| 1 | /* $Id: CoinPackedMatrix.cpp 1539 2012-06-28 10:26:15Z forrest $ */ |
| 2 | // Copyright (C) 2000, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinUtilsConfig.h" |
| 7 | |
| 8 | #include <algorithm> |
| 9 | #include <numeric> |
| 10 | #include <cassert> |
| 11 | #include <cstdio> |
| 12 | #include <cmath> |
| 13 | #include <iostream> |
| 14 | |
| 15 | #include "CoinPragma.hpp" |
| 16 | #include "CoinSort.hpp" |
| 17 | #include "CoinHelperFunctions.hpp" |
| 18 | #ifndef CLP_NO_VECTOR |
| 19 | #include "CoinPackedVectorBase.hpp" |
| 20 | #endif |
| 21 | #include "CoinFloatEqual.hpp" |
| 22 | #include "CoinPackedMatrix.hpp" |
| 23 | |
| 24 | #if !defined(COIN_COINUTILS_CHECKLEVEL) |
| 25 | #define COIN_COINUTILS_CHECKLEVEL 0 |
| 26 | #endif |
| 27 | |
| 28 | //############################################################################# |
| 29 | // T must be an integral type (int, CoinBigIndex, etc.) |
| 30 | template <typename T> |
| 31 | static inline T |
| 32 | (T len, double ) |
| 33 | { |
| 34 | return static_cast<T>(ceil(len * (1 + extraGap))); |
| 35 | } |
| 36 | |
| 37 | //############################################################################# |
| 38 | |
| 39 | static inline void |
| 40 | CoinTestSortedIndexSet(const int num, const int * sorted, const int maxEntry, |
| 41 | const char * testingMethod) |
| 42 | { |
| 43 | if (sorted[0] < 0 || sorted[num-1] >= maxEntry) |
| 44 | throw CoinError("bad index" , testingMethod, "CoinPackedMatrix" ); |
| 45 | if (std::adjacent_find(sorted, sorted + num) != sorted + num) |
| 46 | throw CoinError("duplicate index" , testingMethod, "CoinPackedMatrix" ); |
| 47 | } |
| 48 | |
| 49 | //----------------------------------------------------------------------------- |
| 50 | |
| 51 | static inline int * |
| 52 | CoinTestIndexSet(const int numDel, const int * indDel, const int maxEntry, |
| 53 | const char * testingMethod) |
| 54 | { |
| 55 | if (! CoinIsSorted(indDel, indDel + numDel)) { |
| 56 | // if not sorted then sort it, test for consistency and return a pointer |
| 57 | // to the sorted array |
| 58 | int * sorted = new int[numDel]; |
| 59 | CoinMemcpyN(indDel, numDel, sorted); |
| 60 | std::sort(sorted, sorted + numDel); |
| 61 | CoinTestSortedIndexSet(numDel, sorted, maxEntry, testingMethod); |
| 62 | return sorted; |
| 63 | } |
| 64 | |
| 65 | // Otherwise it's already sorted, so just test for consistency and return a |
| 66 | // 0 pointer. |
| 67 | CoinTestSortedIndexSet(numDel, indDel, maxEntry, testingMethod); |
| 68 | return 0; |
| 69 | } |
| 70 | |
| 71 | //############################################################################# |
| 72 | |
| 73 | void |
| 74 | CoinPackedMatrix::reserve(const int newMaxMajorDim, const CoinBigIndex newMaxSize, |
| 75 | bool create) |
| 76 | { |
| 77 | if (newMaxMajorDim > maxMajorDim_) { |
| 78 | maxMajorDim_ = newMaxMajorDim; |
| 79 | int * oldlength = length_; |
| 80 | CoinBigIndex * oldstart = start_; |
| 81 | length_ = new int[newMaxMajorDim]; |
| 82 | start_ = new CoinBigIndex[newMaxMajorDim+1]; |
| 83 | start_[0]=0; |
| 84 | if (majorDim_ > 0) { |
| 85 | CoinMemcpyN(oldlength, majorDim_, length_); |
| 86 | CoinMemcpyN(oldstart, majorDim_ + 1, start_); |
| 87 | } |
| 88 | if (create) { |
| 89 | // create empty vectors |
| 90 | CoinFillN(length_+majorDim_,maxMajorDim_-majorDim_,0); |
| 91 | CoinFillN(start_+majorDim_+1,maxMajorDim_-majorDim_,0); |
| 92 | majorDim_=maxMajorDim_; |
| 93 | } |
| 94 | delete[] oldlength; |
| 95 | delete[] oldstart; |
| 96 | } |
| 97 | if (newMaxSize > maxSize_) { |
| 98 | maxSize_ = newMaxSize; |
| 99 | int * oldind = index_; |
| 100 | double * oldelem = element_; |
| 101 | index_ = new int[newMaxSize]; |
| 102 | element_ = new double[newMaxSize]; |
| 103 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 104 | CoinMemcpyN(oldind+start_[i], length_[i], index_+start_[i]); |
| 105 | CoinMemcpyN(oldelem+start_[i], length_[i], element_+start_[i]); |
| 106 | } |
| 107 | delete[] oldind; |
| 108 | delete[] oldelem; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | //----------------------------------------------------------------------------- |
| 113 | |
| 114 | void |
| 115 | CoinPackedMatrix::clear() |
| 116 | { |
| 117 | majorDim_ = 0; |
| 118 | minorDim_ = 0; |
| 119 | size_ = 0; |
| 120 | } |
| 121 | |
| 122 | //############################################################################# |
| 123 | //############################################################################# |
| 124 | |
| 125 | void |
| 126 | CoinPackedMatrix::setDimensions(int newnumrows, int newnumcols) |
| 127 | { |
| 128 | const int numrows = getNumRows(); |
| 129 | if (newnumrows < 0) |
| 130 | newnumrows = numrows; |
| 131 | if (newnumrows < numrows) |
| 132 | throw CoinError("Bad new rownum (less than current)" , |
| 133 | "setDimensions" , "CoinPackedMatrix" ); |
| 134 | |
| 135 | const int numcols = getNumCols(); |
| 136 | if (newnumcols < 0) |
| 137 | newnumcols = numcols; |
| 138 | if (newnumcols < numcols) |
| 139 | throw CoinError("Bad new colnum (less than current)" , |
| 140 | "setDimensions" , "CoinPackedMatrix" ); |
| 141 | |
| 142 | int numplus = 0; |
| 143 | if (isColOrdered()) { |
| 144 | minorDim_ = newnumrows; |
| 145 | numplus = newnumcols - numcols; |
| 146 | } else { |
| 147 | minorDim_ = newnumcols; |
| 148 | numplus = newnumrows - numrows; |
| 149 | } |
| 150 | if (numplus > 0) { |
| 151 | int* lengths = new int[numplus]; |
| 152 | CoinZeroN(lengths, numplus); |
| 153 | resizeForAddingMajorVectors(numplus, lengths); |
| 154 | delete[] lengths; |
| 155 | majorDim_ += numplus; //forgot to change majorDim_ |
| 156 | } |
| 157 | |
| 158 | } |
| 159 | |
| 160 | //----------------------------------------------------------------------------- |
| 161 | |
| 162 | void |
| 163 | CoinPackedMatrix::(const double newGap) |
| 164 | { |
| 165 | if (newGap < 0) |
| 166 | throw CoinError("negative new extra gap" , |
| 167 | "setExtraGap" , "CoinPackedMatrix" ); |
| 168 | extraGap_ = newGap; |
| 169 | } |
| 170 | |
| 171 | //----------------------------------------------------------------------------- |
| 172 | |
| 173 | void |
| 174 | CoinPackedMatrix::(const double newMajor) |
| 175 | { |
| 176 | if (newMajor < 0) |
| 177 | throw CoinError("negative new extra major" , |
| 178 | "setExtraMajor" , "CoinPackedMatrix" ); |
| 179 | extraMajor_ = newMajor; |
| 180 | } |
| 181 | |
| 182 | //############################################################################# |
| 183 | #ifndef CLP_NO_VECTOR |
| 184 | void |
| 185 | CoinPackedMatrix::appendCol(const CoinPackedVectorBase& vec) |
| 186 | { |
| 187 | if (colOrdered_) |
| 188 | appendMajorVector(vec); |
| 189 | else |
| 190 | appendMinorVector(vec); |
| 191 | } |
| 192 | #endif |
| 193 | //----------------------------------------------------------------------------- |
| 194 | |
| 195 | void |
| 196 | CoinPackedMatrix::appendCol(const int vecsize, |
| 197 | const int *vecind, |
| 198 | const double *vecelem) |
| 199 | { |
| 200 | if (colOrdered_) |
| 201 | appendMajorVector(vecsize, vecind, vecelem); |
| 202 | else |
| 203 | appendMinorVector(vecsize, vecind, vecelem); |
| 204 | } |
| 205 | |
| 206 | //----------------------------------------------------------------------------- |
| 207 | #ifndef CLP_NO_VECTOR |
| 208 | void |
| 209 | CoinPackedMatrix::appendCols(const int numcols, |
| 210 | const CoinPackedVectorBase * const * cols) |
| 211 | { |
| 212 | if (colOrdered_) |
| 213 | appendMajorVectors(numcols, cols); |
| 214 | else |
| 215 | appendMinorVectors(numcols, cols); |
| 216 | } |
| 217 | #endif |
| 218 | //----------------------------------------------------------------------------- |
| 219 | |
| 220 | int |
| 221 | CoinPackedMatrix::appendCols(const int numcols, |
| 222 | const CoinBigIndex * columnStarts, const int * row, |
| 223 | const double * element, int numberRows) |
| 224 | { |
| 225 | int numberErrors; |
| 226 | if (colOrdered_) { |
| 227 | numberErrors=appendMajor(numcols, columnStarts, row, element, numberRows); |
| 228 | } else { |
| 229 | numberErrors=appendMinor(numcols, columnStarts, row, element, numberRows); |
| 230 | } |
| 231 | return numberErrors; |
| 232 | } |
| 233 | //----------------------------------------------------------------------------- |
| 234 | #ifndef CLP_NO_VECTOR |
| 235 | void |
| 236 | CoinPackedMatrix::appendRow(const CoinPackedVectorBase& vec) |
| 237 | { |
| 238 | if (colOrdered_) |
| 239 | appendMinorVector(vec); |
| 240 | else |
| 241 | appendMajorVector(vec); |
| 242 | } |
| 243 | #endif |
| 244 | //----------------------------------------------------------------------------- |
| 245 | |
| 246 | void |
| 247 | CoinPackedMatrix::appendRow(const int vecsize, |
| 248 | const int *vecind, |
| 249 | const double *vecelem) |
| 250 | { |
| 251 | if (colOrdered_) |
| 252 | appendMinorVector(vecsize, vecind, vecelem); |
| 253 | else |
| 254 | appendMajorVector(vecsize, vecind, vecelem); |
| 255 | } |
| 256 | |
| 257 | //----------------------------------------------------------------------------- |
| 258 | #ifndef CLP_NO_VECTOR |
| 259 | void |
| 260 | CoinPackedMatrix::appendRows(const int numrows, |
| 261 | const CoinPackedVectorBase * const * rows) |
| 262 | { |
| 263 | if (colOrdered_) { |
| 264 | // make sure enough columns |
| 265 | if (numrows == 0) |
| 266 | return; |
| 267 | |
| 268 | int i; |
| 269 | int maxDim=-1; |
| 270 | for (i = numrows - 1; i >= 0; --i) { |
| 271 | const int vecsize = rows[i]->getNumElements(); |
| 272 | const int* vecind = rows[i]->getIndices(); |
| 273 | for (int j = vecsize - 1; j >= 0; --j) |
| 274 | maxDim = CoinMax(maxDim,vecind[j]); |
| 275 | } |
| 276 | maxDim++; |
| 277 | if (maxDim>majorDim_) { |
| 278 | setDimensions(minorDim_,maxDim); |
| 279 | //int nAdd=maxDim-majorDim_; |
| 280 | //int * length = new int[nAdd]; |
| 281 | //memset(length,0,nAdd*sizeof(int)); |
| 282 | //resizeForAddingMajorVectors(nAdd,length); |
| 283 | //delete [] length; |
| 284 | } |
| 285 | appendMinorVectors(numrows, rows); |
| 286 | } else { |
| 287 | appendMajorVectors(numrows, rows); |
| 288 | } |
| 289 | } |
| 290 | #endif |
| 291 | //----------------------------------------------------------------------------- |
| 292 | |
| 293 | int |
| 294 | CoinPackedMatrix::appendRows(const int numrows, |
| 295 | const CoinBigIndex * rowStarts, const int * column, |
| 296 | const double * element, int numberColumns) |
| 297 | { |
| 298 | int numberErrors; |
| 299 | if (colOrdered_) { |
| 300 | numberErrors=appendMinor(numrows, rowStarts, column, element, numberColumns); |
| 301 | } else { |
| 302 | numberErrors=appendMajor(numrows, rowStarts, column, element, numberColumns); |
| 303 | } |
| 304 | return numberErrors; |
| 305 | } |
| 306 | |
| 307 | //############################################################################# |
| 308 | |
| 309 | void |
| 310 | CoinPackedMatrix::rightAppendPackedMatrix(const CoinPackedMatrix& matrix) |
| 311 | { |
| 312 | if (colOrdered_) { |
| 313 | if (matrix.colOrdered_) { |
| 314 | majorAppendSameOrdered(matrix); |
| 315 | } else { |
| 316 | majorAppendOrthoOrdered(matrix); |
| 317 | } |
| 318 | } else { |
| 319 | if (matrix.colOrdered_) { |
| 320 | minorAppendOrthoOrdered(matrix); |
| 321 | } else { |
| 322 | minorAppendSameOrdered(matrix); |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | //----------------------------------------------------------------------------- |
| 328 | |
| 329 | void |
| 330 | CoinPackedMatrix::bottomAppendPackedMatrix(const CoinPackedMatrix& matrix) |
| 331 | { |
| 332 | if (colOrdered_) { |
| 333 | if (matrix.colOrdered_) { |
| 334 | minorAppendSameOrdered(matrix); |
| 335 | } else { |
| 336 | minorAppendOrthoOrdered(matrix); |
| 337 | } |
| 338 | } else { |
| 339 | if (matrix.colOrdered_) { |
| 340 | majorAppendOrthoOrdered(matrix); |
| 341 | } else { |
| 342 | majorAppendSameOrdered(matrix); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | //############################################################################# |
| 348 | |
| 349 | void |
| 350 | CoinPackedMatrix::deleteCols(const int numDel, const int * indDel) |
| 351 | { |
| 352 | if (numDel) { |
| 353 | if (colOrdered_) |
| 354 | deleteMajorVectors(numDel, indDel); |
| 355 | else |
| 356 | deleteMinorVectors(numDel, indDel); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | //----------------------------------------------------------------------------- |
| 361 | |
| 362 | void |
| 363 | CoinPackedMatrix::deleteRows(const int numDel, const int * indDel) |
| 364 | { |
| 365 | if (numDel) { |
| 366 | if (colOrdered_) |
| 367 | deleteMinorVectors(numDel, indDel); |
| 368 | else |
| 369 | deleteMajorVectors(numDel, indDel); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | //############################################################################# |
| 374 | /* Replace the elements of a vector. The indices remain the same. |
| 375 | At most the number specified will be replaced. |
| 376 | The index is between 0 and major dimension of matrix */ |
| 377 | void |
| 378 | CoinPackedMatrix::replaceVector(const int index, |
| 379 | const int numReplace, |
| 380 | const double * newElements) |
| 381 | { |
| 382 | if (index >= 0 && index < majorDim_) { |
| 383 | int length = (length_[index] < numReplace) ? length_[index] : numReplace; |
| 384 | CoinMemcpyN(newElements, length, element_ + start_[index]); |
| 385 | } else { |
| 386 | #ifdef COIN_DEBUG |
| 387 | throw CoinError("bad index" , "replaceVector" , "CoinPackedMatrix" ); |
| 388 | #endif |
| 389 | } |
| 390 | } |
| 391 | /* Modify one element of packed matrix. An element may be added. |
| 392 | If the new element is zero it will be deleted unless |
| 393 | keepZero true */ |
| 394 | void |
| 395 | CoinPackedMatrix::modifyCoefficient(int row, int column, double newElement, |
| 396 | bool keepZero) |
| 397 | { |
| 398 | int minorIndex,majorIndex; |
| 399 | if (colOrdered_) { |
| 400 | majorIndex=column; |
| 401 | minorIndex=row; |
| 402 | } else { |
| 403 | minorIndex=column; |
| 404 | majorIndex=row; |
| 405 | } |
| 406 | if (majorIndex >= 0 && majorIndex < majorDim_) { |
| 407 | if (minorIndex >= 0 && minorIndex < minorDim_) { |
| 408 | CoinBigIndex j; |
| 409 | CoinBigIndex end=start_[majorIndex]+length_[majorIndex]; |
| 410 | for (j=start_[majorIndex];j<end;j++) { |
| 411 | if (minorIndex==index_[j]) { |
| 412 | // replacement |
| 413 | if (newElement||keepZero) { |
| 414 | element_[j]=newElement; |
| 415 | } else { |
| 416 | // pack down and return |
| 417 | length_[majorIndex]--; |
| 418 | end--; |
| 419 | size_--; |
| 420 | for (;j<end;j++) { |
| 421 | element_[j]=element_[j+1]; |
| 422 | index_[j]=index_[j+1]; |
| 423 | } |
| 424 | } |
| 425 | return; |
| 426 | } |
| 427 | } |
| 428 | if (j==end&&(newElement||keepZero)) { |
| 429 | // we need to insert - keep in minor order if possible |
| 430 | if (end>=start_[majorIndex+1]) { |
| 431 | int * addedEntries = new int[majorDim_]; |
| 432 | memset(addedEntries, 0, majorDim_ * sizeof(int)); |
| 433 | addedEntries[majorIndex] = 1; |
| 434 | resizeForAddingMinorVectors(addedEntries); |
| 435 | delete[] addedEntries; |
| 436 | } |
| 437 | // So where to insert? We're just going to assume that the entries |
| 438 | // in the major vector are in increasing order, so we'll insert the |
| 439 | // new entry to the last place we can |
| 440 | const CoinBigIndex start = start_[majorIndex]; |
| 441 | end = start_[majorIndex]+length_[majorIndex]; // recalculate end |
| 442 | for (j = end - 1; j >= start; --j) { |
| 443 | if (index_[j] < minorIndex) |
| 444 | break; |
| 445 | index_[j+1] = index_[j]; |
| 446 | element_[j+1] = element_[j]; |
| 447 | } |
| 448 | ++j; |
| 449 | index_[j] = minorIndex; |
| 450 | element_[j] = newElement; |
| 451 | size_++; |
| 452 | length_[majorIndex]++; |
| 453 | } |
| 454 | } else { |
| 455 | #ifdef COIN_DEBUG |
| 456 | throw CoinError("bad minor index" , "modifyCoefficient" , |
| 457 | "CoinPackedMatrix" ); |
| 458 | #endif |
| 459 | } |
| 460 | } else { |
| 461 | #ifdef COIN_DEBUG |
| 462 | throw CoinError("bad major index" , "modifyCoefficient" , |
| 463 | "CoinPackedMatrix" ); |
| 464 | #endif |
| 465 | } |
| 466 | } |
| 467 | /* Return one element of packed matrix. |
| 468 | This works for either ordering |
| 469 | If it is not present will return 0.0 */ |
| 470 | double |
| 471 | CoinPackedMatrix::getCoefficient(int row, int column) const |
| 472 | { |
| 473 | int minorIndex,majorIndex; |
| 474 | if (colOrdered_) { |
| 475 | majorIndex=column; |
| 476 | minorIndex=row; |
| 477 | } else { |
| 478 | minorIndex=column; |
| 479 | majorIndex=row; |
| 480 | } |
| 481 | double value=0.0; |
| 482 | if (majorIndex >= 0 && majorIndex < majorDim_) { |
| 483 | if (minorIndex >= 0 && minorIndex < minorDim_) { |
| 484 | CoinBigIndex j; |
| 485 | CoinBigIndex end=start_[majorIndex]+length_[majorIndex]; |
| 486 | for (j=start_[majorIndex];j<end;j++) { |
| 487 | if (minorIndex==index_[j]) { |
| 488 | value = element_[j]; |
| 489 | break; |
| 490 | } |
| 491 | } |
| 492 | } else { |
| 493 | #ifdef COIN_DEBUG |
| 494 | throw CoinError("bad minor index" , "modifyCoefficient" , |
| 495 | "CoinPackedMatrix" ); |
| 496 | #endif |
| 497 | } |
| 498 | } else { |
| 499 | #ifdef COIN_DEBUG |
