| 1 | /* $Id: CoinOslFactorization3.cpp 1448 2011-06-19 15:34:41Z stefan $ */ | 
| 2 | /* | 
| 3 |   Copyright (C) 1987, 2009, International Business Machines | 
| 4 |   Corporation and others.  All Rights Reserved. | 
| 5 |  | 
| 6 |   This code is licensed under the terms of the Eclipse Public License (EPL). | 
| 7 | */ | 
| 8 | #include "CoinOslFactorization.hpp" | 
| 9 | #include "CoinOslC.h" | 
| 10 | #include "CoinFinite.hpp" | 
| 11 | #define GO_DENSE 70 | 
| 12 | #define GO_DENSE_RATIO 1.8 | 
| 13 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, | 
| 14 | 	    int *mrstrt, int *hinrow, int xnewro); | 
| 15 |  | 
| 16 | void c_ekkclcp(const int *hcol, const double *dels, const int * mrstrt, | 
| 17 | 	     int *hrow, double *dels2, int *mcstrt, | 
| 18 | 	     int *hincol, int itype, int nnrow, int nncol, | 
| 19 | 	     int ninbas); | 
| 20 |  | 
| 21 | int c_ekkcmfc(EKKfactinfo *fact, | 
| 22 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 23 | 	    EKKHlink *mwork, void *maction_void, | 
| 24 | 	    int nnetas, | 
| 25 | 	    int *nsingp, int *xrejctp, | 
| 26 | 	    int *xnewrop, int xnewco, | 
| 27 | 	    int *ncompactionsp); | 
| 28 |  | 
| 29 | int c_ekkcmfy(EKKfactinfo *fact, | 
| 30 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 31 | 	    EKKHlink *mwork, void *maction_void, | 
| 32 | 	    int nnetas, | 
| 33 | 	    int *nsingp, int *xrejctp, | 
| 34 | 	    int *xnewrop, int xnewco, | 
| 35 | 	    int *ncompactionsp); | 
| 36 |  | 
| 37 | int c_ekkcmfd(EKKfactinfo *fact, | 
| 38 | 	    int *mcol, | 
| 39 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 40 | 	    int *maction, | 
| 41 | 	    int nnetas, | 
| 42 | 	    int *nnentlp, int *nnentup, | 
| 43 | 	    int *nsingp); | 
| 44 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, | 
| 45 | 	    int *hpivro, int *hpivco, | 
| 46 | 	    EKKHlink *rlink, EKKHlink *clink); | 
| 47 | void c_ekkrowq(int *hrow, int *hcol, double *dels, | 
| 48 | 	     int *mrstrt, | 
| 49 | 	     const int *hinrow, int nnrow, int ninbas); | 
| 50 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, int *hcoli, int * | 
| 51 | 	    mrstrt, int *hinrow, int xnewro); | 
| 52 |  | 
| 53 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, | 
| 54 | 	    const int *hinrow, const EKKHlink *mwork, | 
| 55 | 	    int nfirst); | 
| 56 |  | 
| 57 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, | 
| 58 | 	     const int *hinrow, const EKKHlink *mwork, | 
| 59 | 	     const EKKHlink *rlink, | 
| 60 | 	     const short *msort, double *dsort, | 
| 61 | 	     int nlast, int xnewro); | 
| 62 |  | 
| 63 | int c_ekkshff(EKKfactinfo *fact, | 
| 64 | 	    EKKHlink *clink, EKKHlink *rlink, | 
| 65 | 	    int xnewro); | 
| 66 |  | 
| 67 | void c_ekkshfv(EKKfactinfo *fact, EKKHlink *rlink, EKKHlink *clink, | 
| 68 | 	     int xnewro); | 
| 69 | int c_ekktria(EKKfactinfo *fact, | 
| 70 | 	      EKKHlink * rlink, | 
| 71 | 	      EKKHlink * clink, | 
| 72 | 	    int *nsingp, | 
| 73 | 	    int *xnewcop, int *xnewrop, | 
| 74 | 	    int *nlrowtp, | 
| 75 | 	    const int ninbas); | 
| 76 | #if 0 | 
| 77 | static void c_ekkafpv(int *hentry, int *hcoli, | 
| 78 | 	     double *dluval, int *mrstrt, | 
| 79 | 	     int *hinrow, int nentry) | 
| 80 | { | 
| 81 |   int j; | 
| 82 |   int nel, krs; | 
| 83 |   int koff; | 
| 84 |   int irow; | 
| 85 |   int ientry; | 
| 86 |   int * index; | 
| 87 |  | 
| 88 |   for (ientry = 0; ientry < nentry; ++ientry) { | 
| 89 | #ifdef INTEL | 
| 90 |     int * els_long,maxaij_long; | 
| 91 | #endif | 
| 92 |     double * els; | 
| 93 |     irow = UNSHIFT_INDEX(hentry[ientry]); | 
| 94 |     nel = hinrow[irow]; | 
| 95 |     krs = mrstrt[irow]; | 
| 96 |     index=&hcoli[krs]; | 
| 97 |     els=&dluval[krs]; | 
| 98 | #ifdef INTEL | 
| 99 |     els_long=reinterpret_cast<int *> (els); | 
| 100 |     maxaij_long=0; | 
| 101 | #else | 
| 102 |     double maxaij = 0.f; | 
| 103 | #endif | 
| 104 |     koff = 0; | 
| 105 |     j=0; | 
| 106 |     if ((nel&1)!=0) { | 
| 107 | #ifdef INTEL | 
| 108 |       maxaij_long = els_long[1] & 0x7fffffff; | 
| 109 | #else | 
| 110 |       maxaij=fabs(els[0]); | 
| 111 | #endif | 
| 112 |       j=1; | 
| 113 |     } | 
| 114 |  | 
| 115 |     while (j<nel) { | 
| 116 | #ifdef INTEL | 
| 117 |       UNROLL_LOOP_BODY2({ | 
| 118 | 	  int d_long = els_long[1+(j<<1)] & 0x7fffffff; | 
| 119 | 	  if (maxaij_long < d_long) { | 
| 120 | 	    maxaij_long = d_long; | 
| 121 | 	    koff=j; | 
| 122 | 	  } | 
| 123 | 	  j++; | 
| 124 | 	}); | 
| 125 | #else | 
| 126 |       UNROLL_LOOP_BODY2({ | 
| 127 | 	  double d = fabs(els[j]); | 
| 128 | 	  if (maxaij < d) { | 
| 129 | 	    maxaij = d; | 
| 130 | 	    koff=j; | 
| 131 | 	  } | 
| 132 | 	  j++; | 
| 133 | 	}); | 
| 134 | #endif | 
| 135 |     } | 
| 136 |  | 
| 137 |     SWAP(int, index[koff], index[0]); | 
| 138 |     SWAP(double, els[koff], els[0]); | 
| 139 |   } | 
| 140 | } /* c_ekkafpv */ | 
| 141 | #endif | 
| 142 |  | 
| 143 | /*     Uwe H. Suhl, March 1987 */ | 
| 144 | /*     This routine processes col singletons during the LU-factorization. */ | 
| 145 | /*     Return codes (checked version 1.11): */ | 
| 146 | /*	0: ok */ | 
| 147 | /*      6: pivot element too small */ | 
| 148 | /*     -43: system error at label 420 (ipivot not found) */ | 
| 149 | /* | 
| 150 |  * This routine processes singleton columns during factorization of the | 
| 151 |  * nucleus.  It is very similar to the first part of c_ekktria, | 
| 152 |  * but is more complex, because we now have to maintain the length | 
| 153 |  * lists. | 
| 154 |  * The differences are: | 
| 155 |  * (1) here we use the length list for length 1 rather than a queue. | 
| 156 |  * This routine is only called if it is known that there is a singleton | 
| 157 |  * column. | 
| 158 |  * | 
| 159 |  * (2) here we maintain hrowi by moving the last entry into the pivot | 
| 160 |  * column entry; that means we don't have to search for the pivot row | 
| 161 |  * entry like we do in c_ekktria. | 
| 162 |  * | 
| 163 |  * (3) here the hlink data structure is in use for the length lists, | 
| 164 |  * so we maintain it as we shorten rows and removing columns altogether. | 
| 165 |  * | 
| 166 |  */ | 
| 167 | int c_ekkcsin(EKKfactinfo *fact, | 
| 168 | 	      EKKHlink *rlink, EKKHlink *clink, | 
| 169 |  | 
| 170 | 	      int *nsingp) | 
| 171 | { | 
| 172 | #if 1 | 
| 173 |   int *hcoli	= fact->xecadr; | 
| 174 |   double *dluval	= fact->xeeadr; | 
| 175 |   //double *dvalpv = fact->kw3adr; | 
| 176 |   int *mrstrt	= fact->xrsadr; | 
| 177 |   int *hrowi	= fact->xeradr; | 
| 178 |   int *mcstrt	= fact->xcsadr; | 
| 179 |   int *hinrow	= fact->xrnadr; | 
| 180 |   int *hincol	= fact->xcnadr; | 
| 181 |   int *hpivro	= fact->krpadr; | 
| 182 |   int *hpivco	= fact->kcpadr; | 
| 183 | #endif | 
| 184 |   const int nrow	= fact->nrow; | 
| 185 |   const double drtpiv	= fact->drtpiv; | 
| 186 |  | 
| 187 |  | 
| 188 |   int j, k, kc, kce, kcs, nzj; | 
| 189 |   double pivot; | 
| 190 |   int kipis, kipie; | 
| 191 |   int jpivot; | 
| 192 | #ifndef NDEBUG | 
| 193 |   int kpivot=-1; | 
| 194 | #else | 
| 195 |   int kpivot=-1; | 
| 196 | #endif | 
| 197 |  | 
| 198 |   bool small_pivot = false; | 
| 199 |  | 
| 200 |  | 
| 201 |   /* next singleton column. | 
| 202 |    * Note that when the pivot column itself was removed from the | 
| 203 |    * list, the column in the list after it (if any) moves to the | 
| 204 |    * head of the list. | 
| 205 |    * Also, if any column from the pivot row was reduced to length 1, | 
| 206 |    * then it will have been added to the list and now be in front. | 
| 207 |    */ | 
| 208 |   for (jpivot = hpivco[1]; jpivot > 0; jpivot = hpivco[1]) { | 
| 209 |     const int ipivot = hrowi[mcstrt[jpivot]]; /* (2) */ | 
| 210 |     assert(ipivot); | 
| 211 |     /* The pivot row is being eliminated (3) */ | 
| 212 |     C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, ipivot); | 
| 213 |  | 
| 214 |     /* Loop over nonzeros in pivot row: */ | 
| 215 |     kipis = mrstrt[ipivot]; | 
| 216 |     kipie = kipis + hinrow[ipivot] - 1; | 
| 217 |     for (k = kipis; k <= kipie; ++k) { | 
| 218 |       j = hcoli[k]; | 
| 219 |  | 
| 220 |       /* | 
| 221 |        * We're eliminating column jpivot, | 
| 222 |        * so we're eliminating the row it occurs in, | 
| 223 |        * so every column in this row is becoming one shorter. | 
| 224 |        * | 
| 225 |        * I don't know why we don't do the same for rejected columns. | 
| 226 |        * | 
| 227 |        * if xrejct is false, then no column has ever been rejected | 
| 228 |        * and this test wouldn't have to be made. | 
| 229 |        * However, that means this whole loop would have to be copied. | 
| 230 |        */ | 
| 231 |       if (! (clink[j].pre > nrow)) { | 
| 232 | 	C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); /* (3) */ | 
| 233 |       } | 
| 234 |       --hincol[j]; | 
| 235 |  | 
| 236 |       kcs = mcstrt[j]; | 
| 237 |       kce = kcs + hincol[j]; | 
| 238 |       for (kc = kcs; kc <= kce; ++kc) { | 
| 239 | 	if (ipivot == hrowi[kc]) { | 
| 240 | 	  break; | 
| 241 | 	} | 
| 242 |       } | 
| 243 |       /* ASSERT !(kc>kce) */ | 
| 244 |  | 
| 245 |       /* (2) */ | 
| 246 |       hrowi[kc] = hrowi[kce]; | 
| 247 |       hrowi[kce] = 0; | 
| 248 |  | 
| 249 |       if (j == jpivot) { | 
| 250 | 	/* remember the slot corresponding to the pivot column */ | 
| 251 | 	kpivot = k; | 
| 252 |       } | 
| 253 |       else { | 
| 254 | 	/* | 
| 255 | 	 * We just reduced the length of the column. | 
| 256 | 	 * If we haven't eliminated all of its elements completely, | 
| 257 | 	 * then we have to put it back in its new length list. | 
| 258 | 	 * | 
| 259 | 	 * If the column was rejected, we only put it back in a length | 
| 260 | 	 * list when it has been reduced to a singleton column, | 
| 261 | 	 * because it would just be rejected again. | 
| 262 | 	 */ | 
| 263 | 	nzj = hincol[j]; | 
| 264 | 	if (! (nzj <= 0) && | 
| 265 | 	    ! (clink[j].pre > nrow && nzj != 1)) { | 
| 266 | 	  C_EKK_ADD_LINK(hpivco, nzj, clink, j); /* (3) */ | 
| 267 | 	} | 
| 268 |       } | 
| 269 |     } | 
| 270 |     assert (kpivot>0); | 
| 271 |  | 
| 272 |     /* store pivot sequence number */ | 
| 273 |     ++fact->npivots; | 
| 274 |     rlink[ipivot].pre = -fact->npivots; | 
| 275 |     clink[jpivot].pre = -fact->npivots; | 
| 276 |  | 
| 277 |     /* compute how much room we'll need later */ | 
| 278 |     fact->nuspike += hinrow[ipivot]; | 
| 279 |  | 
| 280 |     /* check the pivot */ | 
| 281 |     pivot = dluval[kpivot]; | 
| 282 |     if (fabs(pivot) < drtpiv) { | 
| 283 |       /* pivot element too small */ | 
| 284 |       small_pivot = true; | 
| 285 |       rlink[ipivot].pre = -nrow - 1; | 
| 286 |       clink[jpivot].pre = -nrow - 1; | 
| 287 |       ++(*nsingp); | 
| 288 |     } | 
| 289 |  | 
| 290 |     /* swap the pivoted column entry with the first entry in the row */ | 
| 291 |     dluval[kpivot] = dluval[kipis]; | 
| 292 |     dluval[kipis] = pivot; | 
| 293 |     hcoli[kpivot] = hcoli[kipis]; | 
| 294 |     hcoli[kipis] = jpivot; | 
| 295 |   } | 
| 296 |  | 
| 297 |   return (small_pivot); | 
| 298 | } /* c_ekkcsin */ | 
| 299 |  | 
| 300 |  | 
| 301 | /*     Uwe H. Suhl, March 1987 */ | 
| 302 | /*     This routine processes row singletons during the computation of */ | 
| 303 | /*     an LU-decomposition for the nucleus. */ | 
| 304 | /*     Return codes (checked version 1.16): */ | 
| 305 | /*      -5: not enough space in row file */ | 
| 306 | /*      -6: not enough space in column file */ | 
| 307 | /*      7: pivot element too small */ | 
| 308 | /*     -52: system error at label 220 (ipivot not found) */ | 
| 309 | /*     -53: system error at label 400 (jpivot not found) */ | 
| 310 | int c_ekkrsin(EKKfactinfo *fact, | 
| 311 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 312 | 	    EKKHlink *mwork, int nfirst, | 
| 313 | 	    int *nsingp, | 
| 314 | 	    int *xnewcop, int *xnewrop, | 
| 315 | 	    int *nnentup, | 
| 316 | 	    int *kmxetap, int *ncompactionsp, | 
| 317 | 	    int *nnentlp) | 
| 318 |  | 
| 319 | { | 
| 320 | #if 1 | 
| 321 |   int *hcoli	= fact->xecadr; | 
| 322 |   double *dluval	= fact->xeeadr; | 
| 323 |   //double *dvalpv = fact->kw3adr; | 
| 324 |   int *mrstrt	= fact->xrsadr; | 
| 325 |   int *hrowi	= fact->xeradr; | 
| 326 |   int *mcstrt	= fact->xcsadr; | 
| 327 |   int *hinrow	= fact->xrnadr; | 
| 328 |   int *hincol	= fact->xcnadr; | 
| 329 |   int *hpivro	= fact->krpadr; | 
| 330 |   int *hpivco	= fact->kcpadr; | 
| 331 | #endif | 
| 332 |   const int nrow	= fact->nrow; | 
| 333 |   const double drtpiv	= fact->drtpiv; | 
| 334 |  | 
| 335 |   int xnewro	= *xnewrop; | 
| 336 |   int xnewco	= *xnewcop; | 
| 337 |   int kmxeta	= *kmxetap; | 
| 338 |   int nnentu	= *nnentup; | 
| 339 |   int ncompactions	= *ncompactionsp; | 
| 340 |   int nnentl	= *nnentlp; | 
| 341 |  | 
| 342 |   int i, j, k, kc, kr, npr, nzi; | 
| 343 |   double pivot; | 
| 344 |   int kjpis, kjpie, knprs, knpre; | 
| 345 |   double elemnt, maxaij; | 
| 346 |   int ipivot, epivco, lstart; | 
| 347 | #ifndef NDEBUG | 
| 348 |   int kpivot=-1; | 
| 349 | #else | 
| 350 |   int kpivot=-1; | 
| 351 | #endif | 
| 352 |   int irtcod = 0; | 
| 353 |   const int nnetas	= fact->nnetas; | 
| 354 |  | 
| 355 |   lstart = nnetas - nnentl + 1; | 
| 356 |  | 
| 357 |  | 
| 358 |   for (ipivot = hpivro[1]; ipivot > 0; ipivot = hpivro[1]) { | 
| 359 |     const int jpivot = hcoli[mrstrt[ipivot]]; | 
| 360 |  | 
| 361 |     kjpis = mcstrt[jpivot]; | 
| 362 |     kjpie = kjpis + hincol[jpivot] ; | 
| 363 |     for (k = kjpis; k < kjpie; ++k) { | 
| 364 |       i = hrowi[k]; | 
| 365 |  | 
| 366 |       /* | 
| 367 |        * We're eliminating row ipivot, | 
| 368 |        * so we're eliminating the column it occurs in, | 
| 369 |        * so every row in this column is becoming one shorter. | 
| 370 |        * | 
| 371 |        * No exception is made for rejected rows. | 
| 372 |        */ | 
| 373 |       C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); | 
| 374 |     } | 
| 375 |  | 
| 376 |     /* The pivot column is being eliminated */ | 
| 377 |     /* I don't know why there is an exception for rejected columns */ | 
| 378 |     if (! (clink[jpivot].pre > nrow)) { | 
| 379 |       C_EKK_REMOVE_LINK(hpivco, hincol, clink, jpivot); | 
| 380 |     } | 
| 381 |  | 
| 382 |     epivco = hincol[jpivot] - 1; | 
| 383 |     kjpie = kjpis + epivco; | 
| 384 |     for (kc = kjpis; kc <= kjpie; ++kc) { | 
| 385 |       if (ipivot == hrowi[kc]) { | 
| 386 | 	break; | 
