1 | /* $Id: CoinOslFactorization3.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | /* |
3 | Copyright (C) 1987, 2009, International Business Machines |
4 | Corporation and others. All Rights Reserved. |
5 | |
6 | This code is licensed under the terms of the Eclipse Public License (EPL). |
7 | */ |
8 | #include "CoinOslFactorization.hpp" |
9 | #include "CoinOslC.h" |
10 | #include "CoinFinite.hpp" |
11 | #define GO_DENSE 70 |
12 | #define GO_DENSE_RATIO 1.8 |
13 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, |
14 | int *mrstrt, int *hinrow, int xnewro); |
15 | |
16 | void c_ekkclcp(const int *hcol, const double *dels, const int * mrstrt, |
17 | int *hrow, double *dels2, int *mcstrt, |
18 | int *hincol, int itype, int nnrow, int nncol, |
19 | int ninbas); |
20 | |
21 | int c_ekkcmfc(EKKfactinfo *fact, |
22 | EKKHlink *rlink, EKKHlink *clink, |
23 | EKKHlink *mwork, void *maction_void, |
24 | int nnetas, |
25 | int *nsingp, int *xrejctp, |
26 | int *xnewrop, int xnewco, |
27 | int *ncompactionsp); |
28 | |
29 | int c_ekkcmfy(EKKfactinfo *fact, |
30 | EKKHlink *rlink, EKKHlink *clink, |
31 | EKKHlink *mwork, void *maction_void, |
32 | int nnetas, |
33 | int *nsingp, int *xrejctp, |
34 | int *xnewrop, int xnewco, |
35 | int *ncompactionsp); |
36 | |
37 | int c_ekkcmfd(EKKfactinfo *fact, |
38 | int *mcol, |
39 | EKKHlink *rlink, EKKHlink *clink, |
40 | int *maction, |
41 | int nnetas, |
42 | int *nnentlp, int *nnentup, |
43 | int *nsingp); |
44 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, |
45 | int *hpivro, int *hpivco, |
46 | EKKHlink *rlink, EKKHlink *clink); |
47 | void c_ekkrowq(int *hrow, int *hcol, double *dels, |
48 | int *mrstrt, |
49 | const int *hinrow, int nnrow, int ninbas); |
50 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, int *hcoli, int * |
51 | mrstrt, int *hinrow, int xnewro); |
52 | |
53 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
54 | const int *hinrow, const EKKHlink *mwork, |
55 | int nfirst); |
56 | |
57 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
58 | const int *hinrow, const EKKHlink *mwork, |
59 | const EKKHlink *rlink, |
60 | const short *msort, double *dsort, |
61 | int nlast, int xnewro); |
62 | |
63 | int c_ekkshff(EKKfactinfo *fact, |
64 | EKKHlink *clink, EKKHlink *rlink, |
65 | int xnewro); |
66 | |
67 | void c_ekkshfv(EKKfactinfo *fact, EKKHlink *rlink, EKKHlink *clink, |
68 | int xnewro); |
69 | int c_ekktria(EKKfactinfo *fact, |
70 | EKKHlink * rlink, |
71 | EKKHlink * clink, |
72 | int *nsingp, |
73 | int *xnewcop, int *xnewrop, |
74 | int *nlrowtp, |
75 | const int ninbas); |
76 | #if 0 |
77 | static void c_ekkafpv(int *hentry, int *hcoli, |
78 | double *dluval, int *mrstrt, |
79 | int *hinrow, int nentry) |
80 | { |
81 | int j; |
82 | int nel, krs; |
83 | int koff; |
84 | int irow; |
85 | int ientry; |
86 | int * index; |
87 | |
88 | for (ientry = 0; ientry < nentry; ++ientry) { |
89 | #ifdef INTEL |
90 | int * els_long,maxaij_long; |
91 | #endif |
92 | double * els; |
93 | irow = UNSHIFT_INDEX(hentry[ientry]); |
94 | nel = hinrow[irow]; |
95 | krs = mrstrt[irow]; |
96 | index=&hcoli[krs]; |
97 | els=&dluval[krs]; |
98 | #ifdef INTEL |
99 | els_long=reinterpret_cast<int *> (els); |
100 | maxaij_long=0; |
101 | #else |
102 | double maxaij = 0.f; |
103 | #endif |
104 | koff = 0; |
105 | j=0; |
106 | if ((nel&1)!=0) { |
107 | #ifdef INTEL |
108 | maxaij_long = els_long[1] & 0x7fffffff; |
109 | #else |
110 | maxaij=fabs(els[0]); |
111 | #endif |
112 | j=1; |
113 | } |
114 | |
115 | while (j<nel) { |
116 | #ifdef INTEL |
117 | UNROLL_LOOP_BODY2({ |
118 | int d_long = els_long[1+(j<<1)] & 0x7fffffff; |
119 | if (maxaij_long < d_long) { |
120 | maxaij_long = d_long; |
121 | koff=j; |
122 | } |
123 | j++; |
124 | }); |
125 | #else |
126 | UNROLL_LOOP_BODY2({ |
127 | double d = fabs(els[j]); |
128 | if (maxaij < d) { |
129 | maxaij = d; |
130 | koff=j; |
131 | } |
132 | j++; |
133 | }); |
134 | #endif |
135 | } |
136 | |
137 | SWAP(int, index[koff], index[0]); |
138 | SWAP(double, els[koff], els[0]); |
139 | } |
140 | } /* c_ekkafpv */ |
141 | #endif |
142 | |
143 | /* Uwe H. Suhl, March 1987 */ |
144 | /* This routine processes col singletons during the LU-factorization. */ |
145 | /* Return codes (checked version 1.11): */ |
146 | /* 0: ok */ |
147 | /* 6: pivot element too small */ |
148 | /* -43: system error at label 420 (ipivot not found) */ |
149 | /* |
150 | * This routine processes singleton columns during factorization of the |
151 | * nucleus. It is very similar to the first part of c_ekktria, |
152 | * but is more complex, because we now have to maintain the length |
153 | * lists. |
154 | * The differences are: |
155 | * (1) here we use the length list for length 1 rather than a queue. |
156 | * This routine is only called if it is known that there is a singleton |
157 | * column. |
158 | * |
159 | * (2) here we maintain hrowi by moving the last entry into the pivot |
160 | * column entry; that means we don't have to search for the pivot row |
161 | * entry like we do in c_ekktria. |
162 | * |
163 | * (3) here the hlink data structure is in use for the length lists, |
164 | * so we maintain it as we shorten rows and removing columns altogether. |
165 | * |
166 | */ |
167 | int c_ekkcsin(EKKfactinfo *fact, |
168 | EKKHlink *rlink, EKKHlink *clink, |
169 | |
170 | int *nsingp) |
171 | { |
172 | #if 1 |
173 | int *hcoli = fact->xecadr; |
174 | double *dluval = fact->xeeadr; |
175 | //double *dvalpv = fact->kw3adr; |
176 | int *mrstrt = fact->xrsadr; |
177 | int *hrowi = fact->xeradr; |
178 | int *mcstrt = fact->xcsadr; |
179 | int *hinrow = fact->xrnadr; |
180 | int *hincol = fact->xcnadr; |
181 | int *hpivro = fact->krpadr; |
182 | int *hpivco = fact->kcpadr; |
183 | #endif |
184 | const int nrow = fact->nrow; |
185 | const double drtpiv = fact->drtpiv; |
186 | |
187 | |
188 | int j, k, kc, kce, kcs, nzj; |
189 | double pivot; |
190 | int kipis, kipie; |
191 | int jpivot; |
192 | #ifndef NDEBUG |
193 | int kpivot=-1; |
194 | #else |
195 | int kpivot=-1; |
196 | #endif |
197 | |
198 | bool small_pivot = false; |
199 | |
200 | |
201 | /* next singleton column. |
202 | * Note that when the pivot column itself was removed from the |
203 | * list, the column in the list after it (if any) moves to the |
204 | * head of the list. |
205 | * Also, if any column from the pivot row was reduced to length 1, |
206 | * then it will have been added to the list and now be in front. |
207 | */ |
208 | for (jpivot = hpivco[1]; jpivot > 0; jpivot = hpivco[1]) { |
209 | const int ipivot = hrowi[mcstrt[jpivot]]; /* (2) */ |
210 | assert(ipivot); |
211 | /* The pivot row is being eliminated (3) */ |
212 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, ipivot); |
213 | |
214 | /* Loop over nonzeros in pivot row: */ |
215 | kipis = mrstrt[ipivot]; |
216 | kipie = kipis + hinrow[ipivot] - 1; |
217 | for (k = kipis; k <= kipie; ++k) { |
218 | j = hcoli[k]; |
219 | |
220 | /* |
221 | * We're eliminating column jpivot, |
222 | * so we're eliminating the row it occurs in, |
223 | * so every column in this row is becoming one shorter. |
224 | * |
225 | * I don't know why we don't do the same for rejected columns. |
226 | * |
227 | * if xrejct is false, then no column has ever been rejected |
228 | * and this test wouldn't have to be made. |
229 | * However, that means this whole loop would have to be copied. |
230 | */ |
231 | if (! (clink[j].pre > nrow)) { |
232 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); /* (3) */ |
233 | } |
234 | --hincol[j]; |
235 | |
236 | kcs = mcstrt[j]; |
237 | kce = kcs + hincol[j]; |
238 | for (kc = kcs; kc <= kce; ++kc) { |
239 | if (ipivot == hrowi[kc]) { |
240 | break; |
241 | } |
242 | } |
243 | /* ASSERT !(kc>kce) */ |
244 | |
245 | /* (2) */ |
246 | hrowi[kc] = hrowi[kce]; |
247 | hrowi[kce] = 0; |
248 | |
249 | if (j == jpivot) { |
250 | /* remember the slot corresponding to the pivot column */ |
251 | kpivot = k; |
252 | } |
253 | else { |
254 | /* |
255 | * We just reduced the length of the column. |
256 | * If we haven't eliminated all of its elements completely, |
257 | * then we have to put it back in its new length list. |
258 | * |
259 | * If the column was rejected, we only put it back in a length |
260 | * list when it has been reduced to a singleton column, |
261 | * because it would just be rejected again. |
262 | */ |
263 | nzj = hincol[j]; |
264 | if (! (nzj <= 0) && |
265 | ! (clink[j].pre > nrow && nzj != 1)) { |
266 | C_EKK_ADD_LINK(hpivco, nzj, clink, j); /* (3) */ |
267 | } |
268 | } |
269 | } |
270 | assert (kpivot>0); |
271 | |
272 | /* store pivot sequence number */ |
273 | ++fact->npivots; |
274 | rlink[ipivot].pre = -fact->npivots; |
275 | clink[jpivot].pre = -fact->npivots; |
276 | |
277 | /* compute how much room we'll need later */ |
278 | fact->nuspike += hinrow[ipivot]; |
279 | |
280 | /* check the pivot */ |
281 | pivot = dluval[kpivot]; |
282 | if (fabs(pivot) < drtpiv) { |
283 | /* pivot element too small */ |
284 | small_pivot = true; |
285 | rlink[ipivot].pre = -nrow - 1; |
286 | clink[jpivot].pre = -nrow - 1; |
287 | ++(*nsingp); |
288 | } |
289 | |
290 | /* swap the pivoted column entry with the first entry in the row */ |
291 | dluval[kpivot] = dluval[kipis]; |
292 | dluval[kipis] = pivot; |
293 | hcoli[kpivot] = hcoli[kipis]; |
294 | hcoli[kipis] = jpivot; |
295 | } |
296 | |
297 | return (small_pivot); |
298 | } /* c_ekkcsin */ |
299 | |
300 | |
301 | /* Uwe H. Suhl, March 1987 */ |
302 | /* This routine processes row singletons during the computation of */ |
303 | /* an LU-decomposition for the nucleus. */ |
304 | /* Return codes (checked version 1.16): */ |
305 | /* -5: not enough space in row file */ |
306 | /* -6: not enough space in column file */ |
307 | /* 7: pivot element too small */ |
308 | /* -52: system error at label 220 (ipivot not found) */ |
309 | /* -53: system error at label 400 (jpivot not found) */ |
310 | int c_ekkrsin(EKKfactinfo *fact, |
311 | EKKHlink *rlink, EKKHlink *clink, |
312 | EKKHlink *mwork, int nfirst, |
313 | int *nsingp, |
314 | int *xnewcop, int *xnewrop, |
315 | int *nnentup, |
316 | int *kmxetap, int *ncompactionsp, |
317 | int *nnentlp) |
318 | |
319 | { |
320 | #if 1 |
321 | int *hcoli = fact->xecadr; |
322 | double *dluval = fact->xeeadr; |
323 | //double *dvalpv = fact->kw3adr; |
324 | int *mrstrt = fact->xrsadr; |
325 | int *hrowi = fact->xeradr; |
326 | int *mcstrt = fact->xcsadr; |
327 | int *hinrow = fact->xrnadr; |
328 | int *hincol = fact->xcnadr; |
329 | int *hpivro = fact->krpadr; |
330 | int *hpivco = fact->kcpadr; |
331 | #endif |
332 | const int nrow = fact->nrow; |
333 | const double drtpiv = fact->drtpiv; |
334 | |
335 | int xnewro = *xnewrop; |
336 | int xnewco = *xnewcop; |
337 | int kmxeta = *kmxetap; |
338 | int nnentu = *nnentup; |
339 | int ncompactions = *ncompactionsp; |
340 | int nnentl = *nnentlp; |
341 | |
342 | int i, j, k, kc, kr, npr, nzi; |
343 | double pivot; |
344 | int kjpis, kjpie, knprs, knpre; |
345 | double elemnt, maxaij; |
346 | int ipivot, epivco, lstart; |
347 | #ifndef NDEBUG |
348 | int kpivot=-1; |
349 | #else |
350 | int kpivot=-1; |
351 | #endif |
352 | int irtcod = 0; |
353 | const int nnetas = fact->nnetas; |
354 | |
355 | lstart = nnetas - nnentl + 1; |
356 | |
357 | |
358 | for (ipivot = hpivro[1]; ipivot > 0; ipivot = hpivro[1]) { |
359 | const int jpivot = hcoli[mrstrt[ipivot]]; |
360 | |
361 | kjpis = mcstrt[jpivot]; |
362 | kjpie = kjpis + hincol[jpivot] ; |
363 | for (k = kjpis; k < kjpie; ++k) { |
364 | i = hrowi[k]; |
365 | |
366 | /* |
367 | * We're eliminating row ipivot, |
368 | * so we're eliminating the column it occurs in, |
369 | * so every row in this column is becoming one shorter. |
370 | * |
371 | * No exception is made for rejected rows. |
372 | */ |
373 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); |
374 | } |
375 | |
376 | /* The pivot column is being eliminated */ |
377 | /* I don't know why there is an exception for rejected columns */ |
378 | if (! (clink[jpivot].pre > nrow)) { |
379 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, jpivot); |
380 | } |
381 | |
382 | epivco = hincol[jpivot] - 1; |
383 | kjpie = kjpis + epivco; |
384 | for (kc = kjpis; kc <= kjpie; ++kc) { |