| 500 | throw CoinError("bad major index" , "modifyCoefficient" , |
| 501 | "CoinPackedMatrix" ); |
| 502 | #endif |
| 503 | } |
| 504 | return value; |
| 505 | } |
| 506 | |
| 507 | //############################################################################# |
| 508 | /* Eliminate all elements in matrix whose |
| 509 | absolute value is less than threshold. |
| 510 | The column starts are not affected. Returns number of elements |
| 511 | eliminated. Elements eliminated are at end of each vector |
| 512 | */ |
| 513 | int |
| 514 | CoinPackedMatrix::compress(double threshold) |
| 515 | { |
| 516 | CoinBigIndex numberEliminated =0; |
| 517 | // space for eliminated |
| 518 | int * eliminatedIndex = new int[minorDim_]; |
| 519 | double * eliminatedElement = new double[minorDim_]; |
| 520 | int i; |
| 521 | for (i=0;i<majorDim_;i++) { |
| 522 | int length = length_[i]; |
| 523 | CoinBigIndex k=start_[i]; |
| 524 | int kbad=0; |
| 525 | CoinBigIndex j; |
| 526 | for (j=start_[i];j<start_[i]+length;j++) { |
| 527 | if (fabs(element_[j])>=threshold) { |
| 528 | element_[k]=element_[j]; |
| 529 | index_[k++]=index_[j]; |
| 530 | } else { |
| 531 | eliminatedElement[kbad]=element_[j]; |
| 532 | eliminatedIndex[kbad++]=index_[j]; |
| 533 | } |
| 534 | } |
| 535 | if (kbad) { |
| 536 | numberEliminated += kbad; |
| 537 | length_[i] = k-start_[i]; |
| 538 | memcpy(index_+k,eliminatedIndex,kbad*sizeof(int)); |
| 539 | memcpy(element_+k,eliminatedElement,kbad*sizeof(double)); |
| 540 | } |
| 541 | } |
| 542 | size_ -= numberEliminated; |
| 543 | delete [] eliminatedIndex; |
| 544 | delete [] eliminatedElement; |
| 545 | return numberEliminated; |
| 546 | } |
| 547 | //############################################################################# |
| 548 | /* Eliminate all elements in matrix whose |
| 549 | absolute value is less than threshold.ALSO removes duplicates |
| 550 | The column starts are not affected. Returns number of elements |
| 551 | eliminated. |
| 552 | */ |
| 553 | int |
| 554 | CoinPackedMatrix::eliminateDuplicates(double threshold) |
| 555 | { |
| 556 | CoinBigIndex numberEliminated =0; |
| 557 | // space for eliminated |
| 558 | int * mark = new int [minorDim_]; |
| 559 | int i; |
| 560 | for (i=0;i<minorDim_;i++) |
| 561 | mark[i]=-1; |
| 562 | for (i=0;i<majorDim_;i++) { |
| 563 | CoinBigIndex k=start_[i]; |
| 564 | CoinBigIndex end = k+length_[i]; |
| 565 | CoinBigIndex j; |
| 566 | for (j=k;j<end;j++) { |
| 567 | int index = index_[j]; |
| 568 | if (mark[index]==-1) { |
| 569 | mark[index]=j; |
| 570 | } else { |
| 571 | // duplicate |
| 572 | int jj = mark[index]; |
| 573 | element_[jj] += element_[j]; |
| 574 | element_[j]=0.0; |
| 575 | } |
| 576 | } |
| 577 | for (j=k;j<end;j++) { |
| 578 | int index = index_[j]; |
| 579 | mark[index]=-1; |
| 580 | if (fabs(element_[j])>=threshold) { |
| 581 | element_[k]=element_[j]; |
| 582 | index_[k++]=index_[j]; |
| 583 | } |
| 584 | } |
| 585 | numberEliminated += end-k; |
| 586 | length_[i] = k-start_[i]; |
| 587 | } |
| 588 | size_ -= numberEliminated; |
| 589 | delete [] mark; |
| 590 | return numberEliminated; |
| 591 | } |
| 592 | //############################################################################# |
| 593 | |
| 594 | void |
| 595 | CoinPackedMatrix::removeGaps(double removeValue) |
| 596 | { |
| 597 | if (removeValue<0.0) { |
| 598 | if (size_<start_[majorDim_]) { |
| 599 | #if 1 |
| 600 | // Small copies so faster to do simply |
| 601 | int i; |
| 602 | CoinBigIndex size=0; |
| 603 | for (i = 1; i < majorDim_+1; ++i) { |
| 604 | const CoinBigIndex si = start_[i]; |
| 605 | size += length_[i-1]; |
| 606 | if (si>size) |
| 607 | break; |
| 608 | } |
| 609 | for (; i < majorDim_; ++i) { |
| 610 | const CoinBigIndex si = start_[i]; |
| 611 | const int li = length_[i]; |
| 612 | start_[i] = size; |
| 613 | for (CoinBigIndex j=si;j<si+li;j++) { |
| 614 | assert (size<size_); |
| 615 | index_[size]=index_[j]; |
| 616 | element_[size++]=element_[j]; |
| 617 | } |
| 618 | } |
| 619 | assert (size==size_); |
| 620 | start_[majorDim_] = size; |
| 621 | for (i=0; i < majorDim_; ++i) { |
| 622 | assert (start_[i+1]==start_[i]+length_[i]); |
| 623 | } |
| 624 | #else |
| 625 | for (int i = 1; i < majorDim_; ++i) { |
| 626 | const CoinBigIndex si = start_[i]; |
| 627 | const int li = length_[i]; |
| 628 | start_[i] = start_[i-1] + length_[i-1]; |
| 629 | CoinCopy(index_ + si, index_ + (si + li), index_ + start_[i]); |
| 630 | CoinCopy(element_ + si, element_ + (si + li), element_ + start_[i]); |
| 631 | |
| 632 | } |
| 633 | start_[majorDim_] = size_; |
| 634 | #endif |
| 635 | } else { |
| 636 | #ifndef NDEBUG |
| 637 | for (int i = 1; i < majorDim_; ++i) { |
| 638 | assert (start_[i] == start_[i-1] + length_[i-1]); |
| 639 | } |
| 640 | assert(start_[majorDim_] == size_); |
| 641 | #endif |
| 642 | } |
| 643 | } else { |
| 644 | CoinBigIndex put=0; |
| 645 | assert (!start_[0]); |
| 646 | CoinBigIndex start = 0; |
| 647 | for (int i = 0; i < majorDim_; ++i) { |
| 648 | const CoinBigIndex si = start; |
| 649 | start = start_[i+1]; |
| 650 | const int li = length_[i]; |
| 651 | for (CoinBigIndex j = si;j<si+li;j++) { |
| 652 | double value = element_[j]; |
| 653 | if (fabs(value)>removeValue) { |
| 654 | index_[put]=index_[j]; |
| 655 | element_[put++]=value; |
| 656 | } |
| 657 | } |
| 658 | length_[i]=put-start_[i]; |
| 659 | start_[i+1] = put; |
| 660 | } |
| 661 | size_ = put; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | //############################################################################# |
| 666 | |
| 667 | /* Really clean up matrix. |
| 668 | a) eliminate all duplicate AND small elements in matrix |
| 669 | b) remove all gaps and set extraGap_ and extraMajor_ to 0.0 |
| 670 | c) reallocate arrays and make max lengths equal to lengths |
| 671 | d) orders elements |
| 672 | returns number of elements eliminated |
| 673 | */ |
| 674 | int |
| 675 | CoinPackedMatrix::cleanMatrix(double threshold) |
| 676 | { |
| 677 | if (!majorDim_) { |
| 678 | extraGap_=0.0; |
| 679 | extraMajor_=0.0; |
| 680 | return 0; |
| 681 | } |
| 682 | CoinBigIndex numberEliminated =0; |
| 683 | // space for eliminated |
| 684 | int * mark = new int [minorDim_]; |
| 685 | int i; |
| 686 | for (i=0;i<minorDim_;i++) |
| 687 | mark[i]=-1; |
| 688 | CoinBigIndex n = 0; |
| 689 | for (i=0;i<majorDim_;i++) { |
| 690 | CoinBigIndex k=start_[i]; |
| 691 | start_[i]=n; |
| 692 | CoinBigIndex end = k+length_[i]; |
| 693 | CoinBigIndex j; |
| 694 | for (j=k;j<end;j++) { |
| 695 | int index = index_[j]; |
| 696 | if (mark[index]==-1) { |
| 697 | mark[index]=j; |
| 698 | } else { |
| 699 | // duplicate |
| 700 | int jj = mark[index]; |
| 701 | element_[jj] += element_[j]; |
| 702 | element_[j]=0.0; |
| 703 | } |
| 704 | } |
| 705 | for (j=k;j<end;j++) { |
| 706 | int index = index_[j]; |
| 707 | mark[index]=-1; |
| 708 | if (fabs(element_[j])>=threshold) { |
| 709 | element_[n]=element_[j]; |
| 710 | index_[n++]=index_[j]; |
| 711 | k++; |
| 712 | } |
| 713 | } |
| 714 | numberEliminated += end-k; |
| 715 | length_[i] = n-start_[i]; |
| 716 | // sort |
| 717 | CoinSort_2(index_+start_[i],index_+n,element_+start_[i]); |
| 718 | } |
| 719 | start_[majorDim_]=n; |
| 720 | size_ -= numberEliminated; |
| 721 | assert (n==size_); |
| 722 | delete [] mark; |
| 723 | extraGap_=0.0; |
| 724 | extraMajor_=0.0; |
| 725 | maxMajorDim_=majorDim_; |
| 726 | maxSize_=size_; |
| 727 | // Now reallocate - do smallest ones first |
| 728 | int * temp = CoinCopyOfArray(length_,majorDim_); |
| 729 | delete [] length_; |
| 730 | length_ = temp; |
| 731 | CoinBigIndex * temp2 = CoinCopyOfArray(start_,majorDim_+1); |
| 732 | delete [] start_; |
| 733 | start_ = temp2; |
| 734 | temp = CoinCopyOfArray(index_,size_); |
| 735 | delete [] index_; |
| 736 | index_ = temp; |
| 737 | double * temp3 = CoinCopyOfArray(element_,size_); |
| 738 | delete [] element_; |
| 739 | element_ = temp3; |
| 740 | return numberEliminated; |
| 741 | } |
| 742 | |
| 743 | //############################################################################# |
| 744 | |
| 745 | void |
| 746 | CoinPackedMatrix::submatrixOf(const CoinPackedMatrix& matrix, |
| 747 | const int numMajor, const int * indMajor) |
| 748 | { |
| 749 | int i; |
| 750 | int* sortedIndPtr = CoinTestIndexSet(numMajor, indMajor, matrix.majorDim_, |
| 751 | "submatrixOf" ); |
| 752 | const int * sortedInd = sortedIndPtr == 0 ? indMajor : sortedIndPtr; |
| 753 | |
| 754 | gutsOfDestructor(); |
| 755 | |
| 756 | // Count how many nonzeros there'll be |
| 757 | CoinBigIndex nzcnt = 0; |
| 758 | const int* length = matrix.getVectorLengths(); |
| 759 | for (i = 0; i < numMajor; ++i) { |
| 760 | nzcnt += length[sortedInd[i]]; |
| 761 | } |
| 762 | |
| 763 | colOrdered_ = matrix.colOrdered_; |
| 764 | maxMajorDim_ = int(numMajor * (1+extraMajor_) + 1); |
| 765 | maxSize_ = static_cast<CoinBigIndex> (nzcnt * (1+extraMajor_) * (1+extraGap_) + 100); |
| 766 | length_ = new int[maxMajorDim_]; |
| 767 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 768 | start_[0]=0; |
| 769 | index_ = new int[maxSize_]; |
| 770 | element_ = new double[maxSize_]; |
| 771 | majorDim_ = 0; |
| 772 | minorDim_ = matrix.minorDim_; |
| 773 | size_ = 0; |
| 774 | #ifdef CLP_NO_VECTOR |
| 775 | for (i = 0; i < numMajor; ++i) { |
| 776 | int j = sortedInd[i]; |
| 777 | CoinBigIndex start = matrix.start_[j]; |
| 778 | appendMajorVector(matrix.length_[j],matrix.index_+start,matrix.element_+start); |
| 779 | } |
| 780 | #else |
| 781 | for (i = 0; i < numMajor; ++i) { |
| 782 | const CoinShallowPackedVector reqdBySunCC = matrix.getVector(sortedInd[i]) ; |
| 783 | appendMajorVector(reqdBySunCC); |
| 784 | } |
| 785 | #endif |
| 786 | |
| 787 | delete[] sortedIndPtr; |
| 788 | } |
| 789 | |
| 790 | //############################################################################# |
| 791 | |
| 792 | void |
| 793 | CoinPackedMatrix::submatrixOfWithDuplicates(const CoinPackedMatrix& matrix, |
| 794 | const int numMajor, const int * indMajor) |
| 795 | { |
| 796 | int i; |
| 797 | // we allow duplicates - can be useful |
| 798 | #ifndef NDEBUG |
| 799 | for (i=0; i<numMajor;i++) { |
| 800 | if (indMajor[i]<0||indMajor[i]>=matrix.majorDim_) |
| 801 | throw CoinError("bad index" , "submatrixOfWithDuplicates" , "CoinPackedMatrix" ); |
| 802 | } |
| 803 | #endif |
| 804 | gutsOfDestructor(); |
| 805 | // Get rid of gaps |
| 806 | extraMajor_ = 0; |
| 807 | extraGap_ = 0; |
| 808 | colOrdered_ = matrix.colOrdered_; |
| 809 | maxMajorDim_ = numMajor ; |
| 810 | |
| 811 | const int* length = matrix.getVectorLengths(); |
| 812 | length_ = new int[maxMajorDim_]; |
| 813 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 814 | // Count how many nonzeros there'll be |
| 815 | CoinBigIndex nzcnt = 0; |
| 816 | for (i = 0; i < maxMajorDim_; ++i) { |
| 817 | start_[i]=nzcnt; |
| 818 | int thisLength = length[indMajor[i]]; |
| 819 | nzcnt += thisLength; |
| 820 | length_[i]=thisLength; |
| 821 | } |
| 822 | start_[maxMajorDim_]=nzcnt; |
| 823 | maxSize_ = nzcnt ; |
| 824 | index_ = new int[maxSize_]; |
| 825 | element_ = new double[maxSize_]; |
| 826 | majorDim_ = maxMajorDim_; |
| 827 | minorDim_ = matrix.minorDim_; |
| 828 | size_ = 0; |
| 829 | const CoinBigIndex * startOld = matrix.start_; |
| 830 | const double * elementOld = matrix.element_; |
| 831 | const int * indexOld = matrix.index_; |
| 832 | for (i = 0; i < maxMajorDim_; ++i) { |
| 833 | int j = indMajor[i]; |
| 834 | CoinBigIndex start = startOld[j]; |
| 835 | int thisLength = length_[i]; |
| 836 | const double * element = elementOld+start; |
| 837 | const int * index = indexOld+start; |
| 838 | for (int j=0;j<thisLength;j++) { |
| 839 | element_[size_] = element[j]; |
| 840 | index_[size_++] = index[j]; |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | //############################################################################# |
| 846 | |
| 847 | void |
| 848 | CoinPackedMatrix::copyOf(const CoinPackedMatrix& rhs) |
| 849 | { |
| 850 | if (this != &rhs) { |
| 851 | gutsOfDestructor(); |
| 852 | gutsOfCopyOf(rhs.colOrdered_, |
| 853 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
| 854 | rhs.element_, rhs.index_, rhs.start_, rhs.length_, |
| 855 | rhs.extraMajor_, rhs.extraGap_); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | //----------------------------------------------------------------------------- |
| 860 | |
| 861 | void |
| 862 | CoinPackedMatrix::copyOf(const bool colordered, |
| 863 | const int minor, const int major, |
| 864 | const CoinBigIndex numels, |
| 865 | const double * elem, const int * ind, |
| 866 | const CoinBigIndex * start, const int * len, |
| 867 | const double , const double ) |
| 868 | { |
| 869 | gutsOfDestructor(); |
| 870 | gutsOfCopyOf(colordered, minor, major, numels, elem, ind, start, len, |
| 871 | extraMajor, extraGap); |
| 872 | } |
| 873 | //############################################################################# |
| 874 | /* Copy method. This method makes an exact replica of the argument, |
| 875 | including the extra space parameters. |
| 876 | If there is room it will re-use arrays */ |
| 877 | void |
| 878 | CoinPackedMatrix::copyReuseArrays(const CoinPackedMatrix& rhs) |
| 879 | { |
| 880 | assert (colOrdered_==rhs.colOrdered_); |
| 881 | if (maxMajorDim_>=rhs.majorDim_&&maxSize_>=rhs.size_) { |
| 882 | majorDim_ = rhs.majorDim_; |
| 883 | minorDim_ = rhs.minorDim_; |
| 884 | size_ = rhs.size_; |
| 885 | extraGap_ = rhs.extraGap_; |
| 886 | extraMajor_ = rhs.extraMajor_; |
| 887 | CoinMemcpyN(rhs.length_, majorDim_,length_); |
| 888 | CoinMemcpyN(rhs.start_, majorDim_+1,start_); |
| 889 | if (size_==start_[majorDim_]) { |
| 890 | CoinMemcpyN(rhs.index_ , size_, index_); |
| 891 | CoinMemcpyN(rhs.element_ , size_, element_); |
| 892 | } else { |
| 893 | // we can't just simply memcpy these content over, because that can |
| 894 | // upset memory debuggers like purify if there were gaps and those gaps |
| 895 | // were uninitialized memory blocks |
| 896 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 897 | CoinMemcpyN(rhs.index_ + start_[i], length_[i], index_ + start_[i]); |
| 898 | CoinMemcpyN(rhs.element_ + start_[i], length_[i], element_ + start_[i]); |
| 899 | } |
| 900 | } |
| 901 | } else { |
| 902 | copyOf(rhs); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | //############################################################################# |
| 907 | |
| 908 | // This method is essentially the same as minorAppendOrthoOrdered(). However, |
| 909 | // since we start from an empty matrix, lots of fluff can be avoided. |
| 910 | |
| 911 | void |
| 912 | CoinPackedMatrix::reverseOrderedCopyOf(const CoinPackedMatrix& rhs) |
| 913 | { |
| 914 | if (this == &rhs) { |
| 915 | reverseOrdering(); |
| 916 | return; |
| 917 | } |
| 918 | |
| 919 | int i; |
| 920 | colOrdered_ = !rhs.colOrdered_; |
| 921 | majorDim_ = rhs.minorDim_; |
| 922 | minorDim_ = rhs.majorDim_; |
| 923 | size_ = rhs.size_; |
| 924 | |
| 925 | if (size_ == 0) { |
| 926 | // we still need to allocate starts and lengths |
| 927 | maxMajorDim_=majorDim_; |
| 928 | delete[] start_; |
| 929 | delete[] length_; |
| 930 | delete[] index_; |
| 931 | delete[] element_; |
| 932 | start_ = new CoinBigIndex[maxMajorDim_ + 1]; |
| 933 | length_ = new int[maxMajorDim_]; |
| 934 | for (i = 0; i < majorDim_; ++i) { |
| 935 | start_[i] = 0; |
| 936 | length_[i]=0; |
| 937 | } |
| 938 | start_[majorDim_]=0; |
| 939 | index_ = new int[maxSize_]; |
| 940 | element_ = new double[maxSize_]; |
| 941 | return; |
| 942 | } |
| 943 | |
| 944 | |
| 945 | // Allocate sufficient space (resizeForAddingMinorVectors()) |
| 946 | |
| 947 | const int newMaxMajorDim_ = |
| 948 | CoinMax(maxMajorDim_, CoinLengthWithExtra(majorDim_, extraMajor_)); |
| 949 | |
| 950 | if (newMaxMajorDim_ > maxMajorDim_) { |
| 951 | maxMajorDim_ = newMaxMajorDim_; |
| 952 | delete[] start_; |
| 953 | delete[] length_; |
| 954 | start_ = new CoinBigIndex[maxMajorDim_ + 1]; |
| 955 | length_ = new int[maxMajorDim_]; |
| 956 | } |
| 957 | // first compute how long each major-dimension vector will be |
| 958 | int * COIN_RESTRICT orthoLength = length_; |
| 959 | rhs.countOrthoLength(orthoLength); |
| 960 | |
| 961 | start_[0] = 0; |
| 962 | if (extraGap_ == 0) { |
| 963 | for (i = 0; i < majorDim_; ++i) |
| 964 | start_[i+1] = start_[i] + orthoLength[i]; |
| 965 | } else { |
| 966 | const double eg = extraGap_; |
| 967 | for (i = 0; i < majorDim_; ++i) |
| 968 | start_[i+1] = start_[i] + CoinLengthWithExtra(orthoLength[i], eg); |
| 969 | } |
| 970 | |
| 971 | const CoinBigIndex newMaxSize = |
| 972 | CoinMax(maxSize_, CoinLengthWithExtra(getLastStart(), extraMajor_)); |
| 973 | |
| 974 | if (newMaxSize > maxSize_) { |
| 975 | maxSize_ = newMaxSize; |
| 976 | delete[] index_; |
| 977 | delete[] element_; |
| 978 | index_ = new int[maxSize_]; |
| 979 | element_ = new double[maxSize_]; |
| 980 | # ifdef ZEROFAULT |
| 981 | memset(index_,0,(maxSize_*sizeof(int))) ; |
| 982 | memset(element_,0,(maxSize_*sizeof(double))) ; |
| 983 | # endif |
| 984 | } |
| 985 | |
| 986 | // now insert the entries of matrix |
| 987 | |
| 988 | minorDim_ = rhs.majorDim_; |
| 989 | const CoinBigIndex * COIN_RESTRICT start = rhs.start_; |
