1 | /* $Id: CoinPackedMatrix.cpp 1539 2012-06-28 10:26:15Z forrest $ */ |
2 | // Copyright (C) 2000, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #include "CoinUtilsConfig.h" |
7 | |
8 | #include <algorithm> |
9 | #include <numeric> |
10 | #include <cassert> |
11 | #include <cstdio> |
12 | #include <cmath> |
13 | #include <iostream> |
14 | |
15 | #include "CoinPragma.hpp" |
16 | #include "CoinSort.hpp" |
17 | #include "CoinHelperFunctions.hpp" |
18 | #ifndef CLP_NO_VECTOR |
19 | #include "CoinPackedVectorBase.hpp" |
20 | #endif |
21 | #include "CoinFloatEqual.hpp" |
22 | #include "CoinPackedMatrix.hpp" |
23 | |
24 | #if !defined(COIN_COINUTILS_CHECKLEVEL) |
25 | #define COIN_COINUTILS_CHECKLEVEL 0 |
26 | #endif |
27 | |
28 | //############################################################################# |
29 | // T must be an integral type (int, CoinBigIndex, etc.) |
30 | template <typename T> |
31 | static inline T |
32 | (T len, double ) |
33 | { |
34 | return static_cast<T>(ceil(len * (1 + extraGap))); |
35 | } |
36 | |
37 | //############################################################################# |
38 | |
39 | static inline void |
40 | CoinTestSortedIndexSet(const int num, const int * sorted, const int maxEntry, |
41 | const char * testingMethod) |
42 | { |
43 | if (sorted[0] < 0 || sorted[num-1] >= maxEntry) |
44 | throw CoinError("bad index" , testingMethod, "CoinPackedMatrix" ); |
45 | if (std::adjacent_find(sorted, sorted + num) != sorted + num) |
46 | throw CoinError("duplicate index" , testingMethod, "CoinPackedMatrix" ); |
47 | } |
48 | |
49 | //----------------------------------------------------------------------------- |
50 | |
51 | static inline int * |
52 | CoinTestIndexSet(const int numDel, const int * indDel, const int maxEntry, |
53 | const char * testingMethod) |
54 | { |
55 | if (! CoinIsSorted(indDel, indDel + numDel)) { |
56 | // if not sorted then sort it, test for consistency and return a pointer |
57 | // to the sorted array |
58 | int * sorted = new int[numDel]; |
59 | CoinMemcpyN(indDel, numDel, sorted); |
60 | std::sort(sorted, sorted + numDel); |
61 | CoinTestSortedIndexSet(numDel, sorted, maxEntry, testingMethod); |
62 | return sorted; |
63 | } |
64 | |
65 | // Otherwise it's already sorted, so just test for consistency and return a |
66 | // 0 pointer. |
67 | CoinTestSortedIndexSet(numDel, indDel, maxEntry, testingMethod); |
68 | return 0; |
69 | } |
70 | |
71 | //############################################################################# |
72 | |
73 | void |
74 | CoinPackedMatrix::reserve(const int newMaxMajorDim, const CoinBigIndex newMaxSize, |
75 | bool create) |
76 | { |
77 | if (newMaxMajorDim > maxMajorDim_) { |
78 | maxMajorDim_ = newMaxMajorDim; |
79 | int * oldlength = length_; |
80 | CoinBigIndex * oldstart = start_; |
81 | length_ = new int[newMaxMajorDim]; |
82 | start_ = new CoinBigIndex[newMaxMajorDim+1]; |
83 | start_[0]=0; |
84 | if (majorDim_ > 0) { |
85 | CoinMemcpyN(oldlength, majorDim_, length_); |
86 | CoinMemcpyN(oldstart, majorDim_ + 1, start_); |
87 | } |
88 | if (create) { |
89 | // create empty vectors |
90 | CoinFillN(length_+majorDim_,maxMajorDim_-majorDim_,0); |
91 | CoinFillN(start_+majorDim_+1,maxMajorDim_-majorDim_,0); |
92 | majorDim_=maxMajorDim_; |
93 | } |
94 | delete[] oldlength; |
95 | delete[] oldstart; |
96 | } |
97 | if (newMaxSize > maxSize_) { |
98 | maxSize_ = newMaxSize; |
99 | int * oldind = index_; |
100 | double * oldelem = element_; |
101 | index_ = new int[newMaxSize]; |
102 | element_ = new double[newMaxSize]; |