| 387 |       } | 
| 388 |     } | 
| 389 |     /* ASSERT !(kc>kjpie) */ | 
| 390 |  | 
| 391 |     /* move the last column entry into this deleted one to keep */ | 
| 392 |     /* the entries compact */ | 
| 393 |     hrowi[kc] = hrowi[kjpie]; | 
| 394 |  | 
| 395 |     hrowi[kjpie] = 0; | 
| 396 |  | 
| 397 |     /* store pivot sequence number */ | 
| 398 |     ++fact->npivots; | 
| 399 |     rlink[ipivot].pre = -fact->npivots; | 
| 400 |     clink[jpivot].pre = -fact->npivots; | 
| 401 |  | 
| 402 |     /* Check if row or column files have to be compressed */ | 
| 403 |     if (! (xnewro + epivco < lstart)) { | 
| 404 |       if (! (nnentu + epivco < lstart)) { | 
| 405 | 	return (-5); | 
| 406 |       } | 
| 407 |       { | 
| 408 | 	int iput = c_ekkrwcs(fact,dluval, hcoli, mrstrt, hinrow, mwork, nfirst); | 
| 409 | 	kmxeta += xnewro - iput ; | 
| 410 | 	xnewro = iput - 1; | 
| 411 | 	++ncompactions; | 
| 412 |       } | 
| 413 |     } | 
| 414 |     if (! (xnewco + epivco < lstart)) { | 
| 415 |       if (! (nnentu + epivco < lstart)) { | 
| 416 | 	return (-5); | 
| 417 |       } | 
| 418 |       xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); | 
| 419 |       ++ncompactions; | 
| 420 |     } | 
| 421 |  | 
| 422 |     /* This column has no more entries in it */ | 
| 423 |     hincol[jpivot] = 0; | 
| 424 |  | 
| 425 |     /* Perform numerical part of elimination. */ | 
| 426 |     pivot = dluval[mrstrt[ipivot]]; | 
| 427 |     if (fabs(pivot) < drtpiv) { | 
| 428 |       irtcod = 7; | 
| 429 |       rlink[ipivot].pre = -nrow - 1; | 
| 430 |       clink[jpivot].pre = -nrow - 1; | 
| 431 |       ++(*nsingp); | 
| 432 |     } | 
| 433 |  | 
| 434 |     /* If epivco is 0, then we can treat this like a singleton column (?)*/ | 
| 435 |     if (! (epivco <= 0)) { | 
| 436 |       ++fact->xnetal; | 
| 437 |       mcstrt[fact->xnetal] = lstart - 1; | 
| 438 |       hpivco[fact->xnetal] = ipivot; | 
| 439 |  | 
| 440 |       /* Loop over nonzeros in pivot column. */ | 
| 441 |       kjpis = mcstrt[jpivot]; | 
| 442 |       kjpie = kjpis + epivco ; | 
| 443 |       nnentl+=epivco; | 
| 444 |       nnentu-=epivco; | 
| 445 |       for (kc = kjpis; kc < kjpie; ++kc) { | 
| 446 | 	npr = hrowi[kc]; | 
| 447 | 	/* zero out the row entries as we go along */ | 
| 448 | 	hrowi[kc] = 0; | 
| 449 |  | 
| 450 | 	/* each row in the column is getting shorter */ | 
| 451 | 	--hinrow[npr]; | 
| 452 |  | 
| 453 | 	/* find the entry in this row for the pivot column */ | 
| 454 | 	knprs = mrstrt[npr]; | 
| 455 | 	knpre = knprs + hinrow[npr]; | 
| 456 | 	for (kr = knprs; kr <= knpre; ++kr) { | 
| 457 | 	  if (jpivot == hcoli[kr]) | 
| 458 | 	    break; | 
| 459 | 	} | 
| 460 | 	/* ASSERT !(kr>knpre) */ | 
| 461 |  | 
| 462 | 	elemnt = dluval[kr]; | 
| 463 | 	/* move the last pivot column entry into this one */ | 
| 464 | 	/* to keep entries compact */ | 
| 465 | 	dluval[kr] = dluval[knpre]; | 
| 466 | 	hcoli[kr] = hcoli[knpre]; | 
| 467 |  | 
| 468 | 	/* | 
| 469 | 	 * c_ekkmltf put the largest entries in front, and | 
| 470 | 	 * we want to maintain that property. | 
| 471 | 	 * There is only a problem if we just pivoted out the first | 
| 472 | 	 * entry, and there is more than one entry in the list. | 
| 473 | 	 */ | 
| 474 | 	if (! (kr != knprs || hinrow[npr] <= 1)) { | 
| 475 | 	  maxaij = 0.f; | 
| 476 | 	  for (k = knprs; k <= knpre; ++k) { | 
| 477 | 	    if (! (fabs(dluval[k]) <= maxaij)) { | 
| 478 | 	      maxaij = fabs(dluval[k]); | 
| 479 | 	      kpivot = k; | 
| 480 | 	    } | 
| 481 | 	  } | 
| 482 | 	  assert (kpivot>0); | 
| 483 | 	  maxaij = dluval[kpivot]; | 
| 484 | 	  dluval[kpivot] = dluval[knprs]; | 
| 485 | 	  dluval[knprs] = maxaij; | 
| 486 |  | 
| 487 | 	  j = hcoli[kpivot]; | 
| 488 | 	  hcoli[kpivot] = hcoli[knprs]; | 
| 489 | 	  hcoli[knprs] = j; | 
| 490 | 	} | 
| 491 |  | 
| 492 | 	/* store elementary row transformation */ | 
| 493 | 	--lstart; | 
| 494 | 	dluval[lstart] = -elemnt / pivot; | 
| 495 | 	hrowi[lstart] = SHIFT_INDEX(npr); | 
| 496 |  | 
| 497 | 	/* Only add the row back in a length list if it isn't empty */ | 
| 498 | 	nzi = hinrow[npr]; | 
| 499 | 	if (! (nzi <= 0)) { | 
| 500 | 	  C_EKK_ADD_LINK(hpivro, nzi, rlink, npr); | 
| 501 | 	} | 
| 502 |       } | 
| 503 |       ++fact->nuspike; | 
| 504 |     } | 
| 505 |   } | 
| 506 |  | 
| 507 |   *xnewrop = xnewro; | 
| 508 |   *xnewcop = xnewco; | 
| 509 |   *kmxetap = kmxeta; | 
| 510 |   *nnentup = nnentu; | 
| 511 |   *ncompactionsp = ncompactions; | 
| 512 |   *nnentlp = nnentl; | 
| 513 |  | 
| 514 |   return (irtcod); | 
| 515 | } /* c_ekkrsin */ | 
| 516 |  | 
| 517 |  | 
| 518 | int c_ekkfpvt(const EKKfactinfo *fact, | 
| 519 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 520 | 	    int *nsingp, int *xrejctp, | 
| 521 | 	    int *xipivtp, int *xjpivtp) | 
| 522 | { | 
| 523 |   double zpivlu = fact->zpivlu; | 
| 524 | #if 1 | 
| 525 |   int *hcoli	= fact->xecadr; | 
| 526 |   double *dluval	= fact->xeeadr; | 
| 527 |   //double *dvalpv = fact->kw3adr; | 
| 528 |   int *mrstrt	= fact->xrsadr; | 
| 529 |   int *hrowi	= fact->xeradr; | 
| 530 |   int *mcstrt	= fact->xcsadr; | 
| 531 |   int *hinrow	= fact->xrnadr; | 
| 532 |   int *hincol	= fact->xcnadr; | 
| 533 |   int *hpivro	= fact->krpadr; | 
| 534 |   int *hpivco	= fact->kcpadr; | 
| 535 | #endif | 
| 536 |   int i, j, k, ke, kk, ks, nz, nz1, kce, kcs, kre, krs; | 
| 537 |   double minsze; | 
| 538 |   int marcst, mincst, mincnt, trials, nentri; | 
| 539 |   int jpivot=-1; | 
| 540 |   bool rjectd; | 
| 541 |   int ipivot; | 
| 542 |   const int nrow	= fact->nrow; | 
| 543 |   int irtcod = 0; | 
| 544 |  | 
| 545 |   /* this used to be initialized in c_ekklfct */ | 
| 546 |   const int xtrial = 1; | 
| 547 |  | 
| 548 |   trials = 0; | 
| 549 |   ipivot = 0; | 
| 550 |   mincst = COIN_INT_MAX; | 
| 551 |   mincnt = COIN_INT_MAX; | 
| 552 |   for (nz = 2; nz <= nrow; ++nz) { | 
| 553 |     nz1 = nz - 1; | 
| 554 |     if (mincnt <= nz) { | 
| 555 |       goto L900; | 
| 556 |     } | 
| 557 |  | 
| 558 |     /* Search rows for a pivot */ | 
| 559 |     for (i = hpivro[nz]; ! (i <= 0); i = rlink[i].suc) { | 
| 560 |  | 
| 561 |       ks = mrstrt[i]; | 
| 562 |       ke = ks + nz - 1; | 
| 563 |       /* Determine magnitude of minimal acceptable element */ | 
| 564 |       minsze = fabs(dluval[ks]) * zpivlu; | 
| 565 |       for (k = ks; k <= ke; ++k) { | 
| 566 | 	/* Consider a column only if it passes the stability test */ | 
| 567 | 	if (! (fabs(dluval[k]) < minsze)) { | 
| 568 | 	  j = hcoli[k]; | 
| 569 | 	  marcst = nz1 * hincol[j]; | 
| 570 | 	  if (! (marcst >= mincst)) { | 
| 571 | 	    mincst = marcst; | 
| 572 | 	    mincnt = hincol[j]; | 
| 573 | 	    ipivot = i; | 
| 574 | 	    jpivot = j; | 
| 575 | 	    if (mincnt <= nz + 1) { | 
| 576 | 	      goto L900; | 
| 577 | 	    } | 
| 578 | 	  } | 
| 579 | 	} | 
| 580 |       } | 
| 581 |       ++trials; | 
| 582 |  | 
| 583 |       if (trials >= xtrial) { | 
| 584 | 	goto L900; | 
| 585 |       } | 
| 586 |     } | 
| 587 |  | 
| 588 |     /* Search columns for a pivot */ | 
| 589 |     j = hpivco[nz]; | 
| 590 |     while (! (j <= 0)) { | 
| 591 |       /* XSEARD = XSEARD + 1 */ | 
| 592 |       rjectd = false; | 
| 593 |       kcs = mcstrt[j]; | 
| 594 |       kce = kcs + nz - 1; | 
| 595 |       for (k = kcs; k <= kce; ++k) { | 
| 596 | 	i = hrowi[k]; | 
| 597 | 	nentri = hinrow[i]; | 
| 598 | 	marcst = nz1 * nentri; | 
| 599 | 	if (! (marcst >= mincst)) { | 
| 600 | 	  /* Determine magnitude of minimal acceptable element */ | 
| 601 | 	  minsze = fabs(dluval[mrstrt[i]]) * zpivlu; | 
| 602 | 	  krs = mrstrt[i]; | 
| 603 | 	  kre = krs + nentri - 1; | 
| 604 | 	  for (kk = krs; kk <= kre; ++kk) { | 
| 605 | 	    if (hcoli[kk] == j) | 
| 606 | 	      break; | 
| 607 | 	  } | 
| 608 | 	  /* ASSERT (kk <= kre) */ | 
| 609 |  | 
| 610 | 	  /* perform stability test */ | 
| 611 | 	  if (! (fabs(dluval[kk]) < minsze)) { | 
| 612 | 	    mincst = marcst; | 
| 613 | 	    mincnt = nentri; | 
| 614 | 	    ipivot = i; | 
| 615 | 	    jpivot = j; | 
| 616 | 	    rjectd = false; | 
| 617 | 	    if (mincnt <= nz) { | 
| 618 | 	      goto L900; | 
| 619 | 	    } | 
| 620 | 	  } | 
| 621 | 	  else { | 
| 622 | 	    if (ipivot == 0) { | 
| 623 | 	      rjectd = true; | 
| 624 | 	    } | 
| 625 | 	  } | 
| 626 | 	} | 
| 627 |       } | 
| 628 |       ++trials; | 
| 629 |       if (trials >= xtrial && ipivot > 0) { | 
| 630 | 	goto L900; | 
| 631 |       } | 
| 632 |       if (rjectd) { | 
| 633 | 	int jsuc = clink[j].suc; | 
| 634 | 	++(*xrejctp); | 
| 635 | 	C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); | 
| 636 | 	clink[j].pre = nrow + 1; | 
| 637 | 	j = jsuc; | 
| 638 |       } | 
| 639 |       else { | 
| 640 | 	j = clink[j].suc; | 
| 641 |       } | 
| 642 |     } | 
| 643 |   } | 
| 644 |  | 
| 645 |   /* FLAG REJECTED ROWS (should this be columns ?) */ | 
| 646 |   for (j = 1; j <= nrow; ++j) { | 
| 647 |     if (hinrow[j] == 0) { | 
| 648 |       rlink[j].pre = -nrow - 1; | 
| 649 |       ++(*nsingp); | 
| 650 |     } | 
| 651 |   } | 
| 652 |   irtcod = 10; | 
| 653 |  | 
| 654 |  L900: | 
| 655 |   *xipivtp = ipivot; | 
| 656 |   *xjpivtp = jpivot; | 
| 657 |   return (irtcod); | 
| 658 | } /* c_ekkfpvt */ | 
| 659 | void c_ekkprpv(EKKfactinfo *fact, | 
| 660 | 	     EKKHlink *rlink, EKKHlink *clink, | 
| 661 |  | 
| 662 | 	     int xrejct, | 
| 663 | 	     int ipivot, int jpivot) | 
| 664 | { | 
| 665 | #if 1 | 
| 666 |   int *hcoli	= fact->xecadr; | 
| 667 |   double *dluval	= fact->xeeadr; | 
| 668 |   //double *dvalpv = fact->kw3adr; | 
| 669 |   int *mrstrt	= fact->xrsadr; | 
| 670 |   int *hrowi	= fact->xeradr; | 
| 671 |   int *mcstrt	= fact->xcsadr; | 
| 672 |   int *hinrow	= fact->xrnadr; | 
| 673 |   int *hincol	= fact->xcnadr; | 
| 674 |   int *hpivro	= fact->krpadr; | 
| 675 |   int *hpivco	= fact->kcpadr; | 
| 676 | #endif | 
| 677 |   int i, k; | 
| 678 |   int kc; | 
| 679 |   double pivot; | 
| 680 |   int kipis = mrstrt[ipivot]; | 
| 681 |   int kipie = kipis + hinrow[ipivot] - 1; | 
| 682 |  | 
| 683 | #ifndef NDEBUG | 
| 684 |   int kpivot=-1; | 
| 685 | #else | 
| 686 |   int kpivot=-1; | 
| 687 | #endif | 
| 688 |   const int nrow	= fact->nrow; | 
| 689 |  | 
| 690 |   /*     Update data structures */ | 
| 691 |   { | 
| 692 |     int kjpis = mcstrt[jpivot]; | 
| 693 |     int kjpie = kjpis + hincol[jpivot] ; | 
| 694 |     for (k = kjpis; k < kjpie; ++k) { | 
| 695 |       i = hrowi[k]; | 
| 696 |       C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); | 
| 697 |     } | 
| 698 |   } | 
| 699 |  | 
| 700 |   for (k = kipis; k <= kipie; ++k) { | 
| 701 |     int j = hcoli[k]; | 
| 702 |  | 
| 703 |     if ((xrejct == 0) || | 
| 704 | 	! (clink[j].pre > nrow)) { | 
| 705 |       C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); | 
| 706 |     } | 
| 707 |  | 
| 708 |     --hincol[j]; | 
| 709 |     int kcs = mcstrt[j]; | 
| 710 |     int kce = kcs + hincol[j]; | 
| 711 |  | 
| 712 |     for (kc = kcs; kc < kce ; kc ++) { | 
| 713 |       if (hrowi[kc] == ipivot) | 
| 714 | 	break; | 
| 715 |     } | 
| 716 |     assert (kc<kce||hrowi[kce]==ipivot); | 
| 717 |     hrowi[kc] = hrowi[kce]; | 
| 718 |     hrowi[kce] = 0; | 
| 719 |     if (j == jpivot) { | 
| 720 |       kpivot = k; | 
| 721 |     } | 
| 722 |   } | 
| 723 |   assert (kpivot>0); | 
| 724 |  | 
| 725 |   /* Store the pivot sequence number */ | 
| 726 |   ++fact->npivots; | 
| 727 |   rlink[ipivot].pre = -fact->npivots; | 
| 728 |   clink[jpivot].pre = -fact->npivots; | 
| 729 |  | 
| 730 |   pivot = dluval[kpivot]; | 
| 731 |   dluval[kpivot] = dluval[kipis]; | 
| 732 |   dluval[kipis] = pivot; | 
| 733 |   hcoli[kpivot] = hcoli[kipis]; | 
| 734 |   hcoli[kipis] = jpivot; | 
| 735 |  | 
| 736 | } /* c_ekkprpv */ | 
| 737 |  | 
| 738 | /* | 
| 739 |  * c_ekkclco is almost exactly like c_ekkrwco. | 
| 740 |  */ | 
| 741 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, int *mrstrt, int *hinrow, int xnewro) | 
| 742 | { | 
| 743 | #if 0 | 
| 744 |   int *hcoli	= fact->xecadr; | 
| 745 |   double *dluval	= fact->xeeadr; | 
| 746 |   double *dvalpv = fact->kw3adr; | 
| 747 |   int *mrstrt	= fact->xrsadr; | 
| 748 |   int *hrowi	= fact->xeradr; | 
| 749 |   int *mcstrt	= fact->xcsadr; | 
| 750 |   int *hinrow	= fact->xrnadr; | 
| 751 |   int *hincol	= fact->xcnadr; | 
| 752 |   int *hpivro	= fact->krpadr; | 
| 753 |   int *hpivco	= fact->kcpadr; | 
| 754 | #endif | 
| 755 |   int i, k, nz, kold; | 
| 756 |   int kstart; | 
| 757 |   const int nrow	= fact->nrow; | 
| 758 |  | 
| 759 |   for (i = 1; i <= nrow; ++i) { | 
| 760 |     nz = hinrow[i]; | 
| 761 |     if (0 < nz) { | 
| 762 |       /* save the last column entry of row i in hinrow */ | 
| 763 |       /* and replace that entry with -i */ | 
| 764 |       k = mrstrt[i] + nz - 1; | 
| 765 |       hinrow[i] = hcoli[k]; | 
| 766 |       hcoli[k] = -i; | 
| 767 |     } | 
| 768 |   } | 
| 769 |  | 
| 770 |   kstart = 0; | 
| 771 |   kold = 0; | 
| 772 |   for (k = 1; k <= xnewro; ++k) { | 
| 773 |     if (hcoli[k] != 0) { | 
| 774 |       ++kstart; | 
| 775 |  | 
| 776 |       /* if this is the last entry for the row... */ | 
| 777 |       if (hcoli[k] < 0) { | 
| 778 | 	/* restore the entry */ | 
| 779 | 	i = -hcoli[k]; | 
| 780 | 	hcoli[k] = hinrow[i]; | 
| 781 |  | 
| 782 | 	/* update mrstart and hinrow */ | 
| 783 | 	mrstrt[i] = kold + 1; | 
| 784 | 	hinrow[i] = kstart - kold; | 
| 785 | 	kold = kstart; | 
| 786 |       } | 
| 787 |  | 
| 788 |       hcoli[kstart] = hcoli[k]; | 
| 789 |     } | 
| 790 |   } | 
| 791 |  | 
| 792 |   /* INSERTED INCASE CALLED FROM YTRIAN JJHF */ | 
| 793 |   mrstrt[nrow + 1] = kstart + 1; | 
| 794 |  | 
| 795 |   return (kstart); | 
| 796 | } /* c_ekkclco */ | 
| 797 |  | 
| 798 |  | 
| 799 |  | 
| 800 | #undef MACTION_T | 
| 801 | #define COIN_OSL_CMFC | 
| 802 | #define MACTION_T short int | 
| 803 | int c_ekkcmfc(EKKfactinfo *fact, | 
| 804 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 805 | 	    EKKHlink *mwork, void *maction_void, | 
| 806 | 	    int nnetas, | 
| 807 | 	    int *nsingp, int *xrejctp, | 
| 808 | 	    int *xnewrop, int xnewco, | 
| 809 | 	    int *ncompactionsp) | 
| 810 |  | 
| 811 | #include "CoinOslC.h" | 
| 812 | #undef COIN_OSL_CMFC | 
| 813 | #undef MACTION_T | 
| 814 |   static int c_ekkidmx(int n, const double *dx) | 
| 815 | { | 
| 816 |   int ret_val; | 
| 817 |   int i; | 
| 818 |   double dmax; | 
| 819 |   --dx; | 
| 820 |  | 
| 821 |   /* Function Body */ | 
| 822 |  | 
| 823 |   if (n < 1) { | 
| 824 |     return (0); | 
| 825 |   } | 
| 826 |  | 
| 827 |   if (n == 1) { | 