385 | if (ipivot == hrowi[kc]) { |
386 | break; |
387 | } |
388 | } |
389 | /* ASSERT !(kc>kjpie) */ |
390 | |
391 | /* move the last column entry into this deleted one to keep */ |
392 | /* the entries compact */ |
393 | hrowi[kc] = hrowi[kjpie]; |
394 | |
395 | hrowi[kjpie] = 0; |
396 | |
397 | /* store pivot sequence number */ |
398 | ++fact->npivots; |
399 | rlink[ipivot].pre = -fact->npivots; |
400 | clink[jpivot].pre = -fact->npivots; |
401 | |
402 | /* Check if row or column files have to be compressed */ |
403 | if (! (xnewro + epivco < lstart)) { |
404 | if (! (nnentu + epivco < lstart)) { |
405 | return (-5); |
406 | } |
407 | { |
408 | int iput = c_ekkrwcs(fact,dluval, hcoli, mrstrt, hinrow, mwork, nfirst); |
409 | kmxeta += xnewro - iput ; |
410 | xnewro = iput - 1; |
411 | ++ncompactions; |
412 | } |
413 | } |
414 | if (! (xnewco + epivco < lstart)) { |
415 | if (! (nnentu + epivco < lstart)) { |
416 | return (-5); |
417 | } |
418 | xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); |
419 | ++ncompactions; |
420 | } |
421 | |
422 | /* This column has no more entries in it */ |
423 | hincol[jpivot] = 0; |
424 | |
425 | /* Perform numerical part of elimination. */ |
426 | pivot = dluval[mrstrt[ipivot]]; |
427 | if (fabs(pivot) < drtpiv) { |
428 | irtcod = 7; |
429 | rlink[ipivot].pre = -nrow - 1; |
430 | clink[jpivot].pre = -nrow - 1; |
431 | ++(*nsingp); |
432 | } |
433 | |
434 | /* If epivco is 0, then we can treat this like a singleton column (?)*/ |
435 | if (! (epivco <= 0)) { |
436 | ++fact->xnetal; |
437 | mcstrt[fact->xnetal] = lstart - 1; |
438 | hpivco[fact->xnetal] = ipivot; |
439 | |
440 | /* Loop over nonzeros in pivot column. */ |
441 | kjpis = mcstrt[jpivot]; |
442 | kjpie = kjpis + epivco ; |
443 | nnentl+=epivco; |
444 | nnentu-=epivco; |
445 | for (kc = kjpis; kc < kjpie; ++kc) { |
446 | npr = hrowi[kc]; |
447 | /* zero out the row entries as we go along */ |
448 | hrowi[kc] = 0; |
449 | |
450 | /* each row in the column is getting shorter */ |
451 | --hinrow[npr]; |
452 | |
453 | /* find the entry in this row for the pivot column */ |
454 | knprs = mrstrt[npr]; |
455 | knpre = knprs + hinrow[npr]; |
456 | for (kr = knprs; kr <= knpre; ++kr) { |
457 | if (jpivot == hcoli[kr]) |
458 | break; |
459 | } |
460 | /* ASSERT !(kr>knpre) */ |
461 | |
462 | elemnt = dluval[kr]; |
463 | /* move the last pivot column entry into this one */ |
464 | /* to keep entries compact */ |
465 | dluval[kr] = dluval[knpre]; |
466 | hcoli[kr] = hcoli[knpre]; |
467 | |
468 | /* |
469 | * c_ekkmltf put the largest entries in front, and |
470 | * we want to maintain that property. |
471 | * There is only a problem if we just pivoted out the first |
472 | * entry, and there is more than one entry in the list. |
473 | */ |
474 | if (! (kr != knprs || hinrow[npr] <= 1)) { |
475 | maxaij = 0.f; |
476 | for (k = knprs; k <= knpre; ++k) { |
477 | if (! (fabs(dluval[k]) <= maxaij)) { |
478 | maxaij = fabs(dluval[k]); |
479 | kpivot = k; |
480 | } |
481 | } |
482 | assert (kpivot>0); |
483 | maxaij = dluval[kpivot]; |
484 | dluval[kpivot] = dluval[knprs]; |
485 | dluval[knprs] = maxaij; |
486 | |
487 | j = hcoli[kpivot]; |
488 | hcoli[kpivot] = hcoli[knprs]; |
489 | hcoli[knprs] = j; |
490 | } |
491 | |
492 | /* store elementary row transformation */ |
493 | --lstart; |
494 | dluval[lstart] = -elemnt / pivot; |
495 | hrowi[lstart] = SHIFT_INDEX(npr); |
496 | |
497 | /* Only add the row back in a length list if it isn't empty */ |
498 | nzi = hinrow[npr]; |
499 | if (! (nzi <= 0)) { |
500 | C_EKK_ADD_LINK(hpivro, nzi, rlink, npr); |
501 | } |
502 | } |
503 | ++fact->nuspike; |
504 | } |
505 | } |
506 | |
507 | *xnewrop = xnewro; |
508 | *xnewcop = xnewco; |
509 | *kmxetap = kmxeta; |
510 | *nnentup = nnentu; |
511 | *ncompactionsp = ncompactions; |
512 | *nnentlp = nnentl; |
513 | |
514 | return (irtcod); |
515 | } /* c_ekkrsin */ |
516 | |
517 | |
518 | int c_ekkfpvt(const EKKfactinfo *fact, |
519 | EKKHlink *rlink, EKKHlink *clink, |
520 | int *nsingp, int *xrejctp, |
521 | int *xipivtp, int *xjpivtp) |
522 | { |
523 | double zpivlu = fact->zpivlu; |
524 | #if 1 |
525 | int *hcoli = fact->xecadr; |
526 | double *dluval = fact->xeeadr; |
527 | //double *dvalpv = fact->kw3adr; |
528 | int *mrstrt = fact->xrsadr; |
529 | int *hrowi = fact->xeradr; |
530 | int *mcstrt = fact->xcsadr; |
531 | int *hinrow = fact->xrnadr; |
532 | int *hincol = fact->xcnadr; |
533 | int *hpivro = fact->krpadr; |
534 | int *hpivco = fact->kcpadr; |
535 | #endif |
536 | int i, j, k, ke, kk, ks, nz, nz1, kce, kcs, kre, krs; |
537 | double minsze; |
538 | int marcst, mincst, mincnt, trials, nentri; |
539 | int jpivot=-1; |
540 | bool rjectd; |
541 | int ipivot; |
542 | const int nrow = fact->nrow; |
543 | int irtcod = 0; |
544 | |
545 | /* this used to be initialized in c_ekklfct */ |
546 | const int xtrial = 1; |
547 | |
548 | trials = 0; |
549 | ipivot = 0; |
550 | mincst = COIN_INT_MAX; |
551 | mincnt = COIN_INT_MAX; |
552 | for (nz = 2; nz <= nrow; ++nz) { |
553 | nz1 = nz - 1; |
554 | if (mincnt <= nz) { |
555 | goto L900; |
556 | } |
557 | |
558 | /* Search rows for a pivot */ |
559 | for (i = hpivro[nz]; ! (i <= 0); i = rlink[i].suc) { |
560 | |
561 | ks = mrstrt[i]; |
562 | ke = ks + nz - 1; |
563 | /* Determine magnitude of minimal acceptable element */ |
564 | minsze = fabs(dluval[ks]) * zpivlu; |
565 | for (k = ks; k <= ke; ++k) { |
566 | /* Consider a column only if it passes the stability test */ |
567 | if (! (fabs(dluval[k]) < minsze)) { |
568 | j = hcoli[k]; |
569 | marcst = nz1 * hincol[j]; |
570 | if (! (marcst >= mincst)) { |
571 | mincst = marcst; |
572 | mincnt = hincol[j]; |
573 | ipivot = i; |
574 | jpivot = j; |
575 | if (mincnt <= nz + 1) { |
576 | goto L900; |
577 | } |
578 | } |
579 | } |
580 | } |
581 | ++trials; |
582 | |
583 | if (trials >= xtrial) { |
584 | goto L900; |
585 | } |
586 | } |
587 | |
588 | /* Search columns for a pivot */ |
589 | j = hpivco[nz]; |
590 | while (! (j <= 0)) { |
591 | /* XSEARD = XSEARD + 1 */ |
592 | rjectd = false; |
593 | kcs = mcstrt[j]; |
594 | kce = kcs + nz - 1; |
595 | for (k = kcs; k <= kce; ++k) { |
596 | i = hrowi[k]; |
597 | nentri = hinrow[i]; |
598 | marcst = nz1 * nentri; |
599 | if (! (marcst >= mincst)) { |
600 | /* Determine magnitude of minimal acceptable element */ |
601 | minsze = fabs(dluval[mrstrt[i]]) * zpivlu; |
602 | krs = mrstrt[i]; |
603 | kre = krs + nentri - 1; |
604 | for (kk = krs; kk <= kre; ++kk) { |
605 | if (hcoli[kk] == j) |
606 | break; |
607 | } |
608 | /* ASSERT (kk <= kre) */ |
609 | |
610 | /* perform stability test */ |
611 | if (! (fabs(dluval[kk]) < minsze)) { |
612 | mincst = marcst; |
613 | mincnt = nentri; |
614 | ipivot = i; |
615 | jpivot = j; |
616 | rjectd = false; |
617 | if (mincnt <= nz) { |
618 | goto L900; |
619 | } |
620 | } |
621 | else { |
622 | if (ipivot == 0) { |
623 | rjectd = true; |
624 | } |
625 | } |
626 | } |
627 | } |
628 | ++trials; |
629 | if (trials >= xtrial && ipivot > 0) { |
630 | goto L900; |
631 | } |
632 | if (rjectd) { |
633 | int jsuc = clink[j].suc; |
634 | ++(*xrejctp); |
635 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); |
636 | clink[j].pre = nrow + 1; |
637 | j = jsuc; |
638 | } |
639 | else { |
640 | j = clink[j].suc; |
641 | } |
642 | } |
643 | } |
644 | |
645 | /* FLAG REJECTED ROWS (should this be columns ?) */ |
646 | for (j = 1; j <= nrow; ++j) { |
647 | if (hinrow[j] == 0) { |
648 | rlink[j].pre = -nrow - 1; |
649 | ++(*nsingp); |
650 | } |
651 | } |
652 | irtcod = 10; |
653 | |
654 | L900: |
655 | *xipivtp = ipivot; |
656 | *xjpivtp = jpivot; |
657 | return (irtcod); |
658 | } /* c_ekkfpvt */ |
659 | void c_ekkprpv(EKKfactinfo *fact, |
660 | EKKHlink *rlink, EKKHlink *clink, |
661 | |
662 | int xrejct, |
663 | int ipivot, int jpivot) |
664 | { |
665 | #if 1 |
666 | int *hcoli = fact->xecadr; |
667 | double *dluval = fact->xeeadr; |
668 | //double *dvalpv = fact->kw3adr; |
669 | int *mrstrt = fact->xrsadr; |
670 | int *hrowi = fact->xeradr; |
671 | int *mcstrt = fact->xcsadr; |
672 | int *hinrow = fact->xrnadr; |
673 | int *hincol = fact->xcnadr; |
674 | int *hpivro = fact->krpadr; |
675 | int *hpivco = fact->kcpadr; |
676 | #endif |
677 | int i, k; |
678 | int kc; |
679 | double pivot; |
680 | int kipis = mrstrt[ipivot]; |
681 | int kipie = kipis + hinrow[ipivot] - 1; |
682 | |
683 | #ifndef NDEBUG |
684 | int kpivot=-1; |
685 | #else |
686 | int kpivot=-1; |
687 | #endif |
688 | const int nrow = fact->nrow; |
689 | |
690 | /* Update data structures */ |
691 | { |
692 | int kjpis = mcstrt[jpivot]; |
693 | int kjpie = kjpis + hincol[jpivot] ; |
694 | for (k = kjpis; k < kjpie; ++k) { |
695 | i = hrowi[k]; |
696 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); |
697 | } |
698 | } |
699 | |
700 | for (k = kipis; k <= kipie; ++k) { |
701 | int j = hcoli[k]; |
702 | |
703 | if ((xrejct == 0) || |
704 | ! (clink[j].pre > nrow)) { |
705 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); |
706 | } |
707 | |
708 | --hincol[j]; |
709 | int kcs = mcstrt[j]; |
710 | int kce = kcs + hincol[j]; |
711 | |
712 | for (kc = kcs; kc < kce ; kc ++) { |
713 | if (hrowi[kc] == ipivot) |
714 | break; |
715 | } |
716 | assert (kc<kce||hrowi[kce]==ipivot); |
717 | hrowi[kc] = hrowi[kce]; |
718 | hrowi[kce] = 0; |
719 | if (j == jpivot) { |
720 | kpivot = k; |
721 | } |
722 | } |
723 | assert (kpivot>0); |
724 | |
725 | /* Store the pivot sequence number */ |
726 | ++fact->npivots; |
727 | rlink[ipivot].pre = -fact->npivots; |
728 | clink[jpivot].pre = -fact->npivots; |
729 | |
730 | pivot = dluval[kpivot]; |
731 | dluval[kpivot] = dluval[kipis]; |
732 | dluval[kipis] = pivot; |
733 | hcoli[kpivot] = hcoli[kipis]; |
734 | hcoli[kipis] = jpivot; |
735 | |
736 | } /* c_ekkprpv */ |
737 | |
738 | /* |
739 | * c_ekkclco is almost exactly like c_ekkrwco. |
740 | */ |
741 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, int *mrstrt, int *hinrow, int xnewro) |
742 | { |
743 | #if 0 |
744 | int *hcoli = fact->xecadr; |
745 | double *dluval = fact->xeeadr; |
746 | double *dvalpv = fact->kw3adr; |
747 | int *mrstrt = fact->xrsadr; |
748 | int *hrowi = fact->xeradr; |
749 | int *mcstrt = fact->xcsadr; |
750 | int *hinrow = fact->xrnadr; |
751 | int *hincol = fact->xcnadr; |
752 | int *hpivro = fact->krpadr; |
753 | int *hpivco = fact->kcpadr; |
754 | #endif |
755 | int i, k, nz, kold; |
756 | int kstart; |
757 | const int nrow = fact->nrow; |
758 | |
759 | for (i = 1; i <= nrow; ++i) { |
760 | nz = hinrow[i]; |
761 | if (0 < nz) { |
762 | /* save the last column entry of row i in hinrow */ |
763 | /* and replace that entry with -i */ |
764 | k = mrstrt[i] + nz - 1; |
765 | hinrow[i] = hcoli[k]; |
766 | hcoli[k] = -i; |
767 | } |
768 | } |
769 | |
770 | kstart = 0; |
771 | kold = 0; |
772 | for (k = 1; k <= xnewro; ++k) { |
773 | if (hcoli[k] != 0) { |
774 | ++kstart; |
775 | |
776 | /* if this is the last entry for the row... */ |
777 | if (hcoli[k] < 0) { |
778 | /* restore the entry */ |
779 | i = -hcoli[k]; |
780 | hcoli[k] = hinrow[i]; |
781 | |
782 | /* update mrstart and hinrow */ |
783 | mrstrt[i] = kold + 1; |
784 | hinrow[i] = kstart - kold; |
785 | kold = kstart; |
786 | } |
787 | |
788 | hcoli[kstart] = hcoli[k]; |
789 | } |
790 | } |
791 | |
792 | /* INSERTED INCASE CALLED FROM YTRIAN JJHF */ |
793 | mrstrt[nrow + 1] = kstart + 1; |
794 | |
795 | return (kstart); |
796 | } /* c_ekkclco */ |
797 | |
798 | |
799 | |
800 | #undef MACTION_T |
801 | #define COIN_OSL_CMFC |
802 | #define MACTION_T short int |
803 | int c_ekkcmfc(EKKfactinfo *fact, |
804 | EKKHlink *rlink, EKKHlink *clink, |
805 | EKKHlink *mwork, void *maction_void, |
806 | int nnetas, |
807 | int *nsingp, int *xrejctp, |
808 | int *xnewrop, int xnewco, |
809 | int *ncompactionsp) |
810 | |
811 | #include "CoinOslC.h" |
812 | #undef COIN_OSL_CMFC |
813 | #undef MACTION_T |
814 | static int c_ekkidmx(int n, const double *dx) |
815 | { |
816 | int ret_val; |
817 | int i; |
818 | double dmax; |
819 | --dx; |
820 | |
821 | /* Function Body */ |
822 | |
823 | if (n < 1) { |
824 | return (0); |
825 | } |
826 | |
827 | if (n == 1) { |
828 | return (1); |
829 | } |
830 | |
831 | ret_val = 1; |
832 | dmax = fabs(dx[1]); |
833 | for (i = 2; i <= n; ++i) { |
834 | if (fabs(dx[i]) > dmax) { |