103 | for (int i = majorDim_ - 1; i >= 0; --i) { |
104 | CoinMemcpyN(oldind+start_[i], length_[i], index_+start_[i]); |
105 | CoinMemcpyN(oldelem+start_[i], length_[i], element_+start_[i]); |
106 | } |
107 | delete[] oldind; |
108 | delete[] oldelem; |
109 | } |
110 | } |
111 | |
112 | //----------------------------------------------------------------------------- |
113 | |
114 | void |
115 | CoinPackedMatrix::clear() |
116 | { |
117 | majorDim_ = 0; |
118 | minorDim_ = 0; |
119 | size_ = 0; |
120 | } |
121 | |
122 | //############################################################################# |
123 | //############################################################################# |
124 | |
125 | void |
126 | CoinPackedMatrix::setDimensions(int newnumrows, int newnumcols) |
127 | { |
128 | const int numrows = getNumRows(); |
129 | if (newnumrows < 0) |
130 | newnumrows = numrows; |
131 | if (newnumrows < numrows) |
132 | throw CoinError("Bad new rownum (less than current)" , |
133 | "setDimensions" , "CoinPackedMatrix" ); |
134 | |
135 | const int numcols = getNumCols(); |
136 | if (newnumcols < 0) |
137 | newnumcols = numcols; |
138 | if (newnumcols < numcols) |
139 | throw CoinError("Bad new colnum (less than current)" , |
140 | "setDimensions" , "CoinPackedMatrix" ); |
141 | |
142 | int numplus = 0; |
143 | if (isColOrdered()) { |
144 | minorDim_ = newnumrows; |
145 | numplus = newnumcols - numcols; |
146 | } else { |
147 | minorDim_ = newnumcols; |
148 | numplus = newnumrows - numrows; |
149 | } |
150 | if (numplus > 0) { |
151 | int* lengths = new int[numplus]; |
152 | CoinZeroN(lengths, numplus); |
153 | resizeForAddingMajorVectors(numplus, lengths); |
154 | delete[] lengths; |
155 | majorDim_ += numplus; //forgot to change majorDim_ |
156 | } |
157 | |
158 | } |
159 | |
160 | //----------------------------------------------------------------------------- |
161 | |
162 | void |
163 | CoinPackedMatrix::(const double newGap) |
164 | { |
165 | if (newGap < 0) |
166 | throw CoinError("negative new extra gap" , |
167 | "setExtraGap" , "CoinPackedMatrix" ); |
168 | extraGap_ = newGap; |
169 | } |
170 | |
171 | //----------------------------------------------------------------------------- |
172 | |
173 | void |
174 | CoinPackedMatrix::(const double newMajor) |
175 | { |
176 | if (newMajor < 0) |
177 | throw CoinError("negative new extra major" , |
178 | "setExtraMajor" , "CoinPackedMatrix" ); |
179 | extraMajor_ = newMajor; |
180 | } |
181 | |
182 | //############################################################################# |
183 | #ifndef CLP_NO_VECTOR |
184 | void |
185 | CoinPackedMatrix::appendCol(const CoinPackedVectorBase& vec) |
186 | { |
187 | if (colOrdered_) |
188 | appendMajorVector(vec); |
189 | else |
190 | appendMinorVector(vec); |
191 | } |
192 | #endif |
193 | //----------------------------------------------------------------------------- |
194 | |
195 | void |
196 | CoinPackedMatrix::appendCol(const int vecsize, |
197 | const int *vecind, |
198 | const double *vecelem) |
199 | { |
200 | if (colOrdered_) |
201 | appendMajorVector(vecsize, vecind, vecelem); |
202 | else |
203 | appendMinorVector(vecsize, vecind, vecelem); |
204 | } |
205 | |
206 | //----------------------------------------------------------------------------- |
207 | #ifndef CLP_NO_VECTOR |
208 | void |
209 | CoinPackedMatrix::appendCols(const int numcols, |
210 | const CoinPackedVectorBase * const * cols) |
211 | { |
212 | if (colOrdered_) |
213 | appendMajorVectors(numcols, cols); |
214 | else |
215 | appendMinorVectors(numcols, cols); |
216 | } |