| 828 |     return (1); | 
| 829 |   } | 
| 830 |  | 
| 831 |   ret_val = 1; | 
| 832 |   dmax = fabs(dx[1]); | 
| 833 |   for (i = 2; i <= n; ++i) { | 
| 834 |     if (fabs(dx[i]) > dmax) { | 
| 835 |       ret_val = i; | 
| 836 |       dmax = fabs(dx[i]); | 
| 837 |     } | 
| 838 |   } | 
| 839 |  | 
| 840 |   return ret_val; | 
| 841 | } /* c_ekkidmx */ | 
| 842 | /*     Return codes in IRTCOD/IRTCOD are */ | 
| 843 | /*     4: numerical problems */ | 
| 844 | /*     5: not enough space in row file */ | 
| 845 | /*     6: not enough space in column file */ | 
| 846 | int c_ekkcmfd(EKKfactinfo *fact, | 
| 847 | 	    int *mcol, | 
| 848 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 849 | 	    int *maction, | 
| 850 | 	    int nnetas, | 
| 851 | 	    int *nnentlp, int *nnentup, | 
| 852 | 	    int *nsingp) | 
| 853 | { | 
| 854 |   int *hcoli	= fact->xecadr; | 
| 855 |   double *dluval	= fact->xeeadr; | 
| 856 |   int *mrstrt	= fact->xrsadr; | 
| 857 |   int *hrowi	= fact->xeradr; | 
| 858 |   int *mcstrt	= fact->xcsadr; | 
| 859 |   int *hinrow	= fact->xrnadr; | 
| 860 |   int *hincol	= fact->xcnadr; | 
| 861 |   int *hpivro	= fact->krpadr; | 
| 862 |   int *hpivco	= fact->kcpadr; | 
| 863 |   int nnentl	= *nnentlp; | 
| 864 |   int nnentu	= *nnentup; | 
| 865 |   int storeZero = fact->ndenuc; | 
| 866 |  | 
| 867 |   int mkrs[8]; | 
| 868 |   double dpivyy[8]; | 
| 869 |  | 
| 870 |   /* Local variables */ | 
| 871 |   int i, j; | 
| 872 |   double d0, dx; | 
| 873 |   int nz, ndo, krs; | 
| 874 |   int kend, jcol; | 
| 875 |   int irow, iput, jrow, krxs; | 
| 876 |   int mjcol[8]; | 
| 877 |   double pivot; | 
| 878 |   int count; | 
| 879 |   int ilast, isort; | 
| 880 |   double dpivx, dsave; | 
| 881 |   double dpivxx[8]; | 
| 882 |   double multip; | 
| 883 |   int lstart, ndense, krlast, ifirst, krfirst, kcount, idense, ipivot, | 
| 884 |     jdense, kchunk, jpivot; | 
| 885 |  | 
| 886 |   const int nrow	= fact->nrow; | 
| 887 |  | 
| 888 |   int irtcod = 0; | 
| 889 |  | 
| 890 |   lstart = nnetas - nnentl + 1; | 
| 891 |  | 
| 892 |   /* put list of columns in last HROWI */ | 
| 893 |   /* fix row order once for all */ | 
| 894 |   ndense = nrow - fact->npivots; | 
| 895 |   iput = ndense + 1; | 
| 896 |   for (i = 1; i <= nrow; ++i) { | 
| 897 |     if (hpivro[i] > 0) { | 
| 898 |       irow = hpivro[i]; | 
| 899 |       for (j = 1; j <= nrow; ++j) { | 
| 900 | 	--iput; | 
| 901 | 	maction[iput] = irow; | 
| 902 | 	irow = rlink[irow].suc; | 
| 903 | 	if (irow == 0) { | 
| 904 | 	  break; | 
| 905 | 	} | 
| 906 |       } | 
| 907 |     } | 
| 908 |   } | 
| 909 |   if (iput != 1) { | 
| 910 |     ++(*nsingp); | 
| 911 |   } | 
| 912 |   else { | 
| 913 |     /*     Use HCOLI just for last row */ | 
| 914 |     ilast = maction[1]; | 
| 915 |     krlast = mrstrt[ilast]; | 
| 916 |     ifirst = maction[ndense]; | 
| 917 |     krfirst = mrstrt[ifirst]; | 
| 918 |     /*     put list of columns in last HCOLI */ | 
| 919 |     iput = 0; | 
| 920 |     for (i = 1; i <= nrow; ++i) { | 
| 921 |       if (clink[i].pre >= 0) { | 
| 922 | 	hcoli[krlast + iput] = i; | 
| 923 | 	++iput; | 
| 924 |       } | 
| 925 |     } | 
| 926 |     if (iput != ndense) { | 
| 927 |       ++(*nsingp); | 
| 928 |     } | 
| 929 |     else { | 
| 930 |       ndo = ndense / 8; | 
| 931 |       /*     do most */ | 
| 932 |       for (kcount = 1; kcount <= ndo; ++kcount) { | 
| 933 |         idense = ndense; | 
| 934 |         isort = 8; | 
| 935 |         for (count = ndense; count >= ndense - 7; --count) { | 
| 936 | 	  ipivot = maction[count]; | 
| 937 | 	  krs = mrstrt[ipivot]; | 
| 938 | 	  --isort; | 
| 939 | 	  mkrs[isort] = krs; | 
| 940 |         } | 
| 941 |         isort = 8; | 
| 942 |         for (count = ndense; count >= ndense - 7; --count) { | 
| 943 | 	  /* Find a pivot element */ | 
| 944 | 	  --isort; | 
| 945 | 	  ipivot = maction[count]; | 
| 946 | 	  krs = mkrs[isort]; | 
| 947 | 	  jcol = c_ekkidmx(idense, &dluval[krs]) - 1; | 
| 948 | 	  pivot = dluval[krs + jcol]; | 
| 949 | 	  --idense; | 
| 950 | 	  mcol[count] = jcol; | 
| 951 | 	  mjcol[isort] = mcol[count]; | 
| 952 | 	  dluval[krs + jcol] = dluval[krs + idense]; | 
| 953 | 	  if (fabs(pivot) < fact->zeroTolerance) { | 
| 954 | 	    pivot = 0.; | 
| 955 | 	    dpivx = 0.; | 
| 956 | 	  } else { | 
| 957 | 	    dpivx = 1. / pivot; | 
| 958 | 	  } | 
| 959 | 	  dluval[krs + idense] = pivot; | 
| 960 | 	  dpivxx[isort] = dpivx; | 
| 961 | 	  for (j = isort - 1; j >= 0; --j) { | 
| 962 | 	    krxs = mkrs[j]; | 
| 963 | 	    multip = -dluval[krxs + jcol] * dpivx; | 
| 964 | 	    dluval[krxs + jcol] = dluval[krxs + idense]; | 
| 965 | 	    /*           for moment skip if zero */ | 
| 966 | 	    if (fabs(multip) > fact->zeroTolerance) { | 
| 967 | 	      for (i = 0; i < idense; ++i) { | 
| 968 | 		dluval[krxs + i] += multip * dluval[krs + i]; | 
| 969 | 	      } | 
| 970 | 	    } else { | 
| 971 | 	      multip = 0.; | 
| 972 | 	    } | 
| 973 | 	    dluval[krxs + idense] = multip; | 
| 974 | 	  } | 
| 975 |         } | 
| 976 | 	/*       sort all U in rows already done */ | 
| 977 |         for (i = 7; i >= 0; --i) { | 
| 978 | 	  /* ****     this is important bit */ | 
| 979 | 	  krs = mkrs[i]; | 
| 980 | 	  for (j = i - 1; j >= 0; --j) { | 
| 981 | 	    jcol = mjcol[j]; | 
| 982 | 	    dsave = dluval[krs + jcol]; | 
| 983 | 	    dluval[krs + jcol] = dluval[krs + idense + j]; | 
| 984 | 	    dluval[krs + idense + j] = dsave; | 
| 985 | 	  } | 
| 986 |         } | 
| 987 | 	/*       leave IDENSE as it is */ | 
| 988 |         if (ndense <= 400) { | 
| 989 | 	  for (jrow = ndense - 8; jrow >= 1; --jrow) { | 
| 990 | 	    irow = maction[jrow]; | 
| 991 | 	    krxs = mrstrt[irow]; | 
| 992 | 	    for (j = 7; j >= 0; --j) { | 
| 993 | 	      jcol = mjcol[j]; | 
| 994 | 	      dsave = dluval[krxs + jcol]; | 
| 995 | 	      dluval[krxs + jcol] = dluval[krxs + idense + j]; | 
| 996 | 	      dluval[krxs + idense + j] = dsave; | 
| 997 | 	    } | 
| 998 | 	    for (j = 7; j >= 0; --j) { | 
| 999 | 	      krs = mkrs[j]; | 
| 1000 | 	      jdense = idense + j; | 
| 1001 | 	      dpivx = dpivxx[j]; | 
| 1002 | 	      multip = -dluval[krxs + jdense] * dpivx; | 
| 1003 | 	      if (fabs(multip) <= fact->zeroTolerance) { | 
| 1004 | 		multip = 0.; | 
| 1005 | 	      } | 
| 1006 | 	      dpivyy[j] = multip; | 
| 1007 | 	      dluval[krxs + jdense] = multip; | 
| 1008 | 	      for (i = idense; i < jdense; ++i) { | 
| 1009 | 		dluval[krxs + i] += multip * dluval[krs + i]; | 
| 1010 | 	      } | 
| 1011 | 	    } | 
| 1012 | 	    for (i = 0; i < idense; ++i) { | 
| 1013 | 	      dx = dluval[krxs + i]; | 
| 1014 | 	      d0 = dpivyy[0] * dluval[mkrs[0] + i]; | 
| 1015 | 	      dx += dpivyy[1] * dluval[mkrs[1] + i]; | 
| 1016 | 	      d0 += dpivyy[2] * dluval[mkrs[2] + i]; | 
| 1017 | 	      dx += dpivyy[3] * dluval[mkrs[3] + i]; | 
| 1018 | 	      d0 += dpivyy[4] * dluval[mkrs[4] + i]; | 
| 1019 | 	      dx += dpivyy[5] * dluval[mkrs[5] + i]; | 
| 1020 | 	      d0 += dpivyy[6] * dluval[mkrs[6] + i]; | 
| 1021 | 	      dx += dpivyy[7] * dluval[mkrs[7] + i]; | 
| 1022 | 	      dluval[krxs + i] = d0 + dx; | 
| 1023 | 	    } | 
| 1024 | 	  } | 
| 1025 |         } else { | 
| 1026 | 	  for (jrow = ndense - 8; jrow >= 1; --jrow) { | 
| 1027 | 	    irow = maction[jrow]; | 
| 1028 | 	    krxs = mrstrt[irow]; | 
| 1029 | 	    for (j = 7; j >= 0; --j) { | 
| 1030 | 	      jcol = mjcol[j]; | 
| 1031 | 	      dsave = dluval[krxs + jcol]; | 
| 1032 | 	      dluval[krxs + jcol] = dluval[krxs + idense + j]; | 
| 1033 | 	      dluval[krxs + idense + j] = dsave; | 
| 1034 | 	    } | 
| 1035 | 	    for (j = 7; j >= 0; --j) { | 
| 1036 | 	      krs = mkrs[j]; | 
| 1037 | 	      jdense = idense + j; | 
| 1038 | 	      dpivx = dpivxx[j]; | 
| 1039 | 	      multip = -dluval[krxs + jdense] * dpivx; | 
| 1040 | 	      if (fabs(multip) <= fact->zeroTolerance) { | 
| 1041 | 		multip = 0.; | 
| 1042 | 	      } | 
| 1043 | 	      dluval[krxs + jdense] = multip; | 
| 1044 | 	      for (i = idense; i < jdense; ++i) { | 
| 1045 | 		dluval[krxs + i] += multip * dluval[krs + i]; | 
| 1046 | 	      } | 
| 1047 | 	    } | 
| 1048 | 	  } | 
| 1049 | 	  for (kchunk = 0; kchunk < idense; kchunk += 400) { | 
| 1050 | 	    kend = CoinMin(idense - 1, kchunk + 399); | 
| 1051 | 	    for (jrow = ndense - 8; jrow >= 1; --jrow) { | 
| 1052 | 	      irow = maction[jrow]; | 
| 1053 | 	      krxs = mrstrt[irow]; | 
| 1054 | 	      for (j = 7; j >= 0; --j) { | 
| 1055 | 		dpivyy[j] = dluval[krxs + idense + j]; | 
| 1056 | 	      } | 
| 1057 | 	      for (i = kchunk; i <= kend; ++i) { | 
| 1058 | 		dx = dluval[krxs + i]; | 
| 1059 | 		d0 = dpivyy[0] * dluval[mkrs[0] + i]; | 
| 1060 | 		dx += dpivyy[1] * dluval[mkrs[1] + i]; | 
| 1061 | 		d0 += dpivyy[2] * dluval[mkrs[2] + i]; | 
| 1062 | 		dx += dpivyy[3] * dluval[mkrs[3] + i]; | 
| 1063 | 		d0 += dpivyy[4] * dluval[mkrs[4] + i]; | 
| 1064 | 		dx += dpivyy[5] * dluval[mkrs[5] + i]; | 
| 1065 | 		d0 += dpivyy[6] * dluval[mkrs[6] + i]; | 
| 1066 | 		dx += dpivyy[7] * dluval[mkrs[7] + i]; | 
| 1067 | 		dluval[krxs + i] = d0 + dx; | 
| 1068 | 	      } | 
| 1069 | 	    } | 
| 1070 | 	  } | 
| 1071 |         } | 
| 1072 | 	/*       resort all U in rows already done */ | 
| 1073 |         for (i = 7; i >= 0; --i) { | 
| 1074 | 	  krs = mkrs[i]; | 
| 1075 | 	  for (j = 0; j < i; ++j) { | 
| 1076 | 	    jcol = mjcol[j]; | 
| 1077 | 	    dsave = dluval[krs + jcol]; | 
| 1078 | 	    dluval[krs + jcol] = dluval[krs + idense + j]; | 
| 1079 | 	    dluval[krs + idense + j] = dsave; | 
| 1080 | 	  } | 
| 1081 |         } | 
| 1082 |         ndense += -8; | 
| 1083 |       } | 
| 1084 |       idense = ndense; | 
| 1085 |       /*     do remainder */ | 
| 1086 |       for (count = ndense; count >= 1; --count) { | 
| 1087 | 	/*        Find a pivot element */ | 
| 1088 |         ipivot = maction[count]; | 
| 1089 |         krs = mrstrt[ipivot]; | 
| 1090 |         jcol = c_ekkidmx(idense, &dluval[krs]) - 1; | 
| 1091 |         pivot = dluval[krs + jcol]; | 
| 1092 |         --idense; | 
| 1093 |         mcol[count] = jcol; | 
| 1094 |         dluval[krs + jcol] = dluval[krs + idense]; | 
| 1095 |         if (fabs(pivot) < fact->zeroTolerance) { | 
| 1096 | 	  dluval[krs + idense] = 0.; | 
| 1097 |         } else { | 
| 1098 | 	  dpivx = 1. / pivot; | 
| 1099 | 	  dluval[krs + idense] = pivot; | 
| 1100 | 	  for (jrow = idense; jrow >= 1; --jrow) { | 
| 1101 | 	    irow = maction[jrow]; | 
| 1102 | 	    krxs = mrstrt[irow]; | 
| 1103 | 	    multip = -dluval[krxs + jcol] * dpivx; | 
| 1104 | 	    dluval[krxs + jcol] = dluval[krxs + idense]; | 
| 1105 | 	    /*           for moment skip if zero */ | 
| 1106 | 	    if (fabs(multip) > fact->zeroTolerance) { | 
| 1107 | 	      dluval[krxs + idense] = multip; | 
| 1108 | 	      for (i = 0; i < idense; ++i) { | 
| 1109 | 		dluval[krxs + i] += multip * dluval[krs + i]; | 
| 1110 | 	      } | 
| 1111 | 	    } else { | 
| 1112 | 	      dluval[krxs + idense] = 0.; | 
| 1113 | 	    } | 
| 1114 | 	  } | 
| 1115 |         } | 
| 1116 |       } | 
| 1117 |       /*     now create in form for OSL */ | 
| 1118 |       ndense = nrow - fact->npivots; | 
| 1119 |       idense = ndense; | 
| 1120 |       for (count = ndense; count >= 1; --count) { | 
| 1121 | 	/*        Find a pivot element */ | 
| 1122 |         ipivot = maction[count]; | 
| 1123 |         krs = mrstrt[ipivot]; | 
| 1124 |         --idense; | 
| 1125 |         jcol = mcol[count]; | 
| 1126 |         jpivot = hcoli[krlast + jcol]; | 
| 1127 |         ++fact->npivots; | 
| 1128 |         pivot = dluval[krs + idense]; | 
| 1129 |         if (pivot == 0.) { | 
| 1130 | 	  hinrow[ipivot] = 0; | 
| 1131 | 	  rlink[ipivot].pre = -nrow - 1; | 
| 1132 | 	  ++(*nsingp); | 
| 1133 | 	  irtcod = 10; | 
| 1134 |         } else { | 
| 1135 | 	  rlink[ipivot].pre = -fact->npivots; | 
| 1136 | 	  clink[jpivot].pre = -fact->npivots; | 
| 1137 | 	  hincol[jpivot] = 0; | 
| 1138 | 	  ++fact->xnetal; | 
| 1139 | 	  mcstrt[fact->xnetal] = lstart - 1; | 
| 1140 | 	  hpivco[fact->xnetal] = ipivot; | 
| 1141 | 	  for (jrow = idense; jrow >= 1; --jrow) { | 
| 1142 | 	    irow = maction[jrow]; | 
| 1143 | 	    krxs = mrstrt[irow]; | 
| 1144 | 	    multip = dluval[krxs + idense]; | 
| 1145 | 	    /*           for moment skip if zero */ | 
| 1146 | 	    if (multip != 0.||storeZero) { | 
| 1147 | 	      /* Store elementary row transformation */ | 
| 1148 | 	      ++nnentl; | 
| 1149 | 	      --nnentu; | 
| 1150 | 	      --lstart; | 
| 1151 | 	      dluval[lstart] = multip; | 
| 1152 | 	      hrowi[lstart] = SHIFT_INDEX(irow); | 
| 1153 | 	    } | 
| 1154 | 	  } | 
| 1155 | 	  hcoli[krlast + jcol] = hcoli[krlast + idense]; | 
| 1156 | 	  /*         update pivot row and last row HCOLI */ | 
| 1157 | 	  dluval[krs + idense] = dluval[krs]; | 
| 1158 | 	  hcoli[krlast + idense] = hcoli[krlast]; | 
| 1159 | 	  nz = 1; | 
| 1160 | 	  dluval[krs] = pivot; | 
| 1161 | 	  hcoli[krs] = jpivot; | 
| 1162 | 	  if (!storeZero) { | 
| 1163 | 	    for (i = 1; i <= idense; ++i) { | 
| 1164 | 	      if (fabs(dluval[krs + i]) > fact->zeroTolerance) { | 
| 1165 | 		++nz; | 
| 1166 | 		hcoli[krs + nz - 1] = hcoli[krlast + i]; | 
| 1167 | 		dluval[krs + nz - 1] = dluval[krs + i]; | 
| 1168 | 	      } | 
| 1169 | 	    } | 
| 1170 | 	    hinrow[ipivot] = nz; | 
| 1171 | 	  } else { | 
| 1172 | 	    for (i = 1; i <= idense; ++i) { | 
| 1173 | 	      ++nz; | 
| 1174 | 	      hcoli[krs + nz - 1] = hcoli[krlast + i]; | 
| 1175 | 	      dluval[krs + nz - 1] = dluval[krs + i]; | 
| 1176 | 	    } | 
| 1177 | 	    hinrow[ipivot] = nz; | 
| 1178 | 	  } | 
| 1179 |         } | 
| 1180 |       } | 
| 1181 |     } | 
| 1182 |   } | 
| 1183 |  | 
| 1184 |   *nnentlp = nnentl; | 
| 1185 |   *nnentup = nnentu; | 
| 1186 |  | 
| 1187 |   return (irtcod); | 
| 1188 | } /* c_ekkcmfd */ | 
| 1189 | /* ***C_EKKCMFC */ | 
| 1190 |  | 
| 1191 | /* | 
| 1192 |  * Generate a variant of c_ekkcmfc that uses an maction array of type | 
| 1193 |  * int rather than short. | 
| 1194 |  */ | 
| 1195 | #undef MACTION_T | 
| 1196 | #define C_EKKCMFY | 
| 1197 | #define COIN_OSL_CMFC | 
| 1198 | #define MACTION_T int | 
| 1199 | int c_ekkcmfy(EKKfactinfo *fact, | 
| 1200 | 	    EKKHlink *rlink, EKKHlink *clink, | 
| 1201 | 	    EKKHlink *mwork, void *maction_void, | 
| 1202 | 	    int nnetas, | 
| 1203 | 	    int *nsingp, int *xrejctp, | 
| 1204 | 	    int *xnewrop, int xnewco, | 
| 1205 | 	    int *ncompactionsp) | 
| 1206 |  | 
| 1207 | #include "CoinOslC.h" | 
| 1208 | #undef COIN_OSL_CMFC | 
| 1209 | #undef C_EKKCMFY | 
| 1210 | #undef MACTION_T | 