| 990 | const int * COIN_RESTRICT index = rhs.index_; |
| 991 | const int * COIN_RESTRICT length = rhs.length_; |
| 992 | const double * COIN_RESTRICT element = rhs.element_; |
| 993 | assert (start[0]==0); |
| 994 | CoinBigIndex first = 0; |
| 995 | for (i = 0; i < minorDim_; ++i) { |
| 996 | CoinBigIndex last = first + length[i]; |
| 997 | CoinBigIndex j = first; |
| 998 | first = start[i+1]; |
| 999 | #if 0 |
| 1000 | if (((last-j)&1)!=0) { |
| 1001 | const int ind = index[j]; |
| 1002 | CoinBigIndex put = start_[ind]; |
| 1003 | start_[ind] = put +1; |
| 1004 | element_[put] = element[j]; |
| 1005 | index_[put] = i; |
| 1006 | j++; |
| 1007 | } |
| 1008 | for (; j != last; j+=2) { |
| 1009 | const int ind0 = index[j]; |
| 1010 | CoinBigIndex put0 = start_[ind0]; |
| 1011 | double value0=element[j]; |
| 1012 | const int ind1 = index[j+1]; |
| 1013 | CoinBigIndex put1 = start_[ind1]; |
| 1014 | double value1=element[j+1]; |
| 1015 | start_[ind0] = put0 +1; |
| 1016 | start_[ind1] = put1 +1; |
| 1017 | element_[put0] = value0; |
| 1018 | index_[put0] = i; |
| 1019 | element_[put1] = value1; |
| 1020 | index_[put1] = i; |
| 1021 | } |
| 1022 | #else |
| 1023 | for (; j != last; ++j) { |
| 1024 | const int ind = index[j]; |
| 1025 | CoinBigIndex put = start_[ind]; |
| 1026 | start_[ind] = put +1; |
| 1027 | element_[put] = element[j]; |
| 1028 | index_[put] = i; |
| 1029 | } |
| 1030 | #endif |
| 1031 | } |
| 1032 | // and re-adjust start_ |
| 1033 | for (i = 0; i < majorDim_; ++i) { |
| 1034 | start_[i] -= length_[i]; |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | //############################################################################# |
| 1039 | |
| 1040 | void |
| 1041 | CoinPackedMatrix::assignMatrix(const bool colordered, |
| 1042 | const int minor, const int major, |
| 1043 | const CoinBigIndex numels, |
| 1044 | double *& elem, int *& ind, |
| 1045 | CoinBigIndex *& start, int *& len, |
| 1046 | const int maxmajor, const CoinBigIndex maxsize) |
| 1047 | { |
| 1048 | gutsOfDestructor(); |
| 1049 | colOrdered_ = colordered; |
| 1050 | element_ = elem; |
| 1051 | index_ = ind; |
| 1052 | start_ = start; |
| 1053 | majorDim_ = major; |
| 1054 | minorDim_ = minor; |
| 1055 | size_ = numels; |
| 1056 | maxMajorDim_ = maxmajor != -1 ? maxmajor : major; |
| 1057 | maxSize_ = maxsize != -1 ? maxsize : numels; |
| 1058 | if (len == NULL) { |
| 1059 | delete [] length_; |
| 1060 | length_ = new int[maxMajorDim_]; |
| 1061 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
| 1062 | length_[0] -= start[0]; |
| 1063 | } else { |
| 1064 | length_ = len; |
| 1065 | } |
| 1066 | elem = NULL; |
| 1067 | ind = NULL; |
| 1068 | start = NULL; |
| 1069 | len = NULL; |
| 1070 | } |
| 1071 | |
| 1072 | //############################################################################# |
| 1073 | |
| 1074 | CoinPackedMatrix & |
| 1075 | CoinPackedMatrix::operator=(const CoinPackedMatrix& rhs) |
| 1076 | { |
| 1077 | if (this != &rhs) { |
| 1078 | gutsOfDestructor(); |
| 1079 | extraGap_=rhs.extraGap_; |
| 1080 | extraMajor_=rhs.extraMajor_; |
| 1081 | gutsOfOpEqual(rhs.colOrdered_, |
| 1082 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
| 1083 | rhs.element_, rhs.index_, rhs.start_, rhs.length_); |
| 1084 | } |
| 1085 | return *this; |
| 1086 | } |
| 1087 | |
| 1088 | //############################################################################# |
| 1089 | |
| 1090 | void |
| 1091 | CoinPackedMatrix::reverseOrdering() |
| 1092 | { |
| 1093 | CoinPackedMatrix m; |
| 1094 | m.extraGap_ = extraMajor_; |
| 1095 | m.extraMajor_ = extraGap_; |
| 1096 | m.reverseOrderedCopyOf(*this); |
| 1097 | swap(m); |
| 1098 | } |
| 1099 | |
| 1100 | //----------------------------------------------------------------------------- |
| 1101 | |
| 1102 | void |
| 1103 | CoinPackedMatrix::transpose() |
| 1104 | { |
| 1105 | colOrdered_ = ! colOrdered_; |
| 1106 | } |
| 1107 | |
| 1108 | //----------------------------------------------------------------------------- |
| 1109 | |
| 1110 | void |
| 1111 | CoinPackedMatrix::swap(CoinPackedMatrix& m) |
| 1112 | { |
| 1113 | std::swap(colOrdered_, m.colOrdered_); |
| 1114 | std::swap(extraGap_, m.extraGap_); |
| 1115 | std::swap(extraMajor_, m.extraMajor_); |
| 1116 | std::swap(element_, m.element_); |
| 1117 | std::swap(index_, m.index_); |
| 1118 | std::swap(start_, m.start_); |
| 1119 | std::swap(length_, m.length_); |
| 1120 | std::swap(majorDim_, m.majorDim_); |
| 1121 | std::swap(minorDim_, m.minorDim_); |
| 1122 | std::swap(size_, m.size_); |
| 1123 | std::swap(maxMajorDim_, m.maxMajorDim_); |
| 1124 | std::swap(maxSize_, m.maxSize_); |
| 1125 | } |
| 1126 | |
| 1127 | //############################################################################# |
| 1128 | //############################################################################# |
| 1129 | |
| 1130 | void |
| 1131 | CoinPackedMatrix::times(const double * x, double * y) const |
| 1132 | { |
| 1133 | if (colOrdered_) |
| 1134 | timesMajor(x, y); |
| 1135 | else |
| 1136 | timesMinor(x, y); |
| 1137 | } |
| 1138 | |
| 1139 | //----------------------------------------------------------------------------- |
| 1140 | #ifndef CLP_NO_VECTOR |
| 1141 | void |
| 1142 | CoinPackedMatrix::times(const CoinPackedVectorBase& x, double * y) const |
| 1143 | { |
| 1144 | if (colOrdered_) |
| 1145 | timesMajor(x, y); |
| 1146 | else |
| 1147 | timesMinor(x, y); |
| 1148 | } |
| 1149 | #endif |
| 1150 | //----------------------------------------------------------------------------- |
| 1151 | |
| 1152 | void |
| 1153 | CoinPackedMatrix::transposeTimes(const double * x, double * y) const |
| 1154 | { |
| 1155 | if (colOrdered_) |
| 1156 | timesMinor(x, y); |
| 1157 | else |
| 1158 | timesMajor(x, y); |
| 1159 | } |
| 1160 | |
| 1161 | //----------------------------------------------------------------------------- |
| 1162 | #ifndef CLP_NO_VECTOR |
| 1163 | void |
| 1164 | CoinPackedMatrix::transposeTimes(const CoinPackedVectorBase& x, double * y) const |
| 1165 | { |
| 1166 | if (colOrdered_) |
| 1167 | timesMinor(x, y); |
| 1168 | else |
| 1169 | timesMajor(x, y); |
| 1170 | } |
| 1171 | #endif |
| 1172 | //############################################################################# |
| 1173 | //############################################################################# |
| 1174 | /* Count the number of entries in every minor-dimension vector and |
| 1175 | fill in an array containing these lengths. */ |
| 1176 | void |
| 1177 | CoinPackedMatrix::countOrthoLength(int * orthoLength) const |
| 1178 | { |
| 1179 | CoinZeroN(orthoLength, minorDim_); |
| 1180 | if (size_!=start_[majorDim_]) { |
| 1181 | // has gaps |
| 1182 | for (int i = 0; i <majorDim_ ; ++i) { |
| 1183 | const CoinBigIndex first = start_[i]; |
| 1184 | const CoinBigIndex last = first + length_[i]; |
| 1185 | for (CoinBigIndex j = first; j < last; ++j) { |
| 1186 | assert( index_[j] < minorDim_ && index_[j]>=0); |
| 1187 | ++orthoLength[index_[j]]; |
| 1188 | } |
| 1189 | } |
| 1190 | } else { |
| 1191 | // no gaps |
| 1192 | const CoinBigIndex last = start_[majorDim_]; |
| 1193 | for (CoinBigIndex j = 0; j < last; ++j) { |
| 1194 | assert( index_[j] < minorDim_ && index_[j]>=0); |
| 1195 | ++orthoLength[index_[j]]; |
| 1196 | } |
| 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | int * |
| 1201 | CoinPackedMatrix::countOrthoLength() const |
| 1202 | { |
| 1203 | int * orthoLength = new int[minorDim_]; |
| 1204 | countOrthoLength(orthoLength); |
| 1205 | return orthoLength; |
| 1206 | } |
| 1207 | |
| 1208 | //############################################################################# |
| 1209 | /* Returns an array containing major indices. The array is |
| 1210 | getNumElements long and if getVectorStarts() is 0,2,5 then |
| 1211 | the array would start 0,0,1,1,1,2... |
| 1212 | This method is provided to go back from a packed format |
| 1213 | to a triple format. |
| 1214 | The returned array is allocated with <code>new int[]</code>, |
| 1215 | free it with <code>delete[]</code>. */ |
| 1216 | int * |
| 1217 | CoinPackedMatrix::getMajorIndices() const |
| 1218 | { |
| 1219 | // Check valid |
| 1220 | if (!majorDim_||start_[majorDim_]!=size_) |
| 1221 | return NULL; |
| 1222 | int * array = new int [size_]; |
| 1223 | for (int i=0;i<majorDim_;i++) { |
| 1224 | for (CoinBigIndex k=start_[i];k<start_[i+1];k++) |
| 1225 | array[k]=i; |
| 1226 | } |
| 1227 | return array; |
| 1228 | } |
| 1229 | //############################################################################# |
| 1230 | |
| 1231 | void |
| 1232 | CoinPackedMatrix::appendMajorVector(const int vecsize, |
| 1233 | const int *vecind, |
| 1234 | const double *vecelem) |
| 1235 | { |
| 1236 | #ifdef COIN_DEBUG |
| 1237 | for (int i = 0; i < vecsize; ++i) { |
| 1238 | if (vecind[i] < 0 ) |
| 1239 | throw CoinError("out of range index" , |
| 1240 | "appendMajorVector" , "CoinPackedMatrix" ); |
| 1241 | } |
| 1242 | #if 0 |
| 1243 | if (std::find_if(vecind, vecind + vecsize, |
| 1244 | compose2(logical_or<bool>(), |
| 1245 | bind2nd(less<int>(), 0), |
| 1246 | bind2nd(greater_equal<int>(), minorDim_))) != |
| 1247 | vecind + vecsize) |
| 1248 | throw CoinError("out of range index" , |
| 1249 | "appendMajorVector" , "CoinPackedMatrix" ); |
| 1250 | #endif |
| 1251 | #endif |
| 1252 | |
| 1253 | if (majorDim_ == maxMajorDim_ || vecsize > maxSize_ - getLastStart()) { |
| 1254 | resizeForAddingMajorVectors(1, &vecsize); |
| 1255 | } |
| 1256 | |
| 1257 | // got to get this again since it might change! |
| 1258 | const CoinBigIndex last = getLastStart(); |
| 1259 | |
| 1260 | // OK, now just append the major-dimension vector to the end |
| 1261 | |
| 1262 | length_[majorDim_] = vecsize; |
| 1263 | CoinMemcpyN(vecind, vecsize, index_ + last); |
| 1264 | CoinMemcpyN(vecelem, vecsize, element_ + last); |
| 1265 | if (majorDim_ == 0) |
| 1266 | start_[0] = 0; |
| 1267 | start_[majorDim_ + 1] = |
| 1268 | CoinMin(last + CoinLengthWithExtra(vecsize, extraGap_), maxSize_ ); |
| 1269 | |
| 1270 | // LL: Do we want to allow appending a vector that has more entries than |
| 1271 | // the current size? |
| 1272 | if (vecsize > 0) { |
| 1273 | minorDim_ = CoinMax(minorDim_, |
| 1274 | (*std::max_element(vecind, vecind+vecsize)) + 1); |
| 1275 | } |
| 1276 | |
| 1277 | ++majorDim_; |
| 1278 | size_ += vecsize; |
| 1279 | } |
| 1280 | |
| 1281 | //----------------------------------------------------------------------------- |
| 1282 | #ifndef CLP_NO_VECTOR |
| 1283 | void |
| 1284 | CoinPackedMatrix::appendMajorVector(const CoinPackedVectorBase& vec) |
| 1285 | { |
| 1286 | appendMajorVector(vec.getNumElements(), |
| 1287 | vec.getIndices(), vec.getElements()); |
| 1288 | } |
| 1289 | //----------------------------------------------------------------------------- |
| 1290 | |
| 1291 | void |
| 1292 | CoinPackedMatrix::appendMajorVectors(const int numvecs, |
| 1293 | const CoinPackedVectorBase * const * vecs) |
| 1294 | { |
| 1295 | int i; |
| 1296 | CoinBigIndex nz = 0; |
| 1297 | for (i = 0; i < numvecs; ++i) |
| 1298 | nz += CoinLengthWithExtra(vecs[i]->getNumElements(), extraGap_); |
| 1299 | reserve(majorDim_ + numvecs, getLastStart() + nz); |
| 1300 | for (i = 0; i < numvecs; ++i) |
| 1301 | appendMajorVector(*vecs[i]); |
| 1302 | } |
| 1303 | #endif |
| 1304 | |
| 1305 | //############################################################################# |
| 1306 | |
| 1307 | void |
| 1308 | CoinPackedMatrix::appendMinorVector(const int vecsize, |
| 1309 | const int *vecind, |
| 1310 | const double *vecelem) |
| 1311 | { |
| 1312 | if (vecsize == 0) { |
| 1313 | ++minorDim_; // empty row/column - still need to increase |
| 1314 | return; |
| 1315 | } |
| 1316 | |
| 1317 | int i; |
| 1318 | #if COIN_COINUTILS_CHECKLEVEL > 3 |
| 1319 | // Test if any of the indices are out of range |
| 1320 | for (i = 0; i < vecsize; ++i) { |
| 1321 | if (vecind[i] < 0 || vecind[i] >= majorDim_) |
| 1322 | throw CoinError("out of range index" , |
| 1323 | "appendMinorVector" , "CoinPackedMatrix" ); |
| 1324 | } |
| 1325 | // Test if there are duplicate indices |
| 1326 | int* sortedind = CoinCopyOfArray(vecind, vecsize); |
| 1327 | std::sort(sortedind, sortedind+vecsize); |
| 1328 | if (std::adjacent_find(sortedind, sortedind+vecsize) != sortedind+vecsize) { |
| 1329 | throw CoinError("identical indices" , |
| 1330 | "appendMinorVector" , "CoinPackedMatrix" ); |
| 1331 | } |
| 1332 | #endif |
| 1333 | |
| 1334 | // test that there's a gap at the end of every major-dimension vector where |
| 1335 | // we want to add a new entry |
| 1336 | |
| 1337 | for (i = vecsize - 1; i >= 0; --i) { |
| 1338 | const int j = vecind[i]; |
| 1339 | if (start_[j] + length_[j] == start_[j+1]) |
| 1340 | break; |
| 1341 | } |
| 1342 | |
| 1343 | if (i >= 0) { |
| 1344 | int * addedEntries = new int[majorDim_]; |
| 1345 | memset(addedEntries, 0, majorDim_ * sizeof(int)); |
| 1346 | for (i = vecsize - 1; i >= 0; --i) |
| 1347 | addedEntries[vecind[i]] = 1; |
| 1348 | resizeForAddingMinorVectors(addedEntries); |
| 1349 | delete[] addedEntries; |
| 1350 | } |
| 1351 | |
| 1352 | // OK, now insert the entries of the minor-dimension vector |
| 1353 | for (i = vecsize - 1; i >= 0; --i) { |
| 1354 | const int j = vecind[i]; |
| 1355 | const CoinBigIndex posj = start_[j] + (length_[j]++); |
| 1356 | index_[posj] = minorDim_; |
| 1357 | element_[posj] = vecelem[i]; |
| 1358 | } |
| 1359 | |
| 1360 | ++minorDim_; |
| 1361 | size_ += vecsize; |
| 1362 | } |
| 1363 | |
| 1364 | //----------------------------------------------------------------------------- |
| 1365 | #ifndef CLP_NO_VECTOR |
| 1366 | void |
| 1367 | CoinPackedMatrix::appendMinorVector(const CoinPackedVectorBase& vec) |
| 1368 | { |
| 1369 | appendMinorVector(vec.getNumElements(), |
| 1370 | vec.getIndices(), vec.getElements()); |
| 1371 | } |
| 1372 | |
| 1373 | //----------------------------------------------------------------------------- |
| 1374 | |
| 1375 | void |
| 1376 | CoinPackedMatrix::appendMinorVectors(const int numvecs, |
| 1377 | const CoinPackedVectorBase * const * vecs) |
| 1378 | { |
| 1379 | if (numvecs == 0) |
| 1380 | return; |
| 1381 | |
| 1382 | int i; |
| 1383 | |
| 1384 | int * addedEntries = new int[majorDim_]; |
| 1385 | CoinZeroN(addedEntries, majorDim_); |
| 1386 | for (i = numvecs - 1; i >= 0; --i) { |
| 1387 | const int vecsize = vecs[i]->getNumElements(); |
| 1388 | const int* vecind = vecs[i]->getIndices(); |
| 1389 | for (int j = vecsize - 1; j >= 0; --j) { |
| 1390 | #ifdef COIN_DEBUG |
| 1391 | if (vecind[j] < 0 || vecind[j] >= majorDim_) |
| 1392 | throw CoinError("out of range index" , "appendMinorVectors" , |
| 1393 | "CoinPackedMatrix" ); |
| 1394 | #endif |
| 1395 | ++addedEntries[vecind[j]]; |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 1400 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
| 1401 | break; |
| 1402 | } |
| 1403 | if (i >= 0) |
| 1404 | resizeForAddingMinorVectors(addedEntries); |
| 1405 | delete[] addedEntries; |
| 1406 | |
| 1407 | // now insert the entries of the vectors |
| 1408 | for (i = 0; i < numvecs; ++i) { |
| 1409 | const int vecsize = vecs[i]->getNumElements(); |
| 1410 | const int* vecind = vecs[i]->getIndices(); |
| 1411 | const double* vecelem = vecs[i]->getElements(); |
| 1412 | for (int j = vecsize - 1; j >= 0; --j) { |
| 1413 | const int ind = vecind[j]; |
| 1414 | element_[start_[ind] + length_[ind]] = vecelem[j]; |
| 1415 | index_[start_[ind] + (length_[ind]++)] = minorDim_; |
| 1416 | } |
| 1417 | ++minorDim_; |
| 1418 | size_ += vecsize; |
| 1419 | } |
| 1420 | } |
| 1421 | #endif |
| 1422 | |
| 1423 | //############################################################################# |
| 1424 | //############################################################################# |
| 1425 | |
| 1426 | void |
| 1427 | CoinPackedMatrix::majorAppendSameOrdered(const CoinPackedMatrix& matrix) |
| 1428 | { |
| 1429 | if (minorDim_ != matrix.minorDim_) { |
| 1430 | throw CoinError("dimension mismatch" , "rightAppendSameOrdered" , |
| 1431 | "CoinPackedMatrix" ); |
| 1432 | } |
| 1433 | if (matrix.majorDim_ == 0) |
| 1434 | return; |
| 1435 | |
| 1436 | int i; |
| 1437 | if (majorDim_ + matrix.majorDim_ > maxMajorDim_ || |
| 1438 | getLastStart() + matrix.getLastStart() > maxSize_) { |
| 1439 | // we got to resize before we add. note that the resizing method |
| 1440 | // properly fills out start_ and length_ for the major-dimension |
| 1441 | // vectors to be added! |
| 1442 | resizeForAddingMajorVectors(matrix.majorDim_, matrix.length_); |
| 1443 | start_ += majorDim_; |
| 1444 | for (i = 0; i < matrix.majorDim_; ++i) { |
| 1445 | const int l = matrix.length_[i]; |
| 1446 | CoinMemcpyN(matrix.index_ + matrix.start_[i], l, |
| 1447 | index_ + start_[i]); |
| 1448 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
| 1449 | element_ + start_[i]); |
| 1450 | } |
| 1451 | start_ -= majorDim_; |
| 1452 | } else { |
| 1453 | start_ += majorDim_; |
| 1454 | length_ += majorDim_; |
| 1455 | for (i = 0; i < matrix.majorDim_; ++i) { |
| 1456 | const int l = matrix.length_[i]; |
| 1457 | CoinMemcpyN(matrix.index_ + matrix.start_[i], l, |
| 1458 | index_ + start_[i]); |
| 1459 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