217 | #endif |
218 | //----------------------------------------------------------------------------- |
219 | |
220 | int |
221 | CoinPackedMatrix::appendCols(const int numcols, |
222 | const CoinBigIndex * columnStarts, const int * row, |
223 | const double * element, int numberRows) |
224 | { |
225 | int numberErrors; |
226 | if (colOrdered_) { |
227 | numberErrors=appendMajor(numcols, columnStarts, row, element, numberRows); |
228 | } else { |
229 | numberErrors=appendMinor(numcols, columnStarts, row, element, numberRows); |
230 | } |
231 | return numberErrors; |
232 | } |
233 | //----------------------------------------------------------------------------- |
234 | #ifndef CLP_NO_VECTOR |
235 | void |
236 | CoinPackedMatrix::appendRow(const CoinPackedVectorBase& vec) |
237 | { |
238 | if (colOrdered_) |
239 | appendMinorVector(vec); |
240 | else |
241 | appendMajorVector(vec); |
242 | } |
243 | #endif |
244 | //----------------------------------------------------------------------------- |
245 | |
246 | void |
247 | CoinPackedMatrix::appendRow(const int vecsize, |
248 | const int *vecind, |
249 | const double *vecelem) |
250 | { |
251 | if (colOrdered_) |
252 | appendMinorVector(vecsize, vecind, vecelem); |
253 | else |
254 | appendMajorVector(vecsize, vecind, vecelem); |
255 | } |
256 | |
257 | //----------------------------------------------------------------------------- |
258 | #ifndef CLP_NO_VECTOR |
259 | void |
260 | CoinPackedMatrix::appendRows(const int numrows, |
261 | const CoinPackedVectorBase * const * rows) |
262 | { |
263 | if (colOrdered_) { |
264 | // make sure enough columns |
265 | if (numrows == 0) |
266 | return; |
267 | |
268 | int i; |
269 | int maxDim=-1; |
270 | for (i = numrows - 1; i >= 0; --i) { |
271 | const int vecsize = rows[i]->getNumElements(); |
272 | const int* vecind = rows[i]->getIndices(); |
273 | for (int j = vecsize - 1; j >= 0; --j) |
274 | maxDim = CoinMax(maxDim,vecind[j]); |
275 | } |
276 | maxDim++; |
277 | if (maxDim>majorDim_) { |
278 | setDimensions(minorDim_,maxDim); |
279 | //int nAdd=maxDim-majorDim_; |
280 | //int * length = new int[nAdd]; |
281 | //memset(length,0,nAdd*sizeof(int)); |
282 | //resizeForAddingMajorVectors(nAdd,length); |
283 | //delete [] length; |
284 | } |
285 | appendMinorVectors(numrows, rows); |
286 | } else { |
287 | appendMajorVectors(numrows, rows); |
288 | } |
289 | } |
290 | #endif |
291 | //----------------------------------------------------------------------------- |
292 | |
293 | int |
294 | CoinPackedMatrix::appendRows(const int numrows, |
295 | const CoinBigIndex * rowStarts, const int * column, |
296 | const double * element, int numberColumns) |
297 | { |
298 | int numberErrors; |
299 | if (colOrdered_) { |
300 | numberErrors=appendMinor(numrows, rowStarts, column, element, numberColumns); |
301 | } else { |
302 | numberErrors=appendMajor(numrows, rowStarts, column, element, numberColumns); |
303 | } |
304 | return numberErrors; |
305 | } |
306 | |
307 | //############################################################################# |
308 | |
309 | void |
310 | CoinPackedMatrix::rightAppendPackedMatrix(const CoinPackedMatrix& matrix) |
311 | { |
312 | if (colOrdered_) { |
313 | if (matrix.colOrdered_) { |
314 | majorAppendSameOrdered(matrix); |
315 | } else { |
316 | majorAppendOrthoOrdered(matrix); |
317 | } |
318 | } else { |
319 | if (matrix.colOrdered_) { |
320 | minorAppendOrthoOrdered(matrix); |
321 | } else { |
322 | minorAppendSameOrdered(matrix); |
323 | } |
324 | } |
325 | } |
326 | |
327 | //----------------------------------------------------------------------------- |
