 | * ipiv tends to be >nrow for the second */ |
| 1278 | |
| 1279 | /* DO U */ |
| 1280 | c_ekkbtju(fact,dpermu, |
| 1281 | ipiv); |
| 1282 | } |
| 1283 | |
| 1284 | |
| 1285 | /* DO ROW ETAS IN L */ |
| 1286 | c_ekkbtjl(fact, dpermu); |
| 1287 | c_ekkbtj4p(fact,dpermu); |
| 1288 | |
| 1289 | /* dwork1[mpermu] = dpermu; dpermu = 0; mpt = indices of non-zeros */ |
| 1290 | nincol = |
| 1291 | c_ekkshfpo_scan2zero(fact,&mpermu[1],dpermu,&dwork1[1],&mpt[1]); |
| 1292 | |
| 1293 | /* dpermu should be zero now */ |
| 1294 | #ifdef DEBUG |
| 1295 | for (i=1;i<=nrow ;i++ ) { |
| 1296 | if (dpermu[i]) { |
| 1297 | abort(); |
| 1298 | } /* endif */ |
| 1299 | } /* endfor */ |
| 1300 | #endif |
| 1301 | return (nincol); |
| 1302 | } /* c_ekkbtrn */ |
| 1303 | |
| 1304 | static int c_ekkbtrn0_new(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1305 | double * COIN_RESTRICT dwork1, |
| 1306 | int * COIN_RESTRICT mpt, int nincol, |
| 1307 | int * COIN_RESTRICT spare) |
| 1308 | { |
| 1309 | double * COIN_RESTRICT dpermu = fact->kadrpm; |
| 1310 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 1311 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 1312 | |
| 1313 | const int nrow = fact->nrow; |
| 1314 | |
| 1315 | int i; |
| 1316 | char * nonzero=fact->nonzero; |
| 1317 | int doSparse=1; |
| 1318 | |
| 1319 | /* so: dpermu must contain room for: |
| 1320 | * nrow doubles, followed by |
| 1321 | * nrow ints (mpermu), followed by |
| 1322 | * nrow ints (the inverse permutation), followed by |
| 1323 | * an unused area (?) of nrow ints, followed by |
| 1324 | * nrow chars (this non-zero array). |
| 1325 | * |
| 1326 | * and apparently the first nrow elements of nonzero are expected |
| 1327 | * to already be zero. |
| 1328 | */ |
| 1329 | #ifdef DEBUG |
| 1330 | for (i=1;i<=nrow ;i++ ) { |
| 1331 | if (nonzero[i]) { |
| 1332 | abort(); |
| 1333 | } /* endif */ |
| 1334 | } /* endfor */ |
| 1335 | #endif |
| 1336 | /* now nonzero[i]==1 iff there is an entry for i in mpt */ |
| 1337 | |
| 1338 | nincol=c_ekkbtju_sparse(fact, dpermu, |
| 1339 | &mpt[1], nincol, |
| 1340 | spare); |
| 1341 | |
| 1342 | /* the vector may have more nonzero elements now */ |
| 1343 | /* DO ROW ETAS IN L */ |
| 1344 | #define DENSE_THRESHOLD (nincol*10+100) |
| 1345 | if (DENSE_THRESHOLD>nrow) { |
| 1346 | doSparse=0; |
| 1347 | c_ekkbtjl(fact, dpermu); |
| 1348 | } else { |
| 1349 | /* set nonzero */ |
| 1350 | for(i=0;i<nincol;i++) { |
| 1351 | int j=mpt[i+1]; |
| 1352 | nonzero[j]=1; |
| 1353 | } |
| 1354 | nincol = |
| 1355 | c_ekkbtjl_sparse(fact, |
| 1356 | dpermu, |
| 1357 | mpt, |
| 1358 | nincol); |
| 1359 | for(i=0;i<nincol;i++) { |
| 1360 | int j=mpt[i+1]; |
| 1361 | nonzero[j]=0; |
| 1362 | } |
| 1363 | if (DENSE_THRESHOLD>nrow) { |
| 1364 | doSparse=0; |
| 1365 | #ifdef DEBUG |
| 1366 | for (i=1;i<=nrow;i++) { |
| 1367 | if (nonzero[i]) { |
| 1368 | abort(); |
| 1369 | } |
| 1370 | } |
| 1371 | #endif |
| 1372 | } |
| 1373 | } |
| 1374 | if (!doSparse) { |
| 1375 | c_ekkbtj4p(fact,dpermu); |
| 1376 | /* dwork1[mpermu] = dpermu; dpermu = 0; mpt = indices of non-zeros */ |
| 1377 | nincol = |
| 1378 | c_ekkshfpo_scan2zero(fact,&mpermu[1],dpermu,&dwork1[1],&mpt[1]); |
| 1379 | |
| 1380 | /* dpermu should be zero now */ |
| 1381 | #ifdef DEBUG |
| 1382 | for (i=1;i<=nrow ;i++ ) { |
| 1383 | if (dpermu[i]) { |
| 1384 | abort(); |
| 1385 | } /* endif */ |
| 1386 | } /* endfor */ |
| 1387 | #endif |
| 1388 | } else { |
| 1389 | /* still sparse */ |
| 1390 | if (fact->nnentl) { |
| 1391 | nincol = |
| 1392 | c_ekkbtj4_sparse(fact, |
| 1393 | dpermu, |
| 1394 | &mpt[1], |
| 1395 | dwork1, |
| 1396 | nincol,spare); |
| 1397 | } else { |
| 1398 | double tolerance=fact->zeroTolerance; |
| 1399 | int irow; |
| 1400 | int nput=0; |
| 1401 | if (fact->packedMode) { |
| 1402 | for (i = 0; i <nincol; i++) { |
| 1403 | int irow0; |
| 1404 | double dval; |
| 1405 | irow=mpt[i+1]; |
| 1406 | dval=dpermu[irow]; |
| 1407 | if (NOT_ZERO(dval)) { |
| 1408 | if (fabs(dval) >= tolerance) { |
| 1409 | irow0= hpivro[irow]; |
| 1410 | dwork1[1+nput]=dval; |
| 1411 | mpt[1 + nput++]=irow0-1; |
| 1412 | } |
| 1413 | dpermu[irow]=0.0; |
| 1414 | } |
| 1415 | } |
| 1416 | } else { |
| 1417 | for (i = 0; i <nincol; i++) { |
| 1418 | int irow0; |
| 1419 | double dval; |
| 1420 | irow=mpt[i+1]; |
| 1421 | dval=dpermu[irow]; |
| 1422 | if (NOT_ZERO(dval)) { |
| 1423 | if (fabs(dval) >= tolerance) { |
| 1424 | irow0= hpivro[irow]; |
| 1425 | dwork1[irow0]=dval; |
| 1426 | mpt[1 + nput++]=irow0-1; |
| 1427 | } |
| 1428 | dpermu[irow]=0.0; |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | nincol=nput; |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | return (nincol); |
| 1438 | } /* c_ekkbtrn */ |
| 1439 | |
| 1440 | |
| 1441 | /* returns c_ekkbtrn(fact, dwork1, mpt) |
| 1442 | * |
| 1443 | * but since mpt[1..nincol] contains the indices of non-zeros in dwork1, |
| 1444 | * we can do faster. |
| 1445 | */ |
| 1446 | static int c_ekkbtrn_mpt(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1447 | double * COIN_RESTRICT dwork1, |
| 1448 | int * COIN_RESTRICT mpt, int nincol,int * COIN_RESTRICT spare) |
| 1449 | { |
| 1450 | double * COIN_RESTRICT dpermu = fact->kadrpm; |
| 1451 | const int nrow = fact->nrow; |
| 1452 | |
| 1453 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 1454 | /*const int *mrstrt = fact->xrsadr;*/ |
| 1455 | |
| 1456 | #ifdef DEBUG |
| 1457 | int i; |
| 1458 | memset(spare,'A',3*nrow*sizeof(int)); |
| 1459 | { |
| 1460 | |
| 1461 | for (i=1;i<=nrow;i++) { |
| 1462 | if (dpermu[i]) { |
| 1463 | abort(); |
| 1464 | } |
| 1465 | } |
| 1466 | } |
| 1467 | #endif |
| 1468 | |
| 1469 | |
| 1470 | int i; |
| 1471 | #ifdef DEBUG |
| 1472 | for (i=1;i<=nrow;i++) { |
| 1473 | if (fact->nonzero[i]||dpermu[i]) { |
| 1474 | abort(); |
| 1475 | } |
| 1476 | } |
| 1477 | #endif |
| 1478 | assert (fact->if_sparse_update>0&&mpt&&fact->rows_ok) ; |
| 1479 | |
| 1480 | /* read the input vector from mpt/dwork1; |
| 1481 | * permute it into dpermu; |
| 1482 | * construct a nonzero mask in nonzero; |
| 1483 | * overwrite mpt with the permuted indices; |
| 1484 | * clear the dwork1 vector. |
| 1485 | */ |
| 1486 | for (i=0;i<nincol;i++) { |
| 1487 | int irow=mpt[i+1]; |
| 1488 | int jrow=mpermu[irow]; |
| 1489 | dpermu[jrow]=dwork1[irow]; |
| 1490 | /*nonzero[jrow-1]=1; this is done in btrn0 */ |
| 1491 | mpt[i+1]=jrow; |
| 1492 | dwork1[irow]=0.0; |
| 1493 | } |
| 1494 | |
| 1495 | if (DENSE_THRESHOLD<nrow) { |
| 1496 | nincol = c_ekkbtrn0_new(fact, dwork1, mpt, nincol,spare); |
| 1497 | } else { |
| 1498 | nincol = c_ekkbtrn(fact, dwork1, mpt, 0); |
| 1499 | } |
| 1500 | #ifdef DEBUG |
| 1501 | { |
| 1502 | |
| 1503 | for (i=1;i<=nrow;i++) { |
| 1504 | if (dpermu[i]) { |
| 1505 | abort(); |
| 1506 | } |
| 1507 | } |
| 1508 | if (fact->if_sparse_update>0) { |
| 1509 | for (i=1;i<=nrow;i++) { |
| 1510 | if (fact->nonzero[i]) { |
| 1511 | abort(); |
| 1512 | } |
| 1513 | } |
| 1514 | } |
| 1515 | } |
| 1516 | #endif |
| 1517 | return nincol; |
| 1518 | } |
| 1519 | |
| 1520 | /* returns c_ekkbtrn(fact, dwork1, mpt) |
| 1521 | * |
| 1522 | * but since (dwork1[i]!=0) == (i==ipivrw), |
| 1523 | * we can do faster. |
| 1524 | */ |
| 1525 | int c_ekkbtrn_ipivrw(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 1526 | double * COIN_RESTRICT dwork1, |
| 1527 | int * COIN_RESTRICT mpt, int ipivrw,int * COIN_RESTRICT spare) |
| 1528 | { |
| 1529 | double * COIN_RESTRICT dpermu = fact->kadrpm; |
| 1530 | const int nrow = fact->nrow; |
| 1531 | |
| 1532 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 1533 | const double * COIN_RESTRICT dluval = fact->xeeadr; |
| 1534 | const int * COIN_RESTRICT mrstrt = fact->xrsadr; |
| 1535 | const int * COIN_RESTRICT hinrow = fact->xrnadr; |
| 1536 | const int * COIN_RESTRICT hcoli = fact->xecadr; |
| 1537 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 1538 | |
| 1539 | int nincol; |
| 1540 | |
| 1541 | #ifdef DEBUG |
| 1542 | int i; |
| 1543 | for (i=1;i<=nrow ;i++ ) { |
| 1544 | if (dpermu[i]) { |
| 1545 | abort(); |
| 1546 | } /* endif */ |
| 1547 | } /* endfor */ |
| 1548 | #endif |
| 1549 | |
| 1550 | if (fact->if_sparse_update>0&&mpt&& fact->rows_ok) { |
| 1551 | mpt[1] = ipivrw; |
| 1552 | nincol = c_ekkbtrn_mpt(fact, dwork1, mpt, 1,spare); |
| 1553 | } else { |
| 1554 | int ipiv; |
| 1555 | int kpivrw = mpermu[ipivrw]; |
| 1556 | dpermu[kpivrw]=dwork1[ipivrw]; |
| 1557 | dwork1[ipivrw]=0.0; |
| 1558 | |
| 1559 | if (fact->rows_ok) { |
| 1560 | /* !fact->if_sparse_update |
| 1561 | * but we still have rowwise info, |
| 1562 | * so we may as well use it to do the slack row |
| 1563 | */ |
| 1564 | int iipivrw=nrow+1; |
| 1565 | int itest = fact->nnentu+1; |
| 1566 | int k=mrstrt[kpivrw]; |
| 1567 | int lastInRow= k+hinrow[kpivrw]; |
| 1568 | double dpiv,dv; |
| 1569 | for (;k<lastInRow;k++) { |
| 1570 | int icol=hcoli[k]; |
| 1571 | int start=mcstrt[icol]; |
| 1572 | if (start<itest) { |
| 1573 | iipivrw=icol; |
| 1574 | itest=start; |
| 1575 | } |
| 1576 | } |
| 1577 | /* do missed pivot */ |
| 1578 | itest=mcstrt[kpivrw]; |
| 1579 | dpiv=dluval[itest]; |
| 1580 | dv=dpermu[kpivrw]; |
| 1581 | dv*=dpiv; |
| 1582 | dpermu[kpivrw]=dv; |
| 1583 | ipiv=iipivrw; |
| 1584 | } else { |
| 1585 | /* no luck - c_ekkbtju will slog through slacks (?) */ |
| 1586 | ipiv=kpivrw; |
| 1587 | } |
| 1588 | /* nincol not read */ |
| 1589 | /* not sparse */ |
| 1590 | /* do slacks */ |
| 1591 | if (ipiv<=fact->nrow) { |
| 1592 | if (c_ekk_IsSet(fact->bitArray,ipiv)) { |
| 1593 | const int * hpivco_new= fact->kcpadr+1; |
| 1594 | int lastSlack = fact->lastSlack; |
| 1595 | int firstDo=hpivco_new[lastSlack]; |
| 1596 | /* slack */ |
| 1597 | /* need pivot row of first nonslack */ |
| 1598 | dpermu[ipiv]=-dpermu[ipiv]; |
| 1599 | #ifndef NDEBUG |
| 1600 | while (1) { |
| 1601 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 1602 | ipiv=hpivco_new[ipiv]; |
| 1603 | if (ipiv>fact->nrow||ipiv==firstDo) |
| 1604 | break; |
| 1605 | } |
| 1606 | assert (!c_ekk_IsSet(fact->bitArray,ipiv)||ipiv>fact->nrow); |
| 1607 | assert (ipiv==firstDo); |
| 1608 | #endif |
| 1609 | ipiv=firstDo; |
| 1610 | } |
| 1611 | } |
| 1612 | nincol = c_ekkbtrn(fact, dwork1, mpt, ipiv); |
| 1613 | } |
| 1614 | |
| 1615 | return nincol; |
| 1616 | } |
| 1617 | /* |
| 1618 | * Does work associated with eq. 3.7: |
| 1619 | * r' = u' U^-1 |
| 1620 | * |
| 1621 | * where u' (can't write the overbar) is the p'th row of U, without |
| 1622 | * the entry for column p. (here, jpivrw is p). |
| 1623 | * We solve this as for btju. We know |
| 1624 | * r' U = u' |
| 1625 | * |
| 1626 | * so we solve from low index to hi, determining the next value u_i' |
| 1627 | * by doing the dot-product of r' and the i'th column of U (excluding |
| 1628 | * element i itself), subtracting that from u'_i, and dividing by |
| 1629 | * U_ii (we store the reciprocal, so here we multiply). |
| 1630 | * |
| 1631 | * Now, in principle dwork1 should be initialized to the p'th row of U. |
| 1632 | * Instead, it is initially zeroed and filled in as we go along. |
| 1633 | * Of the entries in u' that we reference during a dot product with |
| 1634 | * a column of U, either |
| 1635 | * the entry is 0 by definition, since it is < p, or |
| 1636 | * it has already been set by a previous iteration, or |
| 1637 | * it is p. |
| 1638 | * |
| 1639 | * Because of this, we know that all elements < p will be zero; |
| 1640 | * that's why we start with p (kpivrw). |
| 1641 | |
| 1642 | * While we do this product, we also zero out the p'th row. |
| 1643 | */ |
| 1644 | static void c_ekketju_aux(EKKfactinfo * COIN_RESTRICT2 fact,int sparse, |
| 1645 | double * COIN_RESTRICT dluval, int * COIN_RESTRICT hrowi, |
| 1646 | const int * COIN_RESTRICT mcstrt, const int * COIN_RESTRICT hpivco, |
| 1647 | double * COIN_RESTRICT dwork1, |
| 1648 | int *ipivp, int jpivrw, int stop_col) |
| 1649 | { |
| 1650 | int ipiv = *ipivp; |
| 1651 | if (1&&ipiv<stop_col&&c_ekk_IsSet(fact->bitArray,ipiv)) { |
| 1652 | /* slack */ |
| 1653 | int lastSlack = fact->lastSlack; |
| 1654 | int firstDo=hpivco[lastSlack]; |
| 1655 | while (1) { |
| 1656 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 1657 | dwork1[ipiv] = -dwork1[ipiv]; |