835 | ret_val = i; |
836 | dmax = fabs(dx[i]); |
837 | } |
838 | } |
839 | |
840 | return ret_val; |
841 | } /* c_ekkidmx */ |
842 | /* Return codes in IRTCOD/IRTCOD are */ |
843 | /* 4: numerical problems */ |
844 | /* 5: not enough space in row file */ |
845 | /* 6: not enough space in column file */ |
846 | int c_ekkcmfd(EKKfactinfo *fact, |
847 | int *mcol, |
848 | EKKHlink *rlink, EKKHlink *clink, |
849 | int *maction, |
850 | int nnetas, |
851 | int *nnentlp, int *nnentup, |
852 | int *nsingp) |
853 | { |
854 | int *hcoli = fact->xecadr; |
855 | double *dluval = fact->xeeadr; |
856 | int *mrstrt = fact->xrsadr; |
857 | int *hrowi = fact->xeradr; |
858 | int *mcstrt = fact->xcsadr; |
859 | int *hinrow = fact->xrnadr; |
860 | int *hincol = fact->xcnadr; |
861 | int *hpivro = fact->krpadr; |
862 | int *hpivco = fact->kcpadr; |
863 | int nnentl = *nnentlp; |
864 | int nnentu = *nnentup; |
865 | int storeZero = fact->ndenuc; |
866 | |
867 | int mkrs[8]; |
868 | double dpivyy[8]; |
869 | |
870 | /* Local variables */ |
871 | int i, j; |
872 | double d0, dx; |
873 | int nz, ndo, krs; |
874 | int kend, jcol; |
875 | int irow, iput, jrow, krxs; |
876 | int mjcol[8]; |
877 | double pivot; |
878 | int count; |
879 | int ilast, isort; |
880 | double dpivx, dsave; |
881 | double dpivxx[8]; |
882 | double multip; |
883 | int lstart, ndense, krlast, ifirst, krfirst, kcount, idense, ipivot, |
884 | jdense, kchunk, jpivot; |
885 | |
886 | const int nrow = fact->nrow; |
887 | |
888 | int irtcod = 0; |
889 | |
890 | lstart = nnetas - nnentl + 1; |
891 | |
892 | /* put list of columns in last HROWI */ |
893 | /* fix row order once for all */ |
894 | ndense = nrow - fact->npivots; |
895 | iput = ndense + 1; |
896 | for (i = 1; i <= nrow; ++i) { |
897 | if (hpivro[i] > 0) { |
898 | irow = hpivro[i]; |
899 | for (j = 1; j <= nrow; ++j) { |
900 | --iput; |
901 | maction[iput] = irow; |
902 | irow = rlink[irow].suc; |
903 | if (irow == 0) { |
904 | break; |
905 | } |
906 | } |
907 | } |
908 | } |
909 | if (iput != 1) { |
910 | ++(*nsingp); |
911 | } |
912 | else { |
913 | /* Use HCOLI just for last row */ |
914 | ilast = maction[1]; |
915 | krlast = mrstrt[ilast]; |
916 | ifirst = maction[ndense]; |
917 | krfirst = mrstrt[ifirst]; |
918 | /* put list of columns in last HCOLI */ |
919 | iput = 0; |
920 | for (i = 1; i <= nrow; ++i) { |
921 | if (clink[i].pre >= 0) { |
922 | hcoli[krlast + iput] = i; |
923 | ++iput; |
924 | } |
925 | } |
926 | if (iput != ndense) { |
927 | ++(*nsingp); |
928 | } |
929 | else { |
930 | ndo = ndense / 8; |
931 | /* do most */ |
932 | for (kcount = 1; kcount <= ndo; ++kcount) { |
933 | idense = ndense; |
934 | isort = 8; |
935 | for (count = ndense; count >= ndense - 7; --count) { |
936 | ipivot = maction[count]; |
937 | krs = mrstrt[ipivot]; |
938 | --isort; |
939 | mkrs[isort] = krs; |
940 | } |
941 | isort = 8; |
942 | for (count = ndense; count >= ndense - 7; --count) { |
943 | /* Find a pivot element */ |
944 | --isort; |
945 | ipivot = maction[count]; |
946 | krs = mkrs[isort]; |
947 | jcol = c_ekkidmx(idense, &dluval[krs]) - 1; |
948 | pivot = dluval[krs + jcol]; |
949 | --idense; |
950 | mcol[count] = jcol; |
951 | mjcol[isort] = mcol[count]; |
952 | dluval[krs + jcol] = dluval[krs + idense]; |
953 | if (fabs(pivot) < fact->zeroTolerance) { |
954 | pivot = 0.; |
955 | dpivx = 0.; |
956 | } else { |
957 | dpivx = 1. / pivot; |
958 | } |
959 | dluval[krs + idense] = pivot; |
960 | dpivxx[isort] = dpivx; |
961 | for (j = isort - 1; j >= 0; --j) { |
962 | krxs = mkrs[j]; |
963 | multip = -dluval[krxs + jcol] * dpivx; |
964 | dluval[krxs + jcol] = dluval[krxs + idense]; |
965 | /* for moment skip if zero */ |
966 | if (fabs(multip) > fact->zeroTolerance) { |
967 | for (i = 0; i < idense; ++i) { |
968 | dluval[krxs + i] += multip * dluval[krs + i]; |
969 | } |
970 | } else { |
971 | multip = 0.; |
972 | } |
973 | dluval[krxs + idense] = multip; |
974 | } |
975 | } |
976 | /* sort all U in rows already done */ |
977 | for (i = 7; i >= 0; --i) { |
978 | /* **** this is important bit */ |
979 | krs = mkrs[i]; |
980 | for (j = i - 1; j >= 0; --j) { |
981 | jcol = mjcol[j]; |
982 | dsave = dluval[krs + jcol]; |
983 | dluval[krs + jcol] = dluval[krs + idense + j]; |
984 | dluval[krs + idense + j] = dsave; |
985 | } |
986 | } |
987 | /* leave IDENSE as it is */ |
988 | if (ndense <= 400) { |
989 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
990 | irow = maction[jrow]; |
991 | krxs = mrstrt[irow]; |
992 | for (j = 7; j >= 0; --j) { |
993 | jcol = mjcol[j]; |
994 | dsave = dluval[krxs + jcol]; |
995 | dluval[krxs + jcol] = dluval[krxs + idense + j]; |
996 | dluval[krxs + idense + j] = dsave; |
997 | } |
998 | for (j = 7; j >= 0; --j) { |
999 | krs = mkrs[j]; |
1000 | jdense = idense + j; |
1001 | dpivx = dpivxx[j]; |
1002 | multip = -dluval[krxs + jdense] * dpivx; |
1003 | if (fabs(multip) <= fact->zeroTolerance) { |
1004 | multip = 0.; |
1005 | } |
1006 | dpivyy[j] = multip; |
1007 | dluval[krxs + jdense] = multip; |
1008 | for (i = idense; i < jdense; ++i) { |
1009 | dluval[krxs + i] += multip * dluval[krs + i]; |
1010 | } |
1011 | } |
1012 | for (i = 0; i < idense; ++i) { |
1013 | dx = dluval[krxs + i]; |
1014 | d0 = dpivyy[0] * dluval[mkrs[0] + i]; |
1015 | dx += dpivyy[1] * dluval[mkrs[1] + i]; |
1016 | d0 += dpivyy[2] * dluval[mkrs[2] + i]; |
1017 | dx += dpivyy[3] * dluval[mkrs[3] + i]; |
1018 | d0 += dpivyy[4] * dluval[mkrs[4] + i]; |
1019 | dx += dpivyy[5] * dluval[mkrs[5] + i]; |
1020 | d0 += dpivyy[6] * dluval[mkrs[6] + i]; |
1021 | dx += dpivyy[7] * dluval[mkrs[7] + i]; |
1022 | dluval[krxs + i] = d0 + dx; |
1023 | } |
1024 | } |
1025 | } else { |
1026 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
1027 | irow = maction[jrow]; |
1028 | krxs = mrstrt[irow]; |
1029 | for (j = 7; j >= 0; --j) { |
1030 | jcol = mjcol[j]; |
1031 | dsave = dluval[krxs + jcol]; |
1032 | dluval[krxs + jcol] = dluval[krxs + idense + j]; |
1033 | dluval[krxs + idense + j] = dsave; |
1034 | } |
1035 | for (j = 7; j >= 0; --j) { |
1036 | krs = mkrs[j]; |
1037 | jdense = idense + j; |
1038 | dpivx = dpivxx[j]; |
1039 | multip = -dluval[krxs + jdense] * dpivx; |
1040 | if (fabs(multip) <= fact->zeroTolerance) { |
1041 | multip = 0.; |
1042 | } |
1043 | dluval[krxs + jdense] = multip; |
1044 | for (i = idense; i < jdense; ++i) { |
1045 | dluval[krxs + i] += multip * dluval[krs + i]; |
1046 | } |
1047 | } |
1048 | } |
1049 | for (kchunk = 0; kchunk < idense; kchunk += 400) { |
1050 | kend = CoinMin(idense - 1, kchunk + 399); |
1051 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
1052 | irow = maction[jrow]; |
1053 | krxs = mrstrt[irow]; |
1054 | for (j = 7; j >= 0; --j) { |
1055 | dpivyy[j] = dluval[krxs + idense + j]; |
1056 | } |
1057 | for (i = kchunk; i <= kend; ++i) { |
1058 | dx = dluval[krxs + i]; |
1059 | d0 = dpivyy[0] * dluval[mkrs[0] + i]; |
1060 | dx += dpivyy[1] * dluval[mkrs[1] + i]; |
1061 | d0 += dpivyy[2] * dluval[mkrs[2] + i]; |
1062 | dx += dpivyy[3] * dluval[mkrs[3] + i]; |
1063 | d0 += dpivyy[4] * dluval[mkrs[4] + i]; |
1064 | dx += dpivyy[5] * dluval[mkrs[5] + i]; |
1065 | d0 += dpivyy[6] * dluval[mkrs[6] + i]; |
1066 | dx += dpivyy[7] * dluval[mkrs[7] + i]; |
1067 | dluval[krxs + i] = d0 + dx; |
1068 | } |
1069 | } |
1070 | } |
1071 | } |
1072 | /* resort all U in rows already done */ |
1073 | for (i = 7; i >= 0; --i) { |
1074 | krs = mkrs[i]; |
1075 | for (j = 0; j < i; ++j) { |
1076 | jcol = mjcol[j]; |
1077 | dsave = dluval[krs + jcol]; |
1078 | dluval[krs + jcol] = dluval[krs + idense + j]; |
1079 | dluval[krs + idense + j] = dsave; |
1080 | } |
1081 | } |
1082 | ndense += -8; |
1083 | } |
1084 | idense = ndense; |
1085 | /* do remainder */ |
1086 | for (count = ndense; count >= 1; --count) { |
1087 | /* Find a pivot element */ |
1088 | ipivot = maction[count]; |
1089 | krs = mrstrt[ipivot]; |
1090 | jcol = c_ekkidmx(idense, &dluval[krs]) - 1; |
1091 | pivot = dluval[krs + jcol]; |
1092 | --idense; |
1093 | mcol[count] = jcol; |
1094 | dluval[krs + jcol] = dluval[krs + idense]; |
1095 | if (fabs(pivot) < fact->zeroTolerance) { |
1096 | dluval[krs + idense] = 0.; |
1097 | } else { |
1098 | dpivx = 1. / pivot; |
1099 | dluval[krs + idense] = pivot; |
1100 | for (jrow = idense; jrow >= 1; --jrow) { |
1101 | irow = maction[jrow]; |
1102 | krxs = mrstrt[irow]; |
1103 | multip = -dluval[krxs + jcol] * dpivx; |
1104 | dluval[krxs + jcol] = dluval[krxs + idense]; |
1105 | /* for moment skip if zero */ |
1106 | if (fabs(multip) > fact->zeroTolerance) { |
1107 | dluval[krxs + idense] = multip; |
1108 | for (i = 0; i < idense; ++i) { |
1109 | dluval[krxs + i] += multip * dluval[krs + i]; |
1110 | } |
1111 | } else { |
1112 | dluval[krxs + idense] = 0.; |
1113 | } |
1114 | } |
1115 | } |
1116 | } |
1117 | /* now create in form for OSL */ |
1118 | ndense = nrow - fact->npivots; |
1119 | idense = ndense; |
1120 | for (count = ndense; count >= 1; --count) { |
1121 | /* Find a pivot element */ |
1122 | ipivot = maction[count]; |
1123 | krs = mrstrt[ipivot]; |
1124 | --idense; |
1125 | jcol = mcol[count]; |
1126 | jpivot = hcoli[krlast + jcol]; |
1127 | ++fact->npivots; |
1128 | pivot = dluval[krs + idense]; |
1129 | if (pivot == 0.) { |
1130 | hinrow[ipivot] = 0; |
1131 | rlink[ipivot].pre = -nrow - 1; |
1132 | ++(*nsingp); |
1133 | irtcod = 10; |
1134 | } else { |
1135 | rlink[ipivot].pre = -fact->npivots; |
1136 | clink[jpivot].pre = -fact->npivots; |
1137 | hincol[jpivot] = 0; |
1138 | ++fact->xnetal; |
1139 | mcstrt[fact->xnetal] = lstart - 1; |
1140 | hpivco[fact->xnetal] = ipivot; |
1141 | for (jrow = idense; jrow >= 1; --jrow) { |
1142 | irow = maction[jrow]; |
1143 | krxs = mrstrt[irow]; |
1144 | multip = dluval[krxs + idense]; |
1145 | /* for moment skip if zero */ |
1146 | if (multip != 0.||storeZero) { |
1147 | /* Store elementary row transformation */ |
1148 | ++nnentl; |
1149 | --nnentu; |
1150 | --lstart; |
1151 | dluval[lstart] = multip; |
1152 | hrowi[lstart] = SHIFT_INDEX(irow); |
1153 | } |
1154 | } |
1155 | hcoli[krlast + jcol] = hcoli[krlast + idense]; |
1156 | /* update pivot row and last row HCOLI */ |
1157 | dluval[krs + idense] = dluval[krs]; |
1158 | hcoli[krlast + idense] = hcoli[krlast]; |
1159 | nz = 1; |
1160 | dluval[krs] = pivot; |
1161 | hcoli[krs] = jpivot; |
1162 | if (!storeZero) { |
1163 | for (i = 1; i <= idense; ++i) { |
1164 | if (fabs(dluval[krs + i]) > fact->zeroTolerance) { |
1165 | ++nz; |
1166 | hcoli[krs + nz - 1] = hcoli[krlast + i]; |
1167 | dluval[krs + nz - 1] = dluval[krs + i]; |
1168 | } |
1169 | } |
1170 | hinrow[ipivot] = nz; |
1171 | } else { |
1172 | for (i = 1; i <= idense; ++i) { |
1173 | ++nz; |
1174 | hcoli[krs + nz - 1] = hcoli[krlast + i]; |
1175 | dluval[krs + nz - 1] = dluval[krs + i]; |
1176 | } |
1177 | hinrow[ipivot] = nz; |
1178 | } |
1179 | } |
1180 | } |
1181 | } |
1182 | } |
1183 | |
1184 | *nnentlp = nnentl; |
1185 | *nnentup = nnentu; |
1186 | |
1187 | return (irtcod); |
1188 | } /* c_ekkcmfd */ |
1189 | /* ***C_EKKCMFC */ |
1190 | |
1191 | /* |
1192 | * Generate a variant of c_ekkcmfc that uses an maction array of type |
1193 | * int rather than short. |
1194 | */ |
1195 | #undef MACTION_T |
1196 | #define C_EKKCMFY |
1197 | #define COIN_OSL_CMFC |
1198 | #define MACTION_T int |
1199 | int c_ekkcmfy(EKKfactinfo *fact, |
1200 | EKKHlink *rlink, EKKHlink *clink, |
1201 | EKKHlink *mwork, void *maction_void, |
1202 | int nnetas, |
1203 | int *nsingp, int *xrejctp, |
1204 | int *xnewrop, int xnewco, |
1205 | int *ncompactionsp) |
1206 | |
1207 | #include "CoinOslC.h" |
1208 | #undef COIN_OSL_CMFC |
1209 | #undef C_EKKCMFY |
1210 | #undef MACTION_T |
1211 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, |
1212 | int *hpivro, int *hpivco, |
1213 | EKKHlink *rlink, EKKHlink *clink) |
1214 | { |
1215 | int i, iri, nzi; |
1216 | const int nrow = fact->nrow; |
1217 | int nsing = 0; |
1218 | |
1219 | /* Uwe H. Suhl, August 1986 */ |
1220 | /* Builds linked lists of rows and cols of nucleus for efficient */ |
1221 | /* pivot searching. */ |
1222 | |
1223 | memset(hpivro+1,0,nrow*sizeof(int)); |
1224 | memset(hpivco+1,0,nrow*sizeof(int)); |
1225 | for (i = 1; i <= nrow; ++i) { |
1226 | //hpivro[i] = 0; |
1227 | //hpivco[i] = 0; |
1228 | assert(rlink[i].suc == 0); |