328 | |
329 | void |
330 | CoinPackedMatrix::bottomAppendPackedMatrix(const CoinPackedMatrix& matrix) |
331 | { |
332 | if (colOrdered_) { |
333 | if (matrix.colOrdered_) { |
334 | minorAppendSameOrdered(matrix); |
335 | } else { |
336 | minorAppendOrthoOrdered(matrix); |
337 | } |
338 | } else { |
339 | if (matrix.colOrdered_) { |
340 | majorAppendOrthoOrdered(matrix); |
341 | } else { |
342 | majorAppendSameOrdered(matrix); |
343 | } |
344 | } |
345 | } |
346 | |
347 | //############################################################################# |
348 | |
349 | void |
350 | CoinPackedMatrix::deleteCols(const int numDel, const int * indDel) |
351 | { |
352 | if (numDel) { |
353 | if (colOrdered_) |
354 | deleteMajorVectors(numDel, indDel); |
355 | else |
356 | deleteMinorVectors(numDel, indDel); |
357 | } |
358 | } |
359 | |
360 | //----------------------------------------------------------------------------- |
361 | |
362 | void |
363 | CoinPackedMatrix::deleteRows(const int numDel, const int * indDel) |
364 | { |
365 | if (numDel) { |
366 | if (colOrdered_) |
367 | deleteMinorVectors(numDel, indDel); |
368 | else |
369 | deleteMajorVectors(numDel, indDel); |
370 | } |
371 | } |
372 | |
373 | //############################################################################# |
374 | /* Replace the elements of a vector. The indices remain the same. |
375 | At most the number specified will be replaced. |
376 | The index is between 0 and major dimension of matrix */ |
377 | void |
378 | CoinPackedMatrix::replaceVector(const int index, |
379 | const int numReplace, |
380 | const double * newElements) |
381 | { |
382 | if (index >= 0 && index < majorDim_) { |
383 | int length = (length_[index] < numReplace) ? length_[index] : numReplace; |
384 | CoinMemcpyN(newElements, length, element_ + start_[index]); |
385 | } else { |
386 | #ifdef COIN_DEBUG |
387 | throw CoinError("bad index" , "replaceVector" , "CoinPackedMatrix" ); |
388 | #endif |
389 | } |
390 | } |
391 | /* Modify one element of packed matrix. An element may be added. |
392 | If the new element is zero it will be deleted unless |
393 | keepZero true */ |
394 | void |
395 | CoinPackedMatrix::modifyCoefficient(int row, int column, double newElement, |
396 | bool keepZero) |
397 | { |
398 | int minorIndex,majorIndex; |
399 | if (colOrdered_) { |
400 | majorIndex=column; |
401 | minorIndex=row; |
402 | } else { |
403 | minorIndex=column; |
404 | majorIndex=row; |
405 | } |
406 | if (majorIndex >= 0 && majorIndex < majorDim_) { |
407 | if (minorIndex >= 0 && minorIndex < minorDim_) { |
408 | CoinBigIndex j; |
409 | CoinBigIndex end=start_[majorIndex]+length_[majorIndex]; |
410 | for (j=start_[majorIndex];j<end;j++) { |
411 | if (minorIndex==index_[j]) { |
412 | // replacement |
413 | if (newElement||keepZero) { |
414 | element_[j]=newElement; |
415 | } else { |
416 | // pack down and return |
417 | length_[majorIndex]--; |
418 | end--; |
419 | size_--; |
420 | for (;j<end;j++) { |
421 | element_[j]=element_[j+1]; |
422 | index_[j]=index_[j+1]; |
423 | } |
424 | } |
425 | return; |
426 | } |
427 | } |
428 | if (j==end&&(newElement||keepZero)) { |
429 | // we need to insert - keep in minor order if possible |
430 | if (end>=start_[majorIndex+1]) { |
431 | int * addedEntries = new int[majorDim_]; |
432 | memset(addedEntries, 0, majorDim_ * sizeof(int)); |
433 | addedEntries[majorIndex] = 1; |
434 | resizeForAddingMinorVectors(addedEntries); |
435 | delete[] addedEntries; |
436 | } |
437 | // So where to insert? We're just going to assume that the entries |