| 1460 | element_ + start_[i]); |
| 1461 | start_[i+1] = start_[i] + matrix.start_[i+1] - matrix.start_[i]; |
| 1462 | length_[i] = l; |
| 1463 | } |
| 1464 | start_ -= majorDim_; |
| 1465 | length_ -= majorDim_; |
| 1466 | } |
| 1467 | majorDim_ += matrix.majorDim_; |
| 1468 | size_ += matrix.size_; |
| 1469 | } |
| 1470 | |
| 1471 | //----------------------------------------------------------------------------- |
| 1472 | |
| 1473 | void |
| 1474 | CoinPackedMatrix::minorAppendSameOrdered(const CoinPackedMatrix& matrix) |
| 1475 | { |
| 1476 | if (majorDim_ != matrix.majorDim_) { |
| 1477 | throw CoinError("dimension mismatch" , "bottomAppendSameOrdered" , |
| 1478 | "CoinPackedMatrix" ); |
| 1479 | } |
| 1480 | if (matrix.minorDim_ == 0) |
| 1481 | return; |
| 1482 | |
| 1483 | int i; |
| 1484 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 1485 | if (start_[i] + length_[i] + matrix.length_[i] > start_[i+1]) |
| 1486 | break; |
| 1487 | } |
| 1488 | if (i >= 0) |
| 1489 | resizeForAddingMinorVectors(matrix.length_); |
| 1490 | |
| 1491 | // now insert the entries of matrix |
| 1492 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 1493 | const int l = matrix.length_[i]; |
| 1494 | std::transform(matrix.index_ + matrix.start_[i], |
| 1495 | matrix.index_ + (matrix.start_[i] + l), |
| 1496 | index_ + (start_[i] + length_[i]), |
| 1497 | std::bind2nd(std::plus<int>(), minorDim_)); |
| 1498 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
| 1499 | element_ + (start_[i] + length_[i])); |
| 1500 | length_[i] += l; |
| 1501 | } |
| 1502 | minorDim_ += matrix.minorDim_; |
| 1503 | size_ += matrix.size_; |
| 1504 | } |
| 1505 | |
| 1506 | //----------------------------------------------------------------------------- |
| 1507 | |
| 1508 | void |
| 1509 | CoinPackedMatrix::majorAppendOrthoOrdered(const CoinPackedMatrix& matrix) |
| 1510 | { |
| 1511 | if (minorDim_ != matrix.majorDim_) { |
| 1512 | throw CoinError("dimension mismatch" , "majorAppendOrthoOrdered" , |
| 1513 | "CoinPackedMatrix" ); |
| 1514 | } |
| 1515 | if (matrix.majorDim_ == 0) |
| 1516 | return; |
| 1517 | |
| 1518 | int i; |
| 1519 | CoinBigIndex j; |
| 1520 | // this trickery is needed because MSVC++ is not willing to delete[] a |
| 1521 | // 'const int *' |
| 1522 | int * orthoLengthPtr = matrix.countOrthoLength(); |
| 1523 | const int * orthoLength = orthoLengthPtr; |
| 1524 | |
| 1525 | if (majorDim_ + matrix.minorDim_ > maxMajorDim_) { |
| 1526 | resizeForAddingMajorVectors(matrix.minorDim_, orthoLength); |
| 1527 | } else { |
| 1528 | const double = extraGap_; |
| 1529 | start_ += majorDim_; |
| 1530 | for (i = 0; i < matrix.minorDim_ ; ++i) { |
| 1531 | start_[i+1] = start_[i] + CoinLengthWithExtra(orthoLength[i], extra_gap); |
| 1532 | } |
| 1533 | start_ -= majorDim_; |
| 1534 | if (start_[majorDim_ + matrix.minorDim_] > maxSize_) { |
| 1535 | resizeForAddingMajorVectors(matrix.minorDim_, orthoLength); |
| 1536 | } |
| 1537 | } |
| 1538 | // At this point everything is big enough to accommodate the new entries. |
| 1539 | // Also, start_ is set to the correct starting points for all the new |
| 1540 | // major-dimension vectors. The length of the new major-dimension vectors |
| 1541 | // may or may not be correctly set. Hence we just zero them out and they'll |
| 1542 | // be set when the entries are actually added below. |
| 1543 | |
| 1544 | start_ += majorDim_; |
| 1545 | length_ += majorDim_; |
| 1546 | |
| 1547 | CoinZeroN(length_, matrix.minorDim_); |
| 1548 | |
| 1549 | for (i = 0; i < matrix.majorDim_; ++i) { |
| 1550 | const CoinBigIndex last = matrix.getVectorLast(i); |
| 1551 | for (j = matrix.getVectorFirst(i); j < last; ++j) { |
| 1552 | const int ind = matrix.index_[j]; |
| 1553 | element_[start_[ind] + length_[ind]] = matrix.element_[j]; |
| 1554 | index_[start_[ind] + (length_[ind]++)] = i; |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | length_ -= majorDim_; |
| 1559 | start_ -= majorDim_; |
| 1560 | |
| 1561 | // We need to update majorDim_ and size_. We can just add in from matrix |
| 1562 | majorDim_ += matrix.minorDim_; |
| 1563 | size_ += matrix.size_; |
| 1564 | |
| 1565 | delete[] orthoLengthPtr; |
| 1566 | } |
| 1567 | |
| 1568 | //----------------------------------------------------------------------------- |
| 1569 | |
| 1570 | void |
| 1571 | CoinPackedMatrix::minorAppendOrthoOrdered(const CoinPackedMatrix& matrix) |
| 1572 | { |
| 1573 | if (majorDim_ != matrix.minorDim_) { |
| 1574 | throw CoinError("dimension mismatch" , "bottomAppendOrthoOrdered" , |
| 1575 | "CoinPackedMatrix" ); |
| 1576 | } |
| 1577 | if (matrix.majorDim_ == 0) |
| 1578 | return; |
| 1579 | |
| 1580 | int i; |
| 1581 | // first compute how many entries will be added to each major-dimension |
| 1582 | // vector, and if needed, resize the matrix to accommodate all |
| 1583 | // this trickery is needed because MSVC++ is not willing to delete[] a |
| 1584 | // 'const int *' |
| 1585 | int * addedEntriesPtr = matrix.countOrthoLength(); |
| 1586 | const int * addedEntries = addedEntriesPtr; |
| 1587 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 1588 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
| 1589 | break; |
| 1590 | } |
| 1591 | if (i >= 0) |
| 1592 | resizeForAddingMinorVectors(addedEntries); |
| 1593 | delete[] addedEntriesPtr; |
| 1594 | |
| 1595 | // now insert the entries of matrix |
| 1596 | for (i = 0; i < matrix.majorDim_; ++i) { |
| 1597 | const CoinBigIndex last = matrix.getVectorLast(i); |
| 1598 | for (CoinBigIndex j = matrix.getVectorFirst(i); j != last; ++j) { |
| 1599 | const int ind = matrix.index_[j]; |
| 1600 | element_[start_[ind] + length_[ind]] = matrix.element_[j]; |
| 1601 | index_[start_[ind] + (length_[ind]++)] = minorDim_; |
| 1602 | } |
| 1603 | ++minorDim_; |
| 1604 | } |
| 1605 | size_ += matrix.size_; |
| 1606 | } |
| 1607 | |
| 1608 | //############################################################################# |
| 1609 | //############################################################################# |
| 1610 | |
| 1611 | void |
| 1612 | CoinPackedMatrix::deleteMajorVectors(const int numDel, |
| 1613 | const int * indDel) |
| 1614 | { |
| 1615 | if (numDel == majorDim_) { |
| 1616 | // everything is deleted |
| 1617 | majorDim_ = 0; |
| 1618 | minorDim_ = 0; |
| 1619 | size_ = 0; |
| 1620 | // Get rid of memory as well |
| 1621 | maxMajorDim_ = 0; |
| 1622 | delete [] length_; |
| 1623 | length_ = NULL; |
| 1624 | delete [] start_; |
| 1625 | start_ = new CoinBigIndex[1]; |
| 1626 | start_[0]=0; |
| 1627 | delete [] element_; |
| 1628 | element_=NULL; |
| 1629 | delete [] index_; |
| 1630 | index_=NULL; |
| 1631 | maxSize_ = 0; |
| 1632 | return; |
| 1633 | } |
| 1634 | |
| 1635 | if (!extraGap_&&!extraMajor_) { |
| 1636 | // See if this is faster |
| 1637 | char * keep = new char[majorDim_]; |
| 1638 | memset(keep,1,majorDim_); |
| 1639 | for (int i=0;i<numDel;i++) { |
| 1640 | int k=indDel[i]; |
| 1641 | assert (k>=0&&k<majorDim_&&keep[k]); |
| 1642 | keep[k]=0; |
| 1643 | } |
| 1644 | int n; |
| 1645 | // find first |
| 1646 | for (n=0;n<majorDim_;n++) { |
| 1647 | if (!keep[n]) |
| 1648 | break; |
| 1649 | } |
| 1650 | size_=start_[n]; |
| 1651 | for (int i=n;i<majorDim_;i++) { |
| 1652 | if (keep[i]) { |
| 1653 | int length = length_[i]; |
| 1654 | length_[n]=length; |
| 1655 | for (CoinBigIndex j=start_[i];j<start_[i+1];j++) { |
| 1656 | element_[size_]=element_[j]; |
| 1657 | index_[size_++]=index_[j]; |
| 1658 | } |
| 1659 | start_[++n]=size_; |
| 1660 | } |
| 1661 | } |
| 1662 | majorDim_=n; |
| 1663 | delete [] keep; |
| 1664 | } else { |
| 1665 | int *sortedDelPtr = CoinTestIndexSet(numDel, indDel, majorDim_, |
| 1666 | "deleteMajorVectors" ); |
| 1667 | const int * sortedDel = sortedDelPtr == 0 ? indDel : sortedDelPtr; |
| 1668 | |
| 1669 | CoinBigIndex deleted = 0; |
| 1670 | const int last = numDel - 1; |
| 1671 | for (int i = 0; i < last; ++i) { |
| 1672 | const int ind = sortedDel[i]; |
| 1673 | const int ind1 = sortedDel[i+1]; |
| 1674 | deleted += length_[ind]; |
| 1675 | if (ind1 - ind > 1) { |
| 1676 | CoinCopy(start_ + (ind + 1), start_ + ind1, start_ + (ind - i)); |
| 1677 | CoinCopy(length_ + (ind + 1), length_ + ind1, length_ + (ind - i)); |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | // copy the last block of length_ and start_ |
| 1682 | const int ind = sortedDel[last]; |
| 1683 | deleted += length_[ind]; |
| 1684 | if (sortedDel[last] != majorDim_ - 1) { |
| 1685 | const int ind1 = majorDim_; |
| 1686 | CoinCopy(start_ + (ind + 1), start_ + ind1, start_ + (ind - last)); |
| 1687 | CoinCopy(length_ + (ind + 1), length_ + ind1, length_ + (ind - last)); |
| 1688 | } |
| 1689 | majorDim_ -= numDel; |
| 1690 | const int lastlength = CoinLengthWithExtra(length_[majorDim_-1], extraGap_); |
| 1691 | start_[majorDim_] = CoinMin(start_[majorDim_-1] + lastlength, maxSize_); |
| 1692 | size_ -= deleted; |
| 1693 | |
| 1694 | // if the very first major vector was deleted then copy the new first major |
| 1695 | // vector to the beginning to make certain that start_[0] is 0. This may |
| 1696 | // not be necessary, but better safe than sorry... |
| 1697 | if (sortedDel[0] == 0) { |
| 1698 | CoinCopyN(index_ + start_[0], length_[0], index_); |
| 1699 | CoinCopyN(element_ + start_[0], length_[0], element_); |
| 1700 | start_[0] = 0; |
| 1701 | } |
| 1702 | |
| 1703 | delete[] sortedDelPtr; |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | //############################################################################# |
| 1708 | |
| 1709 | void |
| 1710 | CoinPackedMatrix::deleteMinorVectors(const int numDel, |
| 1711 | const int * indDel) |
| 1712 | { |
| 1713 | if (numDel == minorDim_) { |
| 1714 | // everything is deleted |
| 1715 | minorDim_ = 0; |
| 1716 | size_ = 0; |
| 1717 | // Get rid of as much memory as possible |
| 1718 | memset(length_,0,majorDim_*sizeof(int)); |
| 1719 | memset(start_,0,(majorDim_+1)*sizeof(CoinBigIndex )); |
| 1720 | delete [] element_; |
| 1721 | element_=NULL; |
| 1722 | delete [] index_; |
| 1723 | index_=NULL; |
| 1724 | maxSize_ = 0; |
| 1725 | return; |
| 1726 | } |
| 1727 | int i, j, k; |
| 1728 | |
| 1729 | // first compute the new index of every row |
| 1730 | int* newindexPtr = new int[minorDim_]; |
| 1731 | CoinZeroN(newindexPtr, minorDim_); |
| 1732 | for (j = 0; j < numDel; ++j) { |
| 1733 | const int ind = indDel[j]; |
| 1734 | #ifdef COIN_DEBUG |
| 1735 | if (ind < 0 || ind >= minorDim_) |
| 1736 | throw CoinError("out of range index" , |
| 1737 | "deleteMinorVectors" , "CoinPackedMatrix" ); |
| 1738 | if (newindexPtr[ind] == -1) |
| 1739 | throw CoinError("duplicate index" , |
| 1740 | "deleteMinorVectors" , "CoinPackedMatrix" ); |
| 1741 | #endif |
| 1742 | newindexPtr[ind] = -1; |
| 1743 | } |
| 1744 | for (i = 0, k = 0; i < minorDim_; ++i) { |
| 1745 | if (newindexPtr[i] != -1) { |
| 1746 | newindexPtr[i] = k++; |
| 1747 | } |
| 1748 | } |
| 1749 | // Now crawl through the matrix |
| 1750 | const int * newindex = newindexPtr; |
| 1751 | #ifdef TAKEOUT |
| 1752 | int mcount[400]; |
| 1753 | memset(mcount,0,400*sizeof(int)); |
| 1754 | for (i = 0; i < majorDim_; ++i) { |
| 1755 | int * index = index_ + start_[i]; |
| 1756 | double * elem = element_ + start_[i]; |
| 1757 | const int length_i = length_[i]; |
| 1758 | for (j = 0, k = 0; j < length_i; ++j) { |
| 1759 | mcount[index[j]]++; |
| 1760 | } |
| 1761 | } |
| 1762 | for (i=0;i<minorDim_;i++) { |
| 1763 | if (mcount[i]==10||mcount[i]==15) { |
| 1764 | if (newindex[i]>=0) |
| 1765 | printf("Keeping original row %d (new %d) with count of %d\n" , |
| 1766 | i,newindex[i],mcount[i]); |
| 1767 | else |
| 1768 | printf("deleting row %d with count of %d\n" , |
| 1769 | i,mcount[i]); |
| 1770 | } |
| 1771 | } |
| 1772 | #endif |
| 1773 | if (!extraGap_) { |
| 1774 | // pack down |
| 1775 | size_=0; |
| 1776 | for (i = 0; i < majorDim_; ++i) { |
| 1777 | int * index = index_ + start_[i]; |
| 1778 | double * elem = element_ + start_[i]; |
| 1779 | start_[i]=size_; |
| 1780 | const int length_i = length_[i]; |
| 1781 | for (j = 0; j < length_i; ++j) { |
| 1782 | const int ind = newindex[index[j]]; |
| 1783 | if (ind >= 0) { |
| 1784 | index_[size_] = ind; |
| 1785 | element_[size_++] = elem[j]; |
| 1786 | } |
| 1787 | } |
| 1788 | length_[i] = size_-start_[i]; |
| 1789 | } |
| 1790 | start_[majorDim_]=size_; |
| 1791 | } else { |
| 1792 | int deleted = 0; |
| 1793 | for (i = 0; i < majorDim_; ++i) { |
| 1794 | int * index = index_ + start_[i]; |
| 1795 | double * elem = element_ + start_[i]; |
| 1796 | const int length_i = length_[i]; |
| 1797 | for (j = 0, k = 0; j < length_i; ++j) { |
| 1798 | const int ind = newindex[index[j]]; |
| 1799 | if (ind != -1) { |
| 1800 | index[k] = ind; |
| 1801 | elem[k++] = elem[j]; |
| 1802 | } |
| 1803 | } |
| 1804 | deleted += length_i - k; |
| 1805 | length_[i] = k; |
| 1806 | } |
| 1807 | size_ -= deleted; |
| 1808 | } |
| 1809 | |
| 1810 | delete[] newindexPtr; |
| 1811 | |
| 1812 | minorDim_ -= numDel; |
| 1813 | } |
| 1814 | |
| 1815 | //############################################################################# |
| 1816 | //############################################################################# |
| 1817 | |
| 1818 | void |
| 1819 | CoinPackedMatrix::timesMajor(const double * x, double * y) const |
| 1820 | { |
| 1821 | memset(y, 0, minorDim_ * sizeof(double)); |
| 1822 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 1823 | const double x_i = x[i]; |
| 1824 | if (x_i != 0.0) { |
| 1825 | const CoinBigIndex last = getVectorLast(i); |
| 1826 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
| 1827 | y[index_[j]] += x_i * element_[j]; |
| 1828 | } |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | //----------------------------------------------------------------------------- |
| 1833 | #ifndef CLP_NO_VECTOR |
| 1834 | void |
| 1835 | CoinPackedMatrix::timesMajor(const CoinPackedVectorBase& x, double * y) const |
| 1836 | { |
| 1837 | memset(y, 0, minorDim_ * sizeof(double)); |
| 1838 | for (CoinBigIndex i = x.getNumElements() - 1; i >= 0; --i) { |
| 1839 | const double x_i = x.getElements()[i]; |
| 1840 | if (x_i != 0.0) { |
| 1841 | const int ind = x.getIndices()[i]; |
| 1842 | const CoinBigIndex last = getVectorLast(ind); |
| 1843 | for (CoinBigIndex j = getVectorFirst(ind); j < last; ++j) |
| 1844 | y[index_[j]] += x_i * element_[j]; |
| 1845 | } |
| 1846 | } |
| 1847 | } |
| 1848 | #endif |
| 1849 | //----------------------------------------------------------------------------- |
| 1850 | |
| 1851 | void |
| 1852 | CoinPackedMatrix::timesMinor(const double * x, double * y) const |
| 1853 | { |
| 1854 | memset(y, 0, majorDim_ * sizeof(double)); |
| 1855 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 1856 | double y_i = 0; |
| 1857 | const CoinBigIndex last = getVectorLast(i); |
| 1858 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
| 1859 | y_i += x[index_[j]] * element_[j]; |
| 1860 | y[i] = y_i; |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | //----------------------------------------------------------------------------- |
| 1865 | #ifndef CLP_NO_VECTOR |
| 1866 | void |
| 1867 | CoinPackedMatrix::timesMinor(const CoinPackedVectorBase& x, double * y) const |
| 1868 | { |
| 1869 | memset(y, 0, majorDim_ * sizeof(double)); |
| 1870 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 1871 | double y_i = 0; |
| 1872 | const CoinBigIndex last = getVectorLast(i); |
| 1873 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
| 1874 | y_i += x[index_[j]] * element_[j]; |
| 1875 | y[i] = y_i; |
| 1876 | } |
| 1877 | } |
| 1878 | #endif |
| 1879 | //############################################################################# |
| 1880 | //############################################################################# |
| 1881 | |
| 1882 | CoinPackedMatrix::CoinPackedMatrix() : |
| 1883 | colOrdered_(true), |
| 1884 | extraGap_(0.0), |
| 1885 | extraMajor_(0.0), |
| 1886 | element_(0), |
| 1887 | index_(0), |
| 1888 | length_(0), |
| 1889 | majorDim_(0), |
| 1890 | minorDim_(0), |
| 1891 | size_(0), |
| 1892 | maxMajorDim_(0), |
| 1893 | maxSize_(0) |
| 1894 | { |
| 1895 | start_ = new CoinBigIndex[1]; |
| 1896 | start_[0] = 0; |
| 1897 | } |
| 1898 | |
| 1899 | //----------------------------------------------------------------------------- |
| 1900 | |
| 1901 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
| 1902 | const double , |
| 1903 | const double ) : |
| 1904 | colOrdered_(colordered), |
| 1905 | extraGap_(extraGap), |
| 1906 | extraMajor_(extraMajor), |
| 1907 | element_(0), |
| 1908 | index_(0), |
| 1909 | length_(0), |
| 1910 | majorDim_(0), |
| 1911 | minorDim_(0), |
| 1912 | size_(0), |
| 1913 | maxMajorDim_(0), |
| 1914 | maxSize_(0) |
| 1915 | { |
| 1916 | start_ = new CoinBigIndex[1]; |
| 1917 | start_[0] = 0; |
| 1918 | } |
| 1919 | |
| 1920 | //----------------------------------------------------------------------------- |
| 1921 | |
| 1922 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
| 1923 | const int minor, const int major, |
| 1924 | const CoinBigIndex numels, |
| 1925 | const double * elem, const int * ind, |
| 1926 | const CoinBigIndex * start, const int * len, |
| 1927 | const double , |
| 1928 | const double ) : |