1229 | assert(clink[i].suc == 0); |
1230 | } |
1231 | |
1232 | /* Generate double linked list of rows having equal numbers of */ |
1233 | /* nonzeros in each row. Skip pivotal rows. */ |
1234 | for (i = 1; i <= nrow; ++i) { |
1235 | if (! (rlink[i].pre < 0)) { |
1236 | nzi = hinrow[i]; |
1237 | if (nzi <= 0) { |
1238 | ++nsing; |
1239 | rlink[i].pre = -nrow - 1; |
1240 | } |
1241 | else { |
1242 | iri = hpivro[nzi]; |
1243 | hpivro[nzi] = i; |
1244 | rlink[i].suc = iri; |
1245 | rlink[i].pre = 0; |
1246 | if (iri != 0) { |
1247 | rlink[iri].pre = i; |
1248 | } |
1249 | } |
1250 | } |
1251 | } |
1252 | |
1253 | /* Generate double linked list of cols having equal numbers of */ |
1254 | /* nonzeros in each col. Skip pivotal cols. */ |
1255 | for (i = 1; i <= nrow; ++i) { |
1256 | if (! (clink[i].pre < 0)) { |
1257 | nzi = hincol[i]; |
1258 | if (nzi <= 0) { |
1259 | ++nsing; |
1260 | clink[i].pre = -nrow - 1; |
1261 | } |
1262 | else { |
1263 | iri = hpivco[nzi]; |
1264 | hpivco[nzi] = i; |
1265 | clink[i].suc = iri; |
1266 | clink[i].pre = 0; |
1267 | if (iri != 0) { |
1268 | clink[iri].pre = i; |
1269 | } |
1270 | } |
1271 | } |
1272 | } |
1273 | |
1274 | return (nsing); |
1275 | } /* c_ekkford */ |
1276 | |
1277 | /* c version of OSL from 36100 */ |
1278 | |
1279 | /* Assumes that a basis exists in correct form */ |
1280 | /* Calls Uwe's routines (approximately) */ |
1281 | /* Then if OK shuffles U into column order */ |
1282 | /* Return codes: */ |
1283 | |
1284 | /* 0: everything ok */ |
1285 | /* 1: everything ok but performance would be better if more space */ |
1286 | /* would be make available */ |
1287 | /* 4: growth rate of element in U too big */ |
1288 | /* 5: not enough space in row file */ |
1289 | /* 6: not enough space in column file */ |
1290 | /* 7: pivot too small - col sing */ |
1291 | /* 8: pivot too small - row sing */ |
1292 | /* 10: matrix is singular */ |
1293 | |
1294 | /* I suspect c_ekklfct never returns 1 */ |
1295 | /* |
1296 | * layout of data |
1297 | * |
1298 | * dluval/hcoli: (L^-1)B - hole - L factors |
1299 | * |
1300 | * The L factors are written from high to low, starting from nnetas. |
1301 | * There are nnentl factors in L. lstart the next entry to use for the |
1302 | * L factors. Eventually, (L^-1)B turns into U. |
1303 | |
1304 | * The ninbas coefficients of matrix B are originally in the start of |
1305 | * dluval/hcoli. As L transforms it, rows may have to be expanded. |
1306 | * If there is room, they are copied to the start of the hole, |
1307 | * otherwise the first part of this area is compacted, and hopefully |
1308 | * there is then room. |
1309 | * There are nnentu coefficients in (L^-1)B. |
1310 | * nnentu + nnentl >= ninbas. |
1311 | * nnentu + nnentl == ninbas if there has been no fill-in. |
1312 | * nnentu is decreased when the pivot eliminates elements |
1313 | * (in which case there is a corresponding increase in nnentl), |
1314 | * and if pivoting happens to cancel out factors (in which case |
1315 | * there is no corresponding increase in L). |
1316 | * nnentu is increased if there is fill-in (no decrease in L). |
1317 | * If nnentu + nnentl >= nnetas, then we've run out of room. |
1318 | * It is not the case that the elements of (L^-1)B are all in the |
1319 | * first nnentu positions of dluval/hcoli, but that is of course |
1320 | * the lower bound on the number of positions needed to store it. |
1321 | * nuspik is roughly the sum of the row lengths of the rows that were pivoted |
1322 | * out. singleton rows in c_ekktria do not change nuspik, but |
1323 | * c_ekkrsin does increment it for each singleton row. |
1324 | * That is, there are nuspik elements that in the upper part of (L^-1)B, |
1325 | * and (nnentu - nuspik) elements left in B. |
1326 | */ |
1327 | /* |
1328 | * As part of factorization, we test candidate pivots for numerical |
1329 | * stability; if the largest element in a row/col is much larger than |
1330 | * the smallest, this generally causes problems. To easily determine |
1331 | * what the largest element is, we ensure that it is always in front. |
1332 | * This establishes this property; later on we take steps to preserve it. |
1333 | */ |
1334 | static void c_ekkmltf(const EKKfactinfo *fact,double *dluval, int *hcoli, |
1335 | const int *mrstrt, const int *hinrow, |
1336 | const EKKHlink *rlink) |
1337 | { |
1338 | #if 0 |
1339 | int *hcoli = fact->xecadr; |
1340 | double *dluval = fact->xeeadr; |
1341 | double *dvalpv = fact->kw3adr; |
1342 | int *mrstrt = fact->xrsadr; |
1343 | int *hrowi = fact->xeradr; |
1344 | int *mcstrt = fact->xcsadr; |
1345 | int *hinrow = fact->xrnadr; |
1346 | int *hincol = fact->xcnadr; |
1347 | int *hpivro = fact->krpadr; |
1348 | int *hpivco = fact->kcpadr; |
1349 | #endif |
1350 | int i, j, k; |
1351 | #ifndef NDEBUG |
1352 | int koff=-1; |
1353 | #else |
1354 | int koff; |
1355 | #endif |
1356 | const int nrow = fact->nrow; |
1357 | |
1358 | |
1359 | for (i = 1; i <= nrow; ++i) { |
1360 | /* ignore rows that have already been pivoted */ |
1361 | /* if it is a singleton row, the property trivially holds */ |
1362 | if (! (rlink[i].pre < 0 || hinrow[i] <= 1)) { |
1363 | const int krs = mrstrt[i]; |
1364 | const int kre = krs + hinrow[i] - 1; |
1365 | |
1366 | double maxaij = 0.f; |
1367 | |
1368 | /* this assumes that at least one of the dluvals is non-zero. */ |
1369 | for (k = krs; k <= kre; ++k) { |
1370 | if (! (fabs(dluval[k]) <= maxaij)) { |
1371 | maxaij = fabs(dluval[k]); |
1372 | koff = k; |
1373 | } |
1374 | } |
1375 | assert (koff>0); |
1376 | maxaij = dluval[koff]; |
1377 | j = hcoli[koff]; |
1378 | |
1379 | dluval[koff] = dluval[krs]; |
1380 | hcoli[koff] = hcoli[krs]; |
1381 | |
1382 | dluval[krs] = maxaij; |
1383 | hcoli[krs] = j; |
1384 | } |
1385 | } |
1386 | } /* c_ekkmltf */ |
1387 | int c_ekklfct(EKKfactinfo *fact) |
1388 | { |
1389 | const int nrow = fact->nrow; |
1390 | int ninbas = fact->xcsadr[nrow+1]-1; |
1391 | int ifvsol = fact->ifvsol; |
1392 | int *hcoli = fact->xecadr; |
1393 | double *dluval = fact->xeeadr; |
1394 | int *mrstrt = fact->xrsadr; |
1395 | int *hrowi = fact->xeradr; |
1396 | int *mcstrt = fact->xcsadr; |
1397 | int *hinrow = fact->xrnadr; |
1398 | int *hincol = fact->xcnadr; |
1399 | int *hpivro = fact->krpadr; |
1400 | int *hpivco = fact->kcpadr; |
1401 | |
1402 | |
1403 | EKKHlink *rlink = fact->kp1adr; |
1404 | EKKHlink *clink = fact->kp2adr; |
1405 | EKKHlink *mwork = (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; |
1406 | |
1407 | int nsing, kdnspt, xnewro, xnewco; |
1408 | int i; |
1409 | int xrejct; |
1410 | int irtcod; |
1411 | const int nnetas = fact->nnetas; |
1412 | |
1413 | int ncompactions; |
1414 | double save_drtpiv = fact->drtpiv; |
1415 | double save_zpivlu = fact->zpivlu; |
1416 | if (ifvsol > 0 && fact->invok < 0) { |
1417 | fact->zpivlu = CoinMin(0.9, fact->zpivlu * 10.); |
1418 | fact->drtpiv=1.0e-8; |
1419 | } |
1420 | |
1421 | rlink --; |
1422 | clink --; |
1423 | |
1424 | /* Function Body */ |
1425 | hcoli[nnetas] = 1; |
1426 | hrowi[nnetas] = 1; |
1427 | dluval[nnetas] = 0.0; |
1428 | /* set amount of work */ |
1429 | xrejct = 0; |
1430 | nsing = 0; |
1431 | kdnspt = nnetas + 1; |
1432 | fact->ndenuc = 0; |
1433 | /* Triangularize */ |
1434 | irtcod = c_ekktria(fact,rlink,clink, |
1435 | &nsing, |
1436 | &xnewco, &xnewro, |
1437 | &ncompactions, ninbas); |
1438 | fact->nnentl = ninbas - fact->nnentu; |
1439 | |
1440 | if (irtcod < 0) { |
1441 | /* no space or system error */ |
1442 | goto L8000; |
1443 | } |
1444 | |
1445 | if (irtcod != 0 && fact->invok >= 0) { |
1446 | goto L8500; /* 7 or 8 - pivot too small */ |
1447 | } |
1448 | #if 0 |
1449 | /* is this necessary ? */ |
1450 | lstart = nnetas - fact->nnentl + 1; |
1451 | for (i = lstart; i <= nnetas; ++i) { |
1452 | hrowi[i] = (hcoli[i] << 3); |
1453 | } |
1454 | #endif |
1455 | |
1456 | /* See if finished */ |
1457 | if (! (fact->npivots >= nrow)) { |
1458 | int nsing1; |
1459 | |
1460 | /* No - do nucleus */ |
1461 | |
1462 | nsing1 = c_ekkford(fact,hinrow, hincol, hpivro, hpivco, rlink, clink); |
1463 | nsing+= nsing1; |
1464 | if (nsing1 != 0 && fact->invok >= 0) { |
1465 | irtcod=7; |
1466 | goto L8500; |
1467 | } |
1468 | c_ekkmltf(fact,dluval, hcoli, mrstrt, hinrow, rlink); |
1469 | |
1470 | { |
1471 | bool callcmfy = false; |
1472 | |
1473 | if (nrow > 32767) { |
1474 | int count = 0; |
1475 | for (i = 1; i <= nrow; ++i) { |
1476 | count = CoinMax(count,hinrow[i]); |
1477 | } |
1478 | if (count + nrow - fact->npivots > 32767) { |
1479 | /* will have to use I*4 version of CMFC */ |
1480 | /* no changes to pointer params */ |
1481 | callcmfy = true; |
1482 | } |
1483 | } |
1484 | |
1485 | irtcod = (callcmfy ? c_ekkcmfy : c_ekkcmfc) |
1486 | (fact, |
1487 | rlink, clink, |
1488 | mwork, &mwork[nrow + 1], |
1489 | nnetas, |
1490 | &nsing, &xrejct, |
1491 | &xnewro, xnewco, |
1492 | &ncompactions); |
1493 | |
1494 | /* irtcod one of 0,-5,7,10 */ |
1495 | } |
1496 | |
1497 | if (irtcod < 0) { |
1498 | goto L8000; |
1499 | } |
1500 | kdnspt = nnetas - fact->nnentl; |
1501 | } |
1502 | |
1503 | /* return if error */ |
1504 | if (nsing > 0 || irtcod == 10) { |
1505 | irtcod = 99; |
1506 | } |
1507 | /* irtcod one of 0,7,99 */ |
1508 | |
1509 | if (irtcod != 0) { |
1510 | goto L8500; |
1511 | } |
1512 | ++fact->xnetal; |
1513 | mcstrt[fact->xnetal] = nnetas - fact->nnentl; |
1514 | |
1515 | /* give message if tight on memory */ |
1516 | if (ncompactions > 2 ) { |
1517 | if (1) { |
1518 | int etasize =CoinMax(4*fact->nnentu+(nnetas-fact->nnentl)+1000,fact->eta_size); |
1519 | fact->eta_size=CoinMin(static_cast<int>(1.2*fact->eta_size),etasize); |
1520 | if (fact->maxNNetas>0&&fact->eta_size> |
1521 | fact->maxNNetas) { |
1522 | fact->eta_size=fact->maxNNetas; |
1523 | } |
1524 | } /* endif */ |
1525 | } |
1526 | /* Shuffle U and multiply L by 8 (if assembler) */ |
1527 | { |
1528 | int jrtcod = c_ekkshff(fact, clink, rlink, |
1529 | xnewro); |
1530 | |
1531 | /* nR_etas is the number of R transforms; |
1532 | * it is incremented only in c_ekketsj. |
1533 | */ |
1534 | fact->nR_etas = 0; |
1535 | /*fact->R_etas_start = mcstrt+nrow+fact->nnentl+3;*/ |
1536 | fact->R_etas_start[1] = /*kdnspt - 1*/0; /* magic */ |
1537 | fact->R_etas_index = &fact->xeradr[kdnspt - 1]; |
1538 | fact->R_etas_element = &fact->xeeadr[kdnspt - 1]; |
1539 | |
1540 | |
1541 | |
1542 | if (jrtcod != 0) { |
1543 | irtcod = jrtcod; |
1544 | /* irtcod == 2 */ |
1545 | } |
1546 | } |
1547 | goto L8500; |
1548 | |
1549 | /* Fatal error */ |
1550 | L8000: |
1551 | |
1552 | if (1) { |
1553 | if (fact->maxNNetas != fact->eta_size && |
1554 | nnetas) { |
1555 | /* return and get more space */ |
1556 | |
1557 | /* double eta_size, unless that exceeds max (if there is one) */ |
1558 | fact->eta_size = fact->eta_size<<1; |
1559 | if (fact->maxNNetas > 0 && |
1560 | fact->eta_size > fact->maxNNetas) { |
1561 | fact->eta_size = fact->maxNNetas; |
1562 | } |
1563 | return (5); |
1564 | } |
1565 | } |
1566 | /*c_ekkmesg_no_i1(121, -irtcod);*/ |
1567 | irtcod = 3; |
1568 | |
1569 | L8500: |
1570 | /* restore pivot tolerance */ |
1571 | fact->drtpiv=save_drtpiv; |
1572 | fact->zpivlu=save_zpivlu; |
1573 | #ifndef NDEBUG |
1574 | if (fact->rows_ok) { |
1575 | int * hinrow=fact->xrnadr; |
1576 | if (!fact->xe2adr) { |
1577 | for (int i=1;i<=fact->nrow;i++) { |
1578 | assert (hinrow[i]>=0&&hinrow[i]<=fact->nrow); |
1579 | } |
1580 | } |
1581 | } |
1582 | #endif |
1583 | return (irtcod); |
1584 | } /* c_ekklfct */ |
1585 | |
1586 | |
1587 | /* |
1588 | summary of return codes |
1589 | |
1590 | c_ekktria: |
1591 | 7 small pivot |
1592 | -5 no memory |
1593 | |
1594 | c_ekkcsin: |
1595 | returns true if small pivot |
1596 | |
1597 | c_ekkrsin: |
1598 | -5 no memory |
1599 | 7 small pivot |
1600 | |
1601 | c_ekkfpvt: |
1602 | 10: no pivots found (singular) |
1603 | |
1604 | c_ekkcmfd: |
1605 | 10: zero pivot (not just small) |
1606 | |
1607 | c_ekkcmfc: |
1608 | -5: no memory |
1609 | any non-zero code from c_ekkcsin, c_ekkrsin, c_ekkfpvt, c_ekkprpv, c_ekkcmfd |
1610 | |
1611 | c_ekkshff: |
1612 | 2: singular |
1613 | |
1614 | c_ekklfct: |
1615 | any positive code from c_ekktria, c_ekkcmfc, c_ekkshff (2,7,10) |
1616 | *except* 10, which is changed to 99. |