438 | // in the major vector are in increasing order, so we'll insert the |
439 | // new entry to the last place we can |
440 | const CoinBigIndex start = start_[majorIndex]; |
441 | end = start_[majorIndex]+length_[majorIndex]; // recalculate end |
442 | for (j = end - 1; j >= start; --j) { |
443 | if (index_[j] < minorIndex) |
444 | break; |
445 | index_[j+1] = index_[j]; |
446 | element_[j+1] = element_[j]; |
447 | } |
448 | ++j; |
449 | index_[j] = minorIndex; |
450 | element_[j] = newElement; |
451 | size_++; |
452 | length_[majorIndex]++; |
453 | } |
454 | } else { |
455 | #ifdef COIN_DEBUG |
456 | throw CoinError("bad minor index" , "modifyCoefficient" , |
457 | "CoinPackedMatrix" ); |
458 | #endif |
459 | } |
460 | } else { |
461 | #ifdef COIN_DEBUG |
462 | throw CoinError("bad major index" , "modifyCoefficient" , |
463 | "CoinPackedMatrix" ); |
464 | #endif |
465 | } |
466 | } |
467 | /* Return one element of packed matrix. |
468 | This works for either ordering |
469 | If it is not present will return 0.0 */ |
470 | double |
471 | CoinPackedMatrix::getCoefficient(int row, int column) const |
472 | { |
473 | int minorIndex,majorIndex; |
474 | if (colOrdered_) { |
475 | majorIndex=column; |
476 | minorIndex=row; |
477 | } else { |
478 | minorIndex=column; |
479 | majorIndex=row; |
480 | } |
481 | double value=0.0; |
482 | if (majorIndex >= 0 && majorIndex < majorDim_) { |
483 | if (minorIndex >= 0 && minorIndex < minorDim_) { |
484 | CoinBigIndex j; |
485 | CoinBigIndex end=start_[majorIndex]+length_[majorIndex]; |
486 | for (j=start_[majorIndex];j<end;j++) { |
487 | if (minorIndex==index_[j]) { |
488 | value = element_[j]; |
489 | break; |
490 | } |
491 | } |
492 | } else { |
493 | #ifdef COIN_DEBUG |
494 | throw CoinError("bad minor index" , "modifyCoefficient" , |
495 | "CoinPackedMatrix" ); |
496 | #endif |
497 | } |
498 | } else { |
499 | #ifdef COIN_DEBUG |
500 | throw CoinError("bad major index" , "modifyCoefficient" , |
501 | "CoinPackedMatrix" ); |
502 | #endif |
503 | } |
504 | return value; |
505 | } |
506 | |
507 | //############################################################################# |
508 | /* Eliminate all elements in matrix whose |
509 | absolute value is less than threshold. |
510 | The column starts are not affected. Returns number of elements |
511 | eliminated. Elements eliminated are at end of each vector |
512 | */ |
513 | int |
514 | CoinPackedMatrix::compress(double threshold) |
515 | { |
516 | CoinBigIndex numberEliminated =0; |
517 | // space for eliminated |
518 | int * eliminatedIndex = new int[minorDim_]; |
519 | double * eliminatedElement = new double[minorDim_]; |
520 | int i; |
521 | for (i=0;i<majorDim_;i++) { |
522 | int length = length_[i]; |
523 | CoinBigIndex k=start_[i]; |
524 | int kbad=0; |
525 | CoinBigIndex j; |
526 | for (j=start_[i];j<start_[i]+length;j++) { |
527 | if (fabs(element_[j])>=threshold) { |
528 | element_[k]=element_[j]; |
529 | index_[k++]=index_[j]; |
530 | } else { |
531 | eliminatedElement[kbad]=element_[j]; |
532 | eliminatedIndex[kbad++]=index_[j]; |
533 | } |
534 | } |
535 | if (kbad) { |
536 | numberEliminated += kbad; |
537 | length_[i] = k-start_[i]; |
538 | memcpy(index_+k,eliminatedIndex,kbad*sizeof(int)); |
539 | memcpy(element_+k,eliminatedElement,kbad*sizeof(double)); |
540 | } |
541 | } |
542 | size_ -= numberEliminated; |
543 | delete [] eliminatedIndex; |
544 | delete [] eliminatedElement; |
545 | return numberEliminated; |
546 | } |
547 | //############################################################################# |