| 1658 | ipiv=hpivco[ipiv]; /* next column - generally ipiv+1 */ |
| 1659 | if (ipiv==firstDo||ipiv>=stop_col) |
| 1660 | break; |
| 1661 | } |
| 1662 | } |
| 1663 | |
| 1664 | while(ipiv<stop_col) { |
| 1665 | double dv = dwork1[ipiv]; |
| 1666 | int kx = mcstrt[ipiv]; |
| 1667 | int nel = hrowi[kx]; |
| 1668 | double dpiv = dluval[kx]; |
| 1669 | int kcs = kx + 1; |
| 1670 | int kce = kx + nel; |
| 1671 | int iel; |
| 1672 | |
| 1673 | for (iel = kcs; iel <= kce; ++iel) { |
| 1674 | int irow = hrowi[iel]; |
| 1675 | irow = UNSHIFT_INDEX(irow); |
| 1676 | dv -= dwork1[irow] * dluval[iel]; |
| 1677 | if (irow == jpivrw) { |
| 1678 | break; |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | /* assuming the p'th row is sparse, |
| 1683 | * this branch will be infrequently taken */ |
| 1684 | if (iel <= kce) { |
| 1685 | int irow = hrowi[iel]; |
| 1686 | /* irow == jpivrw */ |
| 1687 | dv += dluval[iel]; |
| 1688 | |
| 1689 | if (sparse) { |
| 1690 | /* delete this entry by overwriting it with the last */ |
| 1691 | --nel; |
| 1692 | hrowi[kx] = nel; |
| 1693 | hrowi[iel] = hrowi[kce]; |
| 1694 | #ifdef CLP_REUSE_ETAS |
| 1695 | double temp=dluval[iel]; |
| 1696 | dluval[iel] = dluval[kce]; |
| 1697 | hrowi[kce]=jpivrw; |
| 1698 | dluval[kce]=temp; |
| 1699 | #else |
| 1700 | dluval[iel] = dluval[kce]; |
| 1701 | #endif |
| 1702 | kce--; |
| 1703 | } else { |
| 1704 | /* we can't delete an entry from a dense column, |
| 1705 | * so we just zero it out */ |
| 1706 | dluval[iel]=0.0; |
| 1707 | iel++; |
| 1708 | } |
| 1709 | |
| 1710 | /* finish up the remaining entries; same as above loop, but no check */ |
| 1711 | for (; iel <= kce; ++iel) { |
| 1712 | irow = UNSHIFT_INDEX(hrowi[iel]); |
| 1713 | dv -= dwork1[irow] * dluval[iel]; |
| 1714 | } |
| 1715 | } |
| 1716 | dwork1[ipiv] = dv * dpiv; /* divide by pivot */ |
| 1717 | ipiv=hpivco[ipiv]; /* next column - generally ipiv+1 */ |
| 1718 | } |
| 1719 | |
| 1720 | /* ? is it guaranteed that ipiv==stop_col at this point?? */ |
| 1721 | *ipivp = ipiv; |
| 1722 | } |
| 1723 | |
| 1724 | /* dwork1 is assumed to be zeroed on entry */ |
| 1725 | static void c_ekketju(EKKfactinfo * COIN_RESTRICT2 fact,double *dluval, int *hrowi, |
| 1726 | const int * COIN_RESTRICT mcstrt, const int * COIN_RESTRICT hpivco, |
| 1727 | double * COIN_RESTRICT dwork1, |
| 1728 | int kpivrw, int first_dense , int last_dense) |
| 1729 | { |
| 1730 | int ipiv = hpivco[kpivrw]; |
| 1731 | int jpivrw = SHIFT_INDEX(kpivrw); |
| 1732 | |
| 1733 | const int nrow = fact->nrow; |
| 1734 | |
| 1735 | if (first_dense < last_dense && |
| 1736 | mcstrt[ipiv] <= mcstrt[last_dense]) { |
| 1737 | /* There are dense columns, and |
| 1738 | * some dense columns precede the pivot column */ |
| 1739 | |
| 1740 | /* first do any sparse columns "on the left" */ |
| 1741 | c_ekketju_aux(fact, true, dluval, hrowi, mcstrt, hpivco, dwork1, |
| 1742 | &ipiv, jpivrw, first_dense); |
| 1743 | |
| 1744 | /* then do dense columns */ |
| 1745 | c_ekketju_aux(fact, false, dluval, hrowi, mcstrt, hpivco, dwork1, |
| 1746 | &ipiv, jpivrw, last_dense+1); |
| 1747 | |
| 1748 | /* final sparse columns "on the right" ...*/ |
| 1749 | } |
| 1750 | /* ...are the same as sparse columns if there are no dense */ |
| 1751 | c_ekketju_aux(fact, true, dluval, hrowi, mcstrt, hpivco, dwork1, |
| 1752 | &ipiv, jpivrw, nrow+1); |
| 1753 | } /* c_ekketju */ |
| 1754 | |
| 1755 | |
| 1756 | |
| 1757 | |
| 1758 | |
| 1759 | |
| 1760 | |
| 1761 | |
| 1762 | |
| 1763 | |
| 1764 | |
| 1765 | |
| 1766 | /*#define PRINT_DEBUG*/ |
| 1767 | /* dwork1 is assumed to be zeroed on entry */ |
| 1768 | int c_ekketsj(/*const*/ EKKfactinfo * COIN_RESTRICT2 fact, |
| 1769 | double * COIN_RESTRICT dwork1, |
| 1770 | int * COIN_RESTRICT mpt2, double dalpha, int orig_nincol, |
| 1771 | int npivot, int *nuspikp, |
| 1772 | const int ipivrw,int * spare) |
| 1773 | { |
| 1774 | int nuspik = *nuspikp; |
| 1775 | |
| 1776 | int * COIN_RESTRICT mpermu=fact->mpermu; |
| 1777 | |
| 1778 | int * COIN_RESTRICT hcoli = fact->xecadr; |
| 1779 | double * COIN_RESTRICT dluval = fact->xeeadr; |
| 1780 | int * COIN_RESTRICT mrstrt = fact->xrsadr; |
| 1781 | int * COIN_RESTRICT hrowi = fact->xeradr; |
| 1782 | int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 1783 | int * COIN_RESTRICT hinrow = fact->xrnadr; |
| 1784 | /*int *hincol = fact->xcnadr; |
| 1785 | int *hpivro = fact->krpadr;*/ |
| 1786 | int * COIN_RESTRICT hpivco = fact->kcpadr; |
| 1787 | double * COIN_RESTRICT de2val = fact->xe2adr; |
| 1788 | |
| 1789 | const int nrow = fact->nrow; |
| 1790 | const int ifRowCopy = fact->rows_ok; |
| 1791 | |
| 1792 | int i, j=-1, k, i1, i2, k1; |
| 1793 | int kc, iel; |
| 1794 | double del3; |
| 1795 | int nroom; |
| 1796 | bool ifrows= (mrstrt[1] != 0); |
| 1797 | int kpivrw, jpivrw; |
| 1798 | int first_dense_mcstrt,last_dense_mcstrt; |
| 1799 | int nnentl; /* includes row stuff */ |
| 1800 | int doSparse=(fact->if_sparse_update>0); |
| 1801 | #ifdef MORE_DEBUG |
| 1802 | { |
| 1803 | const int * COIN_RESTRICT hrowi = fact->R_etas_index; |
| 1804 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 1805 | int ndo=fact->nR_etas; |
| 1806 | int knext; |
| 1807 | |
| 1808 | knext = mcstrt[ndo + 1]; |
| 1809 | for (int i = ndo; i > 0; --i) { |
| 1810 | int k1 = knext; |
| 1811 | knext = mcstrt[i]; |
| 1812 | for (int j = k1+1; j < knext; j++) { |
| 1813 | assert (hrowi[j]>0&&hrowi[j]<100000); |
| 1814 | } |
| 1815 | } |
| 1816 | } |
| 1817 | #endif |
| 1818 | |
| 1819 | int mcstrt_piv; |
| 1820 | int nincol=0; |
| 1821 | int * COIN_RESTRICT hpivco_new=fact->kcpadr+1; |
| 1822 | int * COIN_RESTRICT back=fact->back; |
| 1823 | int irtcod = 0; |
| 1824 | |
| 1825 | /* Parameter adjustments */ |
| 1826 | de2val--; |
| 1827 | |
| 1828 | /* Function Body */ |
| 1829 | if (!ifRowCopy) { |
| 1830 | doSparse=0; |
| 1831 | fact->if_sparse_update=-abs(fact->if_sparse_update); |
| 1832 | } |
| 1833 | if (npivot==1) { |
| 1834 | fact->num_resets=0; |
| 1835 | } |
| 1836 | kpivrw = mpermu[ipivrw]; |
| 1837 | #if 0 //ndef NDEBUG |
| 1838 | ets_count++; |
| 1839 | if (ets_check>=0&&ets_count>=ets_check) { |
| 1840 | printf("trouble\n" ); |
| 1841 | } |
| 1842 | #endif |
| 1843 | mcstrt_piv=mcstrt[kpivrw]; |
| 1844 | /* ndenuc - top has number deleted */ |
| 1845 | if (fact->ndenuc) { |
| 1846 | first_dense_mcstrt = mcstrt[fact->first_dense]; |
| 1847 | last_dense_mcstrt = mcstrt[fact->last_dense]; |
| 1848 | } else { |
| 1849 | first_dense_mcstrt=0; |
| 1850 | last_dense_mcstrt=0; |
| 1851 | } |
| 1852 | { |
| 1853 | int kdnspt = fact->nnetas - fact->nnentl; |
| 1854 | |
| 1855 | i1 = ((kdnspt - 1) + fact->R_etas_start[fact->nR_etas + 1]); |
| 1856 | /*i1 = -99999999;*/ |
| 1857 | |
| 1858 | /* fact->R_etas_start[fact->nR_etas + 1] is -(the number of els in R) */ |
| 1859 | nnentl = fact->nnetas - ((kdnspt - 1) + fact->R_etas_start[fact->nR_etas + 1]); |
| 1860 | } |
| 1861 | fact->demark=fact->nnentu+nnentl; |
| 1862 | jpivrw = SHIFT_INDEX(kpivrw); |
| 1863 | |
| 1864 | #ifdef CLP_REUSE_ETAS |
| 1865 | double del3Orig=0.0; |
| 1866 | #endif |
| 1867 | if (nuspik < 0) { |
| 1868 | goto L7000; |
| 1869 | } else if (nuspik == 0) { |
| 1870 | del3 = 0.; |
| 1871 | } else { |
| 1872 | del3 = 0.; |
| 1873 | i1 = fact->nnentu + 1; |
| 1874 | i2 = fact->nnentu + nuspik; |
| 1875 | if (fact->sortedEta) { |
| 1876 | /* binary search */ |
| 1877 | if (hrowi[i2] == jpivrw) { |
| 1878 | /* sitting right on the end - easy */ |
| 1879 | del3 = dluval[i2]; |
| 1880 | --nuspik; |
| 1881 | } else { |
| 1882 | bool foundit = true; |
| 1883 | |
| 1884 | /* binary search - sort of implies hrowi is sorted */ |
| 1885 | i = i1; |
| 1886 | if (hrowi[i] != jpivrw) { |
| 1887 | while (1) { |
| 1888 | i = (i1 + i2) >>1; |
| 1889 | if (i == i1) { |
| 1890 | foundit = false; |
| 1891 | break; |
| 1892 | } |
| 1893 | if (hrowi[i] < jpivrw) { |
| 1894 | i1 = i; |
| 1895 | } else if (hrowi[i] > jpivrw) { |
| 1896 | i2 = i; |
| 1897 | } |
| 1898 | else |
| 1899 | break; |
| 1900 | } |
| 1901 | } |
| 1902 | /* ??? what if we didn't find it? */ |
| 1903 | |
| 1904 | if (foundit) { |
| 1905 | del3 = dluval[i]; |
| 1906 | --nuspik; |
| 1907 | /* remove it and move the last element into its place */ |
| 1908 | hrowi[i] = hrowi[nuspik + fact->nnentu+1]; |
| 1909 | dluval[i] = dluval[nuspik + fact->nnentu+1]; |
| 1910 | } |
| 1911 | } |
| 1912 | } else { |
| 1913 | /* search */ |
| 1914 | for (i=i1;i<=i2;i++) { |
| 1915 | if (hrowi[i] == jpivrw) { |
| 1916 | del3 = dluval[i]; |
| 1917 | --nuspik; |
| 1918 | /* remove it and move the last element into its place */ |
| 1919 | hrowi[i] = hrowi[i2]; |
| 1920 | dluval[i] = dluval[i2]; |
| 1921 | break; |
| 1922 | } |
| 1923 | } |
| 1924 | } |
| 1925 | } |
| 1926 | #ifdef CLP_REUSE_ETAS |
| 1927 | del3Orig=del3; |
| 1928 | #endif |
| 1929 | |
| 1930 | /* OLD COLUMN POINTERS */ |
| 1931 | /* **************************************************************** */ |
| 1932 | if (!ifRowCopy) { |
| 1933 | /* old method */ |
| 1934 | /* DO U */ |
| 1935 | c_ekketju(fact,dluval, hrowi, mcstrt, hpivco_new, |
| 1936 | dwork1, kpivrw,fact->first_dense, |
| 1937 | fact->last_dense); |
| 1938 | } else { |
| 1939 | |
| 1940 | /* could take out of old column but lets try being crude */ |
| 1941 | /* try taking out */ |
| 1942 | if (fact->xe2adr != 0&&doSparse) { |
| 1943 | |
| 1944 | /* |
| 1945 | * There is both a column and row representation of U. |
| 1946 | * For each row in the kpivrw'th column of the col U rep, |
| 1947 | * find its position in the U row rep and remove it |
| 1948 | * by overwriting it with the last element. |
| 1949 | */ |
| 1950 | int k1x = mcstrt[kpivrw]; |
| 1951 | int nel = hrowi[k1x]; /* yes, this is the nel, for the pivot */ |
| 1952 | int k2x = k1x + nel; |
| 1953 | |
| 1954 | for (k = k1x + 1; k <= k2x; ++k) { |
| 1955 | int irow = UNSHIFT_INDEX(hrowi[k]); |
| 1956 | int kx = mrstrt[irow]; |
| 1957 | int nel = hinrow[irow]-1; |
| 1958 | hinrow[irow]=nel; |
| 1959 | |
| 1960 | int jlast = kx + nel; |
| 1961 | for (int iel=kx;iel<jlast;iel++) { |
| 1962 | if (kpivrw==hcoli[iel]) { |
| 1963 | hcoli[iel] = hcoli[jlast]; |
| 1964 | de2val[iel] = de2val[jlast]; |
| 1965 | break; |
| 1966 | } |
| 1967 | } |
| 1968 | } |
| 1969 | } else if (ifRowCopy) { |
| 1970 | /* still take out */ |
| 1971 | int k1x = mcstrt[kpivrw]; |
| 1972 | int nel = hrowi[k1x]; /* yes, this is the nel, for the pivot */ |
| 1973 | int k2x = k1x + nel; |
| 1974 | |
| 1975 | for (k = k1x + 1; k <= k2x; ++k) { |
| 1976 | int irow = UNSHIFT_INDEX(hrowi[k]); |
| 1977 | int kx = mrstrt[irow]; |
| 1978 | int nel = hinrow[irow]-1; |
| 1979 | hinrow[irow]=nel; |
| 1980 | int jlast = kx + nel ; |
| 1981 | for (;kx<jlast;kx++) { |
| 1982 | if (kpivrw==hcoli[kx]) { |
| 1983 | hcoli[kx] = hcoli[jlast]; |
| 1984 | break; |
| 1985 | } |
| 1986 | } |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | /* add to row version */ |
| 1991 | /* the updated column (alpha_p) was written to entries |
| 1992 | * nnentu+1..nnentu+nuspik by routine c_ekkftrn_ft. |
| 1993 | * That was just an intermediate value of the usual ftrn. |
| 1994 | */ |
| 1995 | i1 = fact->nnentu + 1; |
| 1996 | i2 = fact->nnentu + nuspik; |
| 1997 | int * COIN_RESTRICT eta_last=mpermu+nrow*2+3; |
| 1998 | int * COIN_RESTRICT eta_next=eta_last+nrow+2; |
| 1999 | if (fact->xe2adr == 0||!doSparse) { |
| 2000 | /* we have column indices by row, but not the actual values */ |
| 2001 | for (iel = i1; iel <= i2; ++iel) { |
| 2002 | int irow = UNSHIFT_INDEX(hrowi[iel]); |
| 2003 | int iput = hinrow[irow]; |
| 2004 | int kput = mrstrt[irow]; |
| 2005 | int nextRow=eta_next[irow]; |
| 2006 | assert (kput>0); |
| 2007 | kput += iput; |
| 2008 | if (kput < mrstrt[nextRow]) { |
| 2009 | /* there is room - append the pivot column; |
| 2010 | * this corresponds making alpha_p the rightmost column of U (p. 268)*/ |
| 2011 | hinrow[irow] = iput + 1; |
| 2012 | hcoli[kput] = kpivrw; |
| 2013 | } else { |
| 2014 | /* no room - switch off */ |
| 2015 | doSparse=0; |
| 2016 | /* possible kpivrw 1 */ |
| 2017 | k1 = mrstrt[kpivrw]; |
| 2018 | mrstrt[1]=-1; |
| 2019 | fact->rows_ok = false; |
| 2020 | goto L1226; |
| 2021 | } |
| 2022 | } |
| 2023 | } else { |