| 1211 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, | 
| 1212 | 	    int *hpivro, int *hpivco, | 
| 1213 | 	    EKKHlink *rlink, EKKHlink *clink) | 
| 1214 | { | 
| 1215 |   int i, iri, nzi; | 
| 1216 |   const int nrow	= fact->nrow; | 
| 1217 |   int nsing = 0; | 
| 1218 |  | 
| 1219 |   /*     Uwe H. Suhl, August 1986 */ | 
| 1220 |   /*     Builds linked lists of rows and cols of nucleus for efficient */ | 
| 1221 |   /*     pivot searching. */ | 
| 1222 |  | 
| 1223 |   memset(hpivro+1,0,nrow*sizeof(int)); | 
| 1224 |   memset(hpivco+1,0,nrow*sizeof(int)); | 
| 1225 |   for (i = 1; i <= nrow; ++i) { | 
| 1226 |     //hpivro[i] = 0; | 
| 1227 |     //hpivco[i] = 0; | 
| 1228 |     assert(rlink[i].suc == 0); | 
| 1229 |     assert(clink[i].suc == 0); | 
| 1230 |   } | 
| 1231 |  | 
| 1232 |   /*     Generate double linked list of rows having equal numbers of */ | 
| 1233 |   /*     nonzeros in each row. Skip pivotal rows. */ | 
| 1234 |   for (i = 1; i <= nrow; ++i) { | 
| 1235 |     if (! (rlink[i].pre < 0)) { | 
| 1236 |       nzi = hinrow[i]; | 
| 1237 |       if (nzi <= 0) { | 
| 1238 | 	++nsing; | 
| 1239 | 	rlink[i].pre = -nrow - 1; | 
| 1240 |       } | 
| 1241 |       else { | 
| 1242 | 	iri = hpivro[nzi]; | 
| 1243 | 	hpivro[nzi] = i; | 
| 1244 | 	rlink[i].suc = iri; | 
| 1245 | 	rlink[i].pre = 0; | 
| 1246 | 	if (iri != 0) { | 
| 1247 | 	  rlink[iri].pre = i; | 
| 1248 | 	} | 
| 1249 |       } | 
| 1250 |     } | 
| 1251 |   } | 
| 1252 |  | 
| 1253 |   /*     Generate double linked list of cols having equal numbers of */ | 
| 1254 |   /*     nonzeros in each col. Skip pivotal cols. */ | 
| 1255 |   for (i = 1; i <= nrow; ++i) { | 
| 1256 |     if (! (clink[i].pre < 0)) { | 
| 1257 |       nzi = hincol[i]; | 
| 1258 |       if (nzi <= 0) { | 
| 1259 | 	++nsing; | 
| 1260 | 	clink[i].pre = -nrow - 1; | 
| 1261 |       } | 
| 1262 |       else { | 
| 1263 | 	iri = hpivco[nzi]; | 
| 1264 | 	hpivco[nzi] = i; | 
| 1265 | 	clink[i].suc = iri; | 
| 1266 | 	clink[i].pre = 0; | 
| 1267 | 	if (iri != 0) { | 
| 1268 | 	  clink[iri].pre = i; | 
| 1269 | 	} | 
| 1270 |       } | 
| 1271 |     } | 
| 1272 |   } | 
| 1273 |  | 
| 1274 |   return (nsing); | 
| 1275 | } /* c_ekkford */ | 
| 1276 |  | 
| 1277 | /*    c version of OSL from 36100 */ | 
| 1278 |  | 
| 1279 | /*     Assumes that a basis exists in correct form */ | 
| 1280 | /*     Calls Uwe's routines (approximately) */ | 
| 1281 | /*     Then if OK shuffles U into column order */ | 
| 1282 | /*     Return codes: */ | 
| 1283 |  | 
| 1284 | /*     0: everything ok */ | 
| 1285 | /*     1: everything ok but performance would be better if more space */ | 
| 1286 | /*        would be make available */ | 
| 1287 | /*     4: growth rate of element in U too big */ | 
| 1288 | /*     5: not enough space in row file */ | 
| 1289 | /*     6: not enough space in column file */ | 
| 1290 | /*     7: pivot too small - col sing */ | 
| 1291 | /*     8: pivot too small - row sing */ | 
| 1292 | /*    10: matrix is singular */ | 
| 1293 |  | 
| 1294 | /* I suspect c_ekklfct never returns 1 */ | 
| 1295 | /* | 
| 1296 |  * layout of data | 
| 1297 |  * | 
| 1298 |  * dluval/hcoli:	(L^-1)B	- hole - L factors | 
| 1299 |  * | 
| 1300 |  * The L factors are written from high to low, starting from nnetas. | 
| 1301 |  * There are nnentl factors in L.  lstart the next entry to use for the | 
| 1302 |  * L factors.  Eventually, (L^-1)B turns into U. | 
| 1303 |  | 
| 1304 |  * The ninbas coefficients of matrix B are originally in the start of | 
| 1305 |  * dluval/hcoli.  As L transforms it, rows may have to be expanded. | 
| 1306 |  * If there is room, they are copied to the start of the hole, | 
| 1307 |  * otherwise the first part of this area is compacted, and hopefully | 
| 1308 |  * there is then room. | 
| 1309 |  * There are nnentu coefficients in (L^-1)B. | 
| 1310 |  * nnentu + nnentl >= ninbas. | 
| 1311 |  * nnentu + nnentl == ninbas if there has been no fill-in. | 
| 1312 |  * nnentu is decreased when the pivot eliminates elements | 
| 1313 |  * (in which case there is a corresponding increase in nnentl), | 
| 1314 |  * and if pivoting happens to cancel out factors (in which case | 
| 1315 |  * there is no corresponding increase in L). | 
| 1316 |  * nnentu is increased if there is fill-in (no decrease in L). | 
| 1317 |  * If nnentu + nnentl >= nnetas, then we've run out of room. | 
| 1318 |  * It is not the case that the elements of (L^-1)B are all in the | 
| 1319 |  * first nnentu positions of dluval/hcoli, but that is of course | 
| 1320 |  * the lower bound on the number of positions needed to store it. | 
| 1321 |  * nuspik is roughly the sum of the row lengths of the rows that were pivoted | 
| 1322 |  * out.  singleton rows in c_ekktria do not change nuspik, but | 
| 1323 |  * c_ekkrsin does increment it for each singleton row. | 
| 1324 |  * That is, there are nuspik elements that in the upper part of (L^-1)B, | 
| 1325 |  * and (nnentu - nuspik) elements left in B. | 
| 1326 |  */ | 
| 1327 | /* | 
| 1328 |  * As part of factorization, we test candidate pivots for numerical | 
| 1329 |  * stability; if the largest element in a row/col is much larger than | 
| 1330 |  * the smallest, this generally causes problems.  To easily determine | 
| 1331 |  * what the largest element is, we ensure that it is always in front. | 
| 1332 |  * This establishes this property; later on we take steps to preserve it. | 
| 1333 |  */ | 
| 1334 | static void c_ekkmltf(const EKKfactinfo *fact,double *dluval, int *hcoli, | 
| 1335 | 		    const int *mrstrt, const int *hinrow, | 
| 1336 | 		    const EKKHlink *rlink) | 
| 1337 | { | 
| 1338 | #if 0 | 
| 1339 |   int *hcoli	= fact->xecadr; | 
| 1340 |   double *dluval	= fact->xeeadr; | 
| 1341 |   double *dvalpv = fact->kw3adr; | 
| 1342 |   int *mrstrt	= fact->xrsadr; | 
| 1343 |   int *hrowi	= fact->xeradr; | 
| 1344 |   int *mcstrt	= fact->xcsadr; | 
| 1345 |   int *hinrow	= fact->xrnadr; | 
| 1346 |   int *hincol	= fact->xcnadr; | 
| 1347 |   int *hpivro	= fact->krpadr; | 
| 1348 |   int *hpivco	= fact->kcpadr; | 
| 1349 | #endif | 
| 1350 |   int i, j, k; | 
| 1351 | #ifndef NDEBUG | 
| 1352 |   int koff=-1; | 
| 1353 | #else | 
| 1354 |   int koff; | 
| 1355 | #endif | 
| 1356 |   const int nrow	= fact->nrow; | 
| 1357 |  | 
| 1358 |  | 
| 1359 |   for (i = 1; i <= nrow; ++i) { | 
| 1360 |     /* ignore rows that have already been pivoted */ | 
| 1361 |     /* if it is a singleton row, the property trivially holds */ | 
| 1362 |     if (! (rlink[i].pre < 0 || hinrow[i] <= 1)) { | 
| 1363 |       const int krs = mrstrt[i]; | 
| 1364 |       const int kre = krs + hinrow[i] - 1; | 
| 1365 |  | 
| 1366 |       double maxaij = 0.f; | 
| 1367 |  | 
| 1368 |       /* this assumes that at least one of the dluvals is non-zero. */ | 
| 1369 |       for (k = krs; k <= kre; ++k) { | 
| 1370 | 	if (! (fabs(dluval[k]) <= maxaij)) { | 
| 1371 | 	  maxaij = fabs(dluval[k]); | 
| 1372 | 	  koff = k; | 
| 1373 | 	} | 
| 1374 |       } | 
| 1375 |       assert (koff>0); | 
| 1376 |       maxaij = dluval[koff]; | 
| 1377 |       j = hcoli[koff]; | 
| 1378 |  | 
| 1379 |       dluval[koff] = dluval[krs]; | 
| 1380 |       hcoli[koff] = hcoli[krs]; | 
| 1381 |  | 
| 1382 |       dluval[krs] = maxaij; | 
| 1383 |       hcoli[krs] = j; | 
| 1384 |     } | 
| 1385 |   } | 
| 1386 | } /* c_ekkmltf */ | 
| 1387 | int c_ekklfct(EKKfactinfo *fact) | 
| 1388 | { | 
| 1389 |   const int nrow	= fact->nrow; | 
| 1390 |   int ninbas = fact->xcsadr[nrow+1]-1; | 
| 1391 |   int ifvsol = fact->ifvsol; | 
| 1392 |   int *hcoli	= fact->xecadr; | 
| 1393 |   double *dluval	= fact->xeeadr; | 
| 1394 |   int *mrstrt	= fact->xrsadr; | 
| 1395 |   int *hrowi	= fact->xeradr; | 
| 1396 |   int *mcstrt	= fact->xcsadr; | 
| 1397 |   int *hinrow	= fact->xrnadr; | 
| 1398 |   int *hincol	= fact->xcnadr; | 
| 1399 |   int *hpivro	= fact->krpadr; | 
| 1400 |   int *hpivco	= fact->kcpadr; | 
| 1401 |  | 
| 1402 |  | 
| 1403 |   EKKHlink *rlink	= fact->kp1adr; | 
| 1404 |   EKKHlink *clink	= fact->kp2adr; | 
| 1405 |   EKKHlink *mwork	= (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; | 
| 1406 |  | 
| 1407 |   int nsing, kdnspt, xnewro, xnewco; | 
| 1408 |   int i; | 
| 1409 |   int xrejct; | 
| 1410 |   int irtcod; | 
| 1411 |   const int nnetas	= fact->nnetas; | 
| 1412 |  | 
| 1413 |   int ncompactions; | 
| 1414 |   double save_drtpiv = fact->drtpiv; | 
| 1415 |   double save_zpivlu = fact->zpivlu; | 
| 1416 |   if (ifvsol > 0 && fact->invok < 0) { | 
| 1417 |     fact->zpivlu =  CoinMin(0.9, fact->zpivlu * 10.); | 
| 1418 |     fact->drtpiv=1.0e-8; | 
| 1419 |   } | 
| 1420 |  | 
| 1421 |   rlink --; | 
| 1422 |   clink --; | 
| 1423 |  | 
| 1424 |   /* Function Body */ | 
| 1425 |   hcoli[nnetas] = 1; | 
| 1426 |   hrowi[nnetas] = 1; | 
| 1427 |   dluval[nnetas] = 0.0; | 
| 1428 |   /*     set amount of work */ | 
| 1429 |   xrejct = 0; | 
| 1430 |   nsing = 0; | 
| 1431 |   kdnspt = nnetas + 1; | 
| 1432 |   fact->ndenuc = 0; | 
| 1433 |   /*     Triangularize */ | 
| 1434 |   irtcod = c_ekktria(fact,rlink,clink, | 
| 1435 | 		   &nsing, | 
| 1436 | 		   &xnewco, &xnewro, | 
| 1437 | 		   &ncompactions, ninbas); | 
| 1438 |   fact->nnentl = ninbas - fact->nnentu; | 
| 1439 |  | 
| 1440 |   if (irtcod < 0) { | 
| 1441 |     /* no space or system error */ | 
| 1442 |     goto L8000; | 
| 1443 |   } | 
| 1444 |  | 
| 1445 |   if (irtcod != 0 && fact->invok >= 0) { | 
| 1446 |     goto L8500;	/* 7 or 8 - pivot too small */ | 
| 1447 |   } | 
| 1448 | #if 0 | 
| 1449 |   /* is this necessary ? */ | 
| 1450 |   lstart = nnetas - fact->nnentl + 1; | 
| 1451 |   for (i = lstart; i <= nnetas; ++i) { | 
| 1452 |     hrowi[i] = (hcoli[i] << 3); | 
| 1453 |   } | 
| 1454 | #endif | 
| 1455 |  | 
| 1456 |   /* See if finished */ | 
| 1457 |   if (! (fact->npivots >= nrow)) { | 
| 1458 |     int nsing1; | 
| 1459 |  | 
| 1460 |     /*     No - do nucleus */ | 
| 1461 |  | 
| 1462 |     nsing1 = c_ekkford(fact,hinrow, hincol, hpivro, hpivco, rlink, clink); | 
| 1463 |     nsing+= nsing1; | 
| 1464 |     if (nsing1 != 0 && fact->invok >= 0) { | 
| 1465 |       irtcod=7; | 
| 1466 |       goto L8500; | 
| 1467 |     } | 
| 1468 |     c_ekkmltf(fact,dluval, hcoli, mrstrt, hinrow, rlink); | 
| 1469 |  | 
| 1470 |     { | 
| 1471 |       bool callcmfy = false; | 
| 1472 |  | 
| 1473 |       if (nrow > 32767) { | 
| 1474 | 	int count = 0; | 
| 1475 | 	for (i = 1; i <= nrow; ++i) { | 
| 1476 | 	  count = CoinMax(count,hinrow[i]); | 
| 1477 | 	} | 
| 1478 | 	if (count + nrow - fact->npivots > 32767) { | 
| 1479 | 	  /* will have to use I*4 version of CMFC */ | 
| 1480 | 	  /* no changes to pointer params */ | 
| 1481 | 	  callcmfy = true; | 
| 1482 | 	} | 
| 1483 |       } | 
| 1484 |  | 
| 1485 |       irtcod = (callcmfy ? c_ekkcmfy : c_ekkcmfc) | 
| 1486 | 	(fact, | 
| 1487 | 	 rlink, clink, | 
| 1488 | 	 mwork, &mwork[nrow + 1], | 
| 1489 | 	 nnetas, | 
| 1490 | 	 &nsing, &xrejct, | 
| 1491 | 	 &xnewro, xnewco, | 
| 1492 | 	 &ncompactions); | 
| 1493 |  | 
| 1494 |       /* irtcod one of 0,-5,7,10 */ | 
| 1495 |     } | 
| 1496 |  | 
| 1497 |     if (irtcod < 0) { | 
| 1498 |       goto L8000; | 
| 1499 |     } | 
| 1500 |     kdnspt = nnetas - fact->nnentl; | 
| 1501 |   } | 
| 1502 |  | 
| 1503 |   /*     return if error */ | 
| 1504 |   if (nsing > 0 || irtcod == 10) { | 
| 1505 |     irtcod = 99; | 
| 1506 |   } | 
| 1507 |   /* irtcod one of 0,7,99 */ | 
| 1508 |  | 
| 1509 |   if (irtcod != 0) { | 
| 1510 |     goto L8500; | 
| 1511 |   } | 
| 1512 |   ++fact->xnetal; | 
| 1513 |   mcstrt[fact->xnetal] = nnetas - fact->nnentl; | 
| 1514 |  | 
| 1515 |   /* give message if tight on memory */ | 
| 1516 |   if (ncompactions > 2 ) { | 
| 1517 |     if (1) { | 
| 1518 |       int etasize =CoinMax(4*fact->nnentu+(nnetas-fact->nnentl)+1000,fact->eta_size); | 
| 1519 |       fact->eta_size=CoinMin(static_cast<int>(1.2*fact->eta_size),etasize); | 
| 1520 |       if (fact->maxNNetas>0&&fact->eta_size> | 
| 1521 | 	  fact->maxNNetas) { | 
| 1522 | 	fact->eta_size=fact->maxNNetas; | 
| 1523 |       } | 
| 1524 |     } /* endif */ | 
| 1525 |   } | 
| 1526 |   /*       Shuffle U and multiply L by 8 (if assembler) */ | 
| 1527 |   { | 
| 1528 |     int jrtcod = c_ekkshff(fact, clink, rlink, | 
| 1529 | 			   xnewro); | 
| 1530 |  | 
| 1531 |     /* nR_etas is the number of R transforms; | 
| 1532 |      * it is incremented only in c_ekketsj. | 
| 1533 |      */ | 
| 1534 |     fact->nR_etas = 0; | 
| 1535 |     /*fact->R_etas_start = mcstrt+nrow+fact->nnentl+3;*/ | 
| 1536 |     fact->R_etas_start[1] = /*kdnspt - 1*/0;	/* magic */ | 
| 1537 |     fact->R_etas_index = &fact->xeradr[kdnspt - 1]; | 
| 1538 |     fact->R_etas_element = &fact->xeeadr[kdnspt - 1]; | 
| 1539 |  | 
| 1540 |  | 
| 1541 |  | 
| 1542 |     if (jrtcod != 0) { | 
| 1543 |       irtcod = jrtcod; | 
| 1544 |       /* irtcod == 2 */ | 
| 1545 |     } | 
| 1546 |   } | 
| 1547 |   goto L8500; | 
| 1548 |  | 
| 1549 |   /* Fatal error */ | 
| 1550 |  L8000: | 
| 1551 |  | 
| 1552 |   if (1) { | 
| 1553 |     if (fact->maxNNetas != fact->eta_size && | 
| 1554 | 	nnetas) { | 
| 1555 |       /* return and get more space */ | 
| 1556 |  | 
| 1557 |       /* double eta_size, unless that exceeds max (if there is one) */ | 
| 1558 |       fact->eta_size = fact->eta_size<<1; | 
| 1559 |       if (fact->maxNNetas > 0 && | 
| 1560 | 	  fact->eta_size > fact->maxNNetas) { | 
| 1561 | 	fact->eta_size = fact->maxNNetas; | 
| 1562 |       } | 
| 1563 |       return (5); | 
| 1564 |     } | 
| 1565 |   } | 
| 1566 |   /*c_ekkmesg_no_i1(121, -irtcod);*/ | 
| 1567 |   irtcod = 3; | 
| 1568 |  | 
| 1569 |  L8500: | 
| 1570 |   /* restore pivot tolerance */ | 
| 1571 |   fact->drtpiv=save_drtpiv; | 
| 1572 |   fact->zpivlu=save_zpivlu; | 
| 1573 | #ifndef NDEBUG | 
| 1574 |   if (fact->rows_ok) { | 
| 1575 |     int * hinrow=fact->xrnadr; | 
| 1576 |     if (!fact->xe2adr) { | 
| 1577 |       for (int i=1;i<=fact->nrow;i++) { | 
| 1578 | 	assert (hinrow[i]>=0&&hinrow[i]<=fact->nrow); | 
| 1579 |       } | 
| 1580 |     } | 
| 1581 |   } | 
| 1582 | #endif | 
| 1583 |   return (irtcod); | 
| 1584 | } /* c_ekklfct */ | 
| 1585 |  | 
| 1586 |  | 
| 1587 | /* | 
| 1588 |   summary of return codes | 
| 1589 |  | 
| 1590 |   c_ekktria: | 
| 1591 |   7 small pivot | 
| 1592 |   -5 no memory | 
| 1593 |  | 
| 1594 |   c_ekkcsin: | 
| 1595 |   returns true if small pivot | 
| 1596 |  | 
| 1597 |   c_ekkrsin: | 
| 1598 |   -5 no memory | 
| 1599 |   7 small pivot | 
| 1600 |  | 
| 1601 |   c_ekkfpvt: | 
| 1602 |   10: no pivots found (singular) | 