1617 | all negative return codes are changed to 5 or 3 |
1618 | (5 == ran out of memory but could get more, |
1619 | 3 == ran out of memory, no luck) |
1620 | so: 2,3,5,7,99 |
1621 | |
1622 | c_ekklfct1: |
1623 | 1: c_ekksmem_invert failed |
1624 | 2: c_ekkslcf/c_ekkslct ran out of room |
1625 | any return code from c_ekklfct, except 2 and 5 |
1626 | */ |
1627 | |
1628 | void c_ekkrowq(int *hrow, int *hcol, double *dels, |
1629 | int *mrstrt, |
1630 | const int *hinrow, int nnrow, int ninbas) |
1631 | { |
1632 | int i, k, iak, jak; |
1633 | double daik; |
1634 | int iloc; |
1635 | double dsave; |
1636 | int isave, jsave; |
1637 | |
1638 | /* Order matrix rowwise using MRSTRT, DELS, HCOL */ |
1639 | |
1640 | k = 1; |
1641 | /* POSITION AFTER END OF ROW */ |
1642 | for (i = 1; i <= nnrow; ++i) { |
1643 | k += hinrow[i]; |
1644 | mrstrt[i] = k; |
1645 | } |
1646 | |
1647 | for (k = ninbas; k >= 1; --k) { |
1648 | iak = hrow[k]; |
1649 | if (iak != 0) { |
1650 | daik = dels[k]; |
1651 | jak = hcol[k]; |
1652 | hrow[k] = 0; |
1653 | while (1) { |
1654 | --mrstrt[iak]; |
1655 | |
1656 | iloc = mrstrt[iak]; |
1657 | |
1658 | dsave = dels[iloc]; |
1659 | isave = hrow[iloc]; |
1660 | jsave = hcol[iloc]; |
1661 | dels[iloc] = daik; |
1662 | hrow[iloc] = 0; |
1663 | hcol[iloc] = jak; |
1664 | |
1665 | if (isave == 0) |
1666 | break; |
1667 | daik = dsave; |
1668 | iak = isave; |
1669 | jak = jsave; |
1670 | } |
1671 | |
1672 | } |
1673 | } |
1674 | } /* c_ekkrowq */ |
1675 | |
1676 | |
1677 | |
1678 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, |
1679 | int *hcoli, int *mrstrt, int *hinrow, int xnewro) |
1680 | { |
1681 | int i, k, nz, kold; |
1682 | int kstart; |
1683 | const int nrow = fact->nrow; |
1684 | |
1685 | for (i = 1; i <= nrow; ++i) { |
1686 | nz = hinrow[i]; |
1687 | if (0 < nz) { |
1688 | /* save the last column entry of row i in hinrow */ |
1689 | /* and replace that entry with -i */ |
1690 | k = mrstrt[i] + nz - 1; |
1691 | hinrow[i] = hcoli[k]; |
1692 | hcoli[k] = -i; |
1693 | } |
1694 | } |
1695 | |
1696 | kstart = 0; |
1697 | kold = 0; |
1698 | for (k = 1; k <= xnewro; ++k) { |
1699 | if (hcoli[k] != 0) { |
1700 | ++kstart; |
1701 | |
1702 | /* if this is the last entry for the row... */ |
1703 | if (hcoli[k] < 0) { |
1704 | /* restore the entry */ |
1705 | i = -hcoli[k]; |
1706 | hcoli[k] = hinrow[i]; |
1707 | |
1708 | /* update mrstart and hinrow */ |
1709 | /* ACTUALLY, hinrow should already be accurate */ |
1710 | mrstrt[i] = kold + 1; |
1711 | hinrow[i] = kstart - kold; |
1712 | kold = kstart; |
1713 | } |
1714 | |
1715 | /* move the entry */ |
1716 | dluval[kstart] = dluval[k]; |
1717 | hcoli[kstart] = hcoli[k]; |
1718 | } |
1719 | } |
1720 | |
1721 | return (kstart); |
1722 | } /* c_ekkrwco */ |
1723 | |
1724 | |
1725 | |
1726 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
1727 | const int *hinrow, const EKKHlink *mwork, |
1728 | int nfirst) |
1729 | { |
1730 | #if 0 |
1731 | int *hcoli = fact->xecadr; |
1732 | double *dluval = fact->xeeadr; |
1733 | double *dvalpv = fact->kw3adr; |
1734 | int *mrstrt = fact->xrsadr; |
1735 | int *hrowi = fact->xeradr; |
1736 | int *mcstrt = fact->xcsadr; |
1737 | int *hinrow = fact->xrnadr; |
1738 | int *hincol = fact->xcnadr; |
1739 | int *hpivro = fact->krpadr; |
1740 | int *hpivco = fact->kcpadr; |
1741 | #endif |
1742 | int i, k, k1, k2, nz; |
1743 | int irow, iput; |
1744 | const int nrow = fact->nrow; |
1745 | |
1746 | /* Compress row file */ |
1747 | |
1748 | iput = 1; |
1749 | irow = nfirst; |
1750 | for (i = 1; i <= nrow; ++i) { |
1751 | nz = hinrow[irow]; |
1752 | k1 = mrstrt[irow]; |
1753 | if (k1 != iput) { |
1754 | mrstrt[irow] = iput; |
1755 | k2 = k1 + nz - 1; |
1756 | for (k = k1; k <= k2; ++k) { |
1757 | dluval[iput] = dluval[k]; |
1758 | hcoli[iput] = hcoli[k]; |
1759 | ++iput; |
1760 | } |
1761 | } else { |
1762 | iput += nz; |
1763 | } |
1764 | irow = mwork[irow].suc; |
1765 | } |
1766 | |
1767 | return (iput); |
1768 | } /* c_ekkrwcs */ |
1769 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
1770 | const int *hinrow, const EKKHlink *mwork, |
1771 | const EKKHlink *rlink, |
1772 | const short *msort, double *dsort, |
1773 | int nlast, int xnewro) |
1774 | { |
1775 | #if 0 |
1776 | int *hcoli = fact->xecadr; |
1777 | double *dluval = fact->xeeadr; |
1778 | double *dvalpv = fact->kw3adr; |
1779 | int *mrstrt = fact->xrsadr; |
1780 | int *hrowi = fact->xeradr; |
1781 | int *mcstrt = fact->xcsadr; |
1782 | int *hinrow = fact->xrnadr; |
1783 | int *hincol = fact->xcnadr; |
1784 | int *hpivro = fact->krpadr; |
1785 | int *hpivco = fact->kcpadr; |
1786 | #endif |
1787 | int i, k, k1, nz, icol; |
1788 | int kmax; |
1789 | int irow, iput; |
1790 | int ilook; |
1791 | const int nrow = fact->nrow; |
1792 | |
1793 | iput = xnewro; |
1794 | irow = nlast; |
1795 | kmax = nrow - fact->npivots; |
1796 | for (i = 1; i <= nrow; ++i) { |
1797 | nz = hinrow[irow]; |
1798 | k1 = mrstrt[irow] - 1; |
1799 | if (rlink[irow].pre < 0) { |
1800 | /* pivoted on already */ |
1801 | iput -= nz; |
1802 | if (k1 != iput) { |
1803 | mrstrt[irow] = iput + 1; |
1804 | for (k = nz; k >= 1; --k) { |
1805 | dluval[iput + k] = dluval[k1 + k]; |
1806 | hcoli[iput + k] = hcoli[k1 + k]; |
1807 | } |
1808 | } |
1809 | } else { |
1810 | /* not pivoted - going dense */ |
1811 | iput -= kmax; |
1812 | mrstrt[irow] = iput + 1; |
1813 | c_ekkdzero( kmax, &dsort[1]); |
1814 | for (k = 1; k <= nz; ++k) { |
1815 | icol = hcoli[k1 + k]; |
1816 | ilook = msort[icol]; |
1817 | dsort[ilook] = dluval[k1 + k]; |
1818 | } |
1819 | c_ekkdcpy(kmax, |
1820 | (dsort+1), (dluval+iput + 1)); |
1821 | } |
1822 | irow = mwork[irow].pre; |
1823 | } |
1824 | } /* c_ekkrwct */ |
1825 | /* takes Uwe's modern structures and puts them back 20 years */ |
1826 | int c_ekkshff(EKKfactinfo *fact, |
1827 | EKKHlink *clink, EKKHlink *rlink, |
1828 | int xnewro) |
1829 | { |
1830 | int *hpivro = fact->krpadr; |
1831 | |
1832 | int i, j; |
1833 | int nbas, icol; |
1834 | int ipiv; |
1835 | const int nrow = fact->nrow; |
1836 | int nsing; |
1837 | |
1838 | for (i = 1; i <= nrow; ++i) { |
1839 | j = -rlink[i].pre; |
1840 | rlink[i].pre = j; |
1841 | if (j > 0 && j <= nrow) { |
1842 | hpivro[j] = i; |
1843 | } |
1844 | j = -clink[i].pre; |
1845 | clink[i].pre = j; |
1846 | } |
1847 | /* hpivro[j] is now (hopefully) the row that was pivoted on step j */ |
1848 | /* rlink[i].pre is the step in which row i was pivoted */ |
1849 | |
1850 | nbas = 0; |
1851 | nsing = 0; |
1852 | /* Decide if permutation wanted */ |
1853 | fact->first_dense=nrow-fact->ndenuc+1+1; |
1854 | fact->last_dense=nrow; |
1855 | |
1856 | /* rlink[].suc is dead at this point */ |
1857 | |
1858 | /* |
1859 | * replace the the basis index |
1860 | * with the pivot (or permuted) index generated by factorization. |
1861 | * This eventually goes into mpermu. |
1862 | */ |
1863 | for (icol = 1; icol <= nrow; ++icol) { |
1864 | int ibasis = icol; |
1865 | ipiv = clink[ibasis].pre; |
1866 | |
1867 | if (0 < ipiv && ipiv <= nrow) { |
1868 | rlink[ibasis].suc = ipiv; |
1869 | ++nbas; |
1870 | } |
1871 | } |
1872 | |
1873 | nsing = nrow - nbas; |
1874 | if (nsing > 0) { |
1875 | abort(); |
1876 | } |
1877 | |
1878 | /* if we reach here, then rlink[1..nrow].suc == clink[1..nrow].pre */ |
1879 | |
1880 | /* switch off sparse update if any dense section */ |
1881 | { |
1882 | const int notMuchRoom = (fact->nnentu + xnewro + 10 > fact->nnetas - fact->nnentl); |
1883 | |
1884 | /* must be same as in c_ekkshfv */ |
1885 | if (fact->ndenuc || notMuchRoom||nrow<C_EKK_GO_SPARSE) { |
1886 | #if PRINT_DEBUG |
1887 | if (fact->if_sparse_update) { |
1888 | printf("**** Switching off sparse update - dense - c_ekkshff\n" ); |
1889 | } |
1890 | #endif |
1891 | fact->if_sparse_update=0; |
1892 | } |
1893 | } |
1894 | |
1895 | /* hpivro[1..nrow] is not read by c_ekkshfv */ |
1896 | c_ekkshfv(fact, |
1897 | rlink, clink, |
1898 | xnewro); |
1899 | |
1900 | return (0); |
1901 | } /* c_ekkshff */ |
1902 | /* sorts on indices dragging elements with */ |
1903 | static void c_ekk_sort2(int * key , double * array2,int number) |
1904 | { |
1905 | int minsize=10; |
1906 | int n = number; |
1907 | int sp; |
1908 | int *v = key; |
1909 | int *m, t; |
1910 | int * ls[32] , * rs[32]; |
1911 | int *l , *r , c; |
1912 | double it; |
1913 | int j; |
1914 | /*check already sorted */ |
1915 | #ifndef LONG_MAX |
1916 | #define LONG_MAX 0x7fffffff; |
1917 | #endif |
1918 | int last=-LONG_MAX; |
1919 | for (j=0;j<number;j++) { |
1920 | if (key[j]>=last) { |
1921 | last=key[j]; |
1922 | } else { |
1923 | break; |
1924 | } /* endif */ |
1925 | } /* endfor */ |
1926 | if (j==number) { |
1927 | return; |
1928 | } /* endif */ |
1929 | sp = 0 ; ls[sp] = v ; rs[sp] = v + (n-1) ; |
1930 | while( sp >= 0 ) |
1931 | { |
1932 | if ( rs[sp] - ls[sp] > minsize ) |
1933 | { |
1934 | l = ls[sp] ; r = rs[sp] ; m = l + (r-l)/2 ; |
1935 | if ( *l > *m ) |
1936 | { |
1937 | t = *l ; *l = *m ; *m = t ; |
1938 | it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; |
1939 | } |
1940 | if ( *m > *r ) |
1941 | { |
1942 | t = *m ; *m = *r ; *r = t ; |
1943 | it = array2[m-v] ; array2[m-v] = array2[r-v] ; array2[r-v] = it ; |
1944 | if ( *l > *m ) |
1945 | { |
1946 | t = *l ; *l = *m ; *m = t ; |
1947 | it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; |
1948 | } |
1949 | } |
1950 | c = *m ; |
1951 | while ( r - l > 1 ) |
1952 | { |
1953 | while ( *(++l) < c ) ; |
1954 | while ( *(--r) > c ) ; |
1955 | t = *l ; *l = *r ; *r = t ; |
1956 | it = array2[l-v] ; array2[l-v] = array2[r-v] ; array2[r-v] = it ; |
1957 | } |
1958 | l = r - 1 ; |
1959 | if ( l < m ) |
1960 | { ls[sp+1] = ls[sp] ; |
1961 | rs[sp+1] = l ; |
1962 | ls[sp ] = r ; |
1963 | } |
1964 | else |
1965 | { ls[sp+1] = r ; |
1966 | rs[sp+1] = rs[sp] ; |
1967 | rs[sp ] = l ; |
1968 | } |
1969 | sp++ ; |
1970 | } |
1971 | else sp-- ; |
1972 | } |
1973 | for ( l = v , m = v + (n-1) ; l < m ; l++ ) |
1974 | { if ( *l > *(l+1) ) |
1975 | { |
1976 | c = *(l+1) ; |
1977 | it = array2[(l-v)+1] ; |
1978 | for ( r = l ; r >= v && *r > c ; r-- ) |
1979 | { |
1980 | *(r+1) = *r ; |
1981 | array2[(r-v)+1] = array2[(r-v)] ; |
1982 | } |
1983 | *(r+1) = c ; |
1984 | array2[(r-v)+1] = it ; |
1985 | } |
1986 | } |
1987 | } |
1988 | /* For each row compute reciprocal of pivot element and take out of */ |
1989 | /* Also use HLINK(1 to permute column numbers */ |
1990 | /* and HPIVRO to permute row numbers */ |
1991 | /* Sort into column order as was stored by row */ |
1992 | /* If Assembler then shift row numbers in L by 3 */ |
1993 | /* Put column numbers in U for L-U update */ |
1994 | /* and multiply U elements by - reciprocal of pivot element */ |
1995 | /* and set up backward pointers for pivot rows */ |
1996 | void c_ekkshfv(EKKfactinfo *fact, |
1997 | EKKHlink *rlink, EKKHlink *clink, |
1998 | int xnewro) |
1999 | { |
2000 | int *hcoli = fact->xecadr; |
2001 | double *dluval = fact->xeeadr; |
2002 | double *dvalpv = fact->kw3adr; |
2003 | int *mrstrt = fact->xrsadr; |
2004 | int *hrowi = fact->xeradr; |
2005 | int *mcstrt = fact->xcsadr; |
2006 | int *hinrow = fact->xrnadr; |
2007 | int *hincol = fact->xcnadr; |
2008 | int *hpivro = fact->krpadr; |
2009 | int *hpivco = fact->kcpadr; |
2010 | double *dpermu = fact->kadrpm; |
2011 | double * de2val = fact->xe2adr ? fact->xe2adr-1: 0; |
2012 | int nnentu = fact->nnentu; |
2013 | int xnetal = fact->xnetal; |
2014 | |
2015 | int numberSlacks; /* numberSlacks not read */ |
2016 | |
2017 | int i, j, k, kk, nel; |
2018 | int nroom; |
2019 | bool need_more_space; |
2020 | int ndenuc=fact->ndenuc; |
2021 | int if_sparse_update=fact->if_sparse_update; |
2022 | int nnentl = fact->nnentl; |
2023 | int nnetas = fact->nnetas; |
2024 | |
2025 | int *ihlink = (reinterpret_cast<int*> (clink))+1; /* can't use rlink for simple loop below */ |
2026 | |
2027 | const int nrow = fact->nrow; |
2028 | const int maxinv = fact->maxinv; |
2029 | |
2030 | /* this is not just a temporary - c_ekkbtrn etc use this */ |
2031 | int *mpermu = (reinterpret_cast<int*> (dpermu+nrow))+1; |
2032 | |
2033 | int * temp = ihlink+nrow; |
2034 | int * temp2 = temp+nrow; |
2035 | const int notMuchRoom = (nnentu + xnewro + 10 > nnetas - nnentl); |
2036 | |
2037 | /* compress hlink and make simpler */ |