| 2024 | if (! doSparse) { |
| 2025 | /* we have both column indices and values by row */ |
| 2026 | /* just like loop above, but with extra assign to de2val */ |
| 2027 | for (iel = i1; iel <= i2; ++iel) { |
| 2028 | int irow = UNSHIFT_INDEX(hrowi[iel]); |
| 2029 | int iput = hinrow[irow]; |
| 2030 | int kput = mrstrt[irow]; |
| 2031 | int nextRow=eta_next[irow]; |
| 2032 | assert (kput>0); |
| 2033 | kput += iput; |
| 2034 | if (kput < mrstrt[nextRow]) { |
| 2035 | hinrow[irow] = iput + 1; |
| 2036 | hcoli[kput] = kpivrw; |
| 2037 | de2val[kput] = dluval[iel]; |
| 2038 | } else { |
| 2039 | /* no room - switch off */ |
| 2040 | doSparse=0; |
| 2041 | /* possible kpivrw 1 */ |
| 2042 | k1 = mrstrt[kpivrw]; |
| 2043 | mrstrt[1]=-1; |
| 2044 | fact->rows_ok = false; |
| 2045 | goto L1226; |
| 2046 | } |
| 2047 | } |
| 2048 | } else { |
| 2049 | for (iel = i1; iel <= i2; ++iel) { |
| 2050 | int j,k; |
| 2051 | int irow = UNSHIFT_INDEX(hrowi[iel]); |
| 2052 | int iput = hinrow[irow]; |
| 2053 | k=mrstrt[irow]+iput; |
| 2054 | j=eta_next[irow]; |
| 2055 | if (k >= mrstrt[j]) { |
| 2056 | /* no room - can we make some? */ |
| 2057 | int klast=eta_last[nrow+1]; |
| 2058 | int jput=mrstrt[klast]+hinrow[klast]+2; |
| 2059 | int distance=mrstrt[nrow+1]-jput; |
| 2060 | if (iput+1<distance) { |
| 2061 | /* this presumably copies the row to the end */ |
| 2062 | int jn,jl; |
| 2063 | int kstart=mrstrt[irow]; |
| 2064 | int nin=hinrow[irow]; |
| 2065 | /* out */ |
| 2066 | jn=eta_next[irow]; |
| 2067 | jl=eta_last[irow]; |
| 2068 | eta_next[jl]=jn; |
| 2069 | eta_last[jn]=jl; |
| 2070 | /* in */ |
| 2071 | eta_next[klast]=irow; |
| 2072 | eta_last[nrow+1]=irow; |
| 2073 | eta_last[irow]=klast; |
| 2074 | eta_next[irow]=nrow+1; |
| 2075 | mrstrt[irow]=jput; |
| 2076 | #if 0 |
| 2077 | memcpy(&hcoli[jput],&hcoli[kstart],nin*sizeof(int)); |
| 2078 | memcpy(&de2val[jput],&de2val[kstart],nin*sizeof(double)); |
| 2079 | #else |
| 2080 | c_ekkscpy(nin,hcoli+kstart,hcoli+jput); |
| 2081 | c_ekkdcpy(nin, |
| 2082 | (de2val+kstart),(de2val+jput)); |
| 2083 | #endif |
| 2084 | k=jput+iput; |
| 2085 | } else { |
| 2086 | /* shuffle down */ |
| 2087 | int spare=(fact->nnetas-fact->nnentu-fact->nnentl-3); |
| 2088 | if (spare>nrow<<1) { |
| 2089 | /* presumbly, this compacts the rows */ |
| 2090 | int jrow,jput; |
| 2091 | if (1) { |
| 2092 | if (fact->num_resets<1000000) { |
| 2093 | int etasize =CoinMax(4*fact->nnentu+ |
| 2094 | (fact->nnetas-fact->nnentl)+1000,fact->eta_size); |
| 2095 | if (ifrows) { |
| 2096 | fact->num_resets++; |
| 2097 | if (npivot>40&&fact->num_resets<<4>npivot) { |
| 2098 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
| 2099 | fact->num_resets=1000000; |
| 2100 | } |
| 2101 | } else { |
| 2102 | fact->eta_size=static_cast<int>(1.1*fact->eta_size); |
| 2103 | fact->num_resets=1000000; |
| 2104 | } |
| 2105 | fact->eta_size=CoinMin(fact->eta_size,etasize); |
| 2106 | if (fact->maxNNetas>0&&fact->eta_size> |
| 2107 | fact->maxNNetas) { |
| 2108 | fact->eta_size=fact->maxNNetas; |
| 2109 | } |
| 2110 | } |
| 2111 | } |
| 2112 | jrow=eta_next[0]; |
| 2113 | jput=1; |
| 2114 | for (j=0;j<nrow;j++) { |
| 2115 | int k,nin=hinrow[jrow]; |
| 2116 | k=mrstrt[jrow]; |
| 2117 | mrstrt[jrow]=jput; |
| 2118 | for (;nin;nin--) { |
| 2119 | hcoli[jput]=hcoli[k]; |
| 2120 | de2val[jput++]=de2val[k++]; |
| 2121 | } |
| 2122 | jrow=eta_next[jrow]; |
| 2123 | } |
| 2124 | if (spare>nrow<<3) { |
| 2125 | spare=3; |
| 2126 | } else if (spare>nrow<<2) { |
| 2127 | spare=1; |
| 2128 | } else { |
| 2129 | spare=0; |
| 2130 | } |
| 2131 | jput+=nrow*spare; |
| 2132 | jrow=eta_last[nrow+1]; |
| 2133 | for (j=0;j<nrow;j++) { |
| 2134 | int k,nin=hinrow[jrow]; |
| 2135 | k=mrstrt[jrow]+nin; |
| 2136 | jput-=spare; |
| 2137 | for (;nin;nin--) { |
| 2138 | hcoli[--jput]=hcoli[--k]; |
| 2139 | de2val[jput]=de2val[k]; |
| 2140 | } |
| 2141 | mrstrt[jrow]=jput; |
| 2142 | jrow=eta_last[jrow]; |
| 2143 | } |
| 2144 | /* set up for copy below */ |
| 2145 | k=mrstrt[irow]+iput; |
| 2146 | } else { |
| 2147 | /* no room - switch off */ |
| 2148 | doSparse=0; |
| 2149 | /* possible kpivrw 1 */ |
| 2150 | k1 = mrstrt[kpivrw]; |
| 2151 | mrstrt[1]=-1; |
| 2152 | fact->rows_ok = false; |
| 2153 | goto L1226; |
| 2154 | } |
| 2155 | } |
| 2156 | } |
| 2157 | /* now we have room - append the new value */ |
| 2158 | hinrow[irow] = iput + 1; |
| 2159 | hcoli[k] = kpivrw; |
| 2160 | de2val[k] = dluval[iel]; |
| 2161 | } |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | /* TAKE OUT ALL ELEMENTS IN PIVOT ROW */ |
| 2166 | k1 = mrstrt[kpivrw]; |
| 2167 | |
| 2168 | L1226: |
| 2169 | { |
| 2170 | int k2 = k1 + hinrow[kpivrw] - 1; |
| 2171 | |
| 2172 | /* "delete" the row */ |
| 2173 | hinrow[kpivrw] = 0; |
| 2174 | j = 0; |
| 2175 | if (doSparse) { |
| 2176 | /* remove pivot row entries from the corresponding columns */ |
| 2177 | for (k = k1; k <= k2; ++k) { |
| 2178 | int icol = hcoli[k]; |
| 2179 | int kx = mcstrt[icol]; |
| 2180 | int nel = hrowi[kx]; |
| 2181 | for (iel = kx + 1; iel <= kx+nel; iel ++) { |
| 2182 | if (hrowi[iel] == jpivrw) { |
| 2183 | break; |
| 2184 | } |
| 2185 | } |
| 2186 | if (iel <= kx+nel) { |
| 2187 | /* this has to happen, right?? */ |
| 2188 | |
| 2189 | /* copy the element into a temporary */ |
| 2190 | dwork1[icol] = dluval[iel]; |
| 2191 | mpt2[nincol++]=icol; |
| 2192 | /*nonzero[icol-1]=1;*/ |
| 2193 | |
| 2194 | hrowi[kx]=nel-1; /* column is shorter by one */ |
| 2195 | j=1; |
| 2196 | hrowi[iel]=hrowi[kx+nel]; |
| 2197 | dluval[iel]=dluval[kx+nel]; |
| 2198 | #ifdef CLP_REUSE_ETAS |
| 2199 | hrowi[kx+nel]=jpivrw; |
| 2200 | dluval[kx+nel]=dwork1[icol]; |
| 2201 | #endif |
| 2202 | } |
| 2203 | } |
| 2204 | if (j != 0) { |
| 2205 | /* now compute r', the new R transform */ |
| 2206 | orig_nincol=c_ekkbtju_sparse(fact, dwork1, |
| 2207 | mpt2, nincol, |
| 2208 | spare); |
| 2209 | dwork1[kpivrw]=0.0; |
| 2210 | } |
| 2211 | } else { |
| 2212 | /* row version isn't ok (?) */ |
| 2213 | for (k = k1; k <= k2; ++k) { |
| 2214 | int icol = hcoli[k]; |
| 2215 | int kx = mcstrt[icol]; |
| 2216 | int nel = hrowi[kx]; |
| 2217 | j = kx+nel; |
| 2218 | int iel; |
| 2219 | for (iel=kx+1;iel<=j;iel++) { |
| 2220 | if (hrowi[iel]==jpivrw) |
| 2221 | break; |
| 2222 | } |
| 2223 | dwork1[icol] = dluval[iel]; |
| 2224 | if (kx<first_dense_mcstrt || kx>last_dense_mcstrt) { |
| 2225 | hrowi[kx] = nel - 1; /* shorten column */ |
| 2226 | /* not packing - presumably column isn't sorted */ |
| 2227 | hrowi[iel] = hrowi[j]; |
| 2228 | dluval[iel] = dluval[j]; |
| 2229 | #ifdef CLP_REUSE_ETAS |
| 2230 | hrowi[j]=jpivrw; |
| 2231 | dluval[j]=dwork1[icol]; |
| 2232 | #endif |
| 2233 | } else { |
| 2234 | /* dense element - just zero it */ |
| 2235 | dluval[iel]=0.0; |
| 2236 | } |
| 2237 | } |
| 2238 | if (j != 0) { |
| 2239 | /* Find first nonzero */ |
| 2240 | int ipiv = hpivco_new[kpivrw]; |
| 2241 | while(ipiv<=nrow) { |
| 2242 | if (!dwork1[ipiv]) { |
| 2243 | ipiv=hpivco_new[ipiv]; |
| 2244 | } else { |
| 2245 | break; |
| 2246 | } |
| 2247 | } |
| 2248 | if (ipiv<=nrow) { |
| 2249 | /* DO U */ |
| 2250 | /* now compute r', the new R transform */ |
| 2251 | c_ekkbtju(fact, dwork1, |
| 2252 | ipiv); |
| 2253 | } |
| 2254 | } |
| 2255 | } |
| 2256 | } |
| 2257 | } |
| 2258 | |
| 2259 | if (kpivrw==fact->first_dense) { |
| 2260 | /* increase until valid pivot */ |
| 2261 | fact->first_dense=hpivco_new[fact->first_dense]; |
| 2262 | } else if (kpivrw==fact->last_dense) { |
| 2263 | fact->last_dense=back[fact->last_dense]; |
| 2264 | } |
| 2265 | if (fact->first_dense==fact->last_dense) { |
| 2266 | fact->ndenuc=0; |
| 2267 | fact->first_dense=0; |
| 2268 | fact->last_dense=-1; |
| 2269 | } |
| 2270 | if (! (ifRowCopy && j==0)) { |
| 2271 | |
| 2272 | /* increase amount of work on Etas */ |
| 2273 | |
| 2274 | /* **************************************************************** */ |
| 2275 | /* DO ROW ETAS IN L */ |
| 2276 | { |
| 2277 | if (!doSparse) { |
| 2278 | dwork1[kpivrw] = 0.; |
| 2279 | #if 0 |
| 2280 | orig_nincol=c_ekksczr(fact,nrow, dwork1, mpt2); |
| 2281 | del3=c_ekkputl(fact, mpt2, dwork1, del3, |
| 2282 | orig_nincol, nuspik); |
| 2283 | #else |
| 2284 | orig_nincol=c_ekkputl2(fact, |
| 2285 | dwork1, &del3, |
| 2286 | nuspik); |
| 2287 | #endif |
| 2288 | } else { |
| 2289 | del3=c_ekkputl(fact, mpt2, |
| 2290 | dwork1, del3, |
| 2291 | orig_nincol, nuspik); |
| 2292 | } |
| 2293 | } |
| 2294 | if (orig_nincol != 0) { |
| 2295 | /* STORE AS A ROW VECTOR */ |
| 2296 | int n = fact->nR_etas+1; |
| 2297 | int i1 = fact->R_etas_start[n]; |
| 2298 | fact->nR_etas=n; |
| 2299 | fact->R_etas_start[n + 1] = i1 - orig_nincol; |
| 2300 | hpivco[fact->nR_etas + nrow+3] = kpivrw; |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | /* CHECK DEL3 AGAINST DALPHA/DOUT */ |
| 2305 | { |
| 2306 | int kx = mcstrt[kpivrw]; |
| 2307 | double dout = dluval[kx]; |
| 2308 | double dcheck = fabs(dalpha / dout); |
| 2309 | double difference=0.0; |
| 2310 | if (fabs(del3) > CoinMin(1.0e-8,fact->drtpiv*0.99999)) { |
| 2311 | double checkTolerance; |
| 2312 | if ( fact->npivots < 2 ) { |
| 2313 | checkTolerance = 1.0e-5; |
| 2314 | } else if ( fact->npivots < 10 ) { |
| 2315 | checkTolerance = 1.0e-6; |
| 2316 | } else if ( fact->npivots < 50 ) { |
| 2317 | checkTolerance = 1.0e-8; |
| 2318 | } else { |
| 2319 | checkTolerance = 1.0e-9; |
| 2320 | } |
| 2321 | difference = fabs(1.0-fabs(del3)/dcheck); |
| 2322 | if (difference > 0.1*checkTolerance) { |
| 2323 | if (difference < checkTolerance|| |
| 2324 | (difference<1.0e-7&&fact->npivots>=50)) { |
| 2325 | irtcod=1; |
| 2326 | #ifdef PRINT_DEBUG |
| 2327 | printf("mildly bad %g after %d pivots, etsj %g ftncheck %g ftnalpha %g\n" , |
| 2328 | difference,fact->npivots,del3,dcheck,dalpha); |
| 2329 | #endif |
| 2330 | } else { |
| 2331 | irtcod=2; |
| 2332 | #ifdef PRINT_DEBUG |
| 2333 | printf("bad %g after %d pivots, etsj %g ftncheck %g ftnalpha %g\n" , |
| 2334 | difference,fact->npivots,del3,dcheck,dalpha); |
| 2335 | #endif |
| 2336 | } |
| 2337 | } |
| 2338 | } else { |
| 2339 | irtcod=2; |
| 2340 | #ifdef PRINT_DEBUG |
| 2341 | printf("bad small %g after %d pivots, etsj %g ftncheck %g ftnalpha %g\n" , |
| 2342 | difference,fact->npivots,del3,dcheck,dalpha); |
| 2343 | #endif |
| 2344 | } |
| 2345 | if (irtcod>1) |
| 2346 | goto L8000; |
| 2347 | fact->npivots++; |
| 2348 | } |
| 2349 | |
| 2350 | mcstrt[kpivrw] = fact->nnentu; |
| 2351 | #ifdef CLP_REUSE_ETAS |
| 2352 | { |
| 2353 | int * putSeq = fact->xrsadr+2*fact->nrowmx+2; |
| 2354 | int * position = putSeq+fact->maxinv; |
| 2355 | int * putStart = position+fact->maxinv; |
| 2356 | putStart[fact->nrow+fact->npivots-1]=fact->nnentu; |
| 2357 | } |
| 2358 | #endif |
| 2359 | dluval[fact->nnentu] = 1. / del3; /* new pivot */ |
| 2360 | hrowi[fact->nnentu] = nuspik; /* new nelems */ |
| 2361 | #ifndef NDEBUG |
| 2362 | { |
| 2363 | int lastSlack = fact->lastSlack; |
| 2364 | int firstDo=hpivco_new[lastSlack]; |
| 2365 | int ipiv=hpivco_new[0]; |
| 2366 | int now = fact->numberSlacks; |
| 2367 | if (now) { |
| 2368 | while (1) { |
| 2369 | if (ipiv>fact->nrow||ipiv==firstDo) |
| 2370 | break; |
| 2371 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 2372 | ipiv=hpivco_new[ipiv]; |
| 2373 | } |
| 2374 | if (ipiv<=fact->nrow) { |
| 2375 | while (1) { |
| 2376 | if (ipiv>fact->nrow) |
| 2377 | break; |
| 2378 | assert (!c_ekk_IsSet(fact->bitArray,ipiv)); |
| 2379 | ipiv=hpivco_new[ipiv]; |
| 2380 | } |
| 2381 | } |
| 2382 | } |
| 2383 | } |
| 2384 | #endif |
| 2385 | { |
| 2386 | /* do new hpivco */ |
| 2387 | int inext=hpivco_new[kpivrw]; |
| 2388 | int iback=back[kpivrw]; |
| 2389 | if (inext!=nrow+1) { |
| 2390 | int ilast=back[nrow+1]; |
| 2391 | hpivco_new[iback]=inext; |
| 2392 | back[inext]=iback; |
| 2393 | assert (hpivco_new[ilast]==nrow+1); |
| 2394 | hpivco_new[ilast]=kpivrw; |
| 2395 | back[kpivrw]=ilast; |
| 2396 | hpivco_new[kpivrw]=nrow+1; |
| 2397 | back[nrow+1]=kpivrw; |
| 2398 | } |
| 2399 | } |
| 2400 | { |
| 2401 | int lastSlack = fact->lastSlack; |
| 2402 | int now = fact->numberSlacks; |
| 2403 | if (now&&mcstrt_piv<=mcstrt[lastSlack]) { |
| 2404 | if (c_ekk_IsSet(fact->bitArray,kpivrw)) { |