| 1603 |  | 
| 1604 |   c_ekkcmfd: | 
| 1605 |   10: zero pivot (not just small) | 
| 1606 |  | 
| 1607 |   c_ekkcmfc: | 
| 1608 |   -5:  no memory | 
| 1609 |   any non-zero code from c_ekkcsin, c_ekkrsin, c_ekkfpvt, c_ekkprpv, c_ekkcmfd | 
| 1610 |  | 
| 1611 |   c_ekkshff: | 
| 1612 |   2:  singular | 
| 1613 |  | 
| 1614 |   c_ekklfct: | 
| 1615 |   any positive code from c_ekktria, c_ekkcmfc, c_ekkshff (2,7,10) | 
| 1616 |   *except* 10, which is changed to 99. | 
| 1617 |   all negative return codes are changed to 5 or 3 | 
| 1618 |   (5 == ran out of memory but could get more, | 
| 1619 |   3 == ran out of memory, no luck) | 
| 1620 |   so:  2,3,5,7,99 | 
| 1621 |  | 
| 1622 |   c_ekklfct1: | 
| 1623 |   1: c_ekksmem_invert failed | 
| 1624 |   2: c_ekkslcf/c_ekkslct ran out of room | 
| 1625 |   any return code from c_ekklfct, except 2 and 5 | 
| 1626 | */ | 
| 1627 |  | 
| 1628 | void c_ekkrowq(int *hrow, int *hcol, double *dels, | 
| 1629 | 	     int *mrstrt, | 
| 1630 | 	     const int *hinrow, int nnrow, int ninbas) | 
| 1631 | { | 
| 1632 |   int i, k, iak, jak; | 
| 1633 |   double daik; | 
| 1634 |   int iloc; | 
| 1635 |   double dsave; | 
| 1636 |   int isave, jsave; | 
| 1637 |  | 
| 1638 |   /* Order matrix rowwise using MRSTRT, DELS, HCOL */ | 
| 1639 |  | 
| 1640 |   k = 1; | 
| 1641 |   /* POSITION AFTER END OF ROW */ | 
| 1642 |   for (i = 1; i <= nnrow; ++i) { | 
| 1643 |     k += hinrow[i]; | 
| 1644 |     mrstrt[i] = k; | 
| 1645 |   } | 
| 1646 |  | 
| 1647 |   for (k = ninbas; k >= 1; --k) { | 
| 1648 |     iak = hrow[k]; | 
| 1649 |     if (iak != 0) { | 
| 1650 |       daik = dels[k]; | 
| 1651 |       jak = hcol[k]; | 
| 1652 |       hrow[k] = 0; | 
| 1653 |       while (1) { | 
| 1654 | 	--mrstrt[iak]; | 
| 1655 |  | 
| 1656 | 	iloc = mrstrt[iak]; | 
| 1657 |  | 
| 1658 | 	dsave = dels[iloc]; | 
| 1659 | 	isave = hrow[iloc]; | 
| 1660 | 	jsave = hcol[iloc]; | 
| 1661 | 	dels[iloc] = daik; | 
| 1662 | 	hrow[iloc] = 0; | 
| 1663 | 	hcol[iloc] = jak; | 
| 1664 |  | 
| 1665 | 	if (isave == 0) | 
| 1666 | 	  break; | 
| 1667 | 	daik = dsave; | 
| 1668 | 	iak = isave; | 
| 1669 | 	jak = jsave; | 
| 1670 |       } | 
| 1671 |  | 
| 1672 |     } | 
| 1673 |   } | 
| 1674 | } /* c_ekkrowq */ | 
| 1675 |  | 
| 1676 |  | 
| 1677 |  | 
| 1678 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, | 
| 1679 | 	    int *hcoli, int *mrstrt, int *hinrow, int xnewro) | 
| 1680 | { | 
| 1681 |   int i, k, nz, kold; | 
| 1682 |   int kstart; | 
| 1683 |   const int nrow	= fact->nrow; | 
| 1684 |  | 
| 1685 |   for (i = 1; i <= nrow; ++i) { | 
| 1686 |     nz = hinrow[i]; | 
| 1687 |     if (0 < nz) { | 
| 1688 |       /* save the last column entry of row i in hinrow */ | 
| 1689 |       /* and replace that entry with -i */ | 
| 1690 |       k = mrstrt[i] + nz - 1; | 
| 1691 |       hinrow[i] = hcoli[k]; | 
| 1692 |       hcoli[k] = -i; | 
| 1693 |     } | 
| 1694 |   } | 
| 1695 |  | 
| 1696 |   kstart = 0; | 
| 1697 |   kold = 0; | 
| 1698 |   for (k = 1; k <= xnewro; ++k) { | 
| 1699 |     if (hcoli[k] != 0) { | 
| 1700 |       ++kstart; | 
| 1701 |  | 
| 1702 |       /* if this is the last entry for the row... */ | 
| 1703 |       if (hcoli[k] < 0) { | 
| 1704 | 	/* restore the entry */ | 
| 1705 | 	i = -hcoli[k]; | 
| 1706 | 	hcoli[k] = hinrow[i]; | 
| 1707 |  | 
| 1708 | 	/* update mrstart and hinrow */ | 
| 1709 | 	/* ACTUALLY, hinrow should already be accurate */ | 
| 1710 | 	mrstrt[i] = kold + 1; | 
| 1711 | 	hinrow[i] = kstart - kold; | 
| 1712 | 	kold = kstart; | 
| 1713 |       } | 
| 1714 |  | 
| 1715 |       /* move the entry */ | 
| 1716 |       dluval[kstart] = dluval[k]; | 
| 1717 |       hcoli[kstart] = hcoli[k]; | 
| 1718 |     } | 
| 1719 |   } | 
| 1720 |  | 
| 1721 |   return (kstart); | 
| 1722 | } /* c_ekkrwco */ | 
| 1723 |  | 
| 1724 |  | 
| 1725 |  | 
| 1726 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, | 
| 1727 | 	    const int *hinrow, const EKKHlink *mwork, | 
| 1728 | 	    int nfirst) | 
| 1729 | { | 
| 1730 | #if 0 | 
| 1731 |   int *hcoli	= fact->xecadr; | 
| 1732 |   double *dluval	= fact->xeeadr; | 
| 1733 |   double *dvalpv = fact->kw3adr; | 
| 1734 |   int *mrstrt	= fact->xrsadr; | 
| 1735 |   int *hrowi	= fact->xeradr; | 
| 1736 |   int *mcstrt	= fact->xcsadr; | 
| 1737 |   int *hinrow	= fact->xrnadr; | 
| 1738 |   int *hincol	= fact->xcnadr; | 
| 1739 |   int *hpivro	= fact->krpadr; | 
| 1740 |   int *hpivco	= fact->kcpadr; | 
| 1741 | #endif | 
| 1742 |   int i, k, k1, k2, nz; | 
| 1743 |   int irow, iput; | 
| 1744 |   const int nrow	= fact->nrow; | 
| 1745 |  | 
| 1746 |   /*     Compress row file */ | 
| 1747 |  | 
| 1748 |   iput = 1; | 
| 1749 |   irow = nfirst; | 
| 1750 |   for (i = 1; i <= nrow; ++i) { | 
| 1751 |     nz = hinrow[irow]; | 
| 1752 |     k1 = mrstrt[irow]; | 
| 1753 |     if (k1 != iput) { | 
| 1754 |       mrstrt[irow] = iput; | 
| 1755 |       k2 = k1 + nz - 1; | 
| 1756 |       for (k = k1; k <= k2; ++k) { | 
| 1757 | 	dluval[iput] = dluval[k]; | 
| 1758 | 	hcoli[iput] = hcoli[k]; | 
| 1759 | 	++iput; | 
| 1760 |       } | 
| 1761 |     } else { | 
| 1762 |       iput += nz; | 
| 1763 |     } | 
| 1764 |     irow = mwork[irow].suc; | 
| 1765 |   } | 
| 1766 |  | 
| 1767 |   return (iput); | 
| 1768 | } /* c_ekkrwcs */ | 
| 1769 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, | 
| 1770 | 	     const int *hinrow, const EKKHlink *mwork, | 
| 1771 | 	     const EKKHlink *rlink, | 
| 1772 | 	     const short *msort, double *dsort, | 
| 1773 | 	     int nlast, int xnewro) | 
| 1774 | { | 
| 1775 | #if 0 | 
| 1776 |   int *hcoli	= fact->xecadr; | 
| 1777 |   double *dluval	= fact->xeeadr; | 
| 1778 |   double *dvalpv = fact->kw3adr; | 
| 1779 |   int *mrstrt	= fact->xrsadr; | 
| 1780 |   int *hrowi	= fact->xeradr; | 
| 1781 |   int *mcstrt	= fact->xcsadr; | 
| 1782 |   int *hinrow	= fact->xrnadr; | 
| 1783 |   int *hincol	= fact->xcnadr; | 
| 1784 |   int *hpivro	= fact->krpadr; | 
| 1785 |   int *hpivco	= fact->kcpadr; | 
| 1786 | #endif | 
| 1787 |   int i, k, k1, nz, icol; | 
| 1788 |   int kmax; | 
| 1789 |   int irow, iput; | 
| 1790 |   int ilook; | 
| 1791 |   const int nrow	= fact->nrow; | 
| 1792 |  | 
| 1793 |   iput = xnewro; | 
| 1794 |   irow = nlast; | 
| 1795 |   kmax = nrow - fact->npivots; | 
| 1796 |   for (i = 1; i <= nrow; ++i) { | 
| 1797 |     nz = hinrow[irow]; | 
| 1798 |     k1 = mrstrt[irow] - 1; | 
| 1799 |     if (rlink[irow].pre < 0) { | 
| 1800 |       /* pivoted on already */ | 
| 1801 |       iput -= nz; | 
| 1802 |       if (k1 != iput) { | 
| 1803 | 	mrstrt[irow] = iput + 1; | 
| 1804 | 	for (k = nz; k >= 1; --k) { | 
| 1805 | 	  dluval[iput + k] = dluval[k1 + k]; | 
| 1806 | 	  hcoli[iput + k] = hcoli[k1 + k]; | 
| 1807 | 	} | 
| 1808 |       } | 
| 1809 |     } else { | 
| 1810 |       /* not pivoted - going dense */ | 
| 1811 |       iput -= kmax; | 
| 1812 |       mrstrt[irow] = iput + 1; | 
| 1813 |       c_ekkdzero( kmax, &dsort[1]); | 
| 1814 |       for (k = 1; k <= nz; ++k) { | 
| 1815 | 	icol = hcoli[k1 + k]; | 
| 1816 | 	ilook = msort[icol]; | 
| 1817 | 	dsort[ilook] = dluval[k1 + k]; | 
| 1818 |       } | 
| 1819 |       c_ekkdcpy(kmax, | 
| 1820 | 	      (dsort+1), (dluval+iput + 1)); | 
| 1821 |     } | 
| 1822 |     irow = mwork[irow].pre; | 
| 1823 |   } | 
| 1824 | } /* c_ekkrwct */ | 
| 1825 | /*     takes Uwe's modern structures and puts them back 20 years */ | 
| 1826 | int c_ekkshff(EKKfactinfo *fact, | 
| 1827 | 	    EKKHlink *clink, EKKHlink *rlink, | 
| 1828 | 	    int xnewro) | 
| 1829 | { | 
| 1830 |   int *hpivro	= fact->krpadr; | 
| 1831 |  | 
| 1832 |   int i, j; | 
| 1833 |   int nbas, icol; | 
| 1834 |   int ipiv; | 
| 1835 |   const int nrow	= fact->nrow; | 
| 1836 |   int nsing; | 
| 1837 |  | 
| 1838 |   for (i = 1; i <= nrow; ++i) { | 
| 1839 |     j = -rlink[i].pre; | 
| 1840 |     rlink[i].pre = j; | 
| 1841 |     if (j > 0 && j <= nrow) { | 
| 1842 |       hpivro[j] = i; | 
| 1843 |     } | 
| 1844 |     j = -clink[i].pre; | 
| 1845 |     clink[i].pre = j; | 
| 1846 |   } | 
| 1847 |   /* hpivro[j] is now (hopefully) the row that was pivoted on step j */ | 
| 1848 |   /* rlink[i].pre is the step in which row i was pivoted */ | 
| 1849 |  | 
| 1850 |   nbas = 0; | 
| 1851 |   nsing = 0; | 
| 1852 |   /* Decide if permutation wanted */ | 
| 1853 |   fact->first_dense=nrow-fact->ndenuc+1+1; | 
| 1854 |   fact->last_dense=nrow; | 
| 1855 |  | 
| 1856 |   /* rlink[].suc is dead at this point */ | 
| 1857 |  | 
| 1858 |   /* | 
| 1859 |    * replace the the basis index | 
| 1860 |    * with the pivot (or permuted) index generated by factorization. | 
| 1861 |    * This eventually goes into mpermu. | 
| 1862 |    */ | 
| 1863 |   for (icol = 1; icol <= nrow; ++icol) { | 
| 1864 |     int ibasis = icol; | 
| 1865 |     ipiv = clink[ibasis].pre; | 
| 1866 |  | 
| 1867 |     if (0 < ipiv && ipiv <= nrow) { | 
| 1868 |       rlink[ibasis].suc = ipiv; | 
| 1869 |       ++nbas; | 
| 1870 |     } | 
| 1871 |   } | 
| 1872 |  | 
| 1873 |   nsing = nrow - nbas; | 
| 1874 |   if (nsing > 0) { | 
| 1875 |     abort(); | 
| 1876 |   } | 
| 1877 |  | 
| 1878 |   /* if we reach here, then rlink[1..nrow].suc == clink[1..nrow].pre */ | 
| 1879 |  | 
| 1880 |   /* switch off sparse update if any dense section */ | 
| 1881 |   { | 
| 1882 |     const int notMuchRoom = (fact->nnentu + xnewro + 10 > fact->nnetas - fact->nnentl); | 
| 1883 |  | 
| 1884 |     /* must be same as in c_ekkshfv */ | 
| 1885 |     if (fact->ndenuc || notMuchRoom||nrow<C_EKK_GO_SPARSE) { | 
| 1886 | #if PRINT_DEBUG | 
| 1887 |       if (fact->if_sparse_update) { | 
| 1888 | 	printf("**** Switching off sparse update - dense - c_ekkshff\n" ); | 
| 1889 |       } | 
| 1890 | #endif | 
| 1891 |       fact->if_sparse_update=0; | 
| 1892 |     } | 
| 1893 |   } | 
| 1894 |  | 
| 1895 |   /* hpivro[1..nrow] is not read by c_ekkshfv */ | 
| 1896 |   c_ekkshfv(fact, | 
| 1897 | 	    rlink, clink, | 
| 1898 | 	  xnewro); | 
| 1899 |  | 
| 1900 |   return (0); | 
| 1901 | } /* c_ekkshff */ | 
| 1902 | /* sorts on indices dragging elements with */ | 
| 1903 | static void c_ekk_sort2(int * key , double * array2,int number) | 
| 1904 | { | 
| 1905 |   int minsize=10; | 
| 1906 |   int n = number; | 
| 1907 |   int sp; | 
| 1908 |   int *v = key; | 
| 1909 |   int *m, t; | 
| 1910 |   int * ls[32] , * rs[32]; | 
| 1911 |   int *l , *r , c; | 
| 1912 |   double it; | 
| 1913 |   int j; | 
| 1914 |   /*check already sorted  */ | 
| 1915 | #ifndef LONG_MAX | 
| 1916 | #define LONG_MAX 0x7fffffff; | 
| 1917 | #endif | 
| 1918 |   int last=-LONG_MAX; | 
| 1919 |   for (j=0;j<number;j++) { | 
| 1920 |     if (key[j]>=last) { | 
| 1921 |       last=key[j]; | 
| 1922 |     } else { | 
| 1923 |       break; | 
| 1924 |     } /* endif */ | 
| 1925 |   } /* endfor */ | 
| 1926 |   if (j==number) { | 
| 1927 |     return; | 
| 1928 |   } /* endif */ | 
| 1929 |   sp = 0 ; ls[sp] = v ; rs[sp] = v + (n-1) ; | 
| 1930 |   while( sp >= 0 ) | 
| 1931 |     { | 
| 1932 |       if ( rs[sp] - ls[sp] > minsize ) | 
| 1933 | 	{ | 
| 1934 | 	  l = ls[sp] ; r = rs[sp] ; m = l + (r-l)/2 ; | 
| 1935 | 	  if ( *l > *m ) | 
| 1936 | 	    { | 
| 1937 | 	      t = *l ; *l = *m ; *m = t ; | 
| 1938 | 	      it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; | 
| 1939 | 	    } | 
| 1940 | 	  if ( *m > *r ) | 
| 1941 | 	    { | 
| 1942 | 	      t = *m ; *m = *r ; *r = t ; | 
| 1943 | 	      it = array2[m-v] ; array2[m-v] = array2[r-v] ; array2[r-v] = it ; | 
| 1944 | 	      if ( *l > *m ) | 
| 1945 | 		{ | 
| 1946 | 		  t = *l ; *l = *m ; *m = t ; | 
| 1947 | 		  it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; | 
| 1948 | 		} | 
| 1949 | 	    } | 
| 1950 | 	  c = *m ; | 
| 1951 | 	  while ( r - l > 1 ) | 
| 1952 | 	    { | 
| 1953 | 	      while ( *(++l) < c ) ; | 
| 1954 | 	      while ( *(--r) > c ) ; | 
| 1955 | 	      t = *l ; *l = *r ; *r = t ; | 
| 1956 | 	      it = array2[l-v] ; array2[l-v] = array2[r-v] ; array2[r-v] = it ; | 
| 1957 | 	    } | 
| 1958 | 	  l = r - 1 ; | 
| 1959 | 	  if ( l < m ) | 
| 1960 | 	    {  ls[sp+1] = ls[sp] ; | 
| 1961 | 	      rs[sp+1] = l      ; | 
| 1962 | 	      ls[sp  ] = r      ; | 
| 1963 | 	    } | 
| 1964 | 	  else | 
| 1965 | 	    {  ls[sp+1] = r      ; | 
| 1966 | 	      rs[sp+1] = rs[sp] ; | 
| 1967 | 	      rs[sp  ] = l      ; | 
| 1968 | 	    } | 
| 1969 | 	  sp++ ; | 
| 1970 | 	} | 
| 1971 |       else sp-- ; | 
| 1972 |     } | 
| 1973 |   for ( l = v , m = v + (n-1) ; l < m ; l++ ) | 
| 1974 |     {  if ( *l > *(l+1) ) | 
| 1975 | 	{ | 
| 1976 | 	  c = *(l+1) ; | 
| 1977 | 	  it = array2[(l-v)+1] ; | 
| 1978 | 	  for ( r = l ; r >= v && *r > c ; r-- ) | 
| 1979 | 	    { | 
| 1980 | 	      *(r+1) = *r ; | 
| 1981 | 	      array2[(r-v)+1] = array2[(r-v)] ; | 
| 1982 | 	    } | 
| 1983 | 	  *(r+1) = c ; | 
| 1984 | 	  array2[(r-v)+1] = it ; | 
| 1985 | 	} | 
| 1986 |     } | 
| 1987 | } | 
| 1988 | /*     For each row compute reciprocal of pivot element and  take out of */ | 
| 1989 | /*     Also use HLINK(1 to permute column numbers */ | 
| 1990 | /*     and HPIVRO to permute row numbers */ | 
| 1991 | /*     Sort into column order as was stored by row */ | 
| 1992 | /*     If Assembler then shift row numbers in L by 3 */ | 
| 1993 | /*     Put column numbers in U for L-U update */ | 
| 1994 | /*     and multiply U elements by - reciprocal of pivot element */ | 
| 1995 | /*     and set up backward pointers for pivot rows */ | 
| 1996 | void c_ekkshfv(EKKfactinfo *fact, | 
| 1997 | 	       EKKHlink *rlink, EKKHlink *clink, | 
| 1998 | 	     int xnewro) | 
| 1999 | { | 
| 2000 |   int *hcoli	= fact->xecadr; | 
| 2001 |   double *dluval	= fact->xeeadr; | 
| 2002 |   double *dvalpv = fact->kw3adr; | 
| 2003 |   int *mrstrt	= fact->xrsadr; | 
| 2004 |   int *hrowi	= fact->xeradr; | 
| 2005 |   int *mcstrt	= fact->xcsadr; | 
| 2006 |   int *hinrow	= fact->xrnadr; | 
| 2007 |   int *hincol	= fact->xcnadr; | 
| 2008 |   int *hpivro	= fact->krpadr; | 
| 2009 |   int *hpivco	= fact->kcpadr; | 
| 2010 |   double *dpermu = fact->kadrpm; | 
| 2011 |   double * de2val = fact->xe2adr ? fact->xe2adr-1: 0; | 
| 2012 |   int nnentu	= fact->nnentu; | 
| 2013 |   int xnetal	= fact->xnetal; | 
| 2014 |  | 
| 2015 |   int numberSlacks; /* numberSlacks not read */ | 
| 2016 |  | 
| 2017 |   int i, j, k, kk, nel; | 
| 2018 |   int nroom; | 
| 2019 |   bool need_more_space; | 
| 2020 |   int ndenuc=fact->ndenuc; | 
| 2021 |   int if_sparse_update=fact->if_sparse_update; | 
| 2022 |   int nnentl = fact->nnentl; | 
| 2023 |   int nnetas = fact->nnetas; | 
| 2024 |  | 