548 | /* Eliminate all elements in matrix whose |
549 | absolute value is less than threshold.ALSO removes duplicates |
550 | The column starts are not affected. Returns number of elements |
551 | eliminated. |
552 | */ |
553 | int |
554 | CoinPackedMatrix::eliminateDuplicates(double threshold) |
555 | { |
556 | CoinBigIndex numberEliminated =0; |
557 | // space for eliminated |
558 | int * mark = new int [minorDim_]; |
559 | int i; |
560 | for (i=0;i<minorDim_;i++) |
561 | mark[i]=-1; |
562 | for (i=0;i<majorDim_;i++) { |
563 | CoinBigIndex k=start_[i]; |
564 | CoinBigIndex end = k+length_[i]; |
565 | CoinBigIndex j; |
566 | for (j=k;j<end;j++) { |
567 | int index = index_[j]; |
568 | if (mark[index]==-1) { |
569 | mark[index]=j; |
570 | } else { |
571 | // duplicate |
572 | int jj = mark[index]; |
573 | element_[jj] += element_[j]; |
574 | element_[j]=0.0; |
575 | } |
576 | } |
577 | for (j=k;j<end;j++) { |
578 | int index = index_[j]; |
579 | mark[index]=-1; |
580 | if (fabs(element_[j])>=threshold) { |
581 | element_[k]=element_[j]; |
582 | index_[k++]=index_[j]; |
583 | } |
584 | } |
585 | numberEliminated += end-k; |
586 | length_[i] = k-start_[i]; |
587 | } |
588 | size_ -= numberEliminated; |
589 | delete [] mark; |
590 | return numberEliminated; |
591 | } |
592 | //############################################################################# |
593 | |
594 | void |
595 | CoinPackedMatrix::removeGaps(double removeValue) |
596 | { |
597 | if (removeValue<0.0) { |
598 | if (size_<start_[majorDim_]) { |
599 | #if 1 |
600 | // Small copies so faster to do simply |
601 | int i; |
602 | CoinBigIndex size=0; |
603 | for (i = 1; i < majorDim_+1; ++i) { |
604 | const CoinBigIndex si = start_[i]; |
605 | size += length_[i-1]; |
606 | if (si>size) |
607 | break; |
608 | } |
609 | for (; i < majorDim_; ++i) { |
610 | const CoinBigIndex si = start_[i]; |
611 | const int li = length_[i]; |
612 | start_[i] = size; |
613 | for (CoinBigIndex j=si;j<si+li;j++) { |
614 | assert (size<size_); |
615 | index_[size]=index_[j]; |
616 | element_[size++]=element_[j]; |
617 | } |
618 | } |
619 | assert (size==size_); |
620 | start_[majorDim_] = size; |
621 | for (i=0; i < majorDim_; ++i) { |
622 | assert (start_[i+1]==start_[i]+length_[i]); |
623 | } |
624 | #else |
625 | for (int i = 1; i < majorDim_; ++i) { |
626 | const CoinBigIndex si = start_[i]; |
627 | const int li = length_[i]; |
628 | start_[i] = start_[i-1] + length_[i-1]; |
629 | CoinCopy(index_ + si, index_ + (si + li), index_ + start_[i]); |
630 | CoinCopy(element_ + si, element_ + (si + li), element_ + start_[i]); |
631 | |
632 | } |
633 | start_[majorDim_] = size_; |
634 | #endif |
635 | } else { |
636 | #ifndef NDEBUG |
637 | for (int i = 1; i < majorDim_; ++i) { |
638 | assert (start_[i] == start_[i-1] + length_[i-1]); |
639 | } |
640 | assert(start_[majorDim_] == size_); |
641 | #endif |
642 | } |
643 | } else { |
644 | CoinBigIndex put=0; |
645 | assert (!start_[0]); |
646 | CoinBigIndex start = 0; |
647 | for (int i = 0; i < majorDim_; ++i) { |
648 | const CoinBigIndex si = start; |
649 | start = start_[i+1]; |
650 | const int li = length_[i]; |
651 | for (CoinBigIndex j = si;j<si+li;j++) { |
652 | double value = element_[j]; |
653 | if (fabs(value)>removeValue) { |
654 | index_[put]=index_[j]; |
655 | element_[put++]=value; |
656 | } |
657 | } |
658 | length_[i]=put-start_[i]; |
659 | start_[i+1] = put; |
660 | } |
661 | size_ = put; |
662 | } |
663 | } |
664 | |
665 | //############################################################################# |
666 | |
667 | /* Really clean up matrix. |