| 2405 | /*printf("piv %d lastSlack %d\n",mcstrt_piv,lastSlack);*/ |
| 2406 | fact->numberSlacks--; |
| 2407 | now--; |
| 2408 | /* one less slack */ |
| 2409 | c_ekk_Unset(fact->bitArray,kpivrw); |
| 2410 | if (now&&kpivrw==lastSlack) { |
| 2411 | int i; |
| 2412 | int ipiv,jpiv; |
| 2413 | ipiv=hpivco_new[0]; |
| 2414 | for (i=0;i<now-1;i++) |
| 2415 | ipiv=hpivco_new[ipiv]; |
| 2416 | lastSlack=ipiv; |
| 2417 | jpiv=hpivco_new[ipiv]; |
| 2418 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 2419 | assert (!c_ekk_IsSet(fact->bitArray,jpiv)||jpiv>fact->nrow); |
| 2420 | fact->lastSlack = lastSlack; |
| 2421 | } else if (!now) { |
| 2422 | fact->lastSlack=0; |
| 2423 | } |
| 2424 | } |
| 2425 | } |
| 2426 | fact->firstNonSlack=hpivco_new[lastSlack]; |
| 2427 | #ifndef NDEBUG |
| 2428 | { |
| 2429 | int lastSlack = fact->lastSlack; |
| 2430 | int firstDo=hpivco_new[lastSlack]; |
| 2431 | int ipiv=hpivco_new[0]; |
| 2432 | int now = fact->numberSlacks; |
| 2433 | if (now) { |
| 2434 | while (1) { |
| 2435 | if (ipiv>fact->nrow||ipiv==firstDo) |
| 2436 | break; |
| 2437 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 2438 | ipiv=hpivco_new[ipiv]; |
| 2439 | } |
| 2440 | if (ipiv<=fact->nrow) { |
| 2441 | while (1) { |
| 2442 | if (ipiv>fact->nrow) |
| 2443 | break; |
| 2444 | assert (!c_ekk_IsSet(fact->bitArray,ipiv)); |
| 2445 | ipiv=hpivco_new[ipiv]; |
| 2446 | } |
| 2447 | } |
| 2448 | } |
| 2449 | } |
| 2450 | #endif |
| 2451 | } |
| 2452 | fact->nnentu += nuspik; |
| 2453 | #ifdef CLP_REUSE_ETAS |
| 2454 | if (fact->first_dense>=fact->last_dense) { |
| 2455 | // save |
| 2456 | fact->nnentu++; |
| 2457 | dluval[fact->nnentu]=del3Orig; |
| 2458 | hrowi[fact->nnentu]=kpivrw; |
| 2459 | int * putSeq = fact->xrsadr+2*fact->nrowmx+2; |
| 2460 | int * position = putSeq+fact->maxinv; |
| 2461 | int * putStart = position+fact->maxinv; |
| 2462 | int nnentu_at_factor=putStart[fact->nrow]&0x7fffffff; |
| 2463 | //putStart[fact->nrow+fact->npivots]=fact->nnentu+1; |
| 2464 | int where; |
| 2465 | if (mcstrt_piv<nnentu_at_factor) { |
| 2466 | // original LU |
| 2467 | where=kpivrw-1; |
| 2468 | } else { |
| 2469 | // could do binary search |
| 2470 | int * look = putStart+fact->nrow; |
| 2471 | for (where=fact->npivots-1;where>=0;where--) { |
| 2472 | if (mcstrt_piv==(look[where]&0x7fffffff)) |
| 2473 | break; |
| 2474 | } |
| 2475 | assert (where>=0); |
| 2476 | where += fact->nrow; |
| 2477 | } |
| 2478 | position[fact->npivots-1]=where; |
| 2479 | if (orig_nincol == 0) { |
| 2480 | // flag |
| 2481 | putStart[fact->nrow+fact->npivots-1] |= 0x80000000; |
| 2482 | } |
| 2483 | } |
| 2484 | #endif |
| 2485 | { |
| 2486 | int kdnspt = fact->nnetas - fact->nnentl; |
| 2487 | |
| 2488 | /* fact->R_etas_start[fact->nR_etas + 1] is -(the number of els in R) */ |
| 2489 | nnentl = fact->nnetas - ((kdnspt - 1) + fact->R_etas_start[fact->nR_etas + 1]); |
| 2490 | } |
| 2491 | fact->demark = (fact->nnentu + nnentl) - fact->demark; |
| 2492 | |
| 2493 | /* if need to redo row version */ |
| 2494 | if (! fact->rows_ok&&fact->first_dense>=fact->last_dense) { |
| 2495 | int =10000; |
| 2496 | int spareSpace; |
| 2497 | if (fact->if_sparse_update>0) { |
| 2498 | spareSpace=(fact->nnetas-fact->nnentu-fact->nnentl); |
| 2499 | } else { |
| 2500 | /* missing out nnentl stuff */ |
| 2501 | spareSpace=fact->nnetas-fact->nnentu; |
| 2502 | } |
| 2503 | /* save clean row copy if enough room */ |
| 2504 | nroom = spareSpace / nrow; |
| 2505 | |
| 2506 | if ((fact->nnentu<<3)>150*fact->maxinv) { |
| 2507 | extraSpace=150*fact->maxinv; |
| 2508 | } else { |
| 2509 | extraSpace=fact->nnentu<<3; |
| 2510 | } |
| 2511 | |
| 2512 | ifrows = false; |
| 2513 | if (fact->nnetas>fact->nnentu+fact->nnentl+extraSpace) { |
| 2514 | ifrows = true; |
| 2515 | } |
| 2516 | if (nroom < 5) { |
| 2517 | ifrows = false; |
| 2518 | } |
| 2519 | |
| 2520 | if (nroom > CoinMin(50, fact->maxinv - (fact->iterno - fact->iterin))) { |
| 2521 | ifrows = true; |
| 2522 | } |
| 2523 | |
| 2524 | #ifdef PRINT_DEBUGx |
| 2525 | printf(" redoing row copy %d %d %d\n" ,ifrows,nroom,spareSpace); |
| 2526 | #endif |
| 2527 | if (1) { |
| 2528 | if (fact->num_resets<1000000) { |
| 2529 | if (ifrows) { |
| 2530 | fact->num_resets++; |
| 2531 | if (npivot>40&&fact->num_resets<<4>npivot) { |
| 2532 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
| 2533 | fact->num_resets=1000000; |
| 2534 | } |
| 2535 | } else { |
| 2536 | fact->eta_size=static_cast<int>(1.1*fact->eta_size); |
| 2537 | fact->num_resets=1000000; |
| 2538 | } |
| 2539 | if (fact->maxNNetas>0&&fact->eta_size> |
| 2540 | fact->maxNNetas) { |
| 2541 | fact->eta_size=fact->maxNNetas; |
| 2542 | } |
| 2543 | } |
| 2544 | } |
| 2545 | fact->rows_ok = ifrows; |
| 2546 | if (ifrows) { |
| 2547 | int ibase = 1; |
| 2548 | c_ekkizero(nrow,&hinrow[1]); |
| 2549 | for (i = 1; i <= nrow; ++i) { |
| 2550 | int kx = mcstrt[i]; |
| 2551 | int nel = hrowi[kx]; |
| 2552 | int kcs = kx + 1; |
| 2553 | int kce = kx + nel; |
| 2554 | for (kc = kcs; kc <= kce; ++kc) { |
| 2555 | int irow = UNSHIFT_INDEX(hrowi[kc]); |
| 2556 | if (dluval[kc]) { |
| 2557 | hinrow[irow]++; |
| 2558 | } |
| 2559 | } |
| 2560 | } |
| 2561 | int * eta_last=mpermu+nrow*2+3; |
| 2562 | int * eta_next=eta_last+nrow+2; |
| 2563 | eta_next[0]=1; |
| 2564 | for (i = 1; i <= nrow; ++i) { |
| 2565 | eta_next[i]=i+1; |
| 2566 | eta_last[i]=i-1; |
| 2567 | mrstrt[i] = ibase; |
| 2568 | ibase = ibase + hinrow[i] + nroom; |
| 2569 | hinrow[i] = 0; |
| 2570 | } |
| 2571 | eta_last[nrow+1]=nrow; |
| 2572 | //eta_next[nrow+1]=nrow+2; |
| 2573 | mrstrt[nrow+1]=ibase; |
| 2574 | if (fact->xe2adr == 0) { |
| 2575 | for (i = 1; i <= nrow; ++i) { |
| 2576 | int kx = mcstrt[i]; |
| 2577 | int nel = hrowi[kx]; |
| 2578 | int kcs = kx + 1; |
| 2579 | int kce = kx + nel; |
| 2580 | for (kc = kcs; kc <= kce; ++kc) { |
| 2581 | if (dluval[kc]) { |
| 2582 | int irow = UNSHIFT_INDEX(hrowi[kc]); |
| 2583 | int iput = hinrow[irow]; |
| 2584 | assert (irow); |
| 2585 | hcoli[mrstrt[irow] + iput] = i; |
| 2586 | hinrow[irow] = iput + 1; |
| 2587 | } |
| 2588 | } |
| 2589 | } |
| 2590 | } else { |
| 2591 | for (i = 1; i <= nrow; ++i) { |
| 2592 | int kx = mcstrt[i]; |
| 2593 | int nel = hrowi[kx]; |
| 2594 | int kcs = kx + 1; |
| 2595 | int kce = kx + nel; |
| 2596 | for (kc = kcs; kc <= kce; ++kc) { |
| 2597 | int irow = UNSHIFT_INDEX(hrowi[kc]); |
| 2598 | int iput = hinrow[irow]; |
| 2599 | hcoli[mrstrt[irow] + iput] = i; |
| 2600 | de2val[mrstrt[irow] + iput] = dluval[kc]; |
| 2601 | hinrow[irow] = iput + 1; |
| 2602 | } |
| 2603 | } |
| 2604 | } |
| 2605 | } else { |
| 2606 | mrstrt[1] = 0; |
| 2607 | if (fact->if_sparse_update>0&&fact->iterno-fact->iterin>100) { |
| 2608 | goto L7000; |
| 2609 | } |
| 2610 | } |
| 2611 | } |
| 2612 | goto L8000; |
| 2613 | |
| 2614 | /* OUT OF SPACE - COULD PACK DOWN */ |
| 2615 | L7000: |
| 2616 | irtcod = 1; |
| 2617 | #ifdef PRINT_DEBUG |
| 2618 | printf(" out of space\n" ); |
| 2619 | #endif |
| 2620 | if (1) { |
| 2621 | if ((npivot<<3)<fact->nbfinv) { |
| 2622 | /* low on space */ |
| 2623 | if (npivot<10) { |
| 2624 | fact->eta_size=fact->eta_size<<1; |
| 2625 | } else { |
| 2626 | double ratio=fact->nbfinv; |
| 2627 | double ratio2=npivot<<3; |
| 2628 | ratio=ratio/ratio2; |
| 2629 | if (ratio>2.0) { |
| 2630 | ratio=2.0; |
| 2631 | } /* endif */ |
| 2632 | fact->eta_size=static_cast<int>(ratio*fact->eta_size); |
| 2633 | } /* endif */ |
| 2634 | } else { |
| 2635 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
| 2636 | } /* endif */ |
| 2637 | if (fact->maxNNetas>0&&fact->eta_size> |
| 2638 | fact->maxNNetas) { |
| 2639 | fact->eta_size=fact->maxNNetas; |
| 2640 | } |
| 2641 | } |
| 2642 | |
| 2643 | /* ================= IF ERROR SHOULD WE GET RID OF LAST ITERATION??? */ |
| 2644 | L8000: |
| 2645 | |
| 2646 | *nuspikp = nuspik; |
| 2647 | #ifdef MORE_DEBUG |
| 2648 | for (int i=1;i<=fact->nrow;i++) { |
| 2649 | int kx=mcstrt[i]; |
| 2650 | int nel=hrowi[kx]; |
| 2651 | for (int j=0;j<nel;j++) { |
| 2652 | assert (i!=hrowi[j+kx+1]); |
| 2653 | } |
| 2654 | } |
| 2655 | #endif |
| 2656 | #ifdef CLP_REUSE_ETAS |
| 2657 | fact->save_nnentu=fact->nnentu; |
| 2658 | #endif |
| 2659 | return (irtcod); |
| 2660 | } /* c_ekketsj */ |
| 2661 | static void c_ekkftj4p(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 2662 | double * COIN_RESTRICT dwork1, int firstNonZero) |
| 2663 | { |
| 2664 | /* this is where the L factors start, because this is the place |
| 2665 | * where c_ekktria starts laying them down (see initialization of xnetal). |
| 2666 | */ |
| 2667 | int lstart=fact->lstart; |
| 2668 | const int * COIN_RESTRICT hpivco = fact->kcpadr; |
| 2669 | int firstLRow = hpivco[lstart]; |
| 2670 | if (firstNonZero>firstLRow) { |
| 2671 | lstart += firstNonZero-firstLRow; |
| 2672 | } |
| 2673 | assert (firstLRow==fact->firstLRow); |
| 2674 | int jpiv=hpivco[lstart]; |
| 2675 | const double * COIN_RESTRICT dluval = fact->xeeadr; |
| 2676 | const int * COIN_RESTRICT hrowi = fact->xeradr; |
| 2677 | const int * COIN_RESTRICT mcstrt = fact->xcsadr+lstart; |
| 2678 | int ndo=fact->xnetal-lstart; |
| 2679 | int i, iel; |
| 2680 | |
| 2681 | /* find first non-zero */ |
| 2682 | for (i=0;i<ndo;i++) { |
| 2683 | if (dwork1[i+jpiv]!=0.0) |
| 2684 | break; |
| 2685 | } |
| 2686 | for (; i < ndo; ++i) { |
| 2687 | double dv = dwork1[i+jpiv]; |
| 2688 | |
| 2689 | if (dv != 0.) { |
| 2690 | int kce1 = mcstrt[i + 1] ; |
| 2691 | |
| 2692 | for (iel = mcstrt[i]; iel > kce1; --iel) { |
| 2693 | int irow0 = hrowi[iel]; |
| 2694 | SHIFT_REF(dwork1, irow0) += dv * dluval[iel]; |
| 2695 | } |
| 2696 | } |
| 2697 | } |
| 2698 | |
| 2699 | } /* c_ekkftj4p */ |
| 2700 | |
| 2701 | /* |
| 2702 | * This version is more efficient for input columns that are sparse. |
| 2703 | * It is instructive to consider the case of an especially sparse column, |
| 2704 | * which is a slack. The slack for row r has exactly one non-zero element, |
| 2705 | * in row r, which is +-1.0. Let pr = mpermu[r]. |
| 2706 | * In this case, nincol==1 and mpt[0] == pr on entry. |
| 2707 | * if mpt[0] == pr <= jpiv |
| 2708 | * then this slack is completely unaffected by L; |
| 2709 | * this is reflected by the fact that save_where = last |
| 2710 | * after the first loop, so none of the remaining loops |
| 2711 | * ever execute, |
| 2712 | * else if mpt[0] == pr > jpiv, but pr-jpiv > ndo |
| 2713 | * then the slack is also unaffected by L, this time because |
| 2714 | * its row is "after" L. During factorization, it may |
| 2715 | * be the case that the first part of the basis is upper |
| 2716 | * triangular (c_ekktria), but it may also be the case that the |
| 2717 | * last part of the basis is upper triangular (in which case the |
| 2718 | * L triangle gets "chopped off" on the right). In both cases, |
| 2719 | * no L entries are required. Since in this case the tests |
| 2720 | * (i<=ndo) will fail (and dwork1[ipiv]==1.0), the code will |
| 2721 | * do nothing. |
| 2722 | * else if mpt[0] == pr > jpiv and pr-jpiv <= ndo |
| 2723 | * then the slack *is* affected by L. |
| 2724 | * the for-loop inside the second while-loop will discover |
| 2725 | * that none of the factors for the corresponding column of L |
| 2726 | * are non-zero in the slack column, so last will not be incremented. |
| 2727 | * We multiply the eta-vector, and the last loop does nothing. |
| 2728 | */ |
| 2729 | static int c_ekkftj4_sparse(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 2730 | double * COIN_RESTRICT dwork1, int * COIN_RESTRICT mpt, |
| 2731 | int nincol,int * COIN_RESTRICT spare) |
| 2732 | { |
| 2733 | const int nrow = fact->nrow; |
| 2734 | /* this is where the L factors start, because this is the place |
| 2735 | * where c_ekktria starts laying them down (see initialization of xnetal). |
| 2736 | */ |
| 2737 | int lstart=fact->lstart; |
| 2738 | const int * COIN_RESTRICT hpivco = fact->kcpadr; |
| 2739 | const double * COIN_RESTRICT dluval = fact->xeeadr; |
| 2740 | const int * COIN_RESTRICT hrowi = fact->xeradr; |
| 2741 | const int * COIN_RESTRICT mcstrt = fact->xcsadr+lstart-1; |
| 2742 | double tolerance = fact->zeroTolerance; |
| 2743 | int jpiv=hpivco[lstart]-1; |
| 2744 | char * COIN_RESTRICT nonzero=fact->nonzero; |