| 2025 |   int *ihlink	= (reinterpret_cast<int*> (clink))+1;	/* can't use rlink for simple loop below */ | 
| 2026 |  | 
| 2027 |   const int nrow		= fact->nrow; | 
| 2028 |   const int maxinv	= fact->maxinv; | 
| 2029 |  | 
| 2030 |   /* this is not just a temporary - c_ekkbtrn etc use this */ | 
| 2031 |   int *mpermu	= (reinterpret_cast<int*> (dpermu+nrow))+1; | 
| 2032 |  | 
| 2033 |   int * temp = ihlink+nrow; | 
| 2034 |   int * temp2 = temp+nrow; | 
| 2035 |   const int notMuchRoom = (nnentu + xnewro + 10 > nnetas - nnentl); | 
| 2036 |  | 
| 2037 |   /* compress hlink and make simpler */ | 
| 2038 |   for (i = 1; i <= nrow; ++i) { | 
| 2039 |     mpermu[i] = rlink[i].pre; | 
| 2040 |     ihlink[i] = rlink[i].suc; | 
| 2041 |   } | 
| 2042 |   /* mpermu[i] == the step in which row i was pivoted */ | 
| 2043 |   /* ihlink[i] == the step in which col i was pivoted */ | 
| 2044 |  | 
| 2045 |   /* must be same as in c_ekkshff */ | 
| 2046 |   if (fact->ndenuc||notMuchRoom||nrow<C_EKK_GO_SPARSE) { | 
| 2047 |     int ninbas; | 
| 2048 |  | 
| 2049 |     /* CHANGE COLUMN NUMBERS AND FILL IN RECIPROCALS */ | 
| 2050 |     /* ALSO RECOMPUTE NUMBER IN COLUMN */ | 
| 2051 |     /* initialize with a fake pivot in each column */ | 
| 2052 |     c_ekkscpy_0_1(nrow, 1, &hincol[1]); | 
| 2053 |  | 
| 2054 |     if (notMuchRoom) { | 
| 2055 |       fact->eta_size=static_cast<int>(1.05*fact->eta_size); | 
| 2056 |  | 
| 2057 |       /* eta_size can be no larger than maxNNetas */ | 
| 2058 |       if (fact->maxNNetas > 0 && | 
| 2059 | 	  fact->eta_size > fact->maxNNetas) { | 
| 2060 | 	fact->eta_size=fact->maxNNetas; | 
| 2061 |       } | 
| 2062 |     } /* endif */ | 
| 2063 |  | 
| 2064 |     /* For each row compute reciprocal of pivot element and take out of U */ | 
| 2065 |     /* Also use ihlink to permute column numbers */ | 
| 2066 |     /* the rows are not stored compactly or in order, | 
| 2067 |      * so we have to find out where the last one is stored */ | 
| 2068 |     ninbas=0; | 
| 2069 |     for (i = 1; i <= nrow; ++i) { | 
| 2070 |       int jpiv=mpermu[i]; | 
| 2071 |       int nin=hinrow[i]; | 
| 2072 |       int krs = mrstrt[i]; | 
| 2073 |       int kre = krs + nin; | 
| 2074 |  | 
| 2075 |       temp[jpiv]=krs; | 
| 2076 |       temp2[jpiv]=nin; | 
| 2077 |  | 
| 2078 |       ninbas = CoinMax(kre, ninbas); | 
| 2079 |  | 
| 2080 |       /* c_ekktria etc ensure that the first row entry is the pivot */ | 
| 2081 |       dvalpv[jpiv] = 1. / dluval[krs]; | 
| 2082 |       hcoli[krs] = 0;	/* probably needed for c_ekkrowq */ | 
| 2083 |       /* room for the pivot has already been allocated, so hincol ok */ | 
| 2084 |  | 
| 2085 |       for (kk = krs + 1; kk < kre; ++kk) { | 
| 2086 | 	int j = ihlink[hcoli[kk]]; | 
| 2087 | 	hcoli[kk] = j;		/* permute the col index */ | 
| 2088 | 	hrowi[kk] = jpiv;	/* permute the row index */ | 
| 2089 | 	++hincol[j]; | 
| 2090 |       } | 
| 2091 |     } | 
| 2092 |     /* temp [mpermu[i]] == mrstrt[i] */ | 
| 2093 |     /* temp2[mpermu[i]] == hinrow[i] */ | 
| 2094 |  | 
| 2095 |     ninbas--;	/* ???? */ | 
| 2096 |     c_ekkscpy(nrow, &temp[1], &mrstrt[1]); | 
| 2097 |     c_ekkscpy(nrow, &temp2[1], &hinrow[1]); | 
| 2098 |  | 
| 2099 |     /* now mrstrt, hinrow, hcoli and hrowi have been permuted */ | 
| 2100 |  | 
| 2101 |     /* Sort into column order as was stored by row */ | 
| 2102 |     /* There will be an empty entry in front of each each column, | 
| 2103 |      * because we initialized hincol to 1s, and c_ekkrowq fills in | 
| 2104 |      * entries from the back */ | 
| 2105 |     c_ekkrowq(hcoli, hrowi, dluval, mcstrt, hincol, nrow, ninbas); | 
| 2106 |  | 
| 2107 |  | 
| 2108 |     /* The shuffle zeroed out column pointers */ | 
| 2109 |     /* Put them back for L-U update */ | 
| 2110 |     /* Also multiply U elements by - reciprocal of pivot element */ | 
| 2111 |     /* Also decrement mcstrt/hincol to give "real" sizes */ | 
| 2112 |     for (i = 1; i <= nrow; ++i) { | 
| 2113 |       int kx = --mcstrt[i]; | 
| 2114 |       nel = --hincol[i]; | 
| 2115 |       hrowi[kx] = nel; | 
| 2116 |       dluval[kx] = dvalpv[i]; | 
| 2117 | #ifndef NO_SHIFT | 
| 2118 |       for (int j=kx+1;j<=kx+nel;j++) | 
| 2119 | 	hrowi[j] = SHIFT_INDEX(hrowi[j]); | 
| 2120 | #endif | 
| 2121 |     } | 
| 2122 |  | 
| 2123 |     /* sort dense part */ | 
| 2124 |     for (i=nrow-ndenuc+1; i<=nrow; i++) { | 
| 2125 |       int kx = mcstrt[i]+1;	/* "real" entries start after pivot */ | 
| 2126 |       int nel = hincol[i]; | 
| 2127 |       c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); | 
| 2128 |     } | 
| 2129 |  | 
| 2130 |     /* Recompute number in U */ | 
| 2131 |     nnentu = mcstrt[nrow] + hincol[nrow]; | 
| 2132 |     mcstrt[nrow + 4] = nnentu + 1;	/* magic - AND DEAD */ | 
| 2133 |  | 
| 2134 |     /* as not much room switch off fast etas */ | 
| 2135 |     mrstrt[1] = 0;			/* magic */ | 
| 2136 |     fact->rows_ok = false; | 
| 2137 |     i = nrow + maxinv + 5;	/* DEAD */ | 
| 2138 |   } else { | 
| 2139 |     /* *************************************** */ | 
| 2140 |     /*       enough memory to do a bit faster */ | 
| 2141 |     /*       For each row compute reciprocal of pivot element and */ | 
| 2142 |     /*       take out of U */ | 
| 2143 |     /*       Also use HLINK(1 to permute column numbers */ | 
| 2144 |     int ninbas=0; | 
| 2145 |     int ilast; /* last available entry */ | 
| 2146 |     int spareSpace; | 
| 2147 |     int * hcoli2; | 
| 2148 |     double * dluval2; | 
| 2149 |     /*int * hlink2 = ihlink+nrow; | 
| 2150 |       int * mrstrt2 = hlink2+nrow;*/ | 
| 2151 |     int =10000; | 
| 2152 |     /* mwork has order of row copy */ | 
| 2153 |     EKKHlink *mwork	= (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; | 
| 2154 |     fact->rows_ok = true; | 
| 2155 |  | 
| 2156 |     if (if_sparse_update) { | 
| 2157 |       ilast=nnetas-nnentl; | 
| 2158 |     } else { | 
| 2159 |       /* missing out nnentl stuff */ | 
| 2160 |       ilast=nnetas; | 
| 2161 |     } | 
| 2162 |     spareSpace=ilast-nnentu; | 
| 2163 |     need_more_space=false; | 
| 2164 |     hcoli2 = hcoli+spareSpace; | 
| 2165 |     /*     save clean row copy if enough room */ | 
| 2166 |     nroom = (spareSpace) / nrow; | 
| 2167 |     if ((nnentu<<3)>150*maxinv) { | 
| 2168 |       extraSpace=150*maxinv; | 
| 2169 |     } else { | 
| 2170 |       extraSpace=nnentu<<3; | 
| 2171 |     } | 
| 2172 |     if (nrow<10000) { | 
| 2173 |       if (nroom < 10) { | 
| 2174 | 	need_more_space=true; | 
| 2175 |       } | 
| 2176 |     } else { | 
| 2177 |       if (nroom < 5&&!if_sparse_update) { | 
| 2178 | 	need_more_space=true; | 
| 2179 |       } | 
| 2180 |     } | 
| 2181 |     if (nroom > CoinMin(50,maxinv)) { | 
| 2182 |       need_more_space=false; | 
| 2183 |     } | 
| 2184 |     if (need_more_space) { | 
| 2185 |       if (if_sparse_update) { | 
| 2186 | 	int i1=fact->eta_size+10*nrow; | 
| 2187 | 	fact->eta_size=static_cast<int>(1.2*fact->eta_size); | 
| 2188 | 	if (i1>fact->eta_size) { | 
| 2189 | 	  fact->eta_size=i1; | 
| 2190 | 	} | 
| 2191 |       } else { | 
| 2192 | 	fact->eta_size=static_cast<int>(1.05*fact->eta_size); | 
| 2193 |       } | 
| 2194 |     } else { | 
| 2195 |       if (nroom<11) { | 
| 2196 | 	if (if_sparse_update) { | 
| 2197 | 	  int i1=fact->eta_size+(11-nroom)*nrow; | 
| 2198 | 	  fact->eta_size=static_cast<int>(1.2*fact->eta_size); | 
| 2199 | 	  if (i1>fact->eta_size) { | 
| 2200 | 	    fact->eta_size=i1; | 
| 2201 | 	  } | 
| 2202 | 	} | 
| 2203 |       } | 
| 2204 |     } | 
| 2205 |     if (fact->maxNNetas>0&&fact->eta_size> | 
| 2206 | 	fact->maxNNetas) { | 
| 2207 |       fact->eta_size=fact->maxNNetas; | 
| 2208 |     } | 
| 2209 |     { | 
| 2210 |       /* we can swap de2val and dluval to save copying */ | 
| 2211 |       int * eta_last=mpermu+nrow*2+3; | 
| 2212 |       int * eta_next=eta_last+nrow+2; | 
| 2213 |       int last=0; | 
| 2214 |       eta_last[0]=-1; | 
| 2215 |       if (nnentl) { | 
| 2216 | 	/* went into c_ekkcmfc - if not then in order */ | 
| 2217 | 	int next; | 
| 2218 | 	/*next=mwork[((nrow+1)<<1)+1];*/ | 
| 2219 | 	next=mwork[nrow+1].pre; | 
| 2220 | #ifdef DEBUG | 
| 2221 | 	j=mrstrt[next]; | 
| 2222 | #endif | 
| 2223 | 	for (i = 1; i <= nrow; ++i) { | 
| 2224 | 	  int iperm=mpermu[next]; | 
| 2225 | 	  eta_next[last]=iperm; | 
| 2226 | 	  eta_last[iperm]=last; | 
| 2227 | 	  temp[iperm] = mrstrt[next]; | 
| 2228 | 	  temp2[iperm] = hinrow[next]; | 
| 2229 | #ifdef DEBUG | 
| 2230 | 	  if (mrstrt[next]!=j) abort(); | 
| 2231 | 	  j=mrstrt[next]+hinrow[next]; | 
| 2232 | #endif | 
| 2233 | 	  /*next= mwork[(next<<1)+2];*/ | 
| 2234 | 	  next= mwork[next].suc; | 
| 2235 | 	  last=iperm; | 
| 2236 | 	} | 
| 2237 |       } else { | 
| 2238 | #ifdef DEBUG | 
| 2239 | 	j=0; | 
| 2240 | #endif | 
| 2241 | 	for (i = 1; i <= nrow; ++i) { | 
| 2242 | 	  int iperm=mpermu[i]; | 
| 2243 | 	  eta_next[last]=iperm; | 
| 2244 | 	  eta_last[iperm]=last; | 
| 2245 | 	  temp[iperm] = mrstrt[i]; | 
| 2246 | 	  temp2[iperm] = hinrow[i]; | 
| 2247 | 	  last=iperm; | 
| 2248 | #ifdef DEBUG | 
| 2249 | 	  if (mrstrt[i]<=j) abort(); | 
| 2250 | 	  if (i>1&&mrstrt[i]!=j+hinrow[i-1]) abort(); | 
| 2251 | 	  j=mrstrt[i]; | 
| 2252 | #endif | 
| 2253 | 	} | 
| 2254 |       } | 
| 2255 |       eta_next[last]=nrow+1; | 
| 2256 |       eta_last[nrow+1]=last; | 
| 2257 |       eta_next[nrow+1]=nrow+2; | 
| 2258 |       c_ekkscpy(nrow, &temp[1], &mrstrt[1]); | 
| 2259 |       c_ekkscpy(nrow, &temp2[1], &hinrow[1]); | 
| 2260 |       i=eta_last[nrow+1]; | 
| 2261 |       ninbas=mrstrt[i]+hinrow[i]-1; | 
| 2262 | #ifdef DEBUG | 
| 2263 |       if (spareSpace<ninbas) { | 
| 2264 |         abort(); | 
| 2265 |       } | 
| 2266 | #endif | 
| 2267 |       c_ekkizero( nrow, &hincol[1]); | 
| 2268 | #ifdef DEBUG | 
| 2269 |       for (i=nrow; i>0; i--) { | 
| 2270 | 	int krs = mrstrt[i]; | 
| 2271 | 	int jpiv = hcoli[krs]; | 
| 2272 | 	if (ihlink[jpiv]!=i) abort(); | 
| 2273 |       } | 
| 2274 | #endif | 
| 2275 |       for (i = 1; i <= ninbas; ++i) { | 
| 2276 | 	k = hcoli[i]; | 
| 2277 | 	k = ihlink[k]; | 
| 2278 | #ifdef DEBUG | 
| 2279 |         if (k<=0||k>nrow) abort(); | 
| 2280 | #endif | 
| 2281 | 	hcoli[i]=k; | 
| 2282 | 	hincol[k]++; | 
| 2283 |       } | 
| 2284 | #ifdef DEBUG | 
| 2285 |       for (i=nrow; i>0; i--) { | 
| 2286 | 	int krs = mrstrt[i]; | 
| 2287 | 	int jpiv = hcoli[krs]; | 
| 2288 | 	if (jpiv!=i) abort(); | 
| 2289 | 	if (krs>ninbas) abort(); | 
| 2290 |       } | 
| 2291 | #endif | 
| 2292 |       /*       Sort into column order as was stored by row */ | 
| 2293 |       k = 1; | 
| 2294 |       /*        Position */ | 
| 2295 |       for (kk = 1; kk <= nrow; ++kk) { | 
| 2296 | 	nel=hincol[kk]; | 
| 2297 |         mcstrt[kk] = k; | 
| 2298 | 	hrowi[k]=nel-1; | 
| 2299 |         k += hincol[kk]; | 
| 2300 | 	hincol[kk]=0; | 
| 2301 |       } | 
| 2302 |       if (de2val) { | 
| 2303 | 	dluval2=de2val; | 
| 2304 |       } else { | 
| 2305 | 	dluval2=dluval+ninbas; | 
| 2306 |       } | 
| 2307 |       nnentu = k-1; | 
| 2308 |       mcstrt[nrow + 4] = nnentu + 1; | 
| 2309 |       /* create column copy */ | 
| 2310 |       for (i=nrow; i>0; i--) { | 
| 2311 | 	int krs = mrstrt[i]; | 
| 2312 | 	int kre = krs + hinrow[i]; | 
| 2313 | 	hinrow[i]--; | 
| 2314 | 	mrstrt[i]++; | 
| 2315 |         { | 
| 2316 | 	  int kx = mcstrt[i]; | 
| 2317 | 	  /*nel = hincol[i]; | 
| 2318 | 	    if (hrowi[kx]!=nel) abort(); | 
| 2319 | 	    hrowi[kx] = nel-1;*/ | 
| 2320 | 	  dluval2[kx] = 1.0 /dluval[krs]; | 
| 2321 | 	  /*hincol[i]=0;*/ | 
| 2322 | 	  for (kk = krs + 1; kk < kre; ++kk) { | 
| 2323 | 	    int j = hcoli[kk]; | 
| 2324 | 	    int iput = hincol[j]+1; | 
| 2325 | 	    hincol[j]=iput; | 
| 2326 | 	    iput+= mcstrt[j]; | 
| 2327 | 	    hrowi[iput] = SHIFT_INDEX(i); | 
| 2328 | 	    dluval2[iput] = dluval[kk]; | 
| 2329 | 	  } | 
| 2330 | 	} | 
| 2331 |       } | 
| 2332 |       if (de2val) { | 
| 2333 | 	double * a=dluval; | 
| 2334 | 	double * address; | 
| 2335 | 	/* move first down */ | 
| 2336 | 	i=eta_next[0]; | 
| 2337 | 	{ | 
| 2338 | 	  int krs=mrstrt[i]; | 
| 2339 | 	  nel=hinrow[i]; | 
| 2340 | 	  for (j=1;j<=nel;j++) { | 
| 2341 | 	    hcoli[j]=hcoli[j+krs-1]; | 
| 2342 | 	    dluval[j]=dluval[j+krs-1]; | 
| 2343 | 	  } | 
| 2344 | 	} | 
| 2345 | 	mrstrt[i]=1; | 
| 2346 | 	/****** swap dluval and de2val !!!! ******/ | 
| 2347 | 	/* should work even for dspace */ | 
| 2348 | 	/* move L part across */ | 
| 2349 | 	address=fact->xeeadr+1; | 
| 2350 | 	fact->xeeadr=fact->xe2adr-1; | 
| 2351 | 	fact->xe2adr=address; | 
| 2352 | 	if (nnentl) { | 
| 2353 | 	  int n=xnetal-nrow-maxinv-5; | 
| 2354 | 	  int j1,j2; | 
| 2355 | 	  int * mcstrt2=mcstrt+nrow+maxinv+4; | 
| 2356 | 	  j2 = mcstrt2[1]; | 
| 2357 | 	  j1 = mcstrt2[n+1]+1; | 
| 2358 | #if 0 | 
| 2359 | 	  memcpy(de2val+j1,dluval+j1,(j2-j1+1)*sizeof(double)); | 
| 2360 | #else | 
| 2361 | 	  c_ekkdcpy(j2-j1+1, | 
| 2362 | 		  (dluval+j1),(de2val+j1)); | 
| 2363 | #endif | 
| 2364 | 	} | 
| 2365 | 	dluval = de2val; | 
| 2366 | 	de2val = a; | 
| 2367 |       } else { | 
| 2368 | 	/* copy down dluval */ | 
| 2369 | #if 0 | 
| 2370 | 	memcpy(&dluval[1],&dluval2[1],ninbas*sizeof(double)); | 
| 2371 | #else | 
| 2372 | 	c_ekkdcpy(ninbas, | 
| 2373 | 		(dluval2+1),(dluval+1)); | 
| 2374 | #endif | 
| 2375 |       } | 
| 2376 |       /* sort dense part */ | 
| 2377 |       for (i=nrow-ndenuc+1;i<=nrow;i++) { | 
| 2378 | 	int kx = mcstrt[i]+1; | 
| 2379 | 	int nel = hincol[i]; | 
| 2380 | 	c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); | 
| 2381 |       } | 
| 2382 |     } | 
| 2383 |     mrstrt[nrow + 1] = ilast + 1; | 
| 2384 |   } | 
| 2385 |   /* Find first non slack */ | 
| 2386 |   for (i = 1; i <= nrow; ++i) { | 
| 2387 |     int kcs = mcstrt[i]; | 
| 2388 |     if (hincol[i] != 0 || dluval[kcs] != SLACK_VALUE) { | 
| 2389 |       break; | 
| 2390 |     } | 
| 2391 |   } | 
| 2392 |   numberSlacks = i - 1; | 
| 2393 |   { | 
| 2394 |     /* set slacks to 1 */ | 
| 2395 |     int * array = fact->krpadr + ( fact->nrowmx+2); | 
| 2396 |     int nSet = (numberSlacks)>>5; | 
| 2397 |     int n2 = (fact->nrowmx+32)>>5; | 
| 2398 |     int i; | 
| 2399 |     memset(array,0xff,nSet*sizeof(int)); | 
| 2400 |     memset(array+nSet,0,(n2-nSet)*sizeof(int)); | 
| 2401 |     for (i=nSet<<5;i<=numberSlacks;i++) | 
| 2402 |       c_ekk_Set(array,i); | 
| 2403 |     c_ekk_Unset(array,fact->nrow+1); /* make sure off end not slack */ | 
| 2404 | #ifndef NDEBUG | 
| 2405 |     for (i=1;i<=numberSlacks;i++) | 
| 2406 |       assert (c_ekk_IsSet(array,i)); | 