| 1929 | colOrdered_(colordered), |
| 1930 | extraGap_(extraGap), |
| 1931 | extraMajor_(extraMajor), |
| 1932 | element_(NULL), |
| 1933 | index_(NULL), |
| 1934 | start_(NULL), |
| 1935 | length_(NULL), |
| 1936 | majorDim_(0), |
| 1937 | minorDim_(0), |
| 1938 | size_(0), |
| 1939 | maxMajorDim_(0), |
| 1940 | maxSize_(0) |
| 1941 | { |
| 1942 | gutsOfOpEqual(colordered, minor, major, numels, elem, ind, start, len); |
| 1943 | } |
| 1944 | |
| 1945 | //----------------------------------------------------------------------------- |
| 1946 | |
| 1947 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
| 1948 | const int minor, const int major, |
| 1949 | const CoinBigIndex numels, |
| 1950 | const double * elem, const int * ind, |
| 1951 | const CoinBigIndex * start, const int * len) : |
| 1952 | colOrdered_(colordered), |
| 1953 | extraGap_(0.0), |
| 1954 | extraMajor_(0.0), |
| 1955 | element_(NULL), |
| 1956 | index_(NULL), |
| 1957 | start_(NULL), |
| 1958 | length_(NULL), |
| 1959 | majorDim_(0), |
| 1960 | minorDim_(0), |
| 1961 | size_(0), |
| 1962 | maxMajorDim_(0), |
| 1963 | maxSize_(0) |
| 1964 | { |
| 1965 | gutsOfOpEqual(colordered, minor, major, numels, elem, ind, start, len); |
| 1966 | } |
| 1967 | |
| 1968 | //----------------------------------------------------------------------------- |
| 1969 | // makes column ordered from triplets and takes out duplicates |
| 1970 | // will be sorted |
| 1971 | // |
| 1972 | // This is an interesting in-place sorting algorithm; |
| 1973 | // We have triples, and want to sort them so that triples with the same column |
| 1974 | // are adjacent. |
| 1975 | // We begin by computing how many entries there are for each column (columnCount) |
| 1976 | // and using that to compute where each set of column entries will *end* (startColumn). |
| 1977 | // As we drop entries into place, startColumn is decremented until it contains |
| 1978 | // the position where the column entries *start*. |
| 1979 | // The invalid column index -2 means there's a "hole" in that position; |
| 1980 | // the invalid column index -1 means the entry in that spot is "where it wants to go". |
| 1981 | // Initially, no one is where they want to go. |
| 1982 | // Going back to front, |
| 1983 | // if that entry is where it wants to go |
| 1984 | // then leave it there |
| 1985 | // otherwise pick it up (which leaves a hole), and |
| 1986 | // for as long as you have an entry in your right hand, |
| 1987 | // - pick up the entry (with your left hand) in the position where the one in |
| 1988 | // your right hand wants to go; |
| 1989 | // - pass the entry in your left hand to your right hand; |
| 1990 | // - was that entry really just the "hole"? If so, stop. |
| 1991 | // It could be that all the entries get shuffled in the first loop iteration |
| 1992 | // and all the rest just confirm that everyone is happy where they are. |
| 1993 | // We never move an entry that is where it wants to go, so entries are moved at |
| 1994 | // most once. They may not change position if they happen to initially be |
| 1995 | // where they want to go when the for loop gets to them. |
| 1996 | // It depends on how many subpermutations the triples initially defined. |
| 1997 | // Each while loop takes care of one permutation. |
| 1998 | // The while loop has to stop, because each time around we mark one entry as happy. |
| 1999 | // We can't run into a happy entry, because we are decrementing the startColumn |
| 2000 | // all the time, so we must be running into new entries. |
| 2001 | // Once we've processed all the slots for a column, it cannot be the case that |
| 2002 | // there are any others that want to go there. |
| 2003 | // This all means that we eventually must run into the hole. |
| 2004 | CoinPackedMatrix::CoinPackedMatrix( |
| 2005 | const bool colordered, |
| 2006 | const int * indexRow , |
| 2007 | const int * indexColumn, |
| 2008 | const double * element, |
| 2009 | CoinBigIndex numberElements ) |
| 2010 | : |
| 2011 | colOrdered_(colordered), |
| 2012 | extraGap_(0.0), |
| 2013 | extraMajor_(0.0), |
| 2014 | element_(NULL), |
| 2015 | index_(NULL), |
| 2016 | start_(NULL), |
| 2017 | length_(NULL), |
| 2018 | majorDim_(0), |
| 2019 | minorDim_(0), |
| 2020 | size_(0), |
| 2021 | maxMajorDim_(0), |
| 2022 | maxSize_(0) |
| 2023 | { |
| 2024 | CoinAbsFltEq eq; |
| 2025 | int * colIndices = new int[numberElements]; |
| 2026 | int * rowIndices = new int[numberElements]; |
| 2027 | double * elements = new double[numberElements]; |
| 2028 | CoinCopyN(element,numberElements,elements); |
| 2029 | if ( colordered ) { |
| 2030 | CoinCopyN(indexColumn,numberElements,colIndices); |
| 2031 | CoinCopyN(indexRow,numberElements,rowIndices); |
| 2032 | } |
| 2033 | else { |
| 2034 | CoinCopyN(indexColumn,numberElements,rowIndices); |
| 2035 | CoinCopyN(indexRow,numberElements,colIndices); |
| 2036 | } |
| 2037 | |
| 2038 | int numberRows; |
| 2039 | int numberColumns; |
| 2040 | if (numberElements ) { |
| 2041 | numberRows = *std::max_element(rowIndices,rowIndices+numberElements)+1; |
| 2042 | numberColumns = *std::max_element(colIndices,colIndices+numberElements)+1; |
| 2043 | } else { |
| 2044 | numberRows = 0; |
| 2045 | numberColumns = 0; |
| 2046 | } |
| 2047 | int * rowCount = new int[numberRows]; |
| 2048 | int * columnCount = new int[numberColumns]; |
| 2049 | CoinBigIndex * startColumn = new CoinBigIndex[numberColumns+1]; |
| 2050 | int * lengths = new int[numberColumns+1]; |
| 2051 | |
| 2052 | int iColumn,i; |
| 2053 | CoinBigIndex k; |
| 2054 | for (i=0;i<numberRows;i++) { |
| 2055 | rowCount[i]=0; |
| 2056 | } |
| 2057 | for (i=0;i<numberColumns;i++) { |
| 2058 | columnCount[i]=0; |
| 2059 | } |
| 2060 | for (i=0;i<numberElements;i++) { |
| 2061 | int iRow=rowIndices[i]; |
| 2062 | int iColumn=colIndices[i]; |
| 2063 | rowCount[iRow]++; |
| 2064 | columnCount[iColumn]++; |
| 2065 | } |
| 2066 | CoinBigIndex iCount=0; |
| 2067 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2068 | /* position after end of Column */ |
| 2069 | iCount+=columnCount[iColumn]; |
| 2070 | startColumn[iColumn]=iCount; |
| 2071 | } /* endfor */ |
| 2072 | startColumn[iColumn]=iCount; |
| 2073 | for (k=numberElements-1;k>=0;k--) { |
| 2074 | iColumn=colIndices[k]; |
| 2075 | if (iColumn>=0) { |
| 2076 | /* pick up the entry with your right hand */ |
| 2077 | double value = elements[k]; |
| 2078 | int iRow=rowIndices[k]; |
| 2079 | colIndices[k]=-2; /* the hole */ |
| 2080 | |
| 2081 | while (1) { |
| 2082 | /* pick this up with your left */ |
| 2083 | CoinBigIndex iLook=startColumn[iColumn]-1; |
| 2084 | double valueSave=elements[iLook]; |
| 2085 | int iColumnSave=colIndices[iLook]; |
| 2086 | int iRowSave=rowIndices[iLook]; |
| 2087 | |
| 2088 | /* put the right-hand entry where it wanted to go */ |
| 2089 | startColumn[iColumn]=iLook; |
| 2090 | elements[iLook]=value; |
| 2091 | rowIndices[iLook]=iRow; |
| 2092 | colIndices[iLook]=-1; /* mark it as being where it wants to be */ |
| 2093 | |
| 2094 | /* there was something there */ |
| 2095 | if (iColumnSave>=0) { |
| 2096 | iColumn=iColumnSave; |
| 2097 | value=valueSave; |
| 2098 | iRow=iRowSave; |
| 2099 | } else if (iColumnSave == -2) { /* that was the hole */ |
| 2100 | break; |
| 2101 | } else { |
| 2102 | assert(1==0); /* should never happen */ |
| 2103 | } |
| 2104 | /* endif */ |
| 2105 | } /* endwhile */ |
| 2106 | } /* endif */ |
| 2107 | } /* endfor */ |
| 2108 | |
| 2109 | /* now pack the elements and combine entries with the same row and column */ |
| 2110 | /* also, drop entries with "small" coefficients */ |
| 2111 | numberElements=0; |
| 2112 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2113 | CoinBigIndex start=startColumn[iColumn]; |
| 2114 | CoinBigIndex end =startColumn[iColumn+1]; |
| 2115 | lengths[iColumn]=0; |
| 2116 | startColumn[iColumn]=numberElements; |
| 2117 | if (end>start) { |
| 2118 | int lastRow; |
| 2119 | double lastValue; |
| 2120 | // sorts on indices dragging elements with |
| 2121 | CoinSort_2(rowIndices+start,rowIndices+end,elements+start,CoinFirstLess_2<int, double>()); |
| 2122 | lastRow=rowIndices[start]; |
| 2123 | lastValue=elements[start]; |
| 2124 | for (i=start+1;i<end;i++) { |
| 2125 | int iRow=rowIndices[i]; |
| 2126 | double value=elements[i]; |
| 2127 | if (iRow>lastRow) { |
| 2128 | //if(fabs(lastValue)>tolerance) { |
| 2129 | if(!eq(lastValue,0.0)) { |
| 2130 | rowIndices[numberElements]=lastRow; |
| 2131 | elements[numberElements]=lastValue; |
| 2132 | numberElements++; |
| 2133 | lengths[iColumn]++; |
| 2134 | } |
| 2135 | lastRow=iRow; |
| 2136 | lastValue=value; |
| 2137 | } else { |
| 2138 | lastValue+=value; |
| 2139 | } /* endif */ |
| 2140 | } /* endfor */ |
| 2141 | //if(fabs(lastValue)>tolerance) { |
| 2142 | if(!eq(lastValue,0.0)) { |
| 2143 | rowIndices[numberElements]=lastRow; |
| 2144 | elements[numberElements]=lastValue; |
| 2145 | numberElements++; |
| 2146 | lengths[iColumn]++; |
| 2147 | } |
| 2148 | } |
| 2149 | } /* endfor */ |
| 2150 | startColumn[numberColumns]=numberElements; |
| 2151 | #if 0 |
| 2152 | gutsOfOpEqual(colordered,numberRows,numberColumns,numberElements,elements,rowIndices,startColumn,lengths); |
| 2153 | |
| 2154 | delete [] rowCount; |
| 2155 | delete [] columnCount; |
| 2156 | delete [] startColumn; |
| 2157 | delete [] lengths; |
| 2158 | |
| 2159 | delete [] colIndices; |
| 2160 | delete [] rowIndices; |
| 2161 | delete [] elements; |
| 2162 | #else |
| 2163 | assignMatrix(colordered,numberRows,numberColumns,numberElements, |
| 2164 | elements,rowIndices,startColumn,lengths); |
| 2165 | delete [] rowCount; |
| 2166 | delete [] columnCount; |
| 2167 | delete [] lengths; |
| 2168 | delete [] colIndices; |
| 2169 | #endif |
| 2170 | |
| 2171 | } |
| 2172 | |
| 2173 | //----------------------------------------------------------------------------- |
| 2174 | |
| 2175 | CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & rhs) : |
| 2176 | colOrdered_(true), |
| 2177 | extraGap_(0.0), |
| 2178 | extraMajor_(0.0), |
| 2179 | element_(0), |
| 2180 | index_(0), |
| 2181 | start_(0), |
| 2182 | length_(0), |
| 2183 | majorDim_(0), |
| 2184 | minorDim_(0), |
| 2185 | size_(0), |
| 2186 | maxMajorDim_(0), |
| 2187 | maxSize_(0) |
| 2188 | { |
| 2189 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
| 2190 | if (!hasGaps&&!rhs.extraMajor_) { |
| 2191 | gutsOfCopyOfNoGaps(rhs.colOrdered_, |
| 2192 | rhs.minorDim_, rhs.majorDim_, |
| 2193 | rhs.element_, rhs.index_, rhs.start_); |
| 2194 | } else { |
| 2195 | gutsOfCopyOf(rhs.colOrdered_, |
| 2196 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
| 2197 | rhs.element_, rhs.index_, rhs.start_, rhs.length_, |
| 2198 | rhs.extraMajor_, rhs.extraGap_); |
| 2199 | } |
| 2200 | } |
| 2201 | /* Copy constructor - fine tuning - allowing extra space and/or reverse ordering. |
| 2202 | extraForMajor is exact extra after any possible reverse ordering. |
| 2203 | extraMajor_ and extraGap_ set to zero. |
| 2204 | */ |
| 2205 | CoinPackedMatrix::CoinPackedMatrix(const CoinPackedMatrix& rhs, int , |
| 2206 | int , bool reverseOrdering) |
| 2207 | : colOrdered_(rhs.colOrdered_), |
| 2208 | extraGap_(0), |
| 2209 | extraMajor_(0), |
| 2210 | element_(0), |
| 2211 | index_(0), |
| 2212 | start_(0), |
| 2213 | length_(0), |
| 2214 | majorDim_(rhs.majorDim_), |
| 2215 | minorDim_(rhs.minorDim_), |
| 2216 | size_(rhs.size_), |
| 2217 | maxMajorDim_(0), |
| 2218 | maxSize_(0) |
| 2219 | { |
| 2220 | if (!reverseOrdering) { |
| 2221 | if (extraForMajor>=0) { |
| 2222 | maxMajorDim_ = majorDim_+ extraForMajor; |
| 2223 | maxSize_ = size_ + extraElements; |
| 2224 | assert (maxMajorDim_>0); |
| 2225 | assert (maxSize_>0); |
| 2226 | length_ = new int[maxMajorDim_]; |
| 2227 | CoinMemcpyN(rhs.length_, majorDim_, length_); |
| 2228 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2229 | element_ = new double[maxSize_]; |
| 2230 | index_ = new int[maxSize_]; |
| 2231 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
| 2232 | if (hasGaps) { |
| 2233 | // we can't just simply memcpy these content over, because that can |
| 2234 | // upset memory debuggers like purify if there were gaps and those gaps |
| 2235 | // were uninitialized memory blocks |
| 2236 | CoinBigIndex size=0; |
| 2237 | for (int i = 0 ; i < majorDim_ ; i++) { |
| 2238 | start_[i]=size; |
| 2239 | CoinMemcpyN(rhs.index_ + rhs.start_[i], length_[i], index_ + size); |
| 2240 | CoinMemcpyN(rhs.element_ + rhs.start_[i], length_[i], element_ + size); |
| 2241 | size += length_[i]; |
| 2242 | } |
| 2243 | start_[majorDim_]=size; |
| 2244 | assert (size_==size); |
| 2245 | } else { |
| 2246 | CoinMemcpyN(rhs.start_, majorDim_+1, start_); |
| 2247 | CoinMemcpyN(rhs.index_, size_, index_); |
| 2248 | CoinMemcpyN(rhs.element_, size_, element_ ); |
| 2249 | } |
| 2250 | } else { |
| 2251 | // take out small and gaps |
| 2252 | maxMajorDim_ = majorDim_; |
| 2253 | maxSize_ = size_; |
| 2254 | if (maxMajorDim_>0) { |
| 2255 | length_ = new int[maxMajorDim_]; |
| 2256 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2257 | if (maxSize_>0) { |
| 2258 | element_ = new double[maxSize_]; |
| 2259 | index_ = new int[maxSize_]; |
| 2260 | } |
| 2261 | CoinBigIndex size=0; |
| 2262 | const double * oldElement = rhs.element_; |
| 2263 | const CoinBigIndex * oldStart = rhs.start_; |
| 2264 | const int * oldIndex = rhs.index_; |
| 2265 | const int * oldLength = rhs.length_; |
| 2266 | CoinBigIndex tooSmallCount=0; |
| 2267 | for (int i = 0 ; i < majorDim_ ; i++) { |
| 2268 | start_[i]=size; |
| 2269 | for (CoinBigIndex j=oldStart[i]; |
| 2270 | j<oldStart[i]+oldLength[i];j++) { |
| 2271 | double value = oldElement[j]; |
| 2272 | if (fabs(value)>1.0e-21) { |
| 2273 | element_[size]=value; |
| 2274 | index_[size++]=oldIndex[j]; |
| 2275 | } else { |
| 2276 | tooSmallCount++; |
| 2277 | } |
| 2278 | } |
| 2279 | length_[i]=size-start_[i]; |
| 2280 | } |
| 2281 | start_[majorDim_]=size; |
| 2282 | assert (size_==size+tooSmallCount); |
| 2283 | size_ = size; |
| 2284 | } else { |
| 2285 | start_ = new CoinBigIndex[1]; |
| 2286 | start_[0]=0; |
| 2287 | } |
| 2288 | } |
| 2289 | } else { |
| 2290 | // more complicated |
| 2291 | colOrdered_ = ! colOrdered_; |
| 2292 | minorDim_ = rhs.majorDim_; |
| 2293 | majorDim_ = rhs.minorDim_; |
| 2294 | maxMajorDim_ = majorDim_ + extraForMajor; |
| 2295 | maxSize_ = CoinMax(size_ + extraElements,1); |
| 2296 | assert (maxMajorDim_>0); |
| 2297 | length_ = new int[maxMajorDim_]; |
| 2298 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2299 | element_ = new double[maxSize_]; |
| 2300 | index_ = new int[maxSize_]; |
| 2301 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
| 2302 | CoinZeroN(length_, majorDim_); |
| 2303 | int i; |
| 2304 | if (hasGaps) { |
| 2305 | // has gaps |
| 2306 | for (i = 0; i <rhs.majorDim_ ; ++i) { |
| 2307 | const CoinBigIndex first = rhs.start_[i]; |
| 2308 | const CoinBigIndex last = first + rhs.length_[i]; |
| 2309 | for (CoinBigIndex j = first; j < last; ++j) { |
| 2310 | assert( rhs.index_[j] < rhs.minorDim_ && rhs.index_[j]>=0); |
| 2311 | ++length_[rhs.index_[j]]; |
| 2312 | } |
| 2313 | } |
| 2314 | } else { |
| 2315 | // no gaps |
| 2316 | const CoinBigIndex last = rhs.start_[rhs.majorDim_]; |
| 2317 | for (CoinBigIndex j = 0; j < last; ++j) { |
| 2318 | assert( rhs.index_[j] < rhs.minorDim_ && rhs.index_[j]>=0); |
| 2319 | ++length_[rhs.index_[j]]; |
| 2320 | } |
| 2321 | } |
| 2322 | // Now do starts |
| 2323 | CoinBigIndex size=0; |
| 2324 | for (i = 0; i <majorDim_ ; ++i) { |
| 2325 | start_[i]=size; |
| 2326 | size += length_[i]; |
| 2327 | } |
| 2328 | start_[majorDim_]=size; |
| 2329 | assert (size==size_); |
| 2330 | for (i = 0; i <rhs.majorDim_ ; ++i) { |
| 2331 | const CoinBigIndex first = rhs.start_[i]; |
| 2332 | const CoinBigIndex last = first + rhs.length_[i]; |
| 2333 | for (CoinBigIndex j = first; j < last; ++j) { |
| 2334 | const int ind = rhs.index_[j]; |
| 2335 | CoinBigIndex put = start_[ind]; |
| 2336 | start_[ind] = put +1; |
| 2337 | element_[put] = rhs.element_[j]; |
| 2338 | index_[put] = i; |
| 2339 | } |
| 2340 | } |
| 2341 | // and re-adjust start_ |
| 2342 | for (i = 0; i < majorDim_; ++i) { |
| 2343 | start_[i] -= length_[i]; |
| 2344 | } |
| 2345 | } |
| 2346 | } |
| 2347 | // Subset constructor (without gaps) |
| 2348 | CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & rhs, |
| 2349 | int numberRows, const int * whichRow, |
| 2350 | int numberColumns, |
| 2351 | const int * whichColumn) : |
| 2352 | colOrdered_(true), |
| 2353 | extraGap_(0.0), |
| 2354 | extraMajor_(0.0), |
| 2355 | element_(NULL), |
| 2356 | index_(NULL), |
| 2357 | start_(NULL), |
| 2358 | length_(NULL), |
| 2359 | majorDim_(0), |
| 2360 | minorDim_(0), |
| 2361 | size_(0), |
| 2362 | maxMajorDim_(0), |
| 2363 | maxSize_(0) |
| 2364 | { |
| 2365 | if (numberRows<=0||numberColumns<=0) { |
| 2366 | start_ = new CoinBigIndex[1]; |
| 2367 | start_[0] = 0; |
| 2368 | } else { |
| 2369 | if (!rhs.colOrdered_) { |
| 2370 | // just swap lists |
| 2371 | colOrdered_=false; |
| 2372 | const int * temp = whichRow; |
| 2373 | whichRow = whichColumn; |
| 2374 | whichColumn = temp; |
| 2375 | int n = numberRows; |
| 2376 | numberRows = numberColumns; |
| 2377 | numberColumns = n; |
| 2378 | } |