| 2745 | int ndo=fact->xnetalval; |
| 2746 | int k,nStack; |
| 2747 | int nList=0; |
| 2748 | int iPivot; |
| 2749 | int * COIN_RESTRICT list = spare; |
| 2750 | int * COIN_RESTRICT stack = spare+nrow; |
| 2751 | int * COIN_RESTRICT next = stack+nrow; |
| 2752 | double dv; |
| 2753 | int iel; |
| 2754 | int nput=0,kput=nrow; |
| 2755 | int check=jpiv+ndo+1; |
| 2756 | const int * COIN_RESTRICT mcstrt2 = mcstrt-jpiv; |
| 2757 | |
| 2758 | for (k=0;k<nincol;k++) { |
| 2759 | nStack=1; |
| 2760 | iPivot=mpt[k]; |
| 2761 | if (nonzero[iPivot]!=1&&iPivot>jpiv&&iPivot<check) { |
| 2762 | stack[0]=iPivot; |
| 2763 | next[0]=mcstrt2[iPivot+1]+1; |
| 2764 | while (nStack) { |
| 2765 | int kPivot,j; |
| 2766 | /* take off stack */ |
| 2767 | kPivot=stack[--nStack]; |
| 2768 | if (nonzero[kPivot]!=1&&kPivot>jpiv&&kPivot<check) { |
| 2769 | j=next[nStack]; |
| 2770 | if (j>mcstrt2[kPivot]) { |
| 2771 | /* finished so mark */ |
| 2772 | list[nList++]=kPivot; |
| 2773 | nonzero[kPivot]=1; |
| 2774 | } else { |
| 2775 | kPivot=UNSHIFT_INDEX(hrowi[j]); |
| 2776 | /* put back on stack */ |
| 2777 | next[nStack++] ++; |
| 2778 | if (!nonzero[kPivot]) { |
| 2779 | /* and new one */ |
| 2780 | stack[nStack]=kPivot; |
| 2781 | nonzero[kPivot]=2; |
| 2782 | next[nStack++]=mcstrt2[kPivot+1]+1; |
| 2783 | } |
| 2784 | } |
| 2785 | } else if (kPivot>=check) { |
| 2786 | list[--kput]=kPivot; |
| 2787 | nonzero[kPivot]=1; |
| 2788 | } |
| 2789 | } |
| 2790 | } else if (nonzero[iPivot]!=1) { |
| 2791 | /* nothing to do (except check size at end) */ |
| 2792 | list[--kput]=iPivot; |
| 2793 | nonzero[iPivot]=1; |
| 2794 | } |
| 2795 | } |
| 2796 | for (k=nList-1;k>=0;k--) { |
| 2797 | double dv; |
| 2798 | iPivot = list[k]; |
| 2799 | dv = dwork1[iPivot]; |
| 2800 | nonzero[iPivot]=0; |
| 2801 | if (fabs(dv) > tolerance) { |
| 2802 | /* the same code as in c_ekkftj4p */ |
| 2803 | int kce1 = mcstrt2[iPivot + 1]; |
| 2804 | for (iel = mcstrt2[iPivot]; iel > kce1; --iel) { |
| 2805 | int irow0 = hrowi[iel]; |
| 2806 | SHIFT_REF(dwork1, irow0) += dv * dluval[iel]; |
| 2807 | } |
| 2808 | mpt[nput++]=iPivot; |
| 2809 | } else { |
| 2810 | dwork1[iPivot]=0.0; /* force to zero, not just near zero */ |
| 2811 | } |
| 2812 | } |
| 2813 | /* check remainder */ |
| 2814 | for (k=kput;k<nrow;k++) { |
| 2815 | iPivot = list[k]; |
| 2816 | nonzero[iPivot]=0; |
| 2817 | dv = dwork1[iPivot]; |
| 2818 | if (fabs(dv) > tolerance) { |
| 2819 | mpt[nput++]=iPivot; |
| 2820 | } else { |
| 2821 | dwork1[iPivot]=0.0; /* force to zero, not just near zero */ |
| 2822 | } |
| 2823 | } |
| 2824 | |
| 2825 | return (nput); |
| 2826 | } /* c_ekkftj4 */ |
| 2827 | /* |
| 2828 | * This applies the R transformations of the F-T LU update procedure, |
| 2829 | * equation 3.11 on p. 270 in the 1972 Math Programming paper. |
| 2830 | * Note that since the non-zero off-diagonal elements are in a row, |
| 2831 | * multiplying an R by a column is a reduction, not like applying |
| 2832 | * L or U. |
| 2833 | * |
| 2834 | * Note that this may introduce new non-zeros in dwork1, |
| 2835 | * since an hpivco entry may correspond to a zero element, |
| 2836 | * and that some non-zeros in dwork1 may be cancelled. |
| 2837 | */ |
| 2838 | static int c_ekkftjl_sparse3(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 2839 | double * COIN_RESTRICT dwork1, |
| 2840 | int * COIN_RESTRICT mpt, |
| 2841 | int * COIN_RESTRICT hput, double * COIN_RESTRICT dluput , |
| 2842 | int nincol) |
| 2843 | { |
| 2844 | int i; |
| 2845 | int knext; |
| 2846 | int ipiv; |
| 2847 | double dv; |
| 2848 | const double * COIN_RESTRICT dluval = fact->R_etas_element+1; |
| 2849 | const int * COIN_RESTRICT hrowi = fact->R_etas_index+1; |
| 2850 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 2851 | int ndo=fact->nR_etas; |
| 2852 | double tolerance = fact->zeroTolerance; |
| 2853 | const int * COIN_RESTRICT hpivco = fact->hpivcoR; |
| 2854 | /* and make cleaner */ |
| 2855 | hput++; |
| 2856 | dluput++; |
| 2857 | |
| 2858 | /* DO ANY ROW TRANSFORMATIONS */ |
| 2859 | |
| 2860 | /* Function Body */ |
| 2861 | /* mpt has correct list of nonzeros */ |
| 2862 | if (ndo != 0) { |
| 2863 | knext = mcstrt[1]; |
| 2864 | for (i = 1; i <= ndo; ++i) { |
| 2865 | int k1 = knext; /* == mcstrt[i] */ |
| 2866 | int iel; |
| 2867 | ipiv = hpivco[i]; |
| 2868 | dv = dwork1[ipiv]; |
| 2869 | bool onList = (dv!=0.0); |
| 2870 | knext = mcstrt[i + 1]; |
| 2871 | |
| 2872 | for (iel = knext ; iel < k1; ++iel) { |
| 2873 | int irow = hrowi[iel]; |
| 2874 | dv += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 2875 | } |
| 2876 | /* (1) if dwork[ipiv] == 0.0, then this may add a non-zero. |
| 2877 | * (2) if dwork[ipiv] != 0.0, then this may cancel out a non-zero. |
| 2878 | */ |
| 2879 | if (onList) { |
| 2880 | if (fabs(dv) > tolerance) { |
| 2881 | dwork1[ipiv]=dv; |
| 2882 | } else { |
| 2883 | dwork1[ipiv] = 1.0e-128; |
| 2884 | } |
| 2885 | } else { |
| 2886 | if (fabs(dv) > tolerance) { |
| 2887 | /* put on list if not there */ |
| 2888 | mpt[nincol++]=ipiv; |
| 2889 | dwork1[ipiv]=dv; |
| 2890 | } |
| 2891 | } |
| 2892 | } |
| 2893 | } |
| 2894 | knext=0; |
| 2895 | for (i=0; i<nincol; i++) { |
| 2896 | ipiv=mpt[i]; |
| 2897 | dv=dwork1[ipiv]; |
| 2898 | if (fabs(dv) > tolerance) { |
| 2899 | hput[knext]=SHIFT_INDEX(ipiv); |
| 2900 | dluput[knext]=dv; |
| 2901 | mpt[knext++]=ipiv; |
| 2902 | } else { |
| 2903 | dwork1[ipiv]=0.0; |
| 2904 | } |
| 2905 | } |
| 2906 | return knext; |
| 2907 | } /* c_ekkftjl */ |
| 2908 | |
| 2909 | static int c_ekkftjl_sparse2(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 2910 | double * COIN_RESTRICT dwork1, |
| 2911 | int * COIN_RESTRICT mpt, |
| 2912 | int nincol) |
| 2913 | { |
| 2914 | double tolerance = fact->zeroTolerance; |
| 2915 | const double * COIN_RESTRICT dluval = fact->R_etas_element+1; |
| 2916 | const int * COIN_RESTRICT hrowi = fact->R_etas_index+1; |
| 2917 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 2918 | int ndo=fact->nR_etas; |
| 2919 | const int * COIN_RESTRICT hpivco = fact->hpivcoR; |
| 2920 | int i; |
| 2921 | int knext; |
| 2922 | int ipiv; |
| 2923 | double dv; |
| 2924 | |
| 2925 | /* DO ANY ROW TRANSFORMATIONS */ |
| 2926 | |
| 2927 | /* Function Body */ |
| 2928 | /* mpt has correct list of nonzeros */ |
| 2929 | if (ndo != 0) { |
| 2930 | knext = mcstrt[1]; |
| 2931 | for (i = 1; i <= ndo; ++i) { |
| 2932 | int k1 = knext; /* == mcstrt[i] */ |
| 2933 | int iel; |
| 2934 | ipiv = hpivco[i]; |
| 2935 | dv = dwork1[ipiv]; |
| 2936 | bool onList = (dv!=0.0); |
| 2937 | knext = mcstrt[i + 1]; |
| 2938 | |
| 2939 | for (iel = knext ; iel < k1; ++iel) { |
| 2940 | int irow = hrowi[iel]; |
| 2941 | dv += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 2942 | } |
| 2943 | /* (1) if dwork[ipiv] == 0.0, then this may add a non-zero. |
| 2944 | * (2) if dwork[ipiv] != 0.0, then this may cancel out a non-zero. |
| 2945 | */ |
| 2946 | if (onList) { |
| 2947 | if (fabs(dv) > tolerance) { |
| 2948 | dwork1[ipiv]=dv; |
| 2949 | } else { |
| 2950 | dwork1[ipiv] = 1.0e-128; |
| 2951 | } |
| 2952 | } else { |
| 2953 | if (fabs(dv) > tolerance) { |
| 2954 | /* put on list if not there */ |
| 2955 | mpt[nincol++]=ipiv; |
| 2956 | dwork1[ipiv]=dv; |
| 2957 | } |
| 2958 | } |
| 2959 | } |
| 2960 | } |
| 2961 | knext=0; |
| 2962 | for (i=0; i<nincol; i++) { |
| 2963 | ipiv=mpt[i]; |
| 2964 | dv=dwork1[ipiv]; |
| 2965 | if (fabs(dv) > tolerance) { |
| 2966 | mpt[knext++]=ipiv; |
| 2967 | } else { |
| 2968 | dwork1[ipiv]=0.0; |
| 2969 | } |
| 2970 | } |
| 2971 | return knext; |
| 2972 | } /* c_ekkftjl */ |
| 2973 | |
| 2974 | static void c_ekkftjl(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 2975 | double * COIN_RESTRICT dwork1) |
| 2976 | { |
| 2977 | double tolerance = fact->zeroTolerance; |
| 2978 | const double * COIN_RESTRICT dluval = fact->R_etas_element+1; |
| 2979 | const int * COIN_RESTRICT hrowi = fact->R_etas_index+1; |
| 2980 | const int * COIN_RESTRICT mcstrt = fact->R_etas_start; |
| 2981 | int ndo=fact->nR_etas; |
| 2982 | const int * COIN_RESTRICT hpivco = fact->hpivcoR; |
| 2983 | int i; |
| 2984 | int knext; |
| 2985 | |
| 2986 | /* DO ANY ROW TRANSFORMATIONS */ |
| 2987 | |
| 2988 | /* Function Body */ |
| 2989 | if (ndo != 0) { |
| 2990 | /* |
| 2991 | * The following three lines are here just to ensure that this |
| 2992 | * new formulation of the loop has exactly the same effect |
| 2993 | * as the original. |
| 2994 | */ |
| 2995 | { |
| 2996 | int ipiv = hpivco[1]; |
| 2997 | double dv = dwork1[ipiv]; |
| 2998 | dwork1[ipiv] = (fabs(dv) > tolerance) ? dv : 0.0; |
| 2999 | } |
| 3000 | |
| 3001 | knext = mcstrt[1]; |
| 3002 | for (i = 1; i <= ndo; ++i) { |
| 3003 | int k1 = knext; /* == mcstrt[i] */ |
| 3004 | int ipiv = hpivco[i]; |
| 3005 | double dv = dwork1[ipiv]; |
| 3006 | int iel; |
| 3007 | //#define UNROLL3 2 |
| 3008 | #ifndef UNROLL3 |
| 3009 | #if CLP_OSL==2||CLP_OSL==3 |
| 3010 | #define UNROLL3 2 |
| 3011 | #else |
| 3012 | #define UNROLL3 1 |
| 3013 | #endif |
| 3014 | #endif |
| 3015 | knext = mcstrt[i + 1]; |
| 3016 | |
| 3017 | #if UNROLL3<2 |
| 3018 | for (iel = knext ; iel < k1; ++iel) { |
| 3019 | int irow = hrowi[iel]; |
| 3020 | dv += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 3021 | } |
| 3022 | #else |
| 3023 | iel = knext; |
| 3024 | if (((k1-knext)&1)!=0) { |
| 3025 | int irow = hrowi[iel]; |
| 3026 | dv += SHIFT_REF(dwork1, irow) * dluval[iel]; |
| 3027 | iel++; |
| 3028 | } |
| 3029 | for ( ; iel < k1; iel+=2) { |
| 3030 | int irow0 = hrowi[iel]; |
| 3031 | double dval0 = dluval[iel]; |
| 3032 | int irow1 = hrowi[iel+1]; |
| 3033 | double dval1 = dluval[iel+1]; |
| 3034 | dv += SHIFT_REF(dwork1, irow0) * dval0; |
| 3035 | dv += SHIFT_REF(dwork1, irow1) * dval1; |
| 3036 | } |
| 3037 | #endif |
| 3038 | /* (1) if dwork[ipiv] == 0.0, then this may add a non-zero. |
| 3039 | * (2) if dwork[ipiv] != 0.0, then this may cancel out a non-zero. |
| 3040 | */ |
| 3041 | dwork1[ipiv] = (fabs(dv) > tolerance) ? dv : 0.0; |
| 3042 | } |
| 3043 | } |
| 3044 | } /* c_ekkftjl */ |
| 3045 | /* this assumes it is ok to reference back[loop_limit] */ |
| 3046 | /* another 3 seconds from a ~570 second run can be trimmed |
| 3047 | * by using two routines, one with scan==true and the other false, |
| 3048 | * since that eliminates the branch instructions involving them |
| 3049 | * entirely. This was how the code was originally written. |
| 3050 | * However, I'm still hoping that eventually we can use |
| 3051 | * C++ templates to do that for us automatically. |
| 3052 | */ |
| 3053 | static void |
| 3054 | c_ekkftjup_scan_aux(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3055 | double * COIN_RESTRICT dwork1, double * COIN_RESTRICT dworko , |
| 3056 | int loop_limit, int *ip, int ** mptp) |
| 3057 | { |
| 3058 | const double * COIN_RESTRICT dluval = fact->xeeadr+1; |
| 3059 | const int * COIN_RESTRICT hrowi = fact->xeradr+1; |
| 3060 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 3061 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 3062 | const int * COIN_RESTRICT back=fact->back; |
| 3063 | double tolerance = fact->zeroTolerance; |
| 3064 | int ipiv = *ip; |
| 3065 | double dv = dwork1[ipiv]; |
| 3066 | |
| 3067 | int * mptX = *mptp; |
| 3068 | assert (mptX); |
| 3069 | while (ipiv != loop_limit) { |
| 3070 | int next_ipiv = back[ipiv]; |
| 3071 | |
| 3072 | dwork1[ipiv] = 0.0; |
| 3073 | #ifndef UNROLL4 |
| 3074 | #define UNROLL4 2 |
| 3075 | #endif |
| 3076 | /* invariant: dv == dwork1[ipiv] */ |
| 3077 | |
| 3078 | /* in the case of world.mps with dual, this condition is true |
| 3079 | * only 20-60% of the time. */ |
| 3080 | if (fabs(dv) > tolerance) { |
| 3081 | const int kx = mcstrt[ipiv]; |
| 3082 | const int nel = hrowi[kx-1]; |
| 3083 | const double dpiv = dluval[kx-1]; |
| 3084 | #if UNROLL4>1 |
| 3085 | const int * hrowi2=hrowi+kx; |
| 3086 | const int * hrowi2end=hrowi2+nel; |
| 3087 | const double * dluval2=dluval+kx; |
| 3088 | #else |
| 3089 | int iel; |
| 3090 | #endif |
| 3091 | |
| 3092 | dv*=dpiv; |
| 3093 | |
| 3094 | /* |
| 3095 | * The following loop is the unrolled version of this: |
| 3096 | * |
| 3097 | * for (iel = kx+1; iel <= kx + nel; iel++) { |