668 | a) eliminate all duplicate AND small elements in matrix |
669 | b) remove all gaps and set extraGap_ and extraMajor_ to 0.0 |
670 | c) reallocate arrays and make max lengths equal to lengths |
671 | d) orders elements |
672 | returns number of elements eliminated |
673 | */ |
674 | int |
675 | CoinPackedMatrix::cleanMatrix(double threshold) |
676 | { |
677 | if (!majorDim_) { |
678 | extraGap_=0.0; |
679 | extraMajor_=0.0; |
680 | return 0; |
681 | } |
682 | CoinBigIndex numberEliminated =0; |
683 | // space for eliminated |
684 | int * mark = new int [minorDim_]; |
685 | int i; |
686 | for (i=0;i<minorDim_;i++) |
687 | mark[i]=-1; |
688 | CoinBigIndex n = 0; |
689 | for (i=0;i<majorDim_;i++) { |
690 | CoinBigIndex k=start_[i]; |
691 | start_[i]=n; |
692 | CoinBigIndex end = k+length_[i]; |
693 | CoinBigIndex j; |
694 | for (j=k;j<end;j++) { |
695 | int index = index_[j]; |
696 | if (mark[index]==-1) { |
697 | mark[index]=j; |
698 | } else { |
699 | // duplicate |
700 | int jj = mark[index]; |
701 | element_[jj] += element_[j]; |
702 | element_[j]=0.0; |
703 | } |
704 | } |
705 | for (j=k;j<end;j++) { |
706 | int index = index_[j]; |
707 | mark[index]=-1; |
708 | if (fabs(element_[j])>=threshold) { |
709 | element_[n]=element_[j]; |
710 | index_[n++]=index_[j]; |
711 | k++; |
712 | } |
713 | } |
714 | numberEliminated += end-k; |
715 | length_[i] = n-start_[i]; |
716 | // sort |
717 | CoinSort_2(index_+start_[i],index_+n,element_+start_[i]); |
718 | } |
719 | start_[majorDim_]=n; |
720 | size_ -= numberEliminated; |
721 | assert (n==size_); |
722 | delete [] mark; |
723 | extraGap_=0.0; |
724 | extraMajor_=0.0; |
725 | maxMajorDim_=majorDim_; |
726 | maxSize_=size_; |
727 | // Now reallocate - do smallest ones first |
728 | int * temp = CoinCopyOfArray(length_,majorDim_); |
729 | delete [] length_; |
730 | length_ = temp; |
731 | CoinBigIndex * temp2 = CoinCopyOfArray(start_,majorDim_+1); |
732 | delete [] start_; |
733 | start_ = temp2; |
734 | temp = CoinCopyOfArray(index_,size_); |
735 | delete [] index_; |
736 | index_ = temp; |
737 | double * temp3 = CoinCopyOfArray(element_,size_); |
738 | delete [] element_; |
739 | element_ = temp3; |
740 | return numberEliminated; |
741 | } |
742 | |
743 | //############################################################################# |
744 | |
745 | void |
746 | CoinPackedMatrix::submatrixOf(const CoinPackedMatrix& matrix, |
747 | const int numMajor, const int * indMajor) |
748 | { |
749 | int i; |
750 | int* sortedIndPtr = CoinTestIndexSet(numMajor, indMajor, matrix.majorDim_, |
751 | "submatrixOf" ); |
752 | const int * sortedInd = sortedIndPtr == 0 ? indMajor : sortedIndPtr; |
753 | |
754 | gutsOfDestructor(); |
755 | |
756 | // Count how many nonzeros there'll be |
757 | CoinBigIndex nzcnt = 0; |
758 | const int* length = matrix.getVectorLengths(); |
759 | for (i = 0; i < numMajor; ++i) { |
760 | nzcnt += length[sortedInd[i]]; |
761 | } |
762 | |
763 | colOrdered_ = matrix.colOrdered_; |
764 | maxMajorDim_ = int(numMajor * (1+extraMajor_) + 1); |
765 | maxSize_ = static_cast<CoinBigIndex> (nzcnt * (1+extraMajor_) * (1+extraGap_) + 100); |
766 | length_ = new int[maxMajorDim_]; |
767 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
768 | start_[0]=0; |
769 | index_ = new int[maxSize_]; |
770 | element_ = new double[maxSize_]; |
771 | majorDim_ = 0; |
772 | minorDim_ = matrix.minorDim_; |
773 | size_ = 0; |
774 | #ifdef CLP_NO_VECTOR |
775 | for (i = 0; i < numMajor; ++i) { |
776 | int j = sortedInd[i]; |
777 | CoinBigIndex start = matrix.start_[j]; |
778 