2038 | for (i = 1; i <= nrow; ++i) { |
2039 | mpermu[i] = rlink[i].pre; |
2040 | ihlink[i] = rlink[i].suc; |
2041 | } |
2042 | /* mpermu[i] == the step in which row i was pivoted */ |
2043 | /* ihlink[i] == the step in which col i was pivoted */ |
2044 | |
2045 | /* must be same as in c_ekkshff */ |
2046 | if (fact->ndenuc||notMuchRoom||nrow<C_EKK_GO_SPARSE) { |
2047 | int ninbas; |
2048 | |
2049 | /* CHANGE COLUMN NUMBERS AND FILL IN RECIPROCALS */ |
2050 | /* ALSO RECOMPUTE NUMBER IN COLUMN */ |
2051 | /* initialize with a fake pivot in each column */ |
2052 | c_ekkscpy_0_1(nrow, 1, &hincol[1]); |
2053 | |
2054 | if (notMuchRoom) { |
2055 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
2056 | |
2057 | /* eta_size can be no larger than maxNNetas */ |
2058 | if (fact->maxNNetas > 0 && |
2059 | fact->eta_size > fact->maxNNetas) { |
2060 | fact->eta_size=fact->maxNNetas; |
2061 | } |
2062 | } /* endif */ |
2063 | |
2064 | /* For each row compute reciprocal of pivot element and take out of U */ |
2065 | /* Also use ihlink to permute column numbers */ |
2066 | /* the rows are not stored compactly or in order, |
2067 | * so we have to find out where the last one is stored */ |
2068 | ninbas=0; |
2069 | for (i = 1; i <= nrow; ++i) { |
2070 | int jpiv=mpermu[i]; |
2071 | int nin=hinrow[i]; |
2072 | int krs = mrstrt[i]; |
2073 | int kre = krs + nin; |
2074 | |
2075 | temp[jpiv]=krs; |
2076 | temp2[jpiv]=nin; |
2077 | |
2078 | ninbas = CoinMax(kre, ninbas); |
2079 | |
2080 | /* c_ekktria etc ensure that the first row entry is the pivot */ |
2081 | dvalpv[jpiv] = 1. / dluval[krs]; |
2082 | hcoli[krs] = 0; /* probably needed for c_ekkrowq */ |
2083 | /* room for the pivot has already been allocated, so hincol ok */ |
2084 | |
2085 | for (kk = krs + 1; kk < kre; ++kk) { |
2086 | int j = ihlink[hcoli[kk]]; |
2087 | hcoli[kk] = j; /* permute the col index */ |
2088 | hrowi[kk] = jpiv; /* permute the row index */ |
2089 | ++hincol[j]; |
2090 | } |
2091 | } |
2092 | /* temp [mpermu[i]] == mrstrt[i] */ |
2093 | /* temp2[mpermu[i]] == hinrow[i] */ |
2094 | |
2095 | ninbas--; /* ???? */ |
2096 | c_ekkscpy(nrow, &temp[1], &mrstrt[1]); |
2097 | c_ekkscpy(nrow, &temp2[1], &hinrow[1]); |
2098 | |
2099 | /* now mrstrt, hinrow, hcoli and hrowi have been permuted */ |
2100 | |
2101 | /* Sort into column order as was stored by row */ |
2102 | /* There will be an empty entry in front of each each column, |
2103 | * because we initialized hincol to 1s, and c_ekkrowq fills in |
2104 | * entries from the back */ |
2105 | c_ekkrowq(hcoli, hrowi, dluval, mcstrt, hincol, nrow, ninbas); |
2106 | |
2107 | |
2108 | /* The shuffle zeroed out column pointers */ |
2109 | /* Put them back for L-U update */ |
2110 | /* Also multiply U elements by - reciprocal of pivot element */ |
2111 | /* Also decrement mcstrt/hincol to give "real" sizes */ |
2112 | for (i = 1; i <= nrow; ++i) { |
2113 | int kx = --mcstrt[i]; |
2114 | nel = --hincol[i]; |
2115 | hrowi[kx] = nel; |
2116 | dluval[kx] = dvalpv[i]; |
2117 | #ifndef NO_SHIFT |
2118 | for (int j=kx+1;j<=kx+nel;j++) |
2119 | hrowi[j] = SHIFT_INDEX(hrowi[j]); |
2120 | #endif |
2121 | } |
2122 | |
2123 | /* sort dense part */ |
2124 | for (i=nrow-ndenuc+1; i<=nrow; i++) { |
2125 | int kx = mcstrt[i]+1; /* "real" entries start after pivot */ |
2126 | int nel = hincol[i]; |
2127 | c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); |
2128 | } |
2129 | |
2130 | /* Recompute number in U */ |
2131 | nnentu = mcstrt[nrow] + hincol[nrow]; |
2132 | mcstrt[nrow + 4] = nnentu + 1; /* magic - AND DEAD */ |
2133 | |
2134 | /* as not much room switch off fast etas */ |
2135 | mrstrt[1] = 0; /* magic */ |
2136 | fact->rows_ok = false; |
2137 | i = nrow + maxinv + 5; /* DEAD */ |
2138 | } else { |
2139 | /* *************************************** */ |
2140 | /* enough memory to do a bit faster */ |
2141 | /* For each row compute reciprocal of pivot element and */ |
2142 | /* take out of U */ |
2143 | /* Also use HLINK(1 to permute column numbers */ |
2144 | int ninbas=0; |
2145 | int ilast; /* last available entry */ |
2146 | int spareSpace; |
2147 | int * hcoli2; |
2148 | double * dluval2; |
2149 | /*int * hlink2 = ihlink+nrow; |
2150 | int * mrstrt2 = hlink2+nrow;*/ |
2151 | int =10000; |
2152 | /* mwork has order of row copy */ |
2153 | EKKHlink *mwork = (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; |
2154 | fact->rows_ok = true; |
2155 | |
2156 | if (if_sparse_update) { |
2157 | ilast=nnetas-nnentl; |
2158 | } else { |
2159 | /* missing out nnentl stuff */ |
2160 | ilast=nnetas; |
2161 | } |
2162 | spareSpace=ilast-nnentu; |
2163 | need_more_space=false; |
2164 | hcoli2 = hcoli+spareSpace; |
2165 | /* save clean row copy if enough room */ |
2166 | nroom = (spareSpace) / nrow; |
2167 | if ((nnentu<<3)>150*maxinv) { |
2168 | extraSpace=150*maxinv; |
2169 | } else { |
2170 | extraSpace=nnentu<<3; |
2171 | } |
2172 | if (nrow<10000) { |
2173 | if (nroom < 10) { |
2174 | need_more_space=true; |
2175 | } |
2176 | } else { |
2177 | if (nroom < 5&&!if_sparse_update) { |
2178 | need_more_space=true; |
2179 | } |
2180 | } |
2181 | if (nroom > CoinMin(50,maxinv)) { |
2182 | need_more_space=false; |
2183 | } |
2184 | if (need_more_space) { |
2185 | if (if_sparse_update) { |
2186 | int i1=fact->eta_size+10*nrow; |
2187 | fact->eta_size=static_cast<int>(1.2*fact->eta_size); |
2188 | if (i1>fact->eta_size) { |
2189 | fact->eta_size=i1; |
2190 | } |
2191 | } else { |
2192 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
2193 | } |
2194 | } else { |
2195 | if (nroom<11) { |
2196 | if (if_sparse_update) { |
2197 | int i1=fact->eta_size+(11-nroom)*nrow; |
2198 | fact->eta_size=static_cast<int>(1.2*fact->eta_size); |
2199 | if (i1>fact->eta_size) { |
2200 | fact->eta_size=i1; |
2201 | } |
2202 | } |
2203 | } |
2204 | } |
2205 | if (fact->maxNNetas>0&&fact->eta_size> |
2206 | fact->maxNNetas) { |
2207 | fact->eta_size=fact->maxNNetas; |
2208 | } |
2209 | { |
2210 | /* we can swap de2val and dluval to save copying */ |
2211 | int * eta_last=mpermu+nrow*2+3; |
2212 | int * eta_next=eta_last+nrow+2; |
2213 | int last=0; |
2214 | eta_last[0]=-1; |
2215 | if (nnentl) { |
2216 | /* went into c_ekkcmfc - if not then in order */ |
2217 | int next; |
2218 | /*next=mwork[((nrow+1)<<1)+1];*/ |
2219 | next=mwork[nrow+1].pre; |
2220 | #ifdef DEBUG |
2221 | j=mrstrt[next]; |
2222 | #endif |
2223 | for (i = 1; i <= nrow; ++i) { |
2224 | int iperm=mpermu[next]; |
2225 | eta_next[last]=iperm; |
2226 | eta_last[iperm]=last; |
2227 | temp[iperm] = mrstrt[next]; |
2228 | temp2[iperm] = hinrow[next]; |
2229 | #ifdef DEBUG |
2230 | if (mrstrt[next]!=j) abort(); |
2231 | j=mrstrt[next]+hinrow[next]; |
2232 | #endif |
2233 | /*next= mwork[(next<<1)+2];*/ |
2234 | next= mwork[next].suc; |
2235 | last=iperm; |
2236 | } |
2237 | } else { |
2238 | #ifdef DEBUG |
2239 | j=0; |
2240 | #endif |
2241 | for (i = 1; i <= nrow; ++i) { |
2242 | int iperm=mpermu[i]; |
2243 | eta_next[last]=iperm; |
2244 | eta_last[iperm]=last; |
2245 | temp[iperm] = mrstrt[i]; |
2246 | temp2[iperm] = hinrow[i]; |
2247 | last=iperm; |
2248 | #ifdef DEBUG |
2249 | if (mrstrt[i]<=j) abort(); |
2250 | if (i>1&&mrstrt[i]!=j+hinrow[i-1]) abort(); |
2251 | j=mrstrt[i]; |
2252 | #endif |
2253 | } |
2254 | } |
2255 | eta_next[last]=nrow+1; |
2256 | eta_last[nrow+1]=last; |
2257 | eta_next[nrow+1]=nrow+2; |
2258 | c_ekkscpy(nrow, &temp[1], &mrstrt[1]); |
2259 | c_ekkscpy(nrow, &temp2[1], &hinrow[1]); |
2260 | i=eta_last[nrow+1]; |
2261 | ninbas=mrstrt[i]+hinrow[i]-1; |
2262 | #ifdef DEBUG |
2263 | if (spareSpace<ninbas) { |
2264 | abort(); |
2265 | } |
2266 | #endif |
2267 | c_ekkizero( nrow, &hincol[1]); |
2268 | #ifdef DEBUG |
2269 | for (i=nrow; i>0; i--) { |
2270 | int krs = mrstrt[i]; |
2271 | int jpiv = hcoli[krs]; |
2272 | if (ihlink[jpiv]!=i) abort(); |
2273 | } |
2274 | #endif |
2275 | for (i = 1; i <= ninbas; ++i) { |
2276 | k = hcoli[i]; |
2277 | k = ihlink[k]; |
2278 | #ifdef DEBUG |
2279 | if (k<=0||k>nrow) abort(); |
2280 | #endif |
2281 | hcoli[i]=k; |
2282 | hincol[k]++; |
2283 | } |
2284 | #ifdef DEBUG |
2285 | for (i=nrow; i>0; i--) { |
2286 | int krs = mrstrt[i]; |
2287 | int jpiv = hcoli[krs]; |
2288 | if (jpiv!=i) abort(); |
2289 | if (krs>ninbas) abort(); |
2290 | } |
2291 | #endif |
2292 | /* Sort into column order as was stored by row */ |
2293 | k = 1; |
2294 | /* Position */ |
2295 | for (kk = 1; kk <= nrow; ++kk) { |
2296 | nel=hincol[kk]; |
2297 | mcstrt[kk] = k; |
2298 | hrowi[k]=nel-1; |
2299 | k += hincol[kk]; |
2300 | hincol[kk]=0; |
2301 | } |
2302 | if (de2val) { |
2303 | dluval2=de2val; |
2304 | } else { |
2305 | dluval2=dluval+ninbas; |
2306 | } |
2307 | nnentu = k-1; |
2308 | mcstrt[nrow + 4] = nnentu + 1; |
2309 | /* create column copy */ |
2310 | for (i=nrow; i>0; i--) { |
2311 | int krs = mrstrt[i]; |
2312 | int kre = krs + hinrow[i]; |
2313 | hinrow[i]--; |
2314 | mrstrt[i]++; |
2315 | { |
2316 | int kx = mcstrt[i]; |
2317 | /*nel = hincol[i]; |
2318 | if (hrowi[kx]!=nel) abort(); |
2319 | hrowi[kx] = nel-1;*/ |
2320 | dluval2[kx] = 1.0 /dluval[krs]; |
2321 | /*hincol[i]=0;*/ |
2322 | for (kk = krs + 1; kk < kre; ++kk) { |
2323 | int j = hcoli[kk]; |
2324 | int iput = hincol[j]+1; |
2325 | hincol[j]=iput; |
2326 | iput+= mcstrt[j]; |
2327 | hrowi[iput] = SHIFT_INDEX(i); |
2328 | dluval2[iput] = dluval[kk]; |
2329 | } |
2330 | } |
2331 | } |
2332 | if (de2val) { |
2333 | double * a=dluval; |
2334 | double * address; |
2335 | /* move first down */ |
2336 | i=eta_next[0]; |
2337 | { |
2338 | int krs=mrstrt[i]; |
2339 | nel=hinrow[i]; |
2340 | for (j=1;j<=nel;j++) { |
2341 | hcoli[j]=hcoli[j+krs-1]; |
2342 | dluval[j]=dluval[j+krs-1]; |
2343 | } |
2344 | } |
2345 | mrstrt[i]=1; |
2346 | /****** swap dluval and de2val !!!! ******/ |
2347 | /* should work even for dspace */ |
2348 | /* move L part across */ |
2349 | address=fact->xeeadr+1; |
2350 | fact->xeeadr=fact->xe2adr-1; |
2351 | fact->xe2adr=address; |
2352 | if (nnentl) { |
2353 | int n=xnetal-nrow-maxinv-5; |
2354 | int j1,j2; |
2355 | int * mcstrt2=mcstrt+nrow+maxinv+4; |
2356 | j2 = mcstrt2[1]; |
2357 | j1 = mcstrt2[n+1]+1; |
2358 | #if 0 |
2359 | memcpy(de2val+j1,dluval+j1,(j2-j1+1)*sizeof(double)); |
2360 | #else |
2361 | c_ekkdcpy(j2-j1+1, |
2362 | (dluval+j1),(de2val+j1)); |
2363 | #endif |
2364 | } |
2365 | dluval = de2val; |
2366 | de2val = a; |
2367 | } else { |
2368 | /* copy down dluval */ |
2369 | #if 0 |
2370 | memcpy(&dluval[1],&dluval2[1],ninbas*sizeof(double)); |
2371 | #else |
2372 | c_ekkdcpy(ninbas, |
2373 | (dluval2+1),(dluval+1)); |
2374 | #endif |
2375 | } |
2376 | /* sort dense part */ |
2377 | for (i=nrow-ndenuc+1;i<=nrow;i++) { |
2378 | int kx = mcstrt[i]+1; |
2379 | int nel = hincol[i]; |
2380 | c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); |
2381 | } |
2382 | } |
2383 | mrstrt[nrow + 1] = ilast + 1; |
2384 | } |
2385 | /* Find first non slack */ |
2386 | for (i = 1; i <= nrow; ++i) { |
2387 | int kcs = mcstrt[i]; |
2388 | if (hincol[i] != 0 || dluval[kcs] != SLACK_VALUE) { |
2389 | break; |
2390 | } |
2391 | } |
2392 | numberSlacks = i - 1; |
2393 | { |
2394 | /* set slacks to 1 */ |
2395 | int * array = fact->krpadr + ( fact->nrowmx+2); |
2396 | int nSet = (numberSlacks)>>5; |
2397 | int n2 = (fact->nrowmx+32)>>5; |
2398 | int i; |
2399 | memset(array,0xff,nSet*sizeof(int)); |
2400 | memset(array+nSet,0,(n2-nSet)*sizeof(int)); |
2401 | for (i=nSet<<5;i<=numberSlacks;i++) |
2402 | c_ekk_Set(array,i); |
2403 | c_ekk_Unset(array,fact->nrow+1); /* make sure off end not slack */ |
2404 | #ifndef NDEBUG |
2405 | for (i=1;i<=numberSlacks;i++) |
2406 | assert (c_ekk_IsSet(array,i)); |
2407 | for (;i<=fact->nrow;i++) |
2408 | assert (!c_ekk_IsSet(array,i)); |
2409 | #endif |
2410 | } |
2411 | |
2412 | /* and set up backward pointers */ |
2413 | /* clean up HPIVCO for fancy assembler stuff */ |
2414 | /* xnetal was initialized to nrow + maxinv + 4 in c_ekktria, and grows */ |
2415 | c_ekkscpy_0_1(maxinv + 1, 1, &hpivco[nrow+4]); /* magic */ |
2416 | |
2417 | hpivco[xnetal] = 1; |
2418 | /* shuffle down for gaps so can get rid of hpivco for L */ |
2419 | { |
2420 | const int lstart = nrow + maxinv + 5; |
2421 | int n=xnetal-lstart ; /* number of L entries */ |
2422 | int add,iel; |
2423 | int * hpivco_L = &hpivco[lstart]; |