| 3098 | * SHIFT_REF(dwork1, hrowi[iel]) -= dv * dluval[iel]; |
| 3099 | * } |
| 3100 | */ |
| 3101 | #if UNROLL4<2 |
| 3102 | iel = kx; |
| 3103 | if (nel&1) { |
| 3104 | int irow = hrowi[iel]; |
| 3105 | double dval=dluval[iel]; |
| 3106 | SHIFT_REF(dwork1, irow) -= dv*dval; |
| 3107 | iel++; |
| 3108 | } |
| 3109 | for (; iel < kx + nel; iel+=2) { |
| 3110 | int irow0 = hrowi[iel]; |
| 3111 | int irow1 = hrowi[iel+1]; |
| 3112 | double dval0=dluval[iel]; |
| 3113 | double dval1=dluval[iel+1]; |
| 3114 | double d0=SHIFT_REF(dwork1, irow0); |
| 3115 | double d1=SHIFT_REF(dwork1, irow1); |
| 3116 | |
| 3117 | d0-=dv*dval0; |
| 3118 | d1-=dv*dval1; |
| 3119 | SHIFT_REF(dwork1, irow0)=d0; |
| 3120 | SHIFT_REF(dwork1, irow1)=d1; |
| 3121 | } /* end loop */ |
| 3122 | #else |
| 3123 | if ((nel&1)!=0) { |
| 3124 | int irow = *hrowi2; |
| 3125 | double dval=*dluval2; |
| 3126 | SHIFT_REF(dwork1, irow) -= dv*dval; |
| 3127 | hrowi2++; |
| 3128 | dluval2++; |
| 3129 | } |
| 3130 | for (; hrowi2 < hrowi2end; hrowi2 +=2,dluval2 +=2) { |
| 3131 | int irow0 = hrowi2[0]; |
| 3132 | int irow1 = hrowi2[1]; |
| 3133 | double dval0=dluval2[0]; |
| 3134 | double dval1=dluval2[1]; |
| 3135 | double d0=SHIFT_REF(dwork1, irow0); |
| 3136 | double d1=SHIFT_REF(dwork1, irow1); |
| 3137 | |
| 3138 | d0-=dv*dval0; |
| 3139 | d1-=dv*dval1; |
| 3140 | SHIFT_REF(dwork1, irow0)=d0; |
| 3141 | SHIFT_REF(dwork1, irow1)=d1; |
| 3142 | } |
| 3143 | #endif |
| 3144 | /* put this down here so that dv is less likely to cause a stall */ |
| 3145 | if (fabs(dv) >= tolerance) { |
| 3146 | int iput=hpivro[ipiv]; |
| 3147 | dworko[iput]=dv; |
| 3148 | *mptX++=iput-1; |
| 3149 | } |
| 3150 | } |
| 3151 | |
| 3152 | dv = dwork1[next_ipiv]; |
| 3153 | ipiv=next_ipiv; |
| 3154 | } /* endwhile */ |
| 3155 | |
| 3156 | *mptp = mptX; |
| 3157 | *ip = ipiv; |
| 3158 | } |
| 3159 | static void c_ekkftjup_aux3(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3160 | double * COIN_RESTRICT dwork1, double * COIN_RESTRICT dworko, |
| 3161 | const int * COIN_RESTRICT back, |
| 3162 | const int * COIN_RESTRICT hpivro, |
| 3163 | int *ipivp, int loop_limit, |
| 3164 | int **mptXp) |
| 3165 | |
| 3166 | { |
| 3167 | double tolerance = fact->zeroTolerance; |
| 3168 | int ipiv = *ipivp; |
| 3169 | if (ipiv!=loop_limit) { |
| 3170 | int *mptX = *mptXp; |
| 3171 | |
| 3172 | double dv = dwork1[ipiv]; |
| 3173 | |
| 3174 | do { |
| 3175 | int next_ipiv = back[ipiv]; |
| 3176 | double next_dv=dwork1[next_ipiv]; |
| 3177 | |
| 3178 | dwork1[ipiv]=0.0; |
| 3179 | |
| 3180 | if (fabs(dv)>=tolerance) { |
| 3181 | int iput=hpivro[ipiv]; |
| 3182 | dworko[iput]=dv; |
| 3183 | *mptX++=iput-1; |
| 3184 | } |
| 3185 | |
| 3186 | ipiv = next_ipiv; |
| 3187 | dv = next_dv; |
| 3188 | } while (ipiv!=loop_limit); |
| 3189 | |
| 3190 | *mptXp = mptX; |
| 3191 | *ipivp = ipiv; |
| 3192 | } |
| 3193 | } |
| 3194 | static void c_ekkftju_dense(const double *dluval, |
| 3195 | const int * COIN_RESTRICT hrowi, |
| 3196 | const int * COIN_RESTRICT mcstrt, |
| 3197 | const int * COIN_RESTRICT back, |
| 3198 | double * COIN_RESTRICT dwork1, |
| 3199 | int * start, int last, |
| 3200 | int offset , double *densew) |
| 3201 | { |
| 3202 | int ipiv=*start; |
| 3203 | |
| 3204 | while (ipiv>last ) { |
| 3205 | const int ipiv1=ipiv; |
| 3206 | double dv1=dwork1[ipiv1]; |
| 3207 | ipiv=back[ipiv]; |
| 3208 | if (fabs(dv1) > 1.0e-14) { |
| 3209 | const int kx1 = mcstrt[ipiv1]; |
| 3210 | const int nel1 = hrowi[kx1-1]; |
| 3211 | const double dpiv1 = dluval[kx1-1]; |
| 3212 | |
| 3213 | int iel,k; |
| 3214 | const int n1=offset+ipiv1; /* number in dense part */ |
| 3215 | |
| 3216 | const int nsparse1=nel1-n1; |
| 3217 | const int k1=kx1+nsparse1; |
| 3218 | const double *dlu1=&dluval[k1]; |
| 3219 | |
| 3220 | int ipiv2=back[ipiv1]; |
| 3221 | const int nskip=ipiv1-ipiv2; |
| 3222 | |
| 3223 | dv1*=dpiv1; |
| 3224 | |
| 3225 | dwork1[ipiv1]=dv1; |
| 3226 | |
| 3227 | for (k = n1 - (nskip-1) -1; k >=0 ; k--) { |
| 3228 | const double dval = dv1*dlu1[k]; |
| 3229 | double dv2=densew[k]-dval; |
| 3230 | ipiv=back[ipiv]; |
| 3231 | if (fabs(dv2) > 1.0e-14) { |
| 3232 | const int kx2 = mcstrt[ipiv2]; |
| 3233 | const int nel2 = hrowi[kx2-1]; |
| 3234 | const double dpiv2 = dluval[kx2-1]; |
| 3235 | |
| 3236 | /* number in dense part is k */ |
| 3237 | const int nsparse2=nel2-k; |
| 3238 | |
| 3239 | const int k2=kx2+nsparse2; |
| 3240 | const double *dlu2=&dluval[k2]; |
| 3241 | |
| 3242 | dv2*=dpiv2; |
| 3243 | densew[k]=dv2; /* was dwork1[ipiv2]=dv2; */ |
| 3244 | |
| 3245 | k--; |
| 3246 | |
| 3247 | /* |
| 3248 | * The following loop is the unrolled version of: |
| 3249 | * |
| 3250 | * for (; k >= 0; k--) { |
| 3251 | * densew[k]-=dv1*dlu1[k]+dv2*dlu2[k]; |
| 3252 | * } |
| 3253 | */ |
| 3254 | if ((k&1)==0) { |
| 3255 | densew[k]-=dv1*dlu1[k]+dv2*dlu2[k]; |
| 3256 | k--; |
| 3257 | } |
| 3258 | for (; k >=0 ; k-=2) { |
| 3259 | double da,db; |
| 3260 | da=densew[k]; |
| 3261 | db=densew[k-1]; |
| 3262 | da-=dv1*dlu1[k]; |
| 3263 | db-=dv1*dlu1[k-1]; |
| 3264 | da-=dv2*dlu2[k]; |
| 3265 | db-=dv2*dlu2[k-1]; |
| 3266 | densew[k]=da; |
| 3267 | densew[k-1]=db; |
| 3268 | } |
| 3269 | /* end loop */ |
| 3270 | |
| 3271 | /* |
| 3272 | * The following loop is the unrolled version of: |
| 3273 | * |
| 3274 | * for (iel=kx2+nsparse2-1; iel >= kx2; iel--) { |
| 3275 | * SHIFT_REF(dwork1, hrowi[iel]) -= dv2*dluval[iel]; |
| 3276 | * } |
| 3277 | */ |
| 3278 | iel=kx2+nsparse2-1; |
| 3279 | if ((nsparse2&1)!=0) { |
| 3280 | int irow0 = hrowi[iel]; |
| 3281 | double dval=dluval[iel]; |
| 3282 | SHIFT_REF(dwork1,irow0) -= dv2*dval; |
| 3283 | iel--; |
| 3284 | } |
| 3285 | for (; iel >=kx2 ; iel-=2) { |
| 3286 | double dval0 = dluval[iel]; |
| 3287 | double dval1 = dluval[iel-1]; |
| 3288 | int irow0 = hrowi[iel]; |
| 3289 | int irow1 = hrowi[iel-1]; |
| 3290 | double d0 = SHIFT_REF(dwork1, irow0); |
| 3291 | double d1 = SHIFT_REF(dwork1, irow1); |
| 3292 | |
| 3293 | d0-=dv2*dval0; |
| 3294 | d1-=dv2*dval1; |
| 3295 | SHIFT_REF(dwork1, irow0) = d0; |
| 3296 | SHIFT_REF(dwork1, irow1) = d1; |
| 3297 | } |
| 3298 | /* end loop */ |
| 3299 | |
| 3300 | } else { |
| 3301 | densew[k]=0.0; |
| 3302 | /* skip if next deleted */ |
| 3303 | k-=ipiv2-ipiv-1; |
| 3304 | ipiv2=ipiv; |
| 3305 | if (ipiv<last) { |
| 3306 | k--; |
| 3307 | for (; k >=0 ; k--) { |
| 3308 | double dval; |
| 3309 | dval=dv1*dlu1[k]; |
| 3310 | densew[k]=densew[k]-dval; |
| 3311 | } |
| 3312 | } |
| 3313 | } |
| 3314 | } |
| 3315 | |
| 3316 | /* |
| 3317 | * The following loop is the unrolled version of: |
| 3318 | * |
| 3319 | * for (iel=kx1+nsparse1-1; iel >= kx1; iel--) { |
| 3320 | * SHIFT_REF(dwork1, hrowi[iel]) -= dv1*dluval[iel]; |
| 3321 | * } |
| 3322 | */ |
| 3323 | iel=kx1+nsparse1-1; |
| 3324 | if ((nsparse1&1)!=0) { |
| 3325 | int irow0 = hrowi[iel]; |
| 3326 | double dval=dluval[iel]; |
| 3327 | SHIFT_REF(dwork1, irow0) -= dv1*dval; |
| 3328 | iel--; |
| 3329 | } |
| 3330 | for (; iel >=kx1 ; iel-=2) { |
| 3331 | double dval0=dluval[iel]; |
| 3332 | double dval1=dluval[iel-1]; |
| 3333 | int irow0 = hrowi[iel]; |
| 3334 | int irow1 = hrowi[iel-1]; |
| 3335 | double d0=SHIFT_REF(dwork1, irow0); |
| 3336 | double d1=SHIFT_REF(dwork1, irow1); |
| 3337 | |
| 3338 | d0-=dv1*dval0; |
| 3339 | d1-=dv1*dval1; |
| 3340 | SHIFT_REF(dwork1, irow0) = d0; |
| 3341 | SHIFT_REF(dwork1, irow1) = d1; |
| 3342 | } |
| 3343 | /* end loop */ |
| 3344 | } else { |
| 3345 | dwork1[ipiv1]=0.0; |
| 3346 | } /* endif */ |
| 3347 | } /* endwhile */ |
| 3348 | *start=ipiv; |
| 3349 | } |
| 3350 | |
| 3351 | /* do not use return value if mpt==0 */ |
| 3352 | /* using dual, this is usually called via c_ekkftrn_ft, from c_ekksdul |
| 3353 | * (so mpt is non-null). |
| 3354 | * it is generally called every iteration, but sometimes several iterations |
| 3355 | * are skipped (null moves?). |
| 3356 | * |
| 3357 | * generally, back[i] == i-1 (initialized in c_ekkshfv towards the end). |
| 3358 | */ |
| 3359 | static int c_ekkftjup(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3360 | double * COIN_RESTRICT dwork1, int last, |
| 3361 | double * COIN_RESTRICT dworko , int * COIN_RESTRICT mpt) |
| 3362 | { |
| 3363 | const double * COIN_RESTRICT dluval = fact->xeeadr; |
| 3364 | const int * COIN_RESTRICT hrowi = fact->xeradr; |
| 3365 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 3366 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 3367 | double tolerance = fact->zeroTolerance; |
| 3368 | int ndenuc=fact->ndenuc; |
| 3369 | const int first_dense=fact->first_dense; |
| 3370 | const int last_dense=fact->last_dense; |
| 3371 | int i; |
| 3372 | int * mptX = mpt; |
| 3373 | |
| 3374 | const int nrow = fact->nrow; |
| 3375 | const int * COIN_RESTRICT back=fact->back; |
| 3376 | int ipiv=back[nrow+1]; |
| 3377 | |
| 3378 | if (last_dense>first_dense&&mcstrt[ipiv]>=mcstrt[last_dense]) { |
| 3379 | c_ekkftjup_scan_aux(fact, |
| 3380 | dwork1, dworko, last_dense, &ipiv, |
| 3381 | &mptX); |
| 3382 | |
| 3383 | { |
| 3384 | int j; |
| 3385 | int n=0; |
| 3386 | const int firstDense = nrow- ndenuc+1; |
| 3387 | double *densew = &dwork1[firstDense]; |
| 3388 | int offset; |
| 3389 | |
| 3390 | /* check first dense to see where in triangle it is */ |
| 3391 | int last=first_dense; |
| 3392 | const int k1=mcstrt[last]; |
| 3393 | const int k2=k1+hrowi[k1]; |
| 3394 | |
| 3395 | for (j=k2; j>k1; j--) { |
| 3396 | int irow = UNSHIFT_INDEX(hrowi[j]); |
| 3397 | if (irow<firstDense) { |
| 3398 | break; |
| 3399 | } else { |
| 3400 | #ifdef DEBUG |
| 3401 | if (irow!=last-1) { |
| 3402 | abort(); |
| 3403 | } |
| 3404 | #endif |
| 3405 | last=irow; |
| 3406 | n++; |
| 3407 | } |
| 3408 | } |
| 3409 | offset=n-first_dense; |
| 3410 | i=ipiv; |
| 3411 | /* loop counter i may be modified by this call */ |
| 3412 | c_ekkftju_dense(&dluval[1],&hrowi[1],mcstrt,back, |
| 3413 | dwork1, &i, first_dense,offset,densew); |
| 3414 | |
| 3415 | c_ekkftjup_aux3(fact,dwork1, dworko, back, hpivro, &ipiv, i, &mptX); |
| 3416 | } |
| 3417 | } |
| 3418 | |
| 3419 | c_ekkftjup_scan_aux(fact, |
| 3420 | dwork1, dworko, last, &ipiv, |
| 3421 | &mptX); |
| 3422 | |
| 3423 | if (ipiv!=0) { |
| 3424 | double dv = dwork1[ipiv]; |
| 3425 | |
| 3426 | do { |
| 3427 | int next_ipiv = back[ipiv]; |
| 3428 | double next_dv=dwork1[next_ipiv]; |
| 3429 | |
| 3430 | dwork1[ipiv]=0.0; |
| 3431 | |
| 3432 | if (fabs(dv)>=tolerance) { |
| 3433 | int iput=hpivro[ipiv]; |
| 3434 | dworko[iput]=-dv; |
| 3435 | *mptX++=iput-1; |
| 3436 | } |
| 3437 | |
| 3438 | ipiv = next_ipiv; |
| 3439 | dv = next_dv; |
| 3440 | } while (ipiv!=0); |
| 3441 | |
| 3442 | } |
| 3443 | return static_cast<int>(mptX-mpt); |
| 3444 | } |
| 3445 | /* this assumes it is ok to reference back[loop_limit] */ |
| 3446 | /* another 3 seconds from a ~570 second run can be trimmed |
| 3447 | * by using two routines, one with scan==true and the other false, |
| 3448 | * since that eliminates the branch instructions involving them |
| 3449 | * entirely. This was how the code was originally written. |
| 3450 | * However, I'm still hoping that eventually we can use |
| 3451 | * C++ templates to do that for us automatically. |
| 3452 | */ |
| 3453 | static void |
| 3454 | c_ekkftjup_scan_aux_pack(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3455 | double * COIN_RESTRICT dwork1, double * COIN_RESTRICT dworko , |
| 3456 | int loop_limit, int *ip, int ** mptp) |
| 3457 | { |
| 3458 | double tolerance = fact->zeroTolerance; |
| 3459 | const double *dluval = fact->xeeadr+1; |
| 3460 | const int *hrowi = fact->xeradr+1; |
| 3461 | const int *mcstrt = fact->xcsadr; |
| 3462 | const int *hpivro = fact->krpadr; |
| 3463 | const int * back=fact->back; |
| 3464 | int ipiv = *ip; |
| 3465 | double dv = dwork1[ipiv]; |
| 3466 | |
| 3467 | int * mptX = *mptp; |
| 3468 | #if 0 |
| 3469 | int inSlacks=0; |
| 3470 | int lastSlack; |
| 3471 | if (fact->numberSlacks!=0) |
| 3472 | lastSlack=fact->lastSlack; |
| 3473 | else |
| 3474 | lastSlack=0; |
| 3475 | if (c_ekk_IsSet(fact->bitArray,ipiv)) { |
| 3476 | printf("already in slacks - ipiv %d\n" ,ipiv); |
| 3477 | inSlacks=1; |
| 3478 | return; |
| 3479 | } |
| 3480 | #endif |