| 2379 | const double * element1 = rhs.element_; |
| 2380 | const int * index1 = rhs.index_; |
| 2381 | const CoinBigIndex * start1 = rhs.start_; |
| 2382 | const int * length1 = rhs.length_; |
| 2383 | |
| 2384 | majorDim_ = numberColumns; |
| 2385 | maxMajorDim_ = numberColumns; |
| 2386 | minorDim_ = numberRows; |
| 2387 | // Throw exception if rhs empty |
| 2388 | if (rhs.majorDim_ <= 0 || rhs.minorDim_ <= 0) |
| 2389 | throw CoinError("empty rhs" , "subset constructor" , "CoinPackedMatrix" ); |
| 2390 | // Array to say if an old row is in new copy |
| 2391 | int * newRow = new int [rhs.minorDim_]; |
| 2392 | int iRow; |
| 2393 | for (iRow=0;iRow<rhs.minorDim_;iRow++) |
| 2394 | newRow[iRow] = -1; |
| 2395 | // and array for duplicating rows |
| 2396 | int * duplicateRow = new int [numberRows]; |
| 2397 | int numberBad=0; |
| 2398 | int numberDuplicate=0; |
| 2399 | for (iRow=0;iRow<numberRows;iRow++) { |
| 2400 | duplicateRow[iRow] = -1; |
| 2401 | int kRow = whichRow[iRow]; |
| 2402 | if (kRow>=0 && kRow < rhs.minorDim_) { |
| 2403 | if (newRow[kRow]<0) { |
| 2404 | // first time |
| 2405 | newRow[kRow]=iRow; |
| 2406 | } else { |
| 2407 | // duplicate |
| 2408 | numberDuplicate++; |
| 2409 | int lastRow = newRow[kRow]; |
| 2410 | newRow[kRow]=iRow; |
| 2411 | duplicateRow[iRow] = lastRow; |
| 2412 | } |
| 2413 | } else { |
| 2414 | // bad row |
| 2415 | numberBad++; |
| 2416 | } |
| 2417 | } |
| 2418 | |
| 2419 | if (numberBad) |
| 2420 | throw CoinError("bad minor entries" , |
| 2421 | "subset constructor" , "CoinPackedMatrix" ); |
| 2422 | // now get size and check columns |
| 2423 | size_ = 0; |
| 2424 | int iColumn; |
| 2425 | numberBad=0; |
| 2426 | if (!numberDuplicate) { |
| 2427 | // No duplicates so can do faster |
| 2428 | // If not much smaller then use original size |
| 2429 | if (3*majorDim_>2*rhs.majorDim_&& |
| 2430 | 3*minorDim_>2*rhs.minorDim_) { |
| 2431 | // now create arrays |
| 2432 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),rhs.size_); |
| 2433 | start_ = new CoinBigIndex [numberColumns+1]; |
| 2434 | length_ = new int [numberColumns]; |
| 2435 | index_ = new int[maxSize_]; |
| 2436 | element_ = new double [maxSize_]; |
| 2437 | // and fill them |
| 2438 | size_ = 0; |
| 2439 | start_[0]=0; |
| 2440 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2441 | int kColumn = whichColumn[iColumn]; |
| 2442 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
| 2443 | CoinBigIndex i; |
| 2444 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
| 2445 | int kRow = index1[i]; |
| 2446 | double value = element1[i]; |
| 2447 | kRow = newRow[kRow]; |
| 2448 | if (kRow>=0) { |
| 2449 | index_[size_] = kRow; |
| 2450 | element_[size_++] = value; |
| 2451 | } |
| 2452 | } |
| 2453 | } else { |
| 2454 | // bad column |
| 2455 | numberBad++; |
| 2456 | } |
| 2457 | start_[iColumn+1] = size_; |
| 2458 | length_[iColumn] = size_ - start_[iColumn]; |
| 2459 | } |
| 2460 | if (numberBad) |
| 2461 | throw CoinError("bad major entries" , |
| 2462 | "subset constructor" , "CoinPackedMatrix" ); |
| 2463 | } else { |
| 2464 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2465 | int kColumn = whichColumn[iColumn]; |
| 2466 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
| 2467 | CoinBigIndex i; |
| 2468 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
| 2469 | int kRow = index1[i]; |
| 2470 | kRow = newRow[kRow]; |
| 2471 | if (kRow>=0) |
| 2472 | size_++; |
| 2473 | } |
| 2474 | } else { |
| 2475 | // bad column |
| 2476 | numberBad++; |
| 2477 | } |
| 2478 | } |
| 2479 | if (numberBad) |
| 2480 | throw CoinError("bad major entries" , |
| 2481 | "subset constructor" , "CoinPackedMatrix" ); |
| 2482 | // now create arrays |
| 2483 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),size_); |
| 2484 | start_ = new CoinBigIndex [numberColumns+1]; |
| 2485 | length_ = new int [numberColumns]; |
| 2486 | index_ = new int[maxSize_]; |
| 2487 | element_ = new double [maxSize_]; |
| 2488 | // and fill them |
| 2489 | size_ = 0; |
| 2490 | start_[0]=0; |
| 2491 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2492 | int kColumn = whichColumn[iColumn]; |
| 2493 | CoinBigIndex i; |
| 2494 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
| 2495 | int kRow = index1[i]; |
| 2496 | double value = element1[i]; |
| 2497 | kRow = newRow[kRow]; |
| 2498 | if (kRow>=0) { |
| 2499 | index_[size_] = kRow; |
| 2500 | element_[size_++] = value; |
| 2501 | } |
| 2502 | } |
| 2503 | start_[iColumn+1] = size_; |
| 2504 | length_[iColumn] = size_ - start_[iColumn]; |
| 2505 | } |
| 2506 | } |
| 2507 | } else { |
| 2508 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2509 | int kColumn = whichColumn[iColumn]; |
| 2510 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
| 2511 | CoinBigIndex i; |
| 2512 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
| 2513 | int kRow = index1[i]; |
| 2514 | kRow = newRow[kRow]; |
| 2515 | while (kRow>=0) { |
| 2516 | size_++; |
| 2517 | kRow = duplicateRow[kRow]; |
| 2518 | } |
| 2519 | } |
| 2520 | } else { |
| 2521 | // bad column |
| 2522 | numberBad++; |
| 2523 | } |
| 2524 | } |
| 2525 | if (numberBad) |
| 2526 | throw CoinError("bad major entries" , |
| 2527 | "subset constructor" , "CoinPackedMatrix" ); |
| 2528 | // now create arrays |
| 2529 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),size_); |
| 2530 | start_ = new CoinBigIndex [numberColumns+1]; |
| 2531 | length_ = new int [numberColumns]; |
| 2532 | index_ = new int[maxSize_]; |
| 2533 | element_ = new double [maxSize_]; |
| 2534 | // and fill them |
| 2535 | size_ = 0; |
| 2536 | start_[0]=0; |
| 2537 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
| 2538 | int kColumn = whichColumn[iColumn]; |
| 2539 | CoinBigIndex i; |
| 2540 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
| 2541 | int kRow = index1[i]; |
| 2542 | double value = element1[i]; |
| 2543 | kRow = newRow[kRow]; |
| 2544 | while (kRow>=0) { |
| 2545 | index_[size_] = kRow; |
| 2546 | element_[size_++] = value; |
| 2547 | kRow = duplicateRow[kRow]; |
| 2548 | } |
| 2549 | } |
| 2550 | start_[iColumn+1] = size_; |
| 2551 | length_[iColumn] = size_ - start_[iColumn]; |
| 2552 | } |
| 2553 | } |
| 2554 | delete [] newRow; |
| 2555 | delete [] duplicateRow; |
| 2556 | } |
| 2557 | } |
| 2558 | |
| 2559 | |
| 2560 | //----------------------------------------------------------------------------- |
| 2561 | |
| 2562 | CoinPackedMatrix::~CoinPackedMatrix () |
| 2563 | { |
| 2564 | gutsOfDestructor(); |
| 2565 | } |
| 2566 | |
| 2567 | //############################################################################# |
| 2568 | //############################################################################# |
| 2569 | //############################################################################# |
| 2570 | |
| 2571 | void |
| 2572 | CoinPackedMatrix::gutsOfDestructor() |
| 2573 | { |
| 2574 | delete[] length_; |
| 2575 | delete[] start_; |
| 2576 | delete[] index_; |
| 2577 | delete[] element_; |
| 2578 | length_ = 0; |
| 2579 | start_ = 0; |
| 2580 | index_ = 0; |
| 2581 | element_ = 0; |
| 2582 | } |
| 2583 | |
| 2584 | //############################################################################# |
| 2585 | |
| 2586 | void |
| 2587 | CoinPackedMatrix::gutsOfCopyOf(const bool colordered, |
| 2588 | const int minor, const int major, |
| 2589 | const CoinBigIndex numels, |
| 2590 | const double * elem, const int * ind, |
| 2591 | const CoinBigIndex * start, const int * len, |
| 2592 | const double , const double ) |
| 2593 | { |
| 2594 | colOrdered_ = colordered; |
| 2595 | majorDim_ = major; |
| 2596 | minorDim_ = minor; |
| 2597 | size_ = numels; |
| 2598 | |
| 2599 | extraGap_ = extraGap; |
| 2600 | extraMajor_ = extraMajor; |
| 2601 | |
| 2602 | maxMajorDim_ = CoinLengthWithExtra(majorDim_, extraMajor_); |
| 2603 | |
| 2604 | if (maxMajorDim_ > 0) { |
| 2605 | delete [] length_; |
| 2606 | length_ = new int[maxMajorDim_]; |
| 2607 | if (len == 0) { |
| 2608 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
| 2609 | length_[0] -= start[0]; |
| 2610 | } else { |
| 2611 | CoinMemcpyN(len, major, length_); |
| 2612 | } |
| 2613 | delete [] start_; |
| 2614 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2615 | start_[0]=0; |
| 2616 | CoinMemcpyN(start, major+1, start_); |
| 2617 | } else { |
| 2618 | // empty but be safe |
| 2619 | delete [] length_; |
| 2620 | length_ = NULL; |
| 2621 | delete [] start_; |
| 2622 | start_ = new CoinBigIndex[1]; |
| 2623 | start_[0]=0; |
| 2624 | } |
| 2625 | |
| 2626 | maxSize_ = maxMajorDim_ > 0 ? start_[major] : 0; |
| 2627 | maxSize_ = CoinLengthWithExtra(maxSize_, extraMajor_); |
| 2628 | |
| 2629 | if (maxSize_ > 0) { |
| 2630 | delete [] element_; |
| 2631 | delete []index_; |
| 2632 | element_ = new double[maxSize_]; |
| 2633 | index_ = new int[maxSize_]; |
| 2634 | // we can't just simply memcpy these content over, because that can |
| 2635 | // upset memory debuggers like purify if there were gaps and those gaps |
| 2636 | // were uninitialized memory blocks |
| 2637 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 2638 | CoinMemcpyN(ind + start[i], length_[i], index_ + start_[i]); |
| 2639 | CoinMemcpyN(elem + start[i], length_[i], element_ + start_[i]); |
| 2640 | } |
| 2641 | } |
| 2642 | } |
| 2643 | |
| 2644 | //############################################################################# |
| 2645 | |
| 2646 | void |
| 2647 | CoinPackedMatrix::gutsOfCopyOfNoGaps(const bool colordered, |
| 2648 | const int minor, const int major, |
| 2649 | const double * elem, const int * ind, |
| 2650 | const CoinBigIndex * start) |
| 2651 | { |
| 2652 | colOrdered_ = colordered; |
| 2653 | majorDim_ = major; |
| 2654 | minorDim_ = minor; |
| 2655 | size_ = start[majorDim_]; |
| 2656 | |
| 2657 | extraGap_ = 0; |
| 2658 | extraMajor_ = 0; |
| 2659 | |
| 2660 | maxMajorDim_ = majorDim_; |
| 2661 | |
| 2662 | // delete all arrays |
| 2663 | delete [] length_; |
| 2664 | delete [] start_; |
| 2665 | delete [] element_; |
| 2666 | delete [] index_; |
| 2667 | |
| 2668 | if (maxMajorDim_ > 0) { |
| 2669 | length_ = new int[maxMajorDim_]; |
| 2670 | assert (!start[0]); |
| 2671 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2672 | start_[0]=0; |
| 2673 | CoinBigIndex last = 0; |
| 2674 | for (int i=0;i<majorDim_;i++) { |
| 2675 | CoinBigIndex first = last; |
| 2676 | last = start[i+1]; |
| 2677 | length_[i] = last-first; |
| 2678 | start_[i+1]=last; |
| 2679 | } |
| 2680 | } else { |
| 2681 | // empty but be safe |
| 2682 | length_ = NULL; |
| 2683 | start_ = new CoinBigIndex[1]; |
| 2684 | start_[0]=0; |
| 2685 | } |
| 2686 | |
| 2687 | maxSize_ = start_[majorDim_]; |
| 2688 | |
| 2689 | if (maxSize_ > 0) { |
| 2690 | element_ = new double[maxSize_]; |
| 2691 | index_ = new int[maxSize_]; |
| 2692 | CoinMemcpyN(ind , maxSize_, index_); |
| 2693 | CoinMemcpyN(elem , maxSize_, element_); |
| 2694 | } else { |
| 2695 | element_ = NULL; |
| 2696 | index_ = NULL; |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | //############################################################################# |
| 2701 | |
| 2702 | void |
| 2703 | CoinPackedMatrix::gutsOfOpEqual(const bool colordered, |
| 2704 | const int minor, const int major, |
| 2705 | const CoinBigIndex numels, |
| 2706 | const double * elem, const int * ind, |
| 2707 | const CoinBigIndex * start, const int * len) |
| 2708 | { |
| 2709 | colOrdered_ = colordered; |
| 2710 | majorDim_ = major; |
| 2711 | minorDim_ = minor; |
| 2712 | size_ = numels; |
| 2713 | if (!len && numels > 0 && numels==start[major] && start[0]==0) { |
| 2714 | // No gaps - do faster |
| 2715 | if (major>maxMajorDim_||!start_) { |
| 2716 | maxMajorDim_ = major; |
| 2717 | delete [] length_; |
| 2718 | length_ = new int[maxMajorDim_]; |
| 2719 | delete [] start_; |
| 2720 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2721 | } |
| 2722 | CoinMemcpyN(start,major+1,start_); |
| 2723 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
| 2724 | if (numels>maxSize_||!element_) { |
| 2725 | maxSize_=numels; |
| 2726 | delete [] element_; |
| 2727 | delete [] index_; |
| 2728 | element_ = new double[maxSize_]; |
| 2729 | index_ = new int[maxSize_]; |
| 2730 | } |
| 2731 | CoinMemcpyN(ind,numels,index_); |
| 2732 | CoinMemcpyN(elem,numels,element_); |
| 2733 | } else { |
| 2734 | |
| 2735 | maxMajorDim_ = CoinLengthWithExtra(majorDim_, extraMajor_); |
| 2736 | |
| 2737 | int i; |
| 2738 | if (maxMajorDim_ > 0) { |
| 2739 | delete [] length_; |
| 2740 | length_ = new int[maxMajorDim_]; |
| 2741 | if (len == 0) { |
| 2742 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
| 2743 | length_[0] -= start[0]; |
| 2744 | } else { |
| 2745 | CoinMemcpyN(len, major, length_); |
| 2746 | } |
| 2747 | delete [] start_; |
| 2748 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
| 2749 | start_[0] = 0; |
| 2750 | if (extraGap_ == 0) { |
| 2751 | for (i = 0; i < major; ++i) |
| 2752 | start_[i+1] = start_[i] + length_[i]; |
| 2753 | } else { |
| 2754 | const double = extraGap_; |
| 2755 | for (i = 0; i < major; ++i) |
| 2756 | start_[i+1] = start_[i] + CoinLengthWithExtra(length_[i], extra_gap); |
| 2757 | } |
| 2758 | } else { |
| 2759 | // empty matrix |
| 2760 | delete [] start_; |
| 2761 | start_ = new CoinBigIndex[1]; |
| 2762 | start_[0] = 0; |
| 2763 | } |
| 2764 | |
| 2765 | maxSize_ = maxMajorDim_ > 0 ? start_[major] : 0; |
| 2766 | maxSize_ = CoinLengthWithExtra(maxSize_, extraMajor_); |
| 2767 | |
| 2768 | if (maxSize_ > 0) { |
| 2769 | delete [] element_; |
| 2770 | delete [] index_; |
| 2771 | element_ = new double[maxSize_]; |
| 2772 | index_ = new int[maxSize_]; |
| 2773 | assert (maxSize_>=start_[majorDim_-1]+length_[majorDim_-1]); |
| 2774 | // we can't just simply memcpy these content over, because that can |
| 2775 | // upset memory debuggers like purify if there were gaps and those gaps |
| 2776 | // were uninitialized memory blocks |
| 2777 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 2778 | CoinMemcpyN(ind + start[i], length_[i], index_ + start_[i]); |
| 2779 | CoinMemcpyN(elem + start[i], length_[i], element_ + start_[i]); |
| 2780 | } |
| 2781 | } |
| 2782 | } |
| 2783 | #ifndef NDEBUG |
| 2784 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 2785 | const CoinBigIndex last = getVectorLast(i); |
| 2786 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) { |
| 2787 | int index = index_[j]; |
| 2788 | assert (index>=0&&index<minorDim_); |
| 2789 | } |
| 2790 | } |
| 2791 | #endif |
| 2792 | } |
| 2793 | |
| 2794 | //############################################################################# |
| 2795 | |
| 2796 | // This routine is called only if we MUST resize! |
| 2797 | void |
| 2798 | CoinPackedMatrix::resizeForAddingMajorVectors(const int numVec, |
| 2799 | const int * lengthVec) |
| 2800 | { |
| 2801 | const double = extraGap_; |
| 2802 | int i; |
| 2803 | |
| 2804 | maxMajorDim_ = |
| 2805 | CoinMax(maxMajorDim_, CoinLengthWithExtra(majorDim_ + numVec, extraMajor_)); |
| 2806 | |
| 2807 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
| 2808 | int * newLength = new int[maxMajorDim_]; |
| 2809 | |
| 2810 | CoinMemcpyN(length_, majorDim_, newLength); |
| 2811 | // fake that the new vectors are there |
| 2812 | CoinMemcpyN(lengthVec, numVec, newLength + majorDim_); |
| 2813 | majorDim_ += numVec; |
| 2814 | |
| 2815 | newStart[0] = 0; |
| 2816 | if (extra_gap == 0) { |
| 2817 | for (i = 0; i < majorDim_; ++i) |
| 2818 | newStart[i+1] = newStart[i] + newLength[i]; |
| 2819 | } else { |
| 2820 | for (i = 0; i < majorDim_; ++i) |
| 2821 | newStart[i+1] = newStart[i] + CoinLengthWithExtra(newLength[i],extra_gap); |
| 2822 | } |
| 2823 | |
| 2824 | maxSize_ = |
| 2825 | CoinMax(maxSize_, CoinLengthWithExtra(newStart[majorDim_], extraMajor_)); |
| 2826 | majorDim_ -= numVec; |
| 2827 | |
| 2828 | int * newIndex = new int[maxSize_]; |
| 2829 | double * newElem = new double[maxSize_]; |
| 2830 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 2831 | CoinMemcpyN(index_ + start_[i], length_[i], newIndex + newStart[i]); |
| 2832 | CoinMemcpyN(element_ + start_[i], length_[i], newElem + newStart[i]); |
| 2833 | } |
| 2834 | |
| 2835 | gutsOfDestructor(); |
| 2836 | start_ = newStart; |
| 2837 | length_ = newLength; |
| 2838 | index_ = newIndex; |
| 2839 | element_ = newElem; |
| 2840 | } |
| 2841 | |
| 2842 | |
| 2843 | //############################################################################# |
| 2844 | |
| 2845 | void |
| 2846 | CoinPackedMatrix::resizeForAddingMinorVectors(const int * addedEntries) |
| 2847 | { |
| 2848 | int i; |
| 2849 | maxMajorDim_ = |
| 2850 | CoinMax(CoinLengthWithExtra(majorDim_, extraMajor_), maxMajorDim_); |
| 2851 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
| 2852 | int * newLength = new int[maxMajorDim_]; |
| 2853 | // increase the lengths temporarily so that the correct new start positions |
| 2854 | // can be easily computed (it's faster to modify the lengths and reset them |
| 2855 | // than do a test for every entry when the start positions are computed. |
| 2856 | for (i = majorDim_ - 1; i >= 0; --i) |
| 2857 | newLength[i] = length_[i] + addedEntries[i]; |
| 2858 | |
| 2859 | newStart[0] = 0; |
| 2860 | if (extraGap_ == 0) { |