2424 | int * mcstrt_L = &mcstrt[lstart]; |
2425 | if (nnentl) { |
2426 | /* elements of L were stored in descending order in dluval/hcoli */ |
2427 | int kle = mcstrt_L[0]; |
2428 | int kls = mcstrt_L[n]+1; |
2429 | |
2430 | if(if_sparse_update) { |
2431 | int i2,iel; |
2432 | int * mrstrt2 = &mrstrt[nrow]; |
2433 | |
2434 | /* need row copy of L */ |
2435 | /* hpivro is spare for counts; just used as a temp buffer */ |
2436 | c_ekkizero( nrow, &hpivro[1]); |
2437 | |
2438 | /* permute L indices; count L row lengths */ |
2439 | for (iel = kls; iel <= kle; ++iel) { |
2440 | int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; |
2441 | hpivro[jrow]++; |
2442 | hrowi[iel] = SHIFT_INDEX(jrow); |
2443 | } |
2444 | { |
2445 | int ibase=nnetas-nnentl+1; |
2446 | int firstDoRow=0; |
2447 | for (i=1;i<=nrow;i++) { |
2448 | mrstrt2[i]=ibase; |
2449 | if (hpivro[i]&&!firstDoRow) { |
2450 | firstDoRow=i; |
2451 | } |
2452 | ibase+=hpivro[i]; |
2453 | hpivro[i]=mrstrt2[i]; |
2454 | } |
2455 | if (!firstDoRow) { |
2456 | firstDoRow=nrow+1; |
2457 | } |
2458 | mrstrt2[i]=ibase; |
2459 | fact->firstDoRow = firstDoRow; |
2460 | } |
2461 | i2=mcstrt_L[n]; |
2462 | for (i = n-1; i >= 0; --i) { |
2463 | int i1 = mcstrt_L[i]; |
2464 | int ipiv=hpivco_L[i]; |
2465 | ipiv=mpermu[ipiv]; |
2466 | hpivco_L[i]=ipiv; |
2467 | for (iel=i2 ; iel < i1; iel++) { |
2468 | int irow = UNSHIFT_INDEX(hrowi[iel+1]); |
2469 | int iput=hpivro[irow]; |
2470 | hpivro[irow]=iput+1; |
2471 | hcoli[iput]=ipiv; |
2472 | de2val[iput]=dluval[iel+1]; |
2473 | } |
2474 | i2=i1; |
2475 | } |
2476 | } else { |
2477 | /* just permute row numbers */ |
2478 | |
2479 | for (j = 0; j < n; ++j) { |
2480 | hpivco_L[j] = mpermu[hpivco_L[j]]; |
2481 | } |
2482 | for (iel = kls; iel <= kle; ++iel) { |
2483 | int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; |
2484 | hrowi[iel] = SHIFT_INDEX(jrow); |
2485 | } |
2486 | } |
2487 | |
2488 | add=hpivco_L[n-1]-hpivco_L[0]-n+1; |
2489 | if (add) { |
2490 | int i; |
2491 | int last = hpivco_L[n-1]; |
2492 | int laststart = mcstrt_L[n]; |
2493 | int base=hpivco_L[0]-1; |
2494 | /* adjust so numbers match */ |
2495 | mcstrt_L-=base; |
2496 | hpivco_L-=base; |
2497 | mcstrt_L[last]=laststart; |
2498 | for (i=n-1;i>=0;i--) { |
2499 | int ipiv=hpivco_L[i+base]; |
2500 | while (ipiv<last) { |
2501 | mcstrt_L[last-1]=laststart; |
2502 | hpivco_L[last-1]=last; |
2503 | last--; |
2504 | } |
2505 | laststart=mcstrt_L[i+base]; |
2506 | mcstrt_L[last-1]=laststart; |
2507 | hpivco_L[last-1]=last; |
2508 | last--; |
2509 | } |
2510 | xnetal+=add; |
2511 | } |
2512 | } |
2513 | //int lstart=fact->lstart; |
2514 | //const int * COIN_RESTRICT hpivco = fact->kcpadr; |
2515 | fact->firstLRow = hpivco[lstart]; |
2516 | } |
2517 | fact->nnentu = nnentu; |
2518 | fact->xnetal = xnetal; |
2519 | /* now we have xnetal * we can set up pointers */ |
2520 | clp_setup_pointers(fact); |
2521 | |
2522 | /* this is the array used in c_ekkbtrn; it is passed to c_ekkbtju as hpivco. |
2523 | * this gets modified by F-T as we pivot columns in and out. |
2524 | */ |
2525 | { |
2526 | /* do new hpivco */ |
2527 | int * hpivco_new = fact->kcpadr+1; |
2528 | int * back = &fact->kcpadr[2*nrow+maxinv+4]; |
2529 | /* set zeroth to stop illegal read */ |
2530 | back[0]=1; |
2531 | |
2532 | hpivco_new[nrow+1]=nrow+1; /* deliberate loop for dense tests */ |
2533 | hpivco_new[0]=1; |
2534 | |
2535 | for (i=1;i<=nrow;i++) { |
2536 | hpivco_new[i]=i+1; |
2537 | back[i+1]=i; |
2538 | } |
2539 | back[1]=0; |
2540 | |
2541 | fact->first_dense = CoinMax(fact->first_dense,4); |
2542 | fact->numberSlacks=numberSlacks; |
2543 | fact->lastSlack=numberSlacks; |
2544 | fact->firstNonSlack=hpivco_new[numberSlacks]; |
2545 | } |
2546 | |
2547 | /* also zero out permute region and nonzero */ |
2548 | c_ekkdzero( nrow, (dpermu+1)); |
2549 | |
2550 | if (if_sparse_update) { |
2551 | char * nonzero = reinterpret_cast<char *> (&mpermu[nrow+1]); /* used in c_ekkbtrn */ |
2552 | /*c_ekkizero(nrow,(int *)nonzero);*/ |
2553 | c_ekkczero(nrow,nonzero); |
2554 | /*memset(nonzero,0,nrow*sizeof(int));*/ /* for faster method */ |
2555 | } |
2556 | for (i = 1; i <= nrow; ++i) { |
2557 | hpivro[mpermu[i]] = i; |
2558 | } |
2559 | |
2560 | } /* c_ekkshfv */ |
2561 | |
2562 | |
2563 | static void c_ekkclcp1(const int *hcol, const int * mrstrt, |
2564 | int *hrow, int *mcstrt, |
2565 | int *hincol, int nnrow, int nncol, |
2566 | int ninbas) |
2567 | { |
2568 | int i, j, kc, kr, kre, krs, icol; |
2569 | int iput; |
2570 | |
2571 | /* Create columnwise storage of row indices */ |
2572 | |
2573 | kc = 1; |
2574 | for (j = 1; j <= nncol; ++j) { |
2575 | mcstrt[j] = kc; |
2576 | kc += hincol[j]; |
2577 | hincol[j] = 0; |
2578 | } |
2579 | mcstrt[nncol + 1] = ninbas + 1; |
2580 | |
2581 | for (i = 1; i <= nnrow; ++i) { |
2582 | krs = mrstrt[i]; |
2583 | kre = mrstrt[i + 1] - 1; |
2584 | for (kr = krs; kr <= kre; ++kr) { |
2585 | icol = hcol[kr]; |
2586 | iput = hincol[icol]; |
2587 | hincol[icol] = iput + 1; |
2588 | iput += mcstrt[icol]; |
2589 | hrow[iput] = i; |
2590 | } |
2591 | } |
2592 | } /* c_ekkclcp */ |
2593 | inline void c_ekkclcp2(const int *hcol, const double *dels, const int * mrstrt, |
2594 | int *hrow, double *dels2, int *mcstrt, |
2595 | int *hincol, int nnrow, int nncol, |
2596 | int ninbas) |
2597 | { |
2598 | int i, j, kc, kr, kre, krs, icol; |
2599 | int iput; |
2600 | |
2601 | /* Create columnwise storage of row indices */ |
2602 | |
2603 | kc = 1; |
2604 | for (j = 1; j <= nncol; ++j) { |
2605 | mcstrt[j] = kc; |
2606 | kc += hincol[j]; |
2607 | hincol[j] = 0; |
2608 | } |
2609 | mcstrt[nncol + 1] = ninbas + 1; |
2610 | |
2611 | for (i = 1; i <= nnrow; ++i) { |
2612 | krs = mrstrt[i]; |
2613 | kre = mrstrt[i + 1] - 1; |
2614 | for (kr = krs; kr <= kre; ++kr) { |
2615 | icol = hcol[kr]; |
2616 | iput = hincol[icol]; |
2617 | hincol[icol] = iput + 1; |
2618 | iput += mcstrt[icol]; |
2619 | hrow[iput] = i; |
2620 | dels2[iput] = dels[kr]; |
2621 | } |
2622 | } |
2623 | } /* c_ekkclcp */ |
2624 | int c_ekkslcf(const EKKfactinfo *fact) |
2625 | { |
2626 | int * hrow = fact->xeradr; |
2627 | int * hcol = fact->xecadr; |
2628 | double * dels = fact->xeeadr; |
2629 | int * hinrow = fact->xrnadr; |
2630 | int * hincol = fact->xcnadr; |
2631 | int * mrstrt = fact->xrsadr; |
2632 | int * mcstrt = fact->xcsadr; |
2633 | const int nrow = fact->nrow; |
2634 | int ninbas; |
2635 | /* space for etas */ |
2636 | const int nnetas = fact->nnetas; |
2637 | ninbas=mcstrt[nrow+1]-1; |
2638 | |
2639 | /* Now sort */ |
2640 | if (ninbas << 1 > nnetas) { |
2641 | /* Put it in row order */ |
2642 | int i,k; |
2643 | c_ekkrowq(hrow, hcol, dels, mrstrt, hinrow, nrow, ninbas); |
2644 | k = 1; |
2645 | for (i = 1; i <= nrow; ++i) { |
2646 | mrstrt[i] = k; |
2647 | k += hinrow[i]; |
2648 | } |
2649 | mrstrt[nrow + 1] = k; |
2650 | |
2651 | /* make a column copy without the extra values */ |
2652 | c_ekkclcp1(hcol, mrstrt, hrow, mcstrt, hincol, nrow, nrow, ninbas); |
2653 | } else { |
2654 | /* Move elements up memory */ |
2655 | c_ekkdcpy(ninbas, |
2656 | (dels+1), (dels+ninbas + 1)); |
2657 | |
2658 | /* make a row copy with the extra values */ |
2659 | c_ekkclcp2(hrow, &dels[ninbas], mcstrt, hcol, dels, mrstrt, hinrow, nrow, nrow, ninbas); |
2660 | } |
2661 | return (ninbas); |
2662 | } /* c_ekkslcf */ |
2663 | /* Uwe H. Suhl, September 1986 */ |
2664 | /* Removes lower and upper triangular factors from the matrix. */ |
2665 | /* Code for routine: 102 */ |
2666 | /* Return codes: */ |
2667 | /* 0: ok */ |
2668 | /* -5: not enough space in row file */ |
2669 | /* 7: pivot too small - col sing */ |
2670 | /* |
2671 | * This selects singleton columns and rows for the LU factorization. |
2672 | * Singleton columns require no |
2673 | * |
2674 | * (1) Note that columns are processed using a queue, not a stack; |
2675 | * this produces better pivots. |
2676 | * |
2677 | * (2) At most nrows elements are ever entered into the queue. |
2678 | * |
2679 | * (3) When pivoting singleton columns, every column that is part of |
2680 | * the pivot row is shortened by one, including the singleton column |
2681 | * itself; the hincol entries are updated appropriately. |
2682 | * Thus, pivoting on a singleton column may create other singleton columns |
2683 | * (but not singleton rows). |
2684 | * The dual property is true for rows. |
2685 | * |
2686 | * (4) Row entries (hrowi) are not changed when pivoting singleton columns. |
2687 | * Singleton columns that are created as a result of pivoting the |
2688 | * rows of other singleton columns will therefore have row entries |
2689 | * corresponding to those pivoted rows. Since we need to find the |
2690 | * row entry for the row being pivoted, we have to |
2691 | * search its row entries for the one whose hlink entry indicates |
2692 | * that it has not yet been pivoted. |
2693 | * |
2694 | * (9) As a result of pivoting columns, sections in hrowi corresponding to |
2695 | * pivoted columns are no longer needed, and entries in sections |
2696 | * for non-pivoted columns may have entries corresponding to pivoted rows. |
2697 | * This is why hrowi needs to be compacted. |
2698 | * |
2699 | * (5) When the row_pre and col_pre fields of the hlink struct contain |
2700 | * negative values, they indicate that the row has been pivoted, and |
2701 | * the negative of that value is the pivot order. |
2702 | * That is the only use for these fields in this routine. |
2703 | * |
2704 | * (6) This routine assumes that hlink is initialized to zeroes. |
2705 | * Under this assumption, the following is an invariant in this routine: |
2706 | * |
2707 | * (clink[i].pre < 0) ==> (hincol[i]==0) |
2708 | * |
2709 | * The converse is not true; see (15). |
2710 | * |
2711 | * The dual is also true, but only while pivoting singletong rows, |
2712 | * since we don't update hinrow while pivoting columns; |
2713 | * THESE VALUES ARE USED LATER, BUT I DON'T UNDERSTAND HOW YET. |
2714 | * |
2715 | * (7) hpivco is used for two purposes. The low end is used to implement the |
2716 | * queue when pivoting columns; the high end is used to hold eta-matrix |
2717 | * entries. |
2718 | * |
2719 | * (8) As a result of pivoting columns, for all i:1<=i<=nrow, either |
2720 | * hinrow[i] has not changed |
2721 | * or |
2722 | * hinrow[i] = 0 |
2723 | * This is another way of saying that pivoting singleton columns cannot |
2724 | * create singleton rows. |
2725 | * The dual holds for hincol after pivoting rows. |
2726 | * |
2727 | * (10) In constrast to (4), while pivoting rows we |
2728 | * do not let the hcoli get out-of-date. That is because as part of |
2729 | * the process of numerical pivoting we have to find the row entries |
2730 | * for all the rows in the pivot column, so we may as well keep the |
2731 | * entries up to date. This is done by moving the last column entry |
2732 | * for each row into the entry that was used for the pivot column. |
2733 | * |
2734 | * (11) When pivoting a column, we must find the pivot row entry in |
2735 | * its row table. Sometimes we search for other things at the same time. |
2736 | * The same is true for pivoting columns. This search should never |
2737 | * fail. |
2738 | * |
2739 | * (12) Information concerning the eta matrices is stored in the high |
2740 | * ends of arrays that are also used to store information concerning |
2741 | * the basis; these arrays are: hpivco, mcstrt, dluval and hcoli. |
2742 | * Information is only stored in these arrays as a part of pivoting |
2743 | * singleton rows, since the only thing that needs to be saved as |
2744 | * a part of pivoting singleton columns is which rows and columns were chosen, |
2745 | * and this is stored in hlink. |
2746 | * Since they have to share the same array, the eta information grows |
2747 | * downward instead of upward. Eventually, eta information may grow |
2748 | * down to the top of the basis information. As pivoting proceeds, |
2749 | * more and more of this information is no longer needed, so when this |
2750 | * happens we can try compacting the arrays to see if we can recover |
2751 | * enough space. lstart points at the bottom entry in the arrays, |
2752 | * xnewro/xnewco at the top of the basis information, and each time we |