| 3481 | assert (mptX); |
| 3482 | while (ipiv != loop_limit) { |
| 3483 | int next_ipiv = back[ipiv]; |
| 3484 | #if 0 |
| 3485 | if (ipiv==lastSlack) { |
| 3486 | printf("now in slacks - ipiv %d\n" ,ipiv); |
| 3487 | inSlacks=1; |
| 3488 | break; |
| 3489 | } |
| 3490 | if (inSlacks) { |
| 3491 | assert (c_ekk_IsSet(fact->bitArray,ipiv)); |
| 3492 | assert (dluval[mcstrt[ipiv]-1]==-1.0); |
| 3493 | assert (hrowi[mcstrt[ipiv]-1]==0); |
| 3494 | } |
| 3495 | #endif |
| 3496 | dwork1[ipiv] = 0.0; |
| 3497 | /* invariant: dv == dwork1[ipiv] */ |
| 3498 | |
| 3499 | /* in the case of world.mps with dual, this condition is true |
| 3500 | * only 20-60% of the time. */ |
| 3501 | if (fabs(dv) > tolerance) { |
| 3502 | const int kx = mcstrt[ipiv]; |
| 3503 | const int nel = hrowi[kx-1]; |
| 3504 | const double dpiv = dluval[kx-1]; |
| 3505 | #ifndef UNROLL5 |
| 3506 | #define UNROLL5 2 |
| 3507 | #endif |
| 3508 | #if UNROLL5>1 |
| 3509 | const int * hrowi2=hrowi+kx; |
| 3510 | const int * hrowi2end=hrowi2+nel; |
| 3511 | const double * dluval2=dluval+kx; |
| 3512 | #else |
| 3513 | int iel; |
| 3514 | #endif |
| 3515 | |
| 3516 | dv*=dpiv; |
| 3517 | |
| 3518 | /* |
| 3519 | * The following loop is the unrolled version of this: |
| 3520 | * |
| 3521 | * for (iel = kx+1; iel <= kx + nel; iel++) { |
| 3522 | * SHIFT_REF(dwork1, hrowi[iel]) -= dv * dluval[iel]; |
| 3523 | * } |
| 3524 | */ |
| 3525 | #if UNROLL5<2 |
| 3526 | iel = kx; |
| 3527 | if (nel&1) { |
| 3528 | int irow = hrowi[iel]; |
| 3529 | double dval=dluval[iel]; |
| 3530 | SHIFT_REF(dwork1, irow) -= dv*dval; |
| 3531 | iel++; |
| 3532 | } |
| 3533 | for (; iel < kx + nel; iel+=2) { |
| 3534 | int irow0 = hrowi[iel]; |
| 3535 | int irow1 = hrowi[iel+1]; |
| 3536 | double dval0=dluval[iel]; |
| 3537 | double dval1=dluval[iel+1]; |
| 3538 | double d0=SHIFT_REF(dwork1, irow0); |
| 3539 | double d1=SHIFT_REF(dwork1, irow1); |
| 3540 | |
| 3541 | d0-=dv*dval0; |
| 3542 | d1-=dv*dval1; |
| 3543 | SHIFT_REF(dwork1, irow0)=d0; |
| 3544 | SHIFT_REF(dwork1, irow1)=d1; |
| 3545 | } /* end loop */ |
| 3546 | #else |
| 3547 | if ((nel&1)!=0) { |
| 3548 | int irow = *hrowi2; |
| 3549 | double dval=*dluval2; |
| 3550 | SHIFT_REF(dwork1, irow) -= dv*dval; |
| 3551 | hrowi2++; |
| 3552 | dluval2++; |
| 3553 | } |
| 3554 | for (; hrowi2 < hrowi2end; hrowi2 +=2,dluval2 +=2) { |
| 3555 | int irow0 = hrowi2[0]; |
| 3556 | int irow1 = hrowi2[1]; |
| 3557 | double dval0=dluval2[0]; |
| 3558 | double dval1=dluval2[1]; |
| 3559 | double d0=SHIFT_REF(dwork1, irow0); |
| 3560 | double d1=SHIFT_REF(dwork1, irow1); |
| 3561 | |
| 3562 | d0-=dv*dval0; |
| 3563 | d1-=dv*dval1; |
| 3564 | SHIFT_REF(dwork1, irow0)=d0; |
| 3565 | SHIFT_REF(dwork1, irow1)=d1; |
| 3566 | } |
| 3567 | #endif |
| 3568 | /* put this down here so that dv is less likely to cause a stall */ |
| 3569 | if (fabs(dv) >= tolerance) { |
| 3570 | int iput=hpivro[ipiv]; |
| 3571 | *dworko++=dv; |
| 3572 | *mptX++=iput-1; |
| 3573 | } |
| 3574 | } |
| 3575 | |
| 3576 | dv = dwork1[next_ipiv]; |
| 3577 | ipiv=next_ipiv; |
| 3578 | } /* endwhile */ |
| 3579 | |
| 3580 | *mptp = mptX; |
| 3581 | *ip = ipiv; |
| 3582 | } |
| 3583 | static void c_ekkftjup_aux3_pack(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3584 | double * COIN_RESTRICT dwork1, double * COIN_RESTRICT dworko, |
| 3585 | const int * COIN_RESTRICT back, |
| 3586 | const int * COIN_RESTRICT hpivro, |
| 3587 | int *ipivp, int loop_limit, |
| 3588 | int **mptXp) |
| 3589 | |
| 3590 | { |
| 3591 | double tolerance = fact->zeroTolerance; |
| 3592 | int ipiv = *ipivp; |
| 3593 | if (ipiv!=loop_limit) { |
| 3594 | int *mptX = *mptXp; |
| 3595 | |
| 3596 | double dv = dwork1[ipiv]; |
| 3597 | do { |
| 3598 | int next_ipiv = back[ipiv]; |
| 3599 | double next_dv=dwork1[next_ipiv]; |
| 3600 | |
| 3601 | dwork1[ipiv]=0.0; |
| 3602 | |
| 3603 | if (fabs(dv)>=tolerance) { |
| 3604 | int iput=hpivro[ipiv]; |
| 3605 | *dworko++=dv; |
| 3606 | *mptX++=iput-1; |
| 3607 | } |
| 3608 | |
| 3609 | ipiv = next_ipiv; |
| 3610 | dv = next_dv; |
| 3611 | } while (ipiv!=loop_limit); |
| 3612 | |
| 3613 | *mptXp = mptX; |
| 3614 | |
| 3615 | *ipivp = ipiv; |
| 3616 | } |
| 3617 | } |
| 3618 | |
| 3619 | /* do not use return value if mpt==0 */ |
| 3620 | /* using dual, this is usually called via c_ekkftrn_ft, from c_ekksdul |
| 3621 | * (so mpt is non-null). |
| 3622 | * it is generally called every iteration, but sometimes several iterations |
| 3623 | * are skipped (null moves?). |
| 3624 | * |
| 3625 | * generally, back[i] == i-1 (initialized in c_ekkshfv towards the end). |
| 3626 | */ |
| 3627 | static int c_ekkftjup_pack(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3628 | double * COIN_RESTRICT dwork1, int last, |
| 3629 | double * COIN_RESTRICT dworko , int * COIN_RESTRICT mpt) |
| 3630 | { |
| 3631 | const double * COIN_RESTRICT dluval = fact->xeeadr; |
| 3632 | const int * COIN_RESTRICT hrowi = fact->xeradr; |
| 3633 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 3634 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 3635 | double tolerance = fact->zeroTolerance; |
| 3636 | int ndenuc=fact->ndenuc; |
| 3637 | const int first_dense=fact->first_dense; |
| 3638 | const int last_dense=fact->last_dense; |
| 3639 | int * mptX = mpt; int * mptY = mpt; |
| 3640 | |
| 3641 | const int nrow = fact->nrow; |
| 3642 | const int * COIN_RESTRICT back=fact->back; |
| 3643 | int ipiv=back[nrow+1]; |
| 3644 | assert (mpt); |
| 3645 | |
| 3646 | if (last_dense>first_dense&&mcstrt[ipiv]>=mcstrt[last_dense]) { |
| 3647 | c_ekkftjup_scan_aux_pack(fact, |
| 3648 | dwork1, dworko, last_dense, &ipiv, |
| 3649 | &mptX ); |
| 3650 | /* adjust */ |
| 3651 | dworko+= (mptX-mpt); |
| 3652 | mpt=mptX; |
| 3653 | { |
| 3654 | int j; |
| 3655 | int n=0; |
| 3656 | const int firstDense = nrow- ndenuc+1; |
| 3657 | double *densew = &dwork1[firstDense]; |
| 3658 | int offset; |
| 3659 | |
| 3660 | /* check first dense to see where in triangle it is */ |
| 3661 | int last=first_dense; |
| 3662 | const int k1=mcstrt[last]; |
| 3663 | const int k2=k1+hrowi[k1]; |
| 3664 | |
| 3665 | for (j=k2; j>k1; j--) { |
| 3666 | int irow = UNSHIFT_INDEX(hrowi[j]); |
| 3667 | if (irow<firstDense) { |
| 3668 | break; |
| 3669 | } else { |
| 3670 | #ifdef DEBUG |
| 3671 | if (irow!=last-1) { |
| 3672 | abort(); |
| 3673 | } |
| 3674 | #endif |
| 3675 | last=irow; |
| 3676 | n++; |
| 3677 | } |
| 3678 | } |
| 3679 | offset=n-first_dense; |
| 3680 | int ipiv2=ipiv; |
| 3681 | /* loop counter i may be modified by this call */ |
| 3682 | c_ekkftju_dense(&dluval[1],&hrowi[1],mcstrt,back, |
| 3683 | dwork1, &ipiv2, first_dense,offset,densew); |
| 3684 | |
| 3685 | c_ekkftjup_aux3_pack(fact,dwork1, dworko, back, hpivro, &ipiv, ipiv2,&mptX); |
| 3686 | /* adjust dworko */ |
| 3687 | dworko += (mptX-mpt); |
| 3688 | mpt=mptX; |
| 3689 | } |
| 3690 | } |
| 3691 | |
| 3692 | c_ekkftjup_scan_aux_pack(fact, |
| 3693 | dwork1, dworko, last, &ipiv, |
| 3694 | &mptX ); |
| 3695 | /* adjust dworko */ |
| 3696 | dworko += (mptX-mpt); |
| 3697 | while (ipiv!=0) { |
| 3698 | double dv = dwork1[ipiv]; |
| 3699 | int next_ipiv = back[ipiv]; |
| 3700 | |
| 3701 | dwork1[ipiv]=0.0; |
| 3702 | |
| 3703 | if (fabs(dv)>=tolerance) { |
| 3704 | int iput=hpivro[ipiv]; |
| 3705 | *dworko++=-dv; |
| 3706 | *mptX++=iput-1; |
| 3707 | } |
| 3708 | |
| 3709 | ipiv = next_ipiv; |
| 3710 | } |
| 3711 | |
| 3712 | return static_cast<int>(mptX-mptY); |
| 3713 | } |
| 3714 | static int c_ekkftju_sparse_a(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3715 | int * COIN_RESTRICT mpt, |
| 3716 | int nincol,int * COIN_RESTRICT spare) |
| 3717 | { |
| 3718 | const int * COIN_RESTRICT hrowi = fact->xeradr+1; |
| 3719 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 3720 | const int nrow = fact->nrow; |
| 3721 | char * COIN_RESTRICT nonzero=fact->nonzero; |
| 3722 | |
| 3723 | int k,nStack,kx,nel; |
| 3724 | int nList=0; |
| 3725 | int iPivot; |
| 3726 | /*int kkk=nincol;*/ |
| 3727 | int * COIN_RESTRICT list = spare; |
| 3728 | int * COIN_RESTRICT stack = spare+nrow; |
| 3729 | int * COIN_RESTRICT next = stack+nrow; |
| 3730 | for (k=0;k<nincol;k++) { |
| 3731 | nStack=1; |
| 3732 | iPivot=mpt[k]; |
| 3733 | stack[0]=iPivot; |
| 3734 | next[0]=0; |
| 3735 | while (nStack) { |
| 3736 | int kPivot,j; |
| 3737 | /* take off stack */ |
| 3738 | kPivot=stack[--nStack]; |
| 3739 | if (nonzero[kPivot]!=1) { |
| 3740 | kx = mcstrt[kPivot]; |
| 3741 | nel = hrowi[kx-1]; |
| 3742 | j=next[nStack]; |
| 3743 | if (j==nel) { |
| 3744 | /* finished so mark */ |
| 3745 | list[nList++]=kPivot; |
| 3746 | nonzero[kPivot]=1; |
| 3747 | } else { |
| 3748 | kPivot=hrowi[kx+j]; |
| 3749 | /* put back on stack */ |
| 3750 | next[nStack++] ++; |
| 3751 | if (!nonzero[kPivot]) { |
| 3752 | /* and new one */ |
| 3753 | stack[nStack]=kPivot; |
| 3754 | nonzero[kPivot]=2; |
| 3755 | next[nStack++]=0; |
| 3756 | /*kkk++;*/ |
| 3757 | } |
| 3758 | } |
| 3759 | } |
| 3760 | } |
| 3761 | } |
| 3762 | return (nList); |
| 3763 | } |
| 3764 | static int c_ekkftju_sparse_b(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3765 | double * COIN_RESTRICT dwork1, |
| 3766 | double * COIN_RESTRICT dworko , int * COIN_RESTRICT mpt, |
| 3767 | int nList,int * COIN_RESTRICT spare) |
| 3768 | { |
| 3769 | |
| 3770 | const double * COIN_RESTRICT dluval = fact->xeeadr+1; |
| 3771 | const int * COIN_RESTRICT hrowi = fact->xeradr+1; |
| 3772 | const int * COIN_RESTRICT mcstrt = fact->xcsadr; |
| 3773 | const int * COIN_RESTRICT hpivro = fact->krpadr; |
| 3774 | double tolerance = fact->zeroTolerance; |
| 3775 | char * COIN_RESTRICT nonzero=fact->nonzero; |
| 3776 | int i,k,kx,nel; |
| 3777 | int iPivot; |
| 3778 | /*int kkk=nincol;*/ |
| 3779 | int * COIN_RESTRICT list = spare; |
| 3780 | i=nList-1; |
| 3781 | nList=0; |
| 3782 | for (;i>=0;i--) { |
| 3783 | double dpiv; |
| 3784 | double dv; |
| 3785 | iPivot = list[i]; |
| 3786 | /*printf("pivot %d %d\n",i,iPivot);*/ |
| 3787 | dv=dwork1[iPivot]; |
| 3788 | kx = mcstrt[iPivot]; |
| 3789 | nel = hrowi[kx-1]; |
| 3790 | dwork1[iPivot]=0.0; |
| 3791 | dpiv = dluval[kx-1]; |
| 3792 | dv*=dpiv; |
| 3793 | nonzero[iPivot]=0; |
| 3794 | iPivot=hpivro[iPivot]; |
| 3795 | if (fabs(dv)>=tolerance) { |
| 3796 | *dworko++=dv; |
| 3797 | mpt[nList++]=iPivot-1; |
| 3798 | for (k = kx; k < kx+nel; k++) { |
| 3799 | double dval; |
| 3800 | double dd; |
| 3801 | int irow = hrowi[k]; |
| 3802 | dval=dluval[k]; |
| 3803 | dd=dwork1[irow]; |
| 3804 | dd-=dv*dval; |
| 3805 | dwork1[irow]=dd; |
| 3806 | } |
| 3807 | } |
| 3808 | } |
| 3809 | return (nList); |
| 3810 | } |
| 3811 | /* dwork1 = (B^-1)dwork1; |
| 3812 | * I think dpermu[1..nrow+1] is zeroed on exit (?) |
| 3813 | * I don't think it is expected to have any particular value on entry (?) |
| 3814 | */ |
| 3815 | int c_ekkftrn(const EKKfactinfo * COIN_RESTRICT2 fact, |
| 3816 | double * COIN_RESTRICT dwork1, |
| 3817 | double * COIN_RESTRICT dpermu, int * COIN_RESTRICT mpt,int numberNonZero) |
| 3818 | { |
| 3819 | const int * COIN_RESTRICT mpermu = fact->mpermu; |
| 3820 | int lastNonZero; |
| 3821 | int firstNonZero = c_ekkshfpi_list2(mpermu+1, dwork1+1, dpermu, mpt, |
| 3822 | numberNonZero,&lastNonZero); |
| 3823 | if (fact->nnentl&&lastNonZero>=fact->firstLRow) { |
| 3824 | /* dpermu = (L^-1)dpermu */ |
| 3825 | c_ekkftj4p(fact, dpermu, firstNonZero); |
| 3826 | } |
| 3827 | |
| 3828 | |
| 3829 | int lastSlack; |
| 3830 | |
| 3831 | /* dpermu = (R^-1) dpermu */ |
| 3832 | c_ekkftjl(fact, dpermu); |
| 3833 | |
| 3834 | assert (fact->numberSlacks!=0||!fact->lastSlack); |
| 3835 | lastSlack=fact->lastSlack; |
| 3836 | |
| 3837 | /* dwork1 = (U^-1)dpermu; dpermu zeroed (?) */ |
| 3838 | return c_ekkftjup(fact, |
| 3839 | dpermu, lastSlack, dwork1, mpt); |
| 3840 | |
| 3841 | } /* c_ekkftrn */ |
| 3842 | |
| 3843 | int c_ekkftrn_ft(EKKfactinfo * COIN_RESTRICT2 fact, |
| 3844 | double * COIN_RESTRICT dwork1_ft, int * COIN_RESTRICT mpt_ft, int *nincolp_ft) |
| 3845 | { |
| 3846 | double * COIN_RESTRICT dpermu_ft = fact->kadrpm; |
| 3847 | int * COIN_RESTRICT spare = reinterpret_cast<int *>(fact->kp1adr); |
| 3848 | int nincol = *nincolp_ft; |
| 3849 | |
| 3850 | int nuspik; |