| 2407 |     for (;i<=fact->nrow;i++) | 
| 2408 |       assert (!c_ekk_IsSet(array,i)); | 
| 2409 | #endif | 
| 2410 |   } | 
| 2411 |  | 
| 2412 |   /* and set up backward pointers */ | 
| 2413 |   /* clean up HPIVCO for fancy assembler stuff */ | 
| 2414 |   /* xnetal was initialized to nrow + maxinv + 4 in c_ekktria, and grows */ | 
| 2415 |   c_ekkscpy_0_1(maxinv + 1, 1, &hpivco[nrow+4]);	/* magic */ | 
| 2416 |  | 
| 2417 |   hpivco[xnetal] = 1; | 
| 2418 |   /* shuffle down for gaps so can get rid of hpivco for L */ | 
| 2419 |   { | 
| 2420 |     const int lstart	= nrow + maxinv + 5; | 
| 2421 |     int n=xnetal-lstart ;	/* number of L entries */ | 
| 2422 |     int add,iel; | 
| 2423 |     int * hpivco_L = &hpivco[lstart]; | 
| 2424 |     int * mcstrt_L = &mcstrt[lstart]; | 
| 2425 |     if (nnentl) { | 
| 2426 |       /* elements of L were stored in descending order in dluval/hcoli */ | 
| 2427 |       int kle = mcstrt_L[0]; | 
| 2428 |       int kls = mcstrt_L[n]+1; | 
| 2429 |  | 
| 2430 |       if(if_sparse_update) { | 
| 2431 | 	int i2,iel; | 
| 2432 | 	int * mrstrt2 = &mrstrt[nrow]; | 
| 2433 |  | 
| 2434 | 	/* need row copy of L */ | 
| 2435 | 	/* hpivro is spare for counts; just used as a temp buffer */ | 
| 2436 | 	c_ekkizero( nrow, &hpivro[1]); | 
| 2437 |  | 
| 2438 | 	/* permute L indices; count L row lengths */ | 
| 2439 | 	for (iel = kls; iel <= kle; ++iel) { | 
| 2440 | 	  int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; | 
| 2441 | 	  hpivro[jrow]++; | 
| 2442 | 	  hrowi[iel] = SHIFT_INDEX(jrow); | 
| 2443 | 	} | 
| 2444 | 	{ | 
| 2445 | 	  int ibase=nnetas-nnentl+1; | 
| 2446 | 	  int firstDoRow=0; | 
| 2447 | 	  for (i=1;i<=nrow;i++) { | 
| 2448 | 	    mrstrt2[i]=ibase; | 
| 2449 | 	    if (hpivro[i]&&!firstDoRow) { | 
| 2450 | 	      firstDoRow=i; | 
| 2451 | 	    } | 
| 2452 | 	    ibase+=hpivro[i]; | 
| 2453 | 	    hpivro[i]=mrstrt2[i]; | 
| 2454 | 	  } | 
| 2455 | 	  if (!firstDoRow) { | 
| 2456 | 	    firstDoRow=nrow+1; | 
| 2457 | 	  } | 
| 2458 | 	  mrstrt2[i]=ibase; | 
| 2459 | 	  fact->firstDoRow = firstDoRow; | 
| 2460 | 	} | 
| 2461 | 	i2=mcstrt_L[n]; | 
| 2462 | 	for (i = n-1; i >= 0; --i) { | 
| 2463 | 	  int i1 = mcstrt_L[i]; | 
| 2464 | 	  int ipiv=hpivco_L[i]; | 
| 2465 | 	  ipiv=mpermu[ipiv]; | 
| 2466 | 	  hpivco_L[i]=ipiv; | 
| 2467 | 	  for (iel=i2 ; iel < i1; iel++) { | 
| 2468 | 	    int irow = UNSHIFT_INDEX(hrowi[iel+1]); | 
| 2469 | 	    int iput=hpivro[irow]; | 
| 2470 | 	    hpivro[irow]=iput+1; | 
| 2471 | 	    hcoli[iput]=ipiv; | 
| 2472 | 	    de2val[iput]=dluval[iel+1]; | 
| 2473 | 	  } | 
| 2474 | 	  i2=i1; | 
| 2475 | 	} | 
| 2476 |       } else { | 
| 2477 | 	/* just permute row numbers */ | 
| 2478 |  | 
| 2479 | 	for (j = 0; j < n; ++j) { | 
| 2480 | 	  hpivco_L[j] = mpermu[hpivco_L[j]]; | 
| 2481 | 	} | 
| 2482 | 	for (iel = kls; iel <= kle; ++iel) { | 
| 2483 | 	  int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; | 
| 2484 | 	  hrowi[iel] = SHIFT_INDEX(jrow); | 
| 2485 | 	} | 
| 2486 |       } | 
| 2487 |  | 
| 2488 |       add=hpivco_L[n-1]-hpivco_L[0]-n+1; | 
| 2489 |       if (add) { | 
| 2490 | 	int i; | 
| 2491 | 	int last = hpivco_L[n-1]; | 
| 2492 | 	int laststart = mcstrt_L[n]; | 
| 2493 | 	int base=hpivco_L[0]-1; | 
| 2494 | 	/* adjust so numbers match */ | 
| 2495 | 	mcstrt_L-=base; | 
| 2496 | 	hpivco_L-=base; | 
| 2497 | 	mcstrt_L[last]=laststart; | 
| 2498 | 	for (i=n-1;i>=0;i--) { | 
| 2499 | 	  int ipiv=hpivco_L[i+base]; | 
| 2500 | 	  while (ipiv<last) { | 
| 2501 | 	    mcstrt_L[last-1]=laststart; | 
| 2502 | 	    hpivco_L[last-1]=last; | 
| 2503 | 	    last--; | 
| 2504 | 	  } | 
| 2505 | 	  laststart=mcstrt_L[i+base]; | 
| 2506 | 	  mcstrt_L[last-1]=laststart; | 
| 2507 | 	  hpivco_L[last-1]=last; | 
| 2508 | 	  last--; | 
| 2509 | 	} | 
| 2510 | 	xnetal+=add; | 
| 2511 |       } | 
| 2512 |     } | 
| 2513 |     //int lstart=fact->lstart; | 
| 2514 |     //const int * COIN_RESTRICT hpivco	= fact->kcpadr; | 
| 2515 |     fact->firstLRow = hpivco[lstart]; | 
| 2516 |   } | 
| 2517 |   fact->nnentu = nnentu; | 
| 2518 |   fact->xnetal = xnetal; | 
| 2519 |   /* now we have xnetal * we can set up pointers */ | 
| 2520 |   clp_setup_pointers(fact); | 
| 2521 |  | 
| 2522 |   /* this is the array used in c_ekkbtrn; it is passed to c_ekkbtju as hpivco. | 
| 2523 |    * this gets modified by F-T as we pivot columns in and out. | 
| 2524 |    */ | 
| 2525 |   { | 
| 2526 |     /* do new hpivco */ | 
| 2527 |     int * hpivco_new = fact->kcpadr+1; | 
| 2528 |     int * back = &fact->kcpadr[2*nrow+maxinv+4]; | 
| 2529 |     /* set zeroth to stop illegal read */ | 
| 2530 |     back[0]=1; | 
| 2531 |  | 
| 2532 |     hpivco_new[nrow+1]=nrow+1; /* deliberate loop for dense tests */ | 
| 2533 |     hpivco_new[0]=1; | 
| 2534 |  | 
| 2535 |     for (i=1;i<=nrow;i++) { | 
| 2536 |       hpivco_new[i]=i+1; | 
| 2537 |       back[i+1]=i; | 
| 2538 |     } | 
| 2539 |     back[1]=0; | 
| 2540 |  | 
| 2541 |     fact->first_dense = CoinMax(fact->first_dense,4); | 
| 2542 |     fact->numberSlacks=numberSlacks; | 
| 2543 |     fact->lastSlack=numberSlacks; | 
| 2544 |     fact->firstNonSlack=hpivco_new[numberSlacks]; | 
| 2545 |   } | 
| 2546 |  | 
| 2547 |   /* also zero out permute region and nonzero */ | 
| 2548 |   c_ekkdzero( nrow, (dpermu+1)); | 
| 2549 |  | 
| 2550 |   if (if_sparse_update) { | 
| 2551 |     char * nonzero = reinterpret_cast<char *> (&mpermu[nrow+1]);	/* used in c_ekkbtrn */ | 
| 2552 |     /*c_ekkizero(nrow,(int *)nonzero);*/ | 
| 2553 |     c_ekkczero(nrow,nonzero); | 
| 2554 |     /*memset(nonzero,0,nrow*sizeof(int));*/ /* for faster method */ | 
| 2555 |   } | 
| 2556 |   for (i = 1; i <= nrow; ++i) { | 
| 2557 |     hpivro[mpermu[i]] = i; | 
| 2558 |   } | 
| 2559 |  | 
| 2560 | } /* c_ekkshfv */ | 
| 2561 |  | 
| 2562 |  | 
| 2563 | static void c_ekkclcp1(const int *hcol, const int * mrstrt, | 
| 2564 | 		     int *hrow, int *mcstrt, | 
| 2565 | 		     int *hincol, int nnrow, int nncol, | 
| 2566 | 		     int ninbas) | 
| 2567 | { | 
| 2568 |   int i, j, kc, kr, kre, krs, icol; | 
| 2569 |   int iput; | 
| 2570 |  | 
| 2571 |   /* Create columnwise storage of row indices */ | 
| 2572 |  | 
| 2573 |   kc = 1; | 
| 2574 |   for (j = 1; j <= nncol; ++j) { | 
| 2575 |     mcstrt[j] = kc; | 
| 2576 |     kc += hincol[j]; | 
| 2577 |     hincol[j] = 0; | 
| 2578 |   } | 
| 2579 |   mcstrt[nncol + 1] = ninbas + 1; | 
| 2580 |  | 
| 2581 |   for (i = 1; i <= nnrow; ++i) { | 
| 2582 |     krs = mrstrt[i]; | 
| 2583 |     kre = mrstrt[i + 1] - 1; | 
| 2584 |     for (kr = krs; kr <= kre; ++kr) { | 
| 2585 |       icol = hcol[kr]; | 
| 2586 |       iput = hincol[icol]; | 
| 2587 |       hincol[icol] = iput + 1; | 
| 2588 |       iput += mcstrt[icol]; | 
| 2589 |       hrow[iput] = i; | 
| 2590 |     } | 
| 2591 |   } | 
| 2592 | } /* c_ekkclcp */ | 
| 2593 | inline void c_ekkclcp2(const int *hcol, const double *dels, const int * mrstrt, | 
| 2594 | 		     int *hrow, double *dels2, int *mcstrt, | 
| 2595 | 		     int *hincol, int nnrow, int nncol, | 
| 2596 | 		     int ninbas) | 
| 2597 | { | 
| 2598 |   int i, j, kc, kr, kre, krs, icol; | 
| 2599 |   int iput; | 
| 2600 |  | 
| 2601 |   /* Create columnwise storage of row indices */ | 
| 2602 |  | 
| 2603 |   kc = 1; | 
| 2604 |   for (j = 1; j <= nncol; ++j) { | 
| 2605 |     mcstrt[j] = kc; | 
| 2606 |     kc += hincol[j]; | 
| 2607 |     hincol[j] = 0; | 
| 2608 |   } | 
| 2609 |   mcstrt[nncol + 1] = ninbas + 1; | 
| 2610 |  | 
| 2611 |   for (i = 1; i <= nnrow; ++i) { | 
| 2612 |     krs = mrstrt[i]; | 
| 2613 |     kre = mrstrt[i + 1] - 1; | 
| 2614 |     for (kr = krs; kr <= kre; ++kr) { | 
| 2615 |       icol = hcol[kr]; | 
| 2616 |       iput = hincol[icol]; | 
| 2617 |       hincol[icol] = iput + 1; | 
| 2618 |       iput += mcstrt[icol]; | 
| 2619 |       hrow[iput] = i; | 
| 2620 |       dels2[iput] = dels[kr]; | 
| 2621 |     } | 
| 2622 |   } | 
| 2623 | } /* c_ekkclcp */ | 
| 2624 | int c_ekkslcf(const EKKfactinfo *fact) | 
| 2625 | { | 
| 2626 |   int * hrow = fact->xeradr; | 
| 2627 |   int * hcol = fact->xecadr; | 
| 2628 |   double * dels = fact->xeeadr; | 
| 2629 |   int * hinrow = fact->xrnadr; | 
| 2630 |   int * hincol = fact->xcnadr; | 
| 2631 |   int * mrstrt = fact->xrsadr; | 
| 2632 |   int * mcstrt = fact->xcsadr; | 
| 2633 |   const int nrow = fact->nrow; | 
| 2634 |   int ninbas; | 
| 2635 |   /* space for etas */ | 
| 2636 |   const int nnetas	= fact->nnetas; | 
| 2637 |   ninbas=mcstrt[nrow+1]-1; | 
| 2638 |  | 
| 2639 |   /* Now sort */ | 
| 2640 |   if (ninbas << 1 > nnetas) { | 
| 2641 |     /* Put it in row order */ | 
| 2642 |     int i,k; | 
| 2643 |     c_ekkrowq(hrow, hcol, dels, mrstrt, hinrow, nrow, ninbas); | 
| 2644 |     k = 1; | 
| 2645 |     for (i = 1; i <= nrow; ++i) { | 
| 2646 |       mrstrt[i] = k; | 
| 2647 |       k += hinrow[i]; | 
| 2648 |     } | 
| 2649 |     mrstrt[nrow + 1] = k; | 
| 2650 |  | 
| 2651 |     /* make a column copy without the extra values */ | 
| 2652 |     c_ekkclcp1(hcol, mrstrt, hrow, mcstrt, hincol, nrow, nrow, ninbas); | 
| 2653 |   } else { | 
| 2654 |     /* Move elements up memory */ | 
| 2655 |     c_ekkdcpy(ninbas, | 
| 2656 | 	    (dels+1), (dels+ninbas + 1)); | 
| 2657 |  | 
| 2658 |     /* make a row copy with the extra values */ | 
| 2659 |     c_ekkclcp2(hrow, &dels[ninbas], mcstrt, hcol, dels, mrstrt, hinrow, nrow, nrow, ninbas); | 
| 2660 |   } | 
| 2661 |   return (ninbas); | 
| 2662 | } /* c_ekkslcf */ | 
| 2663 | /*     Uwe H. Suhl, September 1986 */ | 
| 2664 | /*     Removes lower and upper triangular factors from the matrix. */ | 
| 2665 | /*     Code for routine: 102 */ | 
| 2666 | /*     Return codes: */ | 
| 2667 | /*	0: ok */ | 
| 2668 | /*      -5: not enough space in row file */ | 
| 2669 | /*      7: pivot too small - col sing */ | 
| 2670 | /* | 
| 2671 |  * This selects singleton columns and rows for the LU factorization. | 
| 2672 |  * Singleton columns require no | 
| 2673 |  * | 
| 2674 |  * (1) Note that columns are processed using a queue, not a stack; | 
| 2675 |  * this produces better pivots. | 
| 2676 |  * | 
| 2677 |  * (2) At most nrows elements are ever entered into the queue. | 
| 2678 |  * | 
| 2679 |  * (3) When pivoting singleton columns, every column that is part of | 
| 2680 |  * the pivot row is shortened by one, including the singleton column | 
| 2681 |  * itself; the hincol entries are updated appropriately. | 
| 2682 |  * Thus, pivoting on a singleton column may create other singleton columns | 
| 2683 |  * (but not singleton rows). | 
| 2684 |  * The dual property is true for rows. | 
| 2685 |  * | 
| 2686 |  * (4) Row entries (hrowi) are not changed when pivoting singleton columns. | 
| 2687 |  * Singleton columns that are created as a result of pivoting the | 
| 2688 |  * rows of other singleton columns will therefore have row entries | 
| 2689 |  * corresponding to those pivoted rows.  Since we need to find the | 
| 2690 |  * row entry for the row being pivoted, we have to | 
| 2691 |  * search its row entries for the one whose hlink entry indicates | 
| 2692 |  * that it has not yet been pivoted. | 
| 2693 |  * | 
| 2694 |  * (9) As a result of pivoting columns, sections in hrowi corresponding to | 
| 2695 |  * pivoted columns are no longer needed, and entries in sections | 
| 2696 |  * for non-pivoted columns may have entries corresponding to pivoted rows. | 
| 2697 |  * This is why hrowi needs to be compacted. | 
| 2698 |  * | 
| 2699 |  * (5) When the row_pre and col_pre fields of the hlink struct contain | 
| 2700 |  * negative values, they indicate that the row has been pivoted, and | 
| 2701 |  * the negative of that value is the pivot order. | 
| 2702 |  * That is the only use for these fields in this routine. | 
| 2703 |  * | 
| 2704 |  * (6) This routine assumes that hlink is initialized to zeroes. | 
| 2705 |  * Under this assumption, the following is an invariant in this routine: | 
| 2706 |  * | 
| 2707 |  *	(clink[i].pre < 0) ==> (hincol[i]==0) | 
| 2708 |  * | 
| 2709 |  * The converse is not true; see (15). | 
| 2710 |  * | 
| 2711 |  * The dual is also true, but only while pivoting singletong rows, | 
| 2712 |  * since we don't update hinrow while pivoting columns; | 
| 2713 |  * THESE VALUES ARE USED LATER, BUT I DON'T UNDERSTAND HOW YET. | 
| 2714 |  * | 
| 2715 |  * (7) hpivco is used for two purposes.  The low end is used to implement the | 
| 2716 |  * queue when pivoting columns; the high end is used to hold eta-matrix | 
| 2717 |  * entries. | 
| 2718 |  * | 
| 2719 |  * (8) As a result of pivoting columns, for all i:1<=i<=nrow, either | 
| 2720 |  *	hinrow[i] has not changed | 
| 2721 |  * or | 
| 2722 |  *	hinrow[i] = 0 | 
| 2723 |  * This is another way of saying that pivoting singleton columns cannot | 
| 2724 |  * create singleton rows. | 
| 2725 |  * The dual holds for hincol after pivoting rows. | 
| 2726 |  * | 
| 2727 |  * (10) In constrast to (4), while pivoting rows we | 
| 2728 |  * do not let the hcoli get out-of-date.  That is because as part of | 
| 2729 |  * the process of numerical pivoting we have to find the row entries | 
| 2730 |  * for all the rows in the pivot column, so we may as well keep the | 
| 2731 |  * entries up to date.  This is done by moving the last column entry | 
| 2732 |  * for each row into the entry that was used for the pivot column. | 
| 2733 |  * | 
| 2734 |  * (11) When pivoting a column, we must find the pivot row entry in | 
| 2735 |  * its row table.  Sometimes we search for other things at the same time. | 
| 2736 |  * The same is true for pivoting columns.  This search should never | 
| 2737 |  * fail. | 
| 2738 |  * | 
| 2739 |  * (12) Information concerning the eta matrices is stored in the high | 
| 2740 |  * ends of arrays that are also used to store information concerning | 
| 2741 |  * the basis; these arrays are: hpivco, mcstrt, dluval and hcoli. | 
| 2742 |  * Information is only stored in these arrays as a part of pivoting | 
| 2743 |  * singleton rows, since the only thing that needs to be saved as | 
| 2744 |  * a part of pivoting singleton columns is which rows and columns were chosen, | 
| 2745 |  * and this is stored in hlink. | 
| 2746 |  * Since they have to share the same array, the eta information grows | 
| 2747 |  * downward instead of upward. Eventually, eta information may grow | 
| 2748 |  * down to the top of the basis information.  As pivoting proceeds, | 
| 2749 |  * more and more of this information is no longer needed, so when this | 
| 2750 |  * happens we can try compacting the arrays to see if we can recover | 