| 2861 | for (i = 0; i < majorDim_; ++i) |
| 2862 | newStart[i+1] = newStart[i] + newLength[i]; |
| 2863 | } else { |
| 2864 | const double eg = extraGap_; |
| 2865 | for (i = 0; i < majorDim_; ++i) |
| 2866 | newStart[i+1] = newStart[i] + CoinLengthWithExtra(newLength[i], eg); |
| 2867 | } |
| 2868 | |
| 2869 | // reset the lengths |
| 2870 | for (i = majorDim_ - 1; i >= 0; --i) |
| 2871 | newLength[i] -= addedEntries[i]; |
| 2872 | |
| 2873 | maxSize_ = |
| 2874 | CoinMax(maxSize_, CoinLengthWithExtra(newStart[majorDim_], extraMajor_)); |
| 2875 | int * newIndex = new int[maxSize_]; |
| 2876 | double * newElem = new double[maxSize_]; |
| 2877 | for (i = majorDim_ - 1; i >= 0; --i) { |
| 2878 | CoinMemcpyN(index_ + start_[i], length_[i], |
| 2879 | newIndex + newStart[i]); |
| 2880 | CoinMemcpyN(element_ + start_[i], length_[i], |
| 2881 | newElem + newStart[i]); |
| 2882 | } |
| 2883 | |
| 2884 | gutsOfDestructor(); |
| 2885 | start_ = newStart; |
| 2886 | length_ = newLength; |
| 2887 | index_ = newIndex; |
| 2888 | element_ = newElem; |
| 2889 | } |
| 2890 | |
| 2891 | //############################################################################# |
| 2892 | //############################################################################# |
| 2893 | |
| 2894 | void |
| 2895 | CoinPackedMatrix::dumpMatrix(const char* fname) const |
| 2896 | { |
| 2897 | if (! fname) { |
| 2898 | printf("Dumping matrix...\n\n" ); |
| 2899 | printf("colordered: %i\n" , isColOrdered() ? 1 : 0); |
| 2900 | const int major = getMajorDim(); |
| 2901 | const int minor = getMinorDim(); |
| 2902 | printf("major: %i minor: %i\n" , major, minor); |
| 2903 | for (int i = 0; i < major; ++i) { |
| 2904 | printf("vec %i has length %i with entries:\n" , i, length_[i]); |
| 2905 | for (CoinBigIndex j = start_[i]; j < start_[i] + length_[i]; ++j) { |
| 2906 | printf(" %15i %40.25f\n" , index_[j], element_[j]); |
| 2907 | } |
| 2908 | } |
| 2909 | printf("\nFinished dumping matrix\n" ); |
| 2910 | } else { |
| 2911 | FILE* out = fopen(fname, "w" ); |
| 2912 | fprintf(out, "Dumping matrix...\n\n" ); |
| 2913 | fprintf(out, "colordered: %i\n" , isColOrdered() ? 1 : 0); |
| 2914 | const int major = getMajorDim(); |
| 2915 | const int minor = getMinorDim(); |
| 2916 | fprintf(out, "major: %i minor: %i\n" , major, minor); |
| 2917 | for (int i = 0; i < major; ++i) { |
| 2918 | fprintf(out, "vec %i has length %i with entries:\n" , i, length_[i]); |
| 2919 | for (CoinBigIndex j = start_[i]; j < start_[i] + length_[i]; ++j) { |
| 2920 | fprintf(out, " %15i %40.25f\n" , index_[j], element_[j]); |
| 2921 | } |
| 2922 | } |
| 2923 | fprintf(out, "\nFinished dumping matrix\n" ); |
| 2924 | fclose(out); |
| 2925 | } |
| 2926 | } |
| 2927 | void |
| 2928 | CoinPackedMatrix::printMatrixElement (const int row_val, |
| 2929 | const int col_val) const |
| 2930 | { |
| 2931 | int major_index, minor_index; |
| 2932 | if (isColOrdered()) { |
| 2933 | major_index = col_val; |
| 2934 | minor_index = row_val; |
| 2935 | } else { |
| 2936 | major_index = row_val; |
| 2937 | minor_index = col_val; |
| 2938 | } |
| 2939 | if (major_index < 0 || major_index > getMajorDim()-1) { |
| 2940 | std::cout |
| 2941 | << "Major index " << major_index << " not in range 0.." |
| 2942 | << getMajorDim()-1 << std::endl ; |
| 2943 | } else if (minor_index < 0 || minor_index > getMinorDim()-1) { |
| 2944 | std::cout |
| 2945 | << "Minor index " << minor_index << " not in range 0.." |
| 2946 | << getMinorDim()-1 << std::endl ; |
| 2947 | } else { |
| 2948 | CoinBigIndex curr_point = start_[major_index]; |
| 2949 | const CoinBigIndex stop_point = curr_point+length_[major_index]; |
| 2950 | double aij = 0.0 ; |
| 2951 | for ( ; curr_point < stop_point ; curr_point++) { |
| 2952 | if (index_[curr_point] == minor_index) { |
| 2953 | aij = element_[curr_point]; |
| 2954 | break; |
| 2955 | } |
| 2956 | } |
| 2957 | std::cout << aij ; |
| 2958 | } |
| 2959 | } |
| 2960 | #ifndef CLP_NO_VECTOR |
| 2961 | bool |
| 2962 | CoinPackedMatrix::isEquivalent2(const CoinPackedMatrix& rhs) const |
| 2963 | { |
| 2964 | CoinRelFltEq eq; |
| 2965 | // Both must be column order or both row ordered and must be of same size |
| 2966 | if (isColOrdered() ^ rhs.isColOrdered()) { |
| 2967 | std::cerr<<"Ordering " <<isColOrdered()<< |
| 2968 | " rhs - " <<rhs.isColOrdered()<<std::endl; |
| 2969 | return false; |
| 2970 | } |
| 2971 | if (getNumCols() != rhs.getNumCols()) { |
| 2972 | std::cerr<<"NumCols " <<getNumCols()<< |
| 2973 | " rhs - " <<rhs.getNumCols()<<std::endl; |
| 2974 | return false; |
| 2975 | } |
| 2976 | if (getNumRows() != rhs.getNumRows()) { |
| 2977 | std::cerr<<"NumRows " <<getNumRows()<< |
| 2978 | " rhs - " <<rhs.getNumRows()<<std::endl; |
| 2979 | return false; |
| 2980 | } |
| 2981 | if (getNumElements() != rhs.getNumElements()) { |
| 2982 | std::cerr<<"NumElements " <<getNumElements()<< |
| 2983 | " rhs - " <<rhs.getNumElements()<<std::endl; |
| 2984 | return false; |
| 2985 | } |
| 2986 | |
| 2987 | for (int i=getMajorDim()-1; i >= 0; --i) { |
| 2988 | CoinShallowPackedVector pv = getVector(i); |
| 2989 | CoinShallowPackedVector rhsPv = rhs.getVector(i); |
| 2990 | if ( !pv.isEquivalent(rhsPv,eq) ) { |
| 2991 | std::cerr<<"vector # " <<i<<" nel " <<pv.getNumElements()<< |
| 2992 | " rhs - " <<rhsPv.getNumElements()<<std::endl; |
| 2993 | int j; |
| 2994 | const int * inds = pv.getIndices(); |
| 2995 | const double * elems = pv.getElements(); |
| 2996 | const int * inds2 = rhsPv.getIndices(); |
| 2997 | const double * elems2 = rhsPv.getElements(); |
| 2998 | for ( j = 0 ;j < pv.getNumElements() ; ++j) { |
| 2999 | double diff = elems[j]-elems2[j]; |
| 3000 | if (diff) { |
| 3001 | std::cerr<<j<<"( " <<inds[j]<<", " <<elems[j]<<"), rhs ( " << |
| 3002 | inds2[j]<<", " <<elems2[j]<<") diff " << |
| 3003 | diff<<std::endl; |
| 3004 | const int * xx = reinterpret_cast<const int *> (elems+j); |
| 3005 | printf("%x %x" ,xx[0],xx[1]); |
| 3006 | xx = reinterpret_cast<const int *> (elems2+j); |
| 3007 | printf(" %x %x\n" ,xx[0],xx[1]); |
| 3008 | } |
| 3009 | } |
| 3010 | //return false; |
| 3011 | } |
| 3012 | } |
| 3013 | return true; |
| 3014 | } |
| 3015 | #else |
| 3016 | /* Equivalence. |
| 3017 | Two matrices are equivalent if they are both by rows or both by columns, |
| 3018 | they have the same dimensions, and each vector is equivalent. |
| 3019 | In this method the FloatEqual function operator can be specified. |
| 3020 | */ |
| 3021 | bool |
| 3022 | CoinPackedMatrix::isEquivalent(const CoinPackedMatrix& rhs, const CoinRelFltEq& eq) const |
| 3023 | { |
| 3024 | // Both must be column order or both row ordered and must be of same size |
| 3025 | if ((isColOrdered() ^ rhs.isColOrdered()) || |
| 3026 | (getNumCols() != rhs.getNumCols()) || |
| 3027 | (getNumRows() != rhs.getNumRows()) || |
| 3028 | (getNumElements() != rhs.getNumElements())) |
| 3029 | return false; |
| 3030 | |
| 3031 | const int major = getMajorDim(); |
| 3032 | const int minor = getMinorDim(); |
| 3033 | double * values = new double[minor]; |
| 3034 | memset(values,0,minor*sizeof(double)); |
| 3035 | bool same=true; |
| 3036 | for (int i = 0; i < major; ++i) { |
| 3037 | int length = length_[i]; |
| 3038 | if (length!=rhs.length_[i]) { |
| 3039 | same=false; |
| 3040 | break; |
| 3041 | } else { |
| 3042 | CoinBigIndex j; |
| 3043 | for ( j = start_[i]; j < start_[i] + length; ++j) { |
| 3044 | int index = index_[j]; |
| 3045 | values[index]=element_[j]; |
| 3046 | } |
| 3047 | for ( j = rhs.start_[i]; j < rhs.start_[i] + length; ++j) { |
| 3048 | int index = index_[j]; |
| 3049 | double oldValue = values[index]; |
| 3050 | values[index]=0.0; |
| 3051 | if (!eq(oldValue,rhs.element_[j])) { |
| 3052 | same=false; |
| 3053 | break; |
| 3054 | } |
| 3055 | } |
| 3056 | if (!same) |
| 3057 | break; |
| 3058 | } |
| 3059 | } |
| 3060 | delete [] values; |
| 3061 | return same; |
| 3062 | } |
| 3063 | #endif |
| 3064 | bool CoinPackedMatrix::isEquivalent(const CoinPackedMatrix& rhs) const |
| 3065 | { |
| 3066 | return isEquivalent(rhs,CoinRelFltEq()); |
| 3067 | } |
| 3068 | /* Sort all columns so indices are increasing.in each column */ |
| 3069 | void |
| 3070 | CoinPackedMatrix::orderMatrix() |
| 3071 | { |
| 3072 | for (int i=0;i<majorDim_;i++) { |
| 3073 | CoinBigIndex start = start_[i]; |
| 3074 | CoinBigIndex end = start + length_[i]; |
| 3075 | CoinSort_2(index_+start,index_+end,element_+start); |
| 3076 | } |
| 3077 | } |
| 3078 | /* Append a set of rows/columns to the end of the matrix. Returns number of errors |
| 3079 | i.e. if any of the new rows/columns contain an index that's larger than the |
| 3080 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
| 3081 | This version is easy one i.e. adding columns to column ordered */ |
| 3082 | int |
| 3083 | CoinPackedMatrix::appendMajor(const int number, |
| 3084 | const CoinBigIndex * starts, const int * index, |
| 3085 | const double * element, int numberOther) |
| 3086 | { |
| 3087 | int i; |
| 3088 | int numberErrors=0; |
| 3089 | CoinBigIndex numberElements = starts[number]; |
| 3090 | if (majorDim_ + number > maxMajorDim_ || |
| 3091 | getLastStart() + numberElements > maxSize_) { |
| 3092 | // we got to resize before we add. note that the resizing method |
| 3093 | // properly fills out start_ and length_ for the major-dimension |
| 3094 | // vectors to be added! |
| 3095 | if (!extraGap_&&!extraMajor_&&numberOther<=0&&!hasGaps()) { |
| 3096 | // can do faster |
| 3097 | if (majorDim_+number>maxMajorDim_) { |
| 3098 | maxMajorDim_ = majorDim_+number; |
| 3099 | int * newLength = new int[maxMajorDim_]; |
| 3100 | CoinMemcpyN(length_, majorDim_, newLength); |
| 3101 | delete [] length_; |
| 3102 | length_ = newLength; |
| 3103 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
| 3104 | CoinMemcpyN(start_, majorDim_+1, newStart); |
| 3105 | delete [] start_; |
| 3106 | start_ = newStart; |
| 3107 | } |
| 3108 | if (size_+numberElements>maxSize_) { |
| 3109 | maxSize_ = size_+numberElements; |
| 3110 | double * newElem = new double[maxSize_]; |
| 3111 | CoinMemcpyN(element_,size_,newElem); |
| 3112 | delete [] element_; |
| 3113 | element_ = newElem; |
| 3114 | int * newIndex = new int[maxSize_]; |
| 3115 | CoinMemcpyN(index_,size_,newIndex); |
| 3116 | delete [] index_; |
| 3117 | index_ = newIndex; |
| 3118 | } |
| 3119 | CoinMemcpyN(index,numberElements,index_+size_); |
| 3120 | CoinMemcpyN(element,numberElements,element_+size_); |
| 3121 | i=majorDim_; |
| 3122 | starts -= majorDim_; |
| 3123 | majorDim_ += number; |
| 3124 | int iStart=0; |
| 3125 | for (;i<majorDim_;i++) { |
| 3126 | int next = starts[i+1]; |
| 3127 | int length = next-iStart; |
| 3128 | length_[i]=length; |
| 3129 | iStart=next; |
| 3130 | size_ += length; |
| 3131 | start_[i+1]=size_; |
| 3132 | } |
| 3133 | return 0; |
| 3134 | } else { |
| 3135 | int * length = new int[number]; |
| 3136 | for (i=0;i<number;i++) |
| 3137 | length[i]=starts[i+1]-starts[i]; |
| 3138 | resizeForAddingMajorVectors(number, length); |
| 3139 | delete [] length; |
| 3140 | } |
| 3141 | if (numberOther>0) { |
| 3142 | char * which = new char[numberOther]; |
| 3143 | memset(which,0,numberOther); |
| 3144 | for (i = 0; i < number; i++) { |
| 3145 | CoinBigIndex put = start_[majorDim_+i]; |
| 3146 | CoinBigIndex j; |
| 3147 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3148 | int iIndex = index[j]; |
| 3149 | element_[put]=element[j]; |
| 3150 | if (iIndex>=0&&iIndex<numberOther) { |
| 3151 | if (!which[iIndex]) |
| 3152 | which[iIndex]=1; |
| 3153 | else |
| 3154 | numberErrors++; |
| 3155 | } else { |
| 3156 | numberErrors++; |
| 3157 | } |
| 3158 | index_[put++]=iIndex; |
| 3159 | } |
| 3160 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3161 | int iIndex = index[j]; |
| 3162 | if (iIndex>=0&&iIndex<numberOther) |
| 3163 | which[iIndex]=0; |
| 3164 | } |
| 3165 | } |
| 3166 | delete [] which; |
| 3167 | } else { |
| 3168 | // easy |
| 3169 | int lastMinor=-1; |
| 3170 | if (!extraGap_) { |
| 3171 | // just one copy |
| 3172 | int * index2 = index_+start_[majorDim_]; |
| 3173 | for (CoinBigIndex j=0;j<numberElements;j++) { |
| 3174 | int iIndex = index[j]; |
| 3175 | index2[j] = iIndex; |
| 3176 | lastMinor = CoinMax(lastMinor,iIndex); |
| 3177 | } |
| 3178 | CoinMemcpyN(element,numberElements,element_+start_[majorDim_]); |
| 3179 | } else { |
| 3180 | start_ += majorDim_; |
| 3181 | for (i = 0; i < number; i++) { |
| 3182 | int length = starts[i+1]-starts[i]; |
| 3183 | int * index2 = index_+start_[i]; |
| 3184 | const int * index1 = index+starts[i]; |
| 3185 | for (CoinBigIndex j=0;j<length;j++) { |
| 3186 | int iIndex = index1[j]; |
| 3187 | index2[j] = iIndex; |
| 3188 | lastMinor = CoinMax(lastMinor,iIndex); |
| 3189 | } |
| 3190 | CoinMemcpyN(element + starts[i], length, |
| 3191 | element_ + start_[i]); |
| 3192 | } |
| 3193 | start_ -= majorDim_; |
| 3194 | } |
| 3195 | // update minorDim if necessary |
| 3196 | minorDim_ = CoinMax(minorDim_,lastMinor+1); |
| 3197 | } |
| 3198 | } else { |
| 3199 | if (numberOther>0) { |
| 3200 | char * which = new char[numberOther]; |
| 3201 | memset(which,0,numberOther); |
| 3202 | for (i = 0; i < number; i++) { |
| 3203 | CoinBigIndex put = start_[majorDim_+i]; |
| 3204 | CoinBigIndex j; |
| 3205 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3206 | int iIndex = index[j]; |
| 3207 | element_[put]=element[j]; |
| 3208 | if (iIndex>=0&&iIndex<numberOther) { |
| 3209 | if (!which[iIndex]) |
| 3210 | which[iIndex]=1; |
| 3211 | else |
| 3212 | numberErrors++; |
| 3213 | } else { |
| 3214 | numberErrors++; |
| 3215 | } |
| 3216 | index_[put++]=iIndex; |
| 3217 | } |
| 3218 | start_[majorDim_+i+1] = put; |
| 3219 | length_[majorDim_+i] = put-start_[majorDim_+i]; |
| 3220 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3221 | int iIndex = index[j]; |
| 3222 | if (iIndex>=0&&iIndex<numberOther) |
| 3223 | which[iIndex]=0; |
| 3224 | } |
| 3225 | } |
| 3226 | delete [] which; |
| 3227 | } else { |
| 3228 | // easy |
| 3229 | int lastMinor=-1; |
| 3230 | if (!extraGap_) { |
| 3231 | // just one copy |
| 3232 | // just one copy |
| 3233 | int * index2 = index_+start_[majorDim_]; |
| 3234 | for (CoinBigIndex j=0;j<numberElements;j++) { |
| 3235 | int iIndex = index[j]; |
| 3236 | index2[j] = iIndex; |
| 3237 | lastMinor = CoinMax(lastMinor,iIndex); |
| 3238 | } |
| 3239 | CoinMemcpyN(element,numberElements,element_+start_[majorDim_]); |
| 3240 | start_ += majorDim_; |
| 3241 | for (i = 0; i < number; i++) { |
| 3242 | int length = starts[i+1]-starts[i]; |
| 3243 | start_[i+1] = start_[i] + length; |
| 3244 | length_[majorDim_+i] = length; |
| 3245 | } |
| 3246 | start_ -= majorDim_; |
| 3247 | } else { |
| 3248 | start_ += majorDim_; |
| 3249 | for (i = 0; i < number; i++) { |
| 3250 | int length = starts[i+1]-starts[i]; |
| 3251 | int * index2 = index_+start_[i]; |
| 3252 | const int * index1 = index+starts[i]; |
| 3253 | for (CoinBigIndex j=0;j<length;j++) { |
| 3254 | int iIndex = index1[j]; |
| 3255 | index2[j] = iIndex; |
| 3256 | lastMinor = CoinMax(lastMinor,iIndex); |
| 3257 | } |
| 3258 | CoinMemcpyN(element + starts[i], length, |
| 3259 | element_ + start_[i]); |
| 3260 | start_[i+1] = start_[i] + length; |
| 3261 | length_[majorDim_+i] = length; |
| 3262 | } |
| 3263 | start_ -= majorDim_; |
| 3264 | } |
| 3265 | // update minorDim if necessary |
| 3266 | minorDim_ = CoinMax(minorDim_,lastMinor+1); |
| 3267 | } |
| 3268 | } |
| 3269 | majorDim_ += number; |
| 3270 | size_ += numberElements; |
| 3271 | #ifndef NDEBUG |
| 3272 | int checkSize=0; |
| 3273 | for (int i=0;i<majorDim_;i++) { |
| 3274 | checkSize += length_[i]; |
| 3275 | } |
| 3276 | assert (checkSize==size_); |
| 3277 | #endif |
| 3278 | return numberErrors; |
| 3279 | } |
| 3280 | /* Append a set of rows/columns to the end of the matrix. Returns number of errors |
| 3281 | i.e. if any of the new rows/columns contain an index that's larger than the |
| 3282 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
| 3283 | This version is harder one i.e. adding columns to row ordered */ |
| 3284 | int |
| 3285 | CoinPackedMatrix::appendMinor(const int number, |
| 3286 | const CoinBigIndex * starts, const int * index, |
| 3287 | const double * element, int numberOther) |
| 3288 | { |
| 3289 | int i; |
| 3290 | int numberErrors=0; |
| 3291 | // first compute how many entries will be added to each major-dimension |
| 3292 | // vector, and if needed, resize the matrix to accommodate all |
| 3293 | int * addedEntries = NULL; |
| 3294 | if (numberOther>0) { |
| 3295 | addedEntries = new int[majorDim_]; |
| 3296 | CoinZeroN(addedEntries,majorDim_); |
| 3297 | numberOther=majorDim_; |
| 3298 | char * which = new char[numberOther]; |
| 3299 | memset(which,0,numberOther); |
| 3300 | for (i = 0; i < number; i++) { |
| 3301 | CoinBigIndex j; |
| 3302 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3303 | int iIndex = index[j]; |
| 3304 | if (iIndex>=0&&iIndex<numberOther) { |
| 3305 | addedEntries[iIndex]++; |
| 3306 | if (!which[iIndex]) |
| 3307 | which[iIndex]=1; |
| 3308 | else |
| 3309 | numberErrors++; |
| 3310 | } else { |
| 3311 | numberErrors++; |
| 3312 | } |
| 3313 | } |
| 3314 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3315 | int iIndex = index[j]; |