| 3851 | double * COIN_RESTRICT dluvalPut = fact->xeeadr+fact->nnentu+1; |
| 3852 | int * COIN_RESTRICT hrowiPut = fact->xeradr+fact->nnentu+1; |
| 3853 | |
| 3854 | const int nrow = fact->nrow; |
| 3855 | /* mpermu contains the permutation */ |
| 3856 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 3857 | |
| 3858 | int lastSlack; |
| 3859 | |
| 3860 | int kdnspt = fact->nnetas - fact->nnentl; |
| 3861 | bool isRoom = (fact->nnentu + (nrow << 1) < (kdnspt - 2) |
| 3862 | + fact->R_etas_start[fact->nR_etas + 1]); |
| 3863 | |
| 3864 | /* say F-T will be sorted */ |
| 3865 | fact->sortedEta=1; |
| 3866 | |
| 3867 | assert (fact->numberSlacks!=0||!fact->lastSlack); |
| 3868 | lastSlack=fact->lastSlack; |
| 3869 | #ifdef CLP_REUSE_ETAS |
| 3870 | bool skipStuff = (fact->reintro>=0); |
| 3871 | |
| 3872 | int save_nR_etas=fact->nR_etas; |
| 3873 | int * save_hpivcoR=fact->hpivcoR; |
| 3874 | int * save_R_etas_start=fact->R_etas_start; |
| 3875 | if (skipStuff) { |
| 3876 | // just move |
| 3877 | int * putSeq = fact->xrsadr+2*fact->nrowmx+2; |
| 3878 | int * position = putSeq+fact->maxinv; |
| 3879 | int * putStart = position+fact->maxinv; |
| 3880 | memset(dwork1_ft,0,nincol*sizeof(double)); |
| 3881 | int iPiv=fact->reintro; |
| 3882 | int start=putStart[iPiv]&0x7fffffff; |
| 3883 | int end=putStart[iPiv+1]&0x7fffffff; |
| 3884 | double * COIN_RESTRICT dluval = fact->xeeadr; |
| 3885 | int * COIN_RESTRICT hrowi = fact->xeradr; |
| 3886 | double dValue; |
| 3887 | if (fact->reintro<fact->nrow) { |
| 3888 | iPiv++; |
| 3889 | dValue=1.0/dluval[start++]; |
| 3890 | } else { |
| 3891 | iPiv=hrowi[--end]; |
| 3892 | dValue=dluval[end]; |
| 3893 | start++; |
| 3894 | int ndoSkip=0; |
| 3895 | for (int i=fact->nrow;i<fact->reintro;i++) { |
| 3896 | if ((putStart[i]&0x80000000)==0) |
| 3897 | ndoSkip++; |
| 3898 | } |
| 3899 | fact->nR_etas-=ndoSkip; |
| 3900 | fact->hpivcoR+=ndoSkip; |
| 3901 | fact->R_etas_start+=ndoSkip; |
| 3902 | } |
| 3903 | dpermu_ft[iPiv]=dValue; |
| 3904 | if (fact->if_sparse_update>0 && DENSE_THRESHOLD<nrow) { |
| 3905 | nincol=0; |
| 3906 | if (dValue) |
| 3907 | mpt_ft[nincol++]=iPiv; |
| 3908 | for (int i=start;i<end;i++) { |
| 3909 | int iRow=hrowi[i]; |
| 3910 | dpermu_ft[iRow]=dluval[i]; |
| 3911 | mpt_ft[nincol++]=iRow; |
| 3912 | } |
| 3913 | } else { |
| 3914 | for (int i=start;i<end;i++) { |
| 3915 | int iRow=hrowi[i]; |
| 3916 | dpermu_ft[iRow]=dluval[i]; |
| 3917 | } |
| 3918 | } |
| 3919 | } |
| 3920 | #else |
| 3921 | bool skipStuff = false; |
| 3922 | #endif |
| 3923 | if (fact->if_sparse_update>0 && DENSE_THRESHOLD<nrow) { |
| 3924 | if (!skipStuff) { |
| 3925 | /* iterating so c_ekkgtcl will have list */ |
| 3926 | /* in order for this to make sense, nonzero[1..nrow] must already be zeroed */ |
| 3927 | c_ekkshfpi_list3(mpermu+1, dwork1_ft, dpermu_ft, mpt_ft, nincol); |
| 3928 | |
| 3929 | /* it may be the case that the basis was entirely upper-triangular */ |
| 3930 | if (fact->nnentl) { |
| 3931 | nincol = |
| 3932 | c_ekkftj4_sparse(fact, |
| 3933 | dpermu_ft, mpt_ft, |
| 3934 | nincol,spare); |
| 3935 | } |
| 3936 | } |
| 3937 | /* DO ROW ETAS IN L */ |
| 3938 | if (isRoom) { |
| 3939 | ++fact->nnentu; |
| 3940 | nincol= |
| 3941 | c_ekkftjl_sparse3(fact, |
| 3942 | dpermu_ft, |
| 3943 | mpt_ft, hrowiPut, |
| 3944 | dluvalPut,nincol); |
| 3945 | nuspik = nincol; |
| 3946 | /* temporary */ |
| 3947 | /* say not sorted */ |
| 3948 | fact->sortedEta=0; |
| 3949 | } else { |
| 3950 | /* no room */ |
| 3951 | nuspik=-3; |
| 3952 | nincol= |
| 3953 | c_ekkftjl_sparse2(fact, |
| 3954 | dpermu_ft, |
| 3955 | mpt_ft, nincol); |
| 3956 | } |
| 3957 | /* DO U */ |
| 3958 | if (DENSE_THRESHOLD>nrow-fact->numberSlacks) { |
| 3959 | nincol = c_ekkftjup_pack(fact, |
| 3960 | dpermu_ft,lastSlack, dwork1_ft, |
| 3961 | mpt_ft); |
| 3962 | } else { |
| 3963 | nincol= c_ekkftju_sparse_a(fact, |
| 3964 | mpt_ft, |
| 3965 | nincol, spare); |
| 3966 | nincol = c_ekkftju_sparse_b(fact, |
| 3967 | dpermu_ft, |
| 3968 | dwork1_ft , mpt_ft, |
| 3969 | nincol, spare); |
| 3970 | } |
| 3971 | } else { |
| 3972 | if (!skipStuff) { |
| 3973 | int lastNonZero; |
| 3974 | int firstNonZero = c_ekkshfpi_list(mpermu+1, dwork1_ft, dpermu_ft, |
| 3975 | mpt_ft, nincol,&lastNonZero); |
| 3976 | if (fact->nnentl&&lastNonZero>=fact->firstLRow) { |
| 3977 | /* dpermu_ft = (L^-1)dpermu_ft */ |
| 3978 | c_ekkftj4p(fact, dpermu_ft, firstNonZero); |
| 3979 | } |
| 3980 | } |
| 3981 | |
| 3982 | /* dpermu_ft = (R^-1) dpermu_ft */ |
| 3983 | c_ekkftjl(fact, dpermu_ft); |
| 3984 | |
| 3985 | if (isRoom) { |
| 3986 | |
| 3987 | /* fake start to allow room for pivot */ |
| 3988 | /* dluval[fact->nnentu...] = non-zeros of dpermu_ft; |
| 3989 | * hrowi[fact->nnentu..] = indices of these non-zeros; |
| 3990 | * near-zeros in dluval flattened |
| 3991 | */ |
| 3992 | ++fact->nnentu; |
| 3993 | nincol= c_ekkscmv(fact,fact->nrow, dpermu_ft, hrowiPut, |
| 3994 | dluvalPut); |
| 3995 | |
| 3996 | /* |
| 3997 | * note that this is not the value of nincol determined by c_ekkftjup. |
| 3998 | * For Forrest-Tomlin update we want vector before U |
| 3999 | * this vector will replace one in U |
| 4000 | */ |
| 4001 | nuspik = nincol; |
| 4002 | } else { |
| 4003 | /* no room */ |
| 4004 | nuspik = -3; |
| 4005 | } |
| 4006 | |
| 4007 | /* dwork1_ft = (U^-1)dpermu_ft; dpermu_ft zeroed (?) */ |
| 4008 | nincol = c_ekkftjup_pack(fact, |
| 4009 | dpermu_ft, lastSlack, dwork1_ft, mpt_ft); |
| 4010 | } |
| 4011 | #ifdef CLP_REUSE_ETAS |
| 4012 | fact->nR_etas=save_nR_etas; |
| 4013 | fact->hpivcoR=save_hpivcoR; |
| 4014 | fact->R_etas_start=save_R_etas_start; |
| 4015 | #endif |
| 4016 | |
| 4017 | *nincolp_ft = nincol; |
| 4018 | return (nuspik); |
| 4019 | } /* c_ekkftrn */ |
| 4020 | void c_ekkftrn2(EKKfactinfo * COIN_RESTRICT2 fact, double * COIN_RESTRICT dwork1, |
| 4021 | double * COIN_RESTRICT dpermu1,int * COIN_RESTRICT mpt1, int *nincolp, |
| 4022 | double * COIN_RESTRICT dwork1_ft, int * COIN_RESTRICT mpt_ft, int *nincolp_ft) |
| 4023 | { |
| 4024 | double * COIN_RESTRICT dluvalPut = fact->xeeadr+fact->nnentu+1; |
| 4025 | int * COIN_RESTRICT hrowiPut = fact->xeradr+fact->nnentu+1; |
| 4026 | |
| 4027 | const int nrow = fact->nrow; |
| 4028 | /* mpermu contains the permutation */ |
| 4029 | const int * COIN_RESTRICT mpermu=fact->mpermu; |
| 4030 | |
| 4031 | int lastSlack; |
| 4032 | assert (fact->numberSlacks!=0||!fact->lastSlack); |
| 4033 | lastSlack=fact->lastSlack; |
| 4034 | |
| 4035 | int nincol = *nincolp_ft; |
| 4036 | |
| 4037 | /* using dwork1 instead double *dpermu_ft = fact->kadrpm; */ |
| 4038 | int * spare = reinterpret_cast<int *>(fact->kp1adr); |
| 4039 | |
| 4040 | int kdnspt = fact->nnetas - fact->nnentl; |
| 4041 | bool isRoom = (fact->nnentu + (nrow << 1) < (kdnspt - 2) |
| 4042 | + fact->R_etas_start[fact->nR_etas + 1]); |
| 4043 | /* say F-T will be sorted */ |
| 4044 | fact->sortedEta=1; |
| 4045 | int lastNonZero; |
| 4046 | int firstNonZero = c_ekkshfpi_list2(mpermu+1, dwork1+1, dpermu1, |
| 4047 | mpt1, *nincolp,&lastNonZero); |
| 4048 | if (fact->nnentl&&lastNonZero>=fact->firstLRow) { |
| 4049 | /* dpermu1 = (L^-1)dpermu1 */ |
| 4050 | c_ekkftj4p(fact, dpermu1, firstNonZero); |
| 4051 | } |
| 4052 | |
| 4053 | #ifdef CLP_REUSE_ETAS |
| 4054 | bool skipStuff = (fact->reintro>=0); |
| 4055 | int save_nR_etas=fact->nR_etas; |
| 4056 | int * save_hpivcoR=fact->hpivcoR; |
| 4057 | int * save_R_etas_start=fact->R_etas_start; |
| 4058 | if (skipStuff) { |
| 4059 | // just move |
| 4060 | int * putSeq = fact->xrsadr+2*fact->nrowmx+2; |
| 4061 | int * position = putSeq+fact->maxinv; |
| 4062 | int * putStart = position+fact->maxinv; |
| 4063 | memset(dwork1_ft,0,nincol*sizeof(double)); |
| 4064 | int iPiv=fact->reintro; |
| 4065 | int start=putStart[iPiv]&0x7fffffff; |
| 4066 | int end=putStart[iPiv+1]&0x7fffffff; |
| 4067 | double * COIN_RESTRICT dluval = fact->xeeadr; |
| 4068 | int * COIN_RESTRICT hrowi = fact->xeradr; |
| 4069 | double dValue; |
| 4070 | if (fact->reintro<fact->nrow) { |
| 4071 | iPiv++; |
| 4072 | dValue=1.0/dluval[start++]; |
| 4073 | } else { |
| 4074 | iPiv=hrowi[--end]; |
| 4075 | dValue=dluval[end]; |
| 4076 | start++; |
| 4077 | int ndoSkip=0; |
| 4078 | for (int i=fact->nrow;i<fact->reintro;i++) { |
| 4079 | if ((putStart[i]&0x80000000)==0) |
| 4080 | ndoSkip++; |
| 4081 | } |
| 4082 | fact->nR_etas-=ndoSkip; |
| 4083 | fact->hpivcoR+=ndoSkip; |
| 4084 | fact->R_etas_start+=ndoSkip; |
| 4085 | } |
| 4086 | dwork1[iPiv]=dValue; |
| 4087 | if (fact->if_sparse_update>0 && DENSE_THRESHOLD<nrow) { |
| 4088 | nincol=0; |
| 4089 | if (dValue) |
| 4090 | mpt_ft[nincol++]=iPiv; |
| 4091 | for (int i=start;i<end;i++) { |
| 4092 | int iRow=hrowi[i]; |
| 4093 | dwork1[iRow]=dluval[i]; |
| 4094 | mpt_ft[nincol++]=iRow; |
| 4095 | } |
| 4096 | } else { |
| 4097 | for (int i=start;i<end;i++) { |
| 4098 | int iRow=hrowi[i]; |
| 4099 | dwork1[iRow]=dluval[i]; |
| 4100 | } |
| 4101 | } |
| 4102 | } |
| 4103 | #else |
| 4104 | bool skipStuff = false; |
| 4105 | #endif |
| 4106 | if (fact->if_sparse_update>0 && DENSE_THRESHOLD<nrow) { |
| 4107 | if (!skipStuff) { |
| 4108 | /* iterating so c_ekkgtcl will have list */ |
| 4109 | /* in order for this to make sense, nonzero[1..nrow] must already be zeroed */ |
| 4110 | c_ekkshfpi_list3(mpermu+1, dwork1_ft, dwork1, mpt_ft, nincol); |
| 4111 | |
| 4112 | /* it may be the case that the basis was entirely upper-triangular */ |
| 4113 | if (fact->nnentl) { |
| 4114 | nincol = |
| 4115 | c_ekkftj4_sparse(fact, |
| 4116 | dwork1, mpt_ft, |
| 4117 | nincol,spare); |
| 4118 | } |
| 4119 | } |
| 4120 | /* DO ROW ETAS IN L */ |
| 4121 | if (isRoom) { |
| 4122 | ++fact->nnentu; |
| 4123 | nincol= |
| 4124 | c_ekkftjl_sparse3(fact, |
| 4125 | dwork1, |
| 4126 | mpt_ft, hrowiPut, |
| 4127 | dluvalPut, |
| 4128 | nincol); |
| 4129 | fact->nuspike = nincol; |
| 4130 | /* say not sorted */ |
| 4131 | fact->sortedEta=0; |
| 4132 | } else { |
| 4133 | /* no room */ |
| 4134 | fact->nuspike=-3; |
| 4135 | nincol= |
| 4136 | c_ekkftjl_sparse2(fact, |
| 4137 | dwork1, |
| 4138 | mpt_ft, nincol); |
| 4139 | } |
| 4140 | } else { |
| 4141 | if (!skipStuff) { |
| 4142 | int lastNonZero; |
| 4143 | int firstNonZero = c_ekkshfpi_list(mpermu+1, dwork1_ft, dwork1, |
| 4144 | mpt_ft, nincol,&lastNonZero); |
| 4145 | if (fact->nnentl&&lastNonZero>=fact->firstLRow) { |
| 4146 | /* dpermu_ft = (L^-1)dpermu_ft */ |
| 4147 | c_ekkftj4p(fact, dwork1, firstNonZero); |
| 4148 | } |
| 4149 | } |
| 4150 | c_ekkftjl(fact, dwork1); |
| 4151 | |
| 4152 | if (isRoom) { |
| 4153 | |
| 4154 | /* fake start to allow room for pivot */ |
| 4155 | /* dluval[fact->nnentu...] = non-zeros of dpermu_ft; |
| 4156 | * hrowi[fact->nnentu..] = indices of these non-zeros; |
| 4157 | * near-zeros in dluval flattened |
| 4158 | */ |
| 4159 | ++fact->nnentu; |
| 4160 | nincol= c_ekkscmv(fact,fact->nrow, dwork1, |
| 4161 | hrowiPut, |
| 4162 | dluvalPut); |
| 4163 | |
| 4164 | /* |
| 4165 | * note that this is not the value of nincol determined by c_ekkftjup. |
| 4166 | * For Forrest-Tomlin update we want vector before U |
| 4167 | * this vector will replace one in U |
| 4168 | */ |
| 4169 | fact->nuspike = nincol; |
| 4170 | } else { |
| 4171 | /* no room */ |
| 4172 | fact->nuspike = -3; |
| 4173 | } |
| 4174 | } |
| 4175 | #ifdef CLP_REUSE_ETAS |
| 4176 | fact->nR_etas=save_nR_etas; |
| 4177 | fact->hpivcoR=save_hpivcoR; |
| 4178 | fact->R_etas_start=save_R_etas_start; |
| 4179 | #endif |
| 4180 | |
| 4181 | |
| 4182 | /* dpermu1 = (R^-1) dpermu1 */ |
| 4183 | c_ekkftjl(fact, dpermu1); |
| 4184 | |
| 4185 | /* DO U */ |
| 4186 | if (fact->if_sparse_update<=0 || DENSE_THRESHOLD>nrow-fact->numberSlacks) { |
| 4187 | nincol = c_ekkftjup_pack(fact, |
| 4188 | dwork1,lastSlack, dwork1_ft, mpt_ft); |
| 4189 | } else { |
| 4190 | nincol= c_ekkftju_sparse_a(fact, |
| 4191 | mpt_ft, |
| 4192 | nincol, spare); |
| 4193 | nincol = c_ekkftju_sparse_b(fact, |
| 4194 | dwork1, |
| 4195 | dwork1_ft , mpt_ft, |
| 4196 | nincol, spare); |
| 4197 | } |
| 4198 | *nincolp_ft = nincol; |
| 4199 | /* dwork1 = (U^-1)dpermu1; dpermu1 zeroed (?) */ |
| 4200 | *nincolp = c_ekkftjup(fact, |
| 4201 | dpermu1,lastSlack, dwork1, mpt1); |
| 4202 | |
| 4203 | } |
| 4204 | |