| 2751 |  * enough space.  lstart points at the bottom entry in the arrays, | 
| 2752 |  * xnewro/xnewco at the top of the basis information, and each time we | 
| 2753 |  * pivot a singleton row we know that we will need exactly as many new | 
| 2754 |  * entries as there are rows in the pivot column, so we can easily | 
| 2755 |  * determine if we need more room.  The variable maxinv may be used | 
| 2756 |  * to reserve extra room when inversion starts. | 
| 2757 |  * | 
| 2758 |  * (13) Eta information is stored in a fashion that is similar to how | 
| 2759 |  * matrices are stored.  There is one entry in hpivco and mcstrt for | 
| 2760 |  * each eta (other than the initial ones for singleton columns and | 
| 2761 |  * for singleton rows that turn out to be singleton columns), | 
| 2762 |  * in the order they were chosen.  hpivco records the pivot row, | 
| 2763 |  * and mcstrt points at the first entry in the other two arrays | 
| 2764 |  * for this row.  dluval contains the actual eta values for the column, | 
| 2765 |  * and hcoli the rows these values were in. | 
| 2766 |  * These entries in mcstrt and hpivco grow upward; they start above | 
| 2767 |  * the entries used to store basis information. | 
| 2768 |  * (Actually, I don't see why they need to start maxinv+4 entries past the top). | 
| 2769 |  * | 
| 2770 |  * (14) c_ekkrwco assumes that invalidated hrowi/hcoli entries contain 0. | 
| 2771 |  * | 
| 2772 |  * (15) When pivoting singleton columns, it may possibly happen | 
| 2773 |  * that a row with all singleton column entries is created. | 
| 2774 |  * In this case, all of the columns will be enqueued, and pivoting | 
| 2775 |  * on any of them eliminates the rest, without their being chosen | 
| 2776 |  * as pivots.  The dual holds for singleton rows. | 
| 2777 |  * DOES THIS INDICATE A SINGULARITY? | 
| 2778 |  * | 
| 2779 |  * (15) There are some aspects of the implementation that I find odd. | 
| 2780 |  * hrowi is not set to 0 for pivot rows while pivoting singleton columns, | 
| 2781 |  * which would make sense to me.  Things don't work if this isn't done, | 
| 2782 |  * so the information is used somehow later on.  Also, the information | 
| 2783 |  * for the pivot column is shifted to the front of the pivot row | 
| 2784 |  * when pivoting singleton columns; this is also necessary for reasons | 
| 2785 |  * I don't understand. | 
| 2786 |  */ | 
| 2787 | int c_ekktria(EKKfactinfo *fact, | 
| 2788 | 	      EKKHlink * rlink, | 
| 2789 | 	      EKKHlink * clink, | 
| 2790 | 	    int *nsingp, | 
| 2791 | 	    int *xnewcop, int *xnewrop, | 
| 2792 | 	    int *ncompactionsp, | 
| 2793 | 	    const int ninbas) | 
| 2794 | { | 
| 2795 |   const int nrow	= fact->nrow; | 
| 2796 |   const int maxinv	= fact->maxinv; | 
| 2797 |   int *hcoli	= fact->xecadr; | 
| 2798 |   double *dluval	= fact->xeeadr; | 
| 2799 |   int *mrstrt	= fact->xrsadr; | 
| 2800 |   int *hrowi	= fact->xeradr; | 
| 2801 |   int *mcstrt	= fact->xcsadr; | 
| 2802 |   int *hinrow	= fact->xrnadr; | 
| 2803 |   int *hincol	= fact->xcnadr; | 
| 2804 |   int *stack	= fact->krpadr; /* normally hpivro */ | 
| 2805 |   int *hpivco	= fact->kcpadr; | 
| 2806 |   const double drtpiv	= fact->drtpiv; | 
| 2807 |   CoinZeroN(reinterpret_cast<int *>(rlink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); | 
| 2808 |   CoinZeroN(reinterpret_cast<int *>(clink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); | 
| 2809 |  | 
| 2810 |   fact->npivots	= 0; | 
| 2811 |   /*      Use NUSPIK to keep sum of deactivated row counts */ | 
| 2812 |   fact->nuspike	= 0; | 
| 2813 |   int xnetal	= nrow + maxinv + 4; | 
| 2814 |   int xnewro	= mrstrt[nrow] + hinrow[nrow] - 1; | 
| 2815 |   int xnewco	= xnewro; | 
| 2816 |   int kmxeta	= ninbas; | 
| 2817 |   int ncompactions	= 0; | 
| 2818 |  | 
| 2819 |   int i, j, k, kc, kce, kcs, npr; | 
| 2820 |   double pivot; | 
| 2821 |   int kipis, kipie, kjpis, kjpie, knprs, knpre; | 
| 2822 |   int ipivot, jpivot, stackc, stackr; | 
| 2823 | #ifndef NDEBUG | 
| 2824 |   int kpivot=-1; | 
| 2825 | #else | 
| 2826 |   int kpivot=-1; | 
| 2827 | #endif | 
| 2828 |   int epivco, kstart, maxstk; | 
| 2829 |   int irtcod = 0; | 
| 2830 |   int lastSlack=0; | 
| 2831 |  | 
| 2832 |   int lstart = fact->nnetas + 1; | 
| 2833 |   /*int nnentu	= ninbas; */ | 
| 2834 |   int lstart_minus_nnentu=lstart-ninbas; | 
| 2835 |   /* do initial column singletons - as can do faster */ | 
| 2836 |   for (jpivot = 1; jpivot <= nrow; ++jpivot) { | 
| 2837 |     if (hincol[jpivot] == 1) { | 
| 2838 |       ipivot = hrowi[mcstrt[jpivot]]; | 
| 2839 |       if (ipivot>lastSlack) { | 
| 2840 | 	lastSlack=ipivot; | 
| 2841 |       } else { | 
| 2842 |         /* so we can't put a structural over a slack */ | 
| 2843 | 	break; | 
| 2844 |       } | 
| 2845 |       kipis = mrstrt[ipivot]; | 
| 2846 | #if 1 | 
| 2847 |       assert (hcoli[kipis]==jpivot); | 
| 2848 | #else | 
| 2849 |       if (hcoli[kipis]!=jpivot) { | 
| 2850 | 	kpivot=kipis+1; | 
| 2851 | 	while(hcoli[kpivot]!=jpivot) kpivot++; | 
| 2852 | #ifdef DEBUG | 
| 2853 | 	kipie = kipis + hinrow[ipivot] ; | 
| 2854 | 	if (kpivot>=kipie) { | 
| 2855 | 	  abort(); | 
| 2856 | 	} | 
| 2857 | #endif | 
| 2858 |         pivot=dluval[kpivot]; | 
| 2859 | 	dluval[kpivot] = dluval[kipis]; | 
| 2860 | 	dluval[kipis] = pivot; | 
| 2861 | 	hcoli[kpivot] = hcoli[kipis]; | 
| 2862 | 	hcoli[kipis] = jpivot; | 
| 2863 |       } | 
| 2864 | #endif | 
| 2865 |       if (dluval[kipis]==SLACK_VALUE) { | 
| 2866 | 	/* record the new pivot row and column */ | 
| 2867 | 	++fact->npivots; | 
| 2868 | 	rlink[ipivot].pre = -fact->npivots; | 
| 2869 | 	clink[jpivot].pre = -fact->npivots; | 
| 2870 | 	hincol[jpivot]=0; | 
| 2871 | 	fact->nuspike += hinrow[ipivot]; | 
| 2872 |       } else { | 
| 2873 | 	break; | 
| 2874 |       } | 
| 2875 |     } else { | 
| 2876 |       break; | 
| 2877 |     } | 
| 2878 |   } | 
| 2879 |   /* Fill queue with other column singletons and clean up */ | 
| 2880 |   maxstk = 0; | 
| 2881 |   for (j = 1; j <= nrow; ++j) { | 
| 2882 |     if (hincol[j]) { | 
| 2883 |       int n=0; | 
| 2884 |       kcs = mcstrt[j]; | 
| 2885 |       kce = mcstrt[j + 1]; | 
| 2886 |       for (k = kcs; k < kce; ++k) { | 
| 2887 | 	if (! (rlink[hrowi[k]].pre < 0)) { | 
| 2888 | 	  n++; | 
| 2889 | 	} | 
| 2890 |       } | 
| 2891 |       hincol[j] = n; | 
| 2892 |       if (n == 1) { | 
| 2893 | 	/* we just created a new singleton column - enqueue it */ | 
| 2894 | 	++maxstk; | 
| 2895 | 	stack[maxstk] = j; | 
| 2896 |       } | 
| 2897 |     } | 
| 2898 |   } | 
| 2899 |   stackc = 0; /* (1) */ | 
| 2900 |  | 
| 2901 |   while (! (stackc >= maxstk)) {	/* (1) */ | 
| 2902 |     /* dequeue the next entry */ | 
| 2903 |     ++stackc; | 
| 2904 |     jpivot = stack[stackc]; | 
| 2905 |  | 
| 2906 |     /* (15) */ | 
| 2907 |     if (hincol[jpivot] != 0) { | 
| 2908 |  | 
| 2909 |       for (k = mcstrt[jpivot]; rlink[hrowi[k]].pre < 0; k++) { | 
| 2910 | 	/* (4) */ | 
| 2911 |       } | 
| 2912 |       ipivot = hrowi[k]; | 
| 2913 |  | 
| 2914 |       /* All the columns in this row are being shortened. */ | 
| 2915 |       kipis = mrstrt[ipivot]; | 
| 2916 |       kipie = kipis + hinrow[ipivot] ; | 
| 2917 |       for (k = kipis; k < kipie; ++k) { | 
| 2918 | 	j = hcoli[k]; | 
| 2919 | 	--hincol[j];	/* (3) (6) */ | 
| 2920 |  | 
| 2921 | 	if (j == jpivot) { | 
| 2922 | 	  kpivot = k;		/* (11) */ | 
| 2923 | 	} else if (hincol[j] == 1) { | 
| 2924 | 	  /* we just created a new singleton column - enqueue it */ | 
| 2925 | 	  ++maxstk; | 
| 2926 | 	  stack[maxstk] = j; | 
| 2927 | 	} | 
| 2928 |       } | 
| 2929 |  | 
| 2930 |       /* record the new pivot row and column */ | 
| 2931 |       ++fact->npivots; | 
| 2932 |       rlink[ipivot].pre = -fact->npivots; | 
| 2933 |       clink[jpivot].pre = -fact->npivots; | 
| 2934 |  | 
| 2935 |       fact->nuspike += hinrow[ipivot]; | 
| 2936 |  | 
| 2937 |       /* check the pivot */ | 
| 2938 |       assert (kpivot>0); | 
| 2939 |       pivot = dluval[kpivot]; | 
| 2940 |       if (fabs(pivot) < drtpiv) { | 
| 2941 | 	irtcod = 7; | 
| 2942 | 	++(*nsingp); | 
| 2943 | 	rlink[ipivot].pre = -nrow - 1; | 
| 2944 | 	clink[jpivot].pre = -nrow - 1; | 
| 2945 |       } | 
| 2946 |  | 
| 2947 |       /* swap the pivot column entry with the first one. */ | 
| 2948 |       /* I don't know why. */ | 
| 2949 |       dluval[kpivot] = dluval[kipis]; | 
| 2950 |       dluval[kipis] = pivot; | 
| 2951 |       hcoli[kpivot] = hcoli[kipis]; | 
| 2952 |       hcoli[kipis] = jpivot; | 
| 2953 |     } | 
| 2954 |   } | 
| 2955 |   /* (8) */ | 
| 2956 |  | 
| 2957 |   /* The entire basis may already be triangular */ | 
| 2958 |   if (fact->npivots < nrow) { | 
| 2959 |  | 
| 2960 |     /* (9) */ | 
| 2961 |     kstart = 0; | 
| 2962 |     for (j = 1; j <= nrow; ++j) { | 
| 2963 |       if (! (clink[j].pre < 0)) { | 
| 2964 | 	kcs = mcstrt[j]; | 
| 2965 | 	kce = mcstrt[j + 1]; | 
| 2966 |  | 
| 2967 | 	mcstrt[j] = kstart + 1; | 
| 2968 |  | 
| 2969 | 	for (k = kcs; k < kce; ++k) { | 
| 2970 | 	  if (! (rlink[hrowi[k]].pre < 0)) { | 
| 2971 | 	    ++kstart; | 
| 2972 | 	    hrowi[kstart] = hrowi[k]; | 
| 2973 | 	  } | 
| 2974 | 	} | 
| 2975 | 	hincol[j] = kstart - mcstrt[j] + 1; | 
| 2976 |       } | 
| 2977 |     } | 
| 2978 |     xnewco = kstart; | 
| 2979 |  | 
| 2980 |  | 
| 2981 |     /* Fill stack with initial row singletons that haven't been pivoted away */ | 
| 2982 |     stackr = 0; | 
| 2983 |     for (i = 1; i <= nrow; ++i) { | 
| 2984 |       if (! (rlink[i].pre < 0) && | 
| 2985 | 	  (hinrow[i] == 1)) { | 
| 2986 | 	++stackr; | 
| 2987 | 	stack[stackr] = i; | 
| 2988 |       } | 
| 2989 |     } | 
| 2990 |  | 
| 2991 |     while (! (stackr <= 0)) { | 
| 2992 |       ipivot = stack[stackr]; | 
| 2993 |       assert (ipivot); | 
| 2994 |       --stackr; | 
| 2995 |  | 
| 2996 | #if 1 | 
| 2997 |       assert (rlink[ipivot].pre>=0); | 
| 2998 | #else | 
| 2999 |       /* This test is probably unnecessary:  rlink[i].pre < 0 ==> hinrow[i]==0 */ | 
| 3000 |       if (rlink[ipivot].pre < 0) { | 
| 3001 | 	continue; | 
| 3002 |       } | 
| 3003 | #endif | 
| 3004 |  | 
| 3005 |       /* (15) */ | 
| 3006 |       if (hinrow[ipivot] != 0) { | 
| 3007 |  | 
| 3008 | 	/* This is a singleton row, which means it has exactly one column */ | 
| 3009 | 	jpivot = hcoli[mrstrt[ipivot]]; | 
| 3010 |  | 
| 3011 | 	kjpis = mcstrt[jpivot]; | 
| 3012 | 	epivco = hincol[jpivot] - 1; | 
| 3013 | 	hincol[jpivot] = 0;	/* this column is being pivoted away */ | 
| 3014 |  | 
| 3015 | 	/* (11) */ | 
| 3016 | 	kjpie = kjpis + epivco; | 
| 3017 | 	for (k = kjpis; k <= kjpie; ++k) { | 
| 3018 | 	  if (ipivot == hrowi[k]) | 
| 3019 | 	    break; | 
| 3020 | 	} | 
| 3021 | 	/* ASSERT (k <= kjpie) */ | 
| 3022 |  | 
| 3023 | 	/* move the last row entry for the pivot column into the pivot row's entry */ | 
| 3024 | 	/* I don't know why */ | 
| 3025 | 	hrowi[k] = hrowi[kjpie]; | 
| 3026 |  | 
| 3027 | 	/* invalidate the (old) last row entry of the pivot column */ | 
| 3028 | 	/* I don't know why */ | 
| 3029 | 	hrowi[kjpie] = 0; | 
| 3030 |  | 
| 3031 | 	/* (12) */ | 
| 3032 | 	if (! (xnewro + epivco < lstart)) { | 
| 3033 | 	  int kstart; | 
| 3034 |  | 
| 3035 | 	  if (! (epivco < lstart_minus_nnentu)) { | 
| 3036 | 	    irtcod = -5; | 
| 3037 | 	    break; | 
| 3038 | 	  } | 
| 3039 | 	  kstart = c_ekkrwco(fact,dluval, hcoli, mrstrt, hinrow, xnewro); | 
| 3040 | 	  ++ncompactions; | 
| 3041 | 	  kmxeta += (xnewro - kstart) << 1; | 
| 3042 | 	  xnewro = kstart; | 
| 3043 | 	} | 
| 3044 | 	if (! (xnewco + epivco < lstart)) { | 
| 3045 | 	  if (! (epivco < lstart_minus_nnentu)) { | 
| 3046 | 	    irtcod = -5; | 
| 3047 | 	    break; | 
| 3048 | 	  } | 
| 3049 | 	  xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); | 
| 3050 | 	  ++ncompactions; | 
| 3051 |  | 
| 3052 | 	  /*     HINCOL MAY HAVE CHANGED ??? (JJHF) */ | 
| 3053 | 	  epivco = hincol[jpivot]; | 
| 3054 | 	} | 
| 3055 |  | 
| 3056 | 	/* record the new pivot row and column */ | 
| 3057 | 	++fact->npivots; | 
| 3058 | 	rlink[ipivot].pre = -fact->npivots; | 
| 3059 | 	clink[jpivot].pre = -fact->npivots; | 
| 3060 |  | 
| 3061 | 	/* no update for nuspik */ | 
| 3062 |  | 
| 3063 | 	/* check the pivot */ | 
| 3064 | 	pivot = dluval[mrstrt[ipivot]]; | 
| 3065 | 	if (fabs(pivot) < drtpiv) { | 
| 3066 | 	  /* If the pivot is too small, reject it, but keep going */ | 
| 3067 | 	  irtcod = 7; | 
| 3068 | 	  rlink[ipivot].pre = -nrow - 1; | 
| 3069 | 	  clink[jpivot].pre = -nrow - 1; | 
| 3070 | 	} | 
| 3071 |  | 
| 3072 | 	/* Perform numerical part of elimination. */ | 
| 3073 | 	if (! (epivco <= 0)) { | 
| 3074 | 	  ++xnetal; | 
| 3075 | 	  mcstrt[xnetal] = lstart - 1; | 
| 3076 | 	  hpivco[xnetal] = ipivot; | 
| 3077 | 	  pivot = -1.f / pivot; | 
| 3078 |  | 
| 3079 | 	  kcs = mcstrt[jpivot]; | 
| 3080 | 	  kce = kcs + epivco - 1; | 
| 3081 | 	  hincol[jpivot] = 0; | 
| 3082 |  | 
| 3083 | 	  for (kc = kcs; kc <= kce; ++kc) { | 
| 3084 | 	    npr = hrowi[kc]; | 
| 3085 |  | 
| 3086 | 	    /* why bother? */ | 
| 3087 | 	    hrowi[kc] = 0; | 
| 3088 |  | 
| 3089 | 	    --hinrow[npr];	/* (3) */ | 
| 3090 | 	    if (hinrow[npr] == 1) { | 
| 3091 | 	      /* this may create new singleton rows */ | 
| 3092 | 	      ++stackr; | 
| 3093 | 	      stack[stackr] = npr; | 
| 3094 | 	    } | 
| 3095 |  | 
| 3096 | 	    /* (11) */ | 
| 3097 | 	    knprs = mrstrt[npr]; | 
| 3098 | 	    knpre = knprs + hinrow[npr]; | 
| 3099 | 	    for (k = knprs; k <= knpre; ++k) { | 
| 3100 | 	      if (jpivot == hcoli[k]) { | 
| 3101 | 		kpivot = k; | 
| 3102 | 		break; | 
| 3103 | 	      } | 
| 3104 | 	    } | 
| 3105 | 	    /* ASSERT (kpivot <= knpre) */ | 
| 3106 |  | 
| 3107 | 	    { | 
| 3108 | 	      /* (10) */ | 
| 3109 | 	      double elemnt = dluval[kpivot]; | 
| 3110 | 	      dluval[kpivot] = dluval[knpre]; | 
| 3111 | 	      hcoli[kpivot] = hcoli[knpre]; | 
| 3112 |  | 
| 3113 | 	      hcoli[knpre] = 0;	/* (14) */ | 
| 3114 |  | 
| 3115 | 	      /* store elementary row transformation */ | 
| 3116 | 	      --lstart; | 
| 3117 | 	      dluval[lstart] = elemnt * pivot; | 
| 3118 | 	      hcoli[lstart] = npr; | 
| 3119 | 	    } | 
| 3120 | 	  } | 
| 3121 | 	} | 
| 3122 |       } | 
| 3123 |     } | 
| 3124 |   } | 
| 3125 |   /* (8) */ | 
| 3126 |  | 
| 3127 |   *xnewcop = xnewco; | 
| 3128 |   *xnewrop = xnewro; | 
| 3129 |   fact->xnetal = xnetal; | 
| 3130 |   fact->nnentu = lstart - lstart_minus_nnentu; | 
| 3131 |   fact->kmxeta = kmxeta; | 
| 3132 |   *ncompactionsp = ncompactions; | 
| 3133 |  | 
| 3134 |   return (irtcod); | 
| 3135 | } /* c_ekktria */ | 
| 3136 |  |