2753 | * pivot a singleton row we know that we will need exactly as many new |
2754 | * entries as there are rows in the pivot column, so we can easily |
2755 | * determine if we need more room. The variable maxinv may be used |
2756 | * to reserve extra room when inversion starts. |
2757 | * |
2758 | * (13) Eta information is stored in a fashion that is similar to how |
2759 | * matrices are stored. There is one entry in hpivco and mcstrt for |
2760 | * each eta (other than the initial ones for singleton columns and |
2761 | * for singleton rows that turn out to be singleton columns), |
2762 | * in the order they were chosen. hpivco records the pivot row, |
2763 | * and mcstrt points at the first entry in the other two arrays |
2764 | * for this row. dluval contains the actual eta values for the column, |
2765 | * and hcoli the rows these values were in. |
2766 | * These entries in mcstrt and hpivco grow upward; they start above |
2767 | * the entries used to store basis information. |
2768 | * (Actually, I don't see why they need to start maxinv+4 entries past the top). |
2769 | * |
2770 | * (14) c_ekkrwco assumes that invalidated hrowi/hcoli entries contain 0. |
2771 | * |
2772 | * (15) When pivoting singleton columns, it may possibly happen |
2773 | * that a row with all singleton column entries is created. |
2774 | * In this case, all of the columns will be enqueued, and pivoting |
2775 | * on any of them eliminates the rest, without their being chosen |
2776 | * as pivots. The dual holds for singleton rows. |
2777 | * DOES THIS INDICATE A SINGULARITY? |
2778 | * |
2779 | * (15) There are some aspects of the implementation that I find odd. |
2780 | * hrowi is not set to 0 for pivot rows while pivoting singleton columns, |
2781 | * which would make sense to me. Things don't work if this isn't done, |
2782 | * so the information is used somehow later on. Also, the information |
2783 | * for the pivot column is shifted to the front of the pivot row |
2784 | * when pivoting singleton columns; this is also necessary for reasons |
2785 | * I don't understand. |
2786 | */ |
2787 | int c_ekktria(EKKfactinfo *fact, |
2788 | EKKHlink * rlink, |
2789 | EKKHlink * clink, |
2790 | int *nsingp, |
2791 | int *xnewcop, int *xnewrop, |
2792 | int *ncompactionsp, |
2793 | const int ninbas) |
2794 | { |
2795 | const int nrow = fact->nrow; |
2796 | const int maxinv = fact->maxinv; |
2797 | int *hcoli = fact->xecadr; |
2798 | double *dluval = fact->xeeadr; |
2799 | int *mrstrt = fact->xrsadr; |
2800 | int *hrowi = fact->xeradr; |
2801 | int *mcstrt = fact->xcsadr; |
2802 | int *hinrow = fact->xrnadr; |
2803 | int *hincol = fact->xcnadr; |
2804 | int *stack = fact->krpadr; /* normally hpivro */ |
2805 | int *hpivco = fact->kcpadr; |
2806 | const double drtpiv = fact->drtpiv; |
2807 | CoinZeroN(reinterpret_cast<int *>(rlink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); |
2808 | CoinZeroN(reinterpret_cast<int *>(clink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); |
2809 | |
2810 | fact->npivots = 0; |
2811 | /* Use NUSPIK to keep sum of deactivated row counts */ |
2812 | fact->nuspike = 0; |
2813 | int xnetal = nrow + maxinv + 4; |
2814 | int xnewro = mrstrt[nrow] + hinrow[nrow] - 1; |
2815 | int xnewco = xnewro; |
2816 | int kmxeta = ninbas; |
2817 | int ncompactions = 0; |
2818 | |
2819 | int i, j, k, kc, kce, kcs, npr; |
2820 | double pivot; |
2821 | int kipis, kipie, kjpis, kjpie, knprs, knpre; |
2822 | int ipivot, jpivot, stackc, stackr; |
2823 | #ifndef NDEBUG |
2824 | int kpivot=-1; |
2825 | #else |
2826 | int kpivot=-1; |
2827 | #endif |
2828 | int epivco, kstart, maxstk; |
2829 | int irtcod = 0; |
2830 | int lastSlack=0; |
2831 | |
2832 | int lstart = fact->nnetas + 1; |
2833 | /*int nnentu = ninbas; */ |
2834 | int lstart_minus_nnentu=lstart-ninbas; |
2835 | /* do initial column singletons - as can do faster */ |
2836 | for (jpivot = 1; jpivot <= nrow; ++jpivot) { |
2837 | if (hincol[jpivot] == 1) { |
2838 | ipivot = hrowi[mcstrt[jpivot]]; |
2839 | if (ipivot>lastSlack) { |
2840 | lastSlack=ipivot; |
2841 | } else { |
2842 | /* so we can't put a structural over a slack */ |
2843 | break; |
2844 | } |
2845 | kipis = mrstrt[ipivot]; |
2846 | #if 1 |
2847 | assert (hcoli[kipis]==jpivot); |
2848 | #else |
2849 | if (hcoli[kipis]!=jpivot) { |
2850 | kpivot=kipis+1; |
2851 | while(hcoli[kpivot]!=jpivot) kpivot++; |
2852 | #ifdef DEBUG |
2853 | kipie = kipis + hinrow[ipivot] ; |
2854 | if (kpivot>=kipie) { |
2855 | abort(); |
2856 | } |
2857 | #endif |
2858 | pivot=dluval[kpivot]; |
2859 | dluval[kpivot] = dluval[kipis]; |
2860 | dluval[kipis] = pivot; |
2861 | hcoli[kpivot] = hcoli[kipis]; |
2862 | hcoli[kipis] = jpivot; |
2863 | } |
2864 | #endif |
2865 | if (dluval[kipis]==SLACK_VALUE) { |
2866 | /* record the new pivot row and column */ |
2867 | ++fact->npivots; |
2868 | rlink[ipivot].pre = -fact->npivots; |
2869 | clink[jpivot].pre = -fact->npivots; |
2870 | hincol[jpivot]=0; |
2871 | fact->nuspike += hinrow[ipivot]; |
2872 | } else { |
2873 | break; |
2874 | } |
2875 | } else { |
2876 | break; |
2877 | } |
2878 | } |
2879 | /* Fill queue with other column singletons and clean up */ |
2880 | maxstk = 0; |
2881 | for (j = 1; j <= nrow; ++j) { |
2882 | if (hincol[j]) { |
2883 | int n=0; |
2884 | kcs = mcstrt[j]; |
2885 | kce = mcstrt[j + 1]; |
2886 | for (k = kcs; k < kce; ++k) { |
2887 | if (! (rlink[hrowi[k]].pre < 0)) { |
2888 | n++; |
2889 | } |
2890 | } |
2891 | hincol[j] = n; |
2892 | if (n == 1) { |
2893 | /* we just created a new singleton column - enqueue it */ |
2894 | ++maxstk; |
2895 | stack[maxstk] = j; |
2896 | } |
2897 | } |
2898 | } |
2899 | stackc = 0; /* (1) */ |
2900 | |
2901 | while (! (stackc >= maxstk)) { /* (1) */ |
2902 | /* dequeue the next entry */ |
2903 | ++stackc; |
2904 | jpivot = stack[stackc]; |
2905 | |
2906 | /* (15) */ |
2907 | if (hincol[jpivot] != 0) { |
2908 | |
2909 | for (k = mcstrt[jpivot]; rlink[hrowi[k]].pre < 0; k++) { |
2910 | /* (4) */ |
2911 | } |
2912 | ipivot = hrowi[k]; |
2913 | |
2914 | /* All the columns in this row are being shortened. */ |
2915 | kipis = mrstrt[ipivot]; |
2916 | kipie = kipis + hinrow[ipivot] ; |
2917 | for (k = kipis; k < kipie; ++k) { |
2918 | j = hcoli[k]; |
2919 | --hincol[j]; /* (3) (6) */ |
2920 | |
2921 | if (j == jpivot) { |
2922 | kpivot = k; /* (11) */ |
2923 | } else if (hincol[j] == 1) { |
2924 | /* we just created a new singleton column - enqueue it */ |
2925 | ++maxstk; |
2926 | stack[maxstk] = j; |
2927 | } |
2928 | } |
2929 | |
2930 | /* record the new pivot row and column */ |
2931 | ++fact->npivots; |
2932 | rlink[ipivot].pre = -fact->npivots; |
2933 | clink[jpivot].pre = -fact->npivots; |
2934 | |
2935 | fact->nuspike += hinrow[ipivot]; |
2936 | |
2937 | /* check the pivot */ |
2938 | assert (kpivot>0); |
2939 | pivot = dluval[kpivot]; |
2940 | if (fabs(pivot) < drtpiv) { |
2941 | irtcod = 7; |
2942 | ++(*nsingp); |
2943 | rlink[ipivot].pre = -nrow - 1; |
2944 | clink[jpivot].pre = -nrow - 1; |
2945 | } |
2946 | |
2947 | /* swap the pivot column entry with the first one. */ |
2948 | /* I don't know why. */ |
2949 | dluval[kpivot] = dluval[kipis]; |
2950 | dluval[kipis] = pivot; |
2951 | hcoli[kpivot] = hcoli[kipis]; |
2952 | hcoli[kipis] = jpivot; |
2953 | } |
2954 | } |
2955 | /* (8) */ |
2956 | |
2957 | /* The entire basis may already be triangular */ |
2958 | if (fact->npivots < nrow) { |
2959 | |
2960 | /* (9) */ |
2961 | kstart = 0; |
2962 | for (j = 1; j <= nrow; ++j) { |
2963 | if (! (clink[j].pre < 0)) { |
2964 | kcs = mcstrt[j]; |
2965 | kce = mcstrt[j + 1]; |
2966 | |
2967 | mcstrt[j] = kstart + 1; |
2968 | |
2969 | for (k = kcs; k < kce; ++k) { |
2970 | if (! (rlink[hrowi[k]].pre < 0)) { |
2971 | ++kstart; |
2972 | hrowi[kstart] = hrowi[k]; |
2973 | } |
2974 | } |
2975 | hincol[j] = kstart - mcstrt[j] + 1; |
2976 | } |
2977 | } |
2978 | xnewco = kstart; |
2979 | |
2980 | |
2981 | /* Fill stack with initial row singletons that haven't been pivoted away */ |
2982 | stackr = 0; |
2983 | for (i = 1; i <= nrow; ++i) { |
2984 | if (! (rlink[i].pre < 0) && |
2985 | (hinrow[i] == 1)) { |
2986 | ++stackr; |
2987 | stack[stackr] = i; |
2988 | } |
2989 | } |
2990 | |
2991 | while (! (stackr <= 0)) { |
2992 | ipivot = stack[stackr]; |
2993 | assert (ipivot); |
2994 | --stackr; |
2995 | |
2996 | #if 1 |
2997 | assert (rlink[ipivot].pre>=0); |
2998 | #else |
2999 | /* This test is probably unnecessary: rlink[i].pre < 0 ==> hinrow[i]==0 */ |
3000 | if (rlink[ipivot].pre < 0) { |
3001 | continue; |
3002 | } |
3003 | #endif |
3004 | |
3005 | /* (15) */ |
3006 | if (hinrow[ipivot] != 0) { |
3007 | |
3008 | /* This is a singleton row, which means it has exactly one column */ |
3009 | jpivot = hcoli[mrstrt[ipivot]]; |
3010 | |
3011 | kjpis = mcstrt[jpivot]; |
3012 | epivco = hincol[jpivot] - 1; |
3013 | hincol[jpivot] = 0; /* this column is being pivoted away */ |
3014 | |
3015 | /* (11) */ |
3016 | kjpie = kjpis + epivco; |
3017 | for (k = kjpis; k <= kjpie; ++k) { |
3018 | if (ipivot == hrowi[k]) |
3019 | break; |
3020 | } |
3021 | /* ASSERT (k <= kjpie) */ |
3022 | |
3023 | /* move the last row entry for the pivot column into the pivot row's entry */ |
3024 | /* I don't know why */ |
3025 | hrowi[k] = hrowi[kjpie]; |
3026 | |
3027 | /* invalidate the (old) last row entry of the pivot column */ |
3028 | /* I don't know why */ |
3029 | hrowi[kjpie] = 0; |
3030 | |
3031 | /* (12) */ |
3032 | if (! (xnewro + epivco < lstart)) { |
3033 | int kstart; |
3034 | |
3035 | if (! (epivco < lstart_minus_nnentu)) { |
3036 | irtcod = -5; |
3037 | break; |
3038 | } |
3039 | kstart = c_ekkrwco(fact,dluval, hcoli, mrstrt, hinrow, xnewro); |
3040 | ++ncompactions; |
3041 | kmxeta += (xnewro - kstart) << 1; |
3042 | xnewro = kstart; |
3043 | } |
3044 | if (! (xnewco + epivco < lstart)) { |
3045 | if (! (epivco < lstart_minus_nnentu)) { |
3046 | irtcod = -5; |
3047 | break; |
3048 | } |
3049 | xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); |
3050 | ++ncompactions; |
3051 | |
3052 | /* HINCOL MAY HAVE CHANGED ??? (JJHF) */ |
3053 | epivco = hincol[jpivot]; |
3054 | } |
3055 | |
3056 | /* record the new pivot row and column */ |
3057 | ++fact->npivots; |
3058 | rlink[ipivot].pre = -fact->npivots; |
3059 | clink[jpivot].pre = -fact->npivots; |
3060 | |
3061 | /* no update for nuspik */ |
3062 | |
3063 | /* check the pivot */ |
3064 | pivot = dluval[mrstrt[ipivot]]; |
3065 | if (fabs(pivot) < drtpiv) { |
3066 | /* If the pivot is too small, reject it, but keep going */ |
3067 | irtcod = 7; |
3068 | rlink[ipivot].pre = -nrow - 1; |
3069 | clink[jpivot].pre = -nrow - 1; |
3070 | } |
3071 | |
3072 | /* Perform numerical part of elimination. */ |
3073 | if (! (epivco <= 0)) { |
3074 | ++xnetal; |
3075 | mcstrt[xnetal] = lstart - 1; |
3076 | hpivco[xnetal] = ipivot; |
3077 | pivot = -1.f / pivot; |
3078 | |
3079 | kcs = mcstrt[jpivot]; |
3080 | kce = kcs + epivco - 1; |
3081 | hincol[jpivot] = 0; |
3082 | |
3083 | for (kc = kcs; kc <= kce; ++kc) { |
3084 | npr = hrowi[kc]; |
3085 | |
3086 | /* why bother? */ |
3087 | hrowi[kc] = 0; |
3088 | |
3089 | --hinrow[npr]; /* (3) */ |
3090 | if (hinrow[npr] == 1) { |
3091 | /* this may create new singleton rows */ |
3092 | ++stackr; |
3093 | stack[stackr] = npr; |
3094 | } |
3095 | |
3096 | /* (11) */ |
3097 | knprs = mrstrt[npr]; |
3098 | knpre = knprs + hinrow[npr]; |
3099 | for (k = knprs; k <= knpre; ++k) { |
3100 | if (jpivot == hcoli[k]) { |
3101 | kpivot = k; |
3102 | break; |
3103 | } |
3104 | } |
3105 | /* ASSERT (kpivot <= knpre) */ |
3106 | |
3107 | { |
3108 | /* (10) */ |
3109 | double elemnt = dluval[kpivot]; |
3110 | dluval[kpivot] = dluval[knpre]; |
3111 | hcoli[kpivot] = hcoli[knpre]; |
3112 | |
3113 | hcoli[knpre] = 0; /* (14) */ |
3114 | |
3115 | /* store elementary row transformation */ |
3116 | --lstart; |
3117 | dluval[lstart] = elemnt * pivot; |
3118 | hcoli[lstart] = npr; |
3119 | } |
3120 | } |
3121 | } |
3122 | } |
3123 | } |
3124 | } |
3125 | /* (8) */ |
3126 | |
3127 | *xnewcop = xnewco; |
3128 | *xnewrop = xnewro; |
3129 | fact->xnetal = xnetal; |
3130 | fact->nnentu = lstart - lstart_minus_nnentu; |
3131 | fact->kmxeta = kmxeta; |
3132 | *ncompactionsp = ncompactions; |
3133 | |
3134 | return (irtcod); |
3135 | } /* c_ekktria */ |
3136 | |