| 3316 | if (iIndex>=0&&iIndex<numberOther) |
| 3317 | which[iIndex]=0; |
| 3318 | } |
| 3319 | } |
| 3320 | delete [] which; |
| 3321 | } else { |
| 3322 | int largest = majorDim_-1; |
| 3323 | for (i = 0; i < number; i++) { |
| 3324 | CoinBigIndex j; |
| 3325 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3326 | int iIndex = index[j]; |
| 3327 | largest = CoinMax(largest,iIndex); |
| 3328 | } |
| 3329 | } |
| 3330 | if (largest+1>majorDim_) { |
| 3331 | if (isColOrdered()) |
| 3332 | setDimensions(-1,largest+1); |
| 3333 | else |
| 3334 | setDimensions(largest+1,-1); |
| 3335 | } |
| 3336 | addedEntries = new int[majorDim_]; |
| 3337 | CoinZeroN(addedEntries,majorDim_); |
| 3338 | // no checking |
| 3339 | for (i = 0; i < number; i++) { |
| 3340 | CoinBigIndex j; |
| 3341 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3342 | int iIndex = index[j]; |
| 3343 | addedEntries[iIndex]++; |
| 3344 | } |
| 3345 | } |
| 3346 | } |
| 3347 | for (i = majorDim_ - 1; i >= 0; i--) { |
| 3348 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
| 3349 | break; |
| 3350 | } |
| 3351 | if (i >= 0) |
| 3352 | resizeForAddingMinorVectors(addedEntries); |
| 3353 | delete[] addedEntries; |
| 3354 | |
| 3355 | // now insert the entries of matrix |
| 3356 | for (i = 0; i < number; i++) { |
| 3357 | CoinBigIndex j; |
| 3358 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3359 | int iIndex = index[j]; |
| 3360 | element_[start_[iIndex] + length_[iIndex]] = element[j]; |
| 3361 | index_[start_[iIndex] + (length_[iIndex]++)] = minorDim_; |
| 3362 | } |
| 3363 | ++minorDim_; |
| 3364 | } |
| 3365 | size_ += starts[number]; |
| 3366 | #ifndef NDEBUG |
| 3367 | int checkSize=0; |
| 3368 | for (int i=0;i<majorDim_;i++) { |
| 3369 | checkSize += length_[i]; |
| 3370 | } |
| 3371 | assert (checkSize==size_); |
| 3372 | #endif |
| 3373 | return numberErrors; |
| 3374 | } |
| 3375 | //#define ADD_ROW_ANALYZE |
| 3376 | #ifdef ADD_ROW_ANALYZE |
| 3377 | static int xxxxxx[10]={0,0,0,0,0,0,0,0,0,0}; |
| 3378 | #endif |
| 3379 | /* Append a set of rows/columns to the end of the matrix. This case is |
| 3380 | when we know there are no gaps and majorDim_ will not change |
| 3381 | This version is harder one i.e. adding columns to row ordered */ |
| 3382 | void |
| 3383 | CoinPackedMatrix::appendMinorFast(const int number, |
| 3384 | const CoinBigIndex * starts, const int * index, |
| 3385 | const double * element) |
| 3386 | { |
| 3387 | #ifdef ADD_ROW_ANALYZE |
| 3388 | xxxxxx[0]++; |
| 3389 | #endif |
| 3390 | // first compute how many entries will be added to each major-dimension |
| 3391 | // vector, and if needed, resize the matrix to accommodate all |
| 3392 | // Will be used as new start array |
| 3393 | CoinBigIndex * newStart = new CoinBigIndex [maxMajorDim_+1]; |
| 3394 | CoinZeroN(newStart,maxMajorDim_); |
| 3395 | // no checking |
| 3396 | int numberAdded = starts[number]; |
| 3397 | for (CoinBigIndex j = 0; j < numberAdded; j++) { |
| 3398 | int iIndex = index[j]; |
| 3399 | newStart[iIndex]++; |
| 3400 | } |
| 3401 | int packType=0; |
| 3402 | #ifdef ADD_ROW_ANALYZE |
| 3403 | int nBad=0; |
| 3404 | #endif |
| 3405 | if (size_+numberAdded<=maxSize_) { |
| 3406 | CoinBigIndex nextStart=start_[majorDim_]; |
| 3407 | // could do other way and then stop moving |
| 3408 | for (int i = majorDim_ - 1; i >= 0; i--) { |
| 3409 | CoinBigIndex start = start_[i]; |
| 3410 | if (start + length_[i] + newStart[i] <= nextStart) { |
| 3411 | nextStart=start; |
| 3412 | } else { |
| 3413 | packType=-1; |
| 3414 | #ifdef ADD_ROW_ANALYZE |
| 3415 | nBad++; |
| 3416 | #else |
| 3417 | break; |
| 3418 | #endif |
| 3419 | } |
| 3420 | } |
| 3421 | } else { |
| 3422 | // Need more space |
| 3423 | packType=1; |
| 3424 | } |
| 3425 | #ifdef ADD_ROW_ANALYZE |
| 3426 | if (!hasGaps()) |
| 3427 | xxxxxx[9]++; |
| 3428 | if (packType==-1&&nBad<6) |
| 3429 | packType=nBad+1; |
| 3430 | xxxxxx[packType+2]++; |
| 3431 | if ((xxxxxx[0]%100)==0) { |
| 3432 | printf("Append " ); |
| 3433 | for (int i=0;i<10;i++) |
| 3434 | printf("%d " ,xxxxxx[i]); |
| 3435 | printf("\n" ); |
| 3436 | } |
| 3437 | #endif |
| 3438 | if (hasGaps()&&packType) |
| 3439 | packType=1; |
| 3440 | CoinBigIndex n = 0; |
| 3441 | if (packType) { |
| 3442 | double slack = (static_cast<double> (maxSize_-size_-numberAdded))/ |
| 3443 | static_cast<double> (majorDim_); |
| 3444 | slack = CoinMax(0.0,slack-0.01); |
| 3445 | if (!slack) { |
| 3446 | for (int i = 0; i < majorDim_; ++i) { |
| 3447 | int thisCount = newStart[i]; |
| 3448 | newStart[i]=n; |
| 3449 | n += length_[i] + thisCount; |
| 3450 | } |
| 3451 | } else { |
| 3452 | double added=0.0; |
| 3453 | for (int i = 0; i < majorDim_; ++i) { |
| 3454 | int thisCount = newStart[i]; |
| 3455 | newStart[i]=n; |
| 3456 | added += slack; |
| 3457 | double =0; |
| 3458 | if (added>=1.0) { |
| 3459 | extra = floor(added); |
| 3460 | added -= extra; |
| 3461 | } |
| 3462 | n += length_[i] + thisCount+ static_cast<int> (extra); |
| 3463 | } |
| 3464 | } |
| 3465 | newStart[majorDim_]=n; |
| 3466 | } |
| 3467 | if (packType) { |
| 3468 | maxSize_ = CoinMax(maxSize_, n); |
| 3469 | int * newIndex = new int[maxSize_]; |
| 3470 | double * newElem = new double[maxSize_]; |
| 3471 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 3472 | CoinBigIndex start = start_[i]; |
| 3473 | #ifdef USE_MEMCPY |
| 3474 | int length = length_[i]; |
| 3475 | CoinBigIndex put = newStart[i]; |
| 3476 | CoinMemcpyN(index_+start,length,newIndex+put); |
| 3477 | CoinMemcpyN(element_+start,length,newElem+put); |
| 3478 | #else |
| 3479 | CoinBigIndex end = start+length_[i]; |
| 3480 | CoinBigIndex put = newStart[i]; |
| 3481 | for (CoinBigIndex j=start;j<end;j++) { |
| 3482 | newIndex[put]=index_[j]; |
| 3483 | newElem[put++]=element_[j]; |
| 3484 | } |
| 3485 | #endif |
| 3486 | } |
| 3487 | |
| 3488 | delete [] start_; |
| 3489 | delete [] index_; |
| 3490 | delete [] element_; |
| 3491 | start_ = newStart; |
| 3492 | index_ = newIndex; |
| 3493 | element_ = newElem; |
| 3494 | } else if (packType<0) { |
| 3495 | assert (maxSize_ >= n); |
| 3496 | for (int i = majorDim_ - 1; i >= 0; --i) { |
| 3497 | CoinBigIndex start = start_[i]; |
| 3498 | int length = length_[i]; |
| 3499 | CoinBigIndex end = start+length; |
| 3500 | CoinBigIndex put = newStart[i]; |
| 3501 | //if (put==start) |
| 3502 | //break; |
| 3503 | put += length; |
| 3504 | for (CoinBigIndex j=end-1;j>=start;j--) { |
| 3505 | index_[--put]=index_[j]; |
| 3506 | element_[put]=element_[j]; |
| 3507 | } |
| 3508 | } |
| 3509 | delete [] start_; |
| 3510 | start_ = newStart; |
| 3511 | } else { |
| 3512 | delete[] newStart; |
| 3513 | } |
| 3514 | |
| 3515 | // now insert the entries of matrix |
| 3516 | for (int i = 0; i < number; i++) { |
| 3517 | CoinBigIndex j; |
| 3518 | for ( j=starts[i];j<starts[i+1];j++) { |
| 3519 | int iIndex = index[j]; |
| 3520 | element_[start_[iIndex] + length_[iIndex]] = element[j]; |
| 3521 | index_[start_[iIndex] + (length_[iIndex]++)] = minorDim_; |
| 3522 | } |
| 3523 | ++minorDim_; |
| 3524 | } |
| 3525 | size_ += starts[number]; |
| 3526 | #ifndef NDEBUG |
| 3527 | int checkSize=0; |
| 3528 | for (int i=0;i<majorDim_;i++) { |
| 3529 | checkSize += length_[i]; |
| 3530 | } |
| 3531 | assert (checkSize==size_); |
| 3532 | #endif |
| 3533 | } |
| 3534 | |
| 3535 | /* |
| 3536 | Utility to scan a packed matrix for corruption and inconsistencies. Not |
| 3537 | exhaustive, but useful. By default, the method counts coefficients of zero |
| 3538 | and reports them, but does not consider them an error. Set zeroesAreError to |
| 3539 | true if you want an error. |
| 3540 | */ |
| 3541 | |
| 3542 | int CoinPackedMatrix::verifyMtx (int verbosity, bool zeroesAreError) const |
| 3543 | |
| 3544 | { |
| 3545 | const double smallCoeff = 1.0e-50 ; |
| 3546 | const double largeCoeff = 1.0e50 ; |
| 3547 | |
| 3548 | int majDim = majorDim_ ; |
| 3549 | int minDim = minorDim_ ; |
| 3550 | |
| 3551 | std::string majName, minName ; |
| 3552 | |
| 3553 | int m, n ; |
| 3554 | if (colOrdered_) { |
| 3555 | n = majDim ; |
| 3556 | majName = "col" ; |
| 3557 | m = minDim ; |
| 3558 | minName = "row" ; |
| 3559 | } else { |
| 3560 | m = majDim ; |
| 3561 | majName = "row" ; |
| 3562 | n = minDim ; |
| 3563 | minName = "col" ; |
| 3564 | } |
| 3565 | |
| 3566 | /* |
| 3567 | size_ is the number of coefficients, maxSize_ the size of the bulk store. |
| 3568 | start_[majDim] should be one past the last valid coefficient in the bulk |
| 3569 | store. The actual relation is (#coeffs + #gaps) = start_[majDim]. |
| 3570 | */ |
| 3571 | bool gaps = (size_ < start_[majDim]) ; |
| 3572 | CoinBigIndex maxIndex = CoinMin(maxSize_,start_[majDim])-1 ; |
| 3573 | |
| 3574 | if (verbosity >= 3) { |
| 3575 | std::cout |
| 3576 | << " Matrix is " << ((colOrdered_)?"column" :"row" ) << "-major, " |
| 3577 | << m << " rows X " << n << " cols; " << size_ << " coeffs." |
| 3578 | << std::endl ; |
| 3579 | std::cout |
| 3580 | << " Bulk store " << maxSize_ << " coeffs, last coeff at " |
| 3581 | << start_[majDim]-1 << ", ex maj " << extraMajor_ |
| 3582 | << ", ex gap " << extraGap_ ; |
| 3583 | if (gaps) std::cout << "; matrix has gaps" ; |
| 3584 | std::cout << "." << std::endl ; |
| 3585 | } |
| 3586 | |
| 3587 | const CoinBigIndex *const majStarts = start_ ; |
| 3588 | const int *const majLens = length_ ; |
| 3589 | const int *const minInds = index_ ; |
| 3590 | const double *const coeffs = element_ ; |
| 3591 | /* |
| 3592 | Set up arrays to track use of bulk store entries. |
| 3593 | */ |
| 3594 | int errs = 0 ; |
| 3595 | int zeroes = 0 ; |
| 3596 | int *refCnt = new int[maxSize_] ; |
| 3597 | CoinZeroN(refCnt,maxSize_) ; |
| 3598 | bool *inGap = new bool[maxSize_] ; |
| 3599 | CoinZeroN(inGap,maxSize_) ; |
| 3600 | |
| 3601 | for (int majndx = 0 ; majndx < majDim ; majndx++) { |
| 3602 | /* |
| 3603 | Check that the range of indices for the major vector falls within the bulk |
| 3604 | store. If any of these checks fail, it's pointless (and possibly unsafe) |
| 3605 | to do more with this vector. |
| 3606 | |
| 3607 | Subtle point: Normally, majStarts[majDim] = maxIndex+1 (one past the |
| 3608 | end of the bulk store), and majStarts[k], k < majDim, should be a valid |
| 3609 | index. But ... if the last major vector (k = majDim-1) has length 0, |
| 3610 | then majStarts[k] = maxIndex. This will propagate back through multiple |
| 3611 | major vectors of length 0. Hence the check for length = 0. |
| 3612 | */ |
| 3613 | CoinBigIndex majStart = majStarts[majndx] ; |
| 3614 | int majLen = majLens[majndx] ; |
| 3615 | |
| 3616 | if (majStart < 0 || (majStart == (maxIndex+1) && majLen != 0) || |
| 3617 | majStart > maxIndex+1) { |
| 3618 | if (verbosity >= 1) { |
| 3619 | std::cout |
| 3620 | << " " << majName << " " << majndx |
| 3621 | << ": start " << majStart << " should be between 0 and " |
| 3622 | << maxIndex << "." << std::endl ; |
| 3623 | } |
| 3624 | errs++ ; |
| 3625 | if (majStart >= maxSize_) { |
| 3626 | std::cout |
| 3627 | << " " << "index exceeds bulk store limit " << maxSize_ |
| 3628 | << "!" << std::endl ; |
| 3629 | } |
| 3630 | continue ; |
| 3631 | } |
| 3632 | if (majLen < 0 || majLen > minDim) { |
| 3633 | if (verbosity >= 1) { |
| 3634 | std::cout |
| 3635 | << " " << majName << " " << majndx << ": vector length " |
| 3636 | << majLen << " should be between 0 and " << minDim |
| 3637 | << std::endl ; |
| 3638 | } |
| 3639 | errs++ ; |
| 3640 | continue ; |
| 3641 | } |
| 3642 | CoinBigIndex majEnd = majStart+majLen ; |
| 3643 | if (majEnd < 0 || majEnd > maxIndex+1) { |
| 3644 | if (verbosity >= 1) { |
| 3645 | std::cout |
| 3646 | << " " << majName << " " << majndx |
| 3647 | << ": end " << majEnd << " should be between 0 and " |
| 3648 | << maxIndex << "." << std::endl ; |
| 3649 | } |
| 3650 | errs++ ; |
| 3651 | if (majEnd >= maxSize_) { |
| 3652 | std::cout |
| 3653 | << " " << "index exceeds bulk store limit " << maxSize_ |
| 3654 | << "!" << std::endl ; |
| 3655 | } |
| 3656 | continue ; |
| 3657 | } |
| 3658 | /* |
| 3659 | Check that the major vector length is consistent with the distance between |
| 3660 | majStart[majndx] and majStart[majndx+1]. If the matrix is gap-free, they |
| 3661 | should be equal. We've already confirmed that majStart+majLen is within the |
| 3662 | bulk store, so we can continue even if these checks fail. |
| 3663 | |
| 3664 | Recall that the final entry in the major vector start array is one past the |
| 3665 | end of the bulk store. The previous tests will check more carefully if |
| 3666 | majndx+1 is not the final entry. |
| 3667 | */ |
| 3668 | CoinBigIndex majStartp1 = majStarts[majndx+1] ; |
| 3669 | CoinBigIndex startDist = majStartp1-majStart ; |
| 3670 | if (majStartp1 < 0 || majStartp1 > maxIndex+1) { |
| 3671 | if (verbosity >= 1) { |
| 3672 | std::cout |
| 3673 | << " " << majName << " " << majndx |
| 3674 | << ": start of next " << majName << " " << majStartp1 |
| 3675 | << " should be between 0 and " << maxIndex+1 << "." << std::endl ; |
| 3676 | } |
| 3677 | errs++ ; |
| 3678 | if (majStartp1 >= maxSize_) { |
| 3679 | std::cout |
| 3680 | << " " << "index exceeds bulk store limit " << maxSize_ |
| 3681 | << "!" << std::endl ; |
| 3682 | } |
| 3683 | } else if ((startDist < 0) || ((startDist > minDim) && !gaps)) { |
| 3684 | if (verbosity >= 1) { |
| 3685 | std::cout |
| 3686 | << " " << majName << " " << majndx << ": distance between " |
| 3687 | << majName << " starts " << startDist |
| 3688 | << " should be between 0 and " << minDim << "." << std::endl ; |
| 3689 | } |
| 3690 | errs++ ; |
| 3691 | } else if (majLen > startDist) { |
| 3692 | if (verbosity >= 1) { |
| 3693 | std::cout |
| 3694 | << " " << majName << " " << majndx << ": vector length " |
| 3695 | << majLen << " should not be greater than distance between " |
| 3696 | << majName << " starts " << startDist << std::endl ; |
| 3697 | } |
| 3698 | errs++ ; |
| 3699 | } else if (majLen != startDist && !gaps) { |
| 3700 | if (verbosity >= 1) { |
| 3701 | std::cout |
| 3702 | << " " << majName << " " << majndx |
| 3703 | << ": " << majName << " length " << majLen |
| 3704 | << " should equal distance " << startDist << " between " |
| 3705 | << majName << " starts in gap-free matrix." << std::endl ; |
| 3706 | } |
| 3707 | errs++ ; |
| 3708 | } |
| 3709 | /* |
| 3710 | Scan the major dimension vector, checking for obviously bogus minor indices |
| 3711 | and coefficients. Generate reference counts for each bulk store entry. |
| 3712 | */ |
| 3713 | for (CoinBigIndex ii = majStart ; ii < majEnd ; ii++) { |
| 3714 | refCnt[ii]++ ; |
| 3715 | int minndx = minInds[ii] ; |
| 3716 | if (minndx < 0 || minndx >= minDim) { |
| 3717 | if (verbosity >= 1) { |
| 3718 | std::cout |
| 3719 | << " " << majName << " " << majndx << ": " |
| 3720 | << minName << " index " << ii << " is " << minndx |
| 3721 | << ", should be between 0 and " << minDim-1 << "." << std::endl ; |
| 3722 | } |
| 3723 | errs++ ; |
| 3724 | } |
| 3725 | double aij = coeffs[ii] ; |
| 3726 | if (CoinIsnan(aij) || CoinAbs(aij) > largeCoeff) { |
| 3727 | if (verbosity >= 1) { |
| 3728 | std::cout |
| 3729 | << " (" << ii << ") a<" << majndx << "," << minndx << "> = " |
| 3730 | << aij << " appears bogus." << std::endl ; |
| 3731 | } |
| 3732 | errs++ ; |
| 3733 | } |
| 3734 | if (CoinAbs(aij) < smallCoeff) { |
| 3735 | if (verbosity >= 4 || zeroesAreError) { |
| 3736 | std::cout |
| 3737 | << " (" << ii << ") a<" << majndx << "," << minndx << "> = " |
| 3738 | << aij << " appears bogus." << std::endl ; |
| 3739 | } |
| 3740 | zeroes++ ; |
| 3741 | } |
| 3742 | } |
| 3743 | /* |
| 3744 | And mark the gaps, if any. |
| 3745 | */ |
| 3746 | if (gaps) { |
| 3747 | for (CoinBigIndex ii = majEnd ; ii < majStartp1 ; ii++) |
| 3748 | inGap[ii] = true ; |
| 3749 | } |
| 3750 | } |
| 3751 | /* |
| 3752 | Check the reference counts. They should all be 1 unless the entry is in a |
| 3753 | gap, in which case it should be zero. Anything else is a problem. Allow that |
| 3754 | the matrix may not use the full size of the bulk store. |
| 3755 | */ |
| 3756 | for (CoinBigIndex ii = 0 ; ii <= maxIndex ; ii++) { |
| 3757 | if (!((refCnt[ii] == 1 && inGap[ii] == false) || |
| 3758 | (refCnt[ii] == 0 && inGap[ii] == true))) { |
| 3759 | if (verbosity >= 1) { |
| 3760 | std::cout |
| 3761 | << " Bulk store entry " << ii << " has reference count " |
| 3762 | << refCnt[ii] << "; should be " << ((inGap[ii])?0:1) << "." |
| 3763 | << std::endl ; |
| 3764 | } |
| 3765 | errs++ ; |
| 3766 | } |
| 3767 | } |
| 3768 | delete[] refCnt ; |
| 3769 | /* |
| 3770 | Report the result. |
| 3771 | */ |
| 3772 | if (zeroesAreError) errs += zeroes ; |
| 3773 | if (errs > 0) { |
| 3774 | if (verbosity >= 1) { |
| 3775 | std::cout << " Detected " << errs << " errors in matrix" ; |
| 3776 | if (zeroes) std::cout << " (includes " << zeroes << " zeroes)" ; |
| 3777 | std::cout << "." << std::endl ; |
| 3778 | } |
| 3779 | } else { |
| 3780 | if (verbosity >= 2) { |
| 3781 | std::cout << " Matrix verified" ; |
| 3782 | if (zeroes) std::cout << " (" << zeroes << " zeroes)" ; |
| 3783 | std::cout << "." << std::endl ; |
| 3784 | } |
| 3785 | } |
| 3786 | |
| 3787 | return (errs) ; |
| 3788 | } |
| 3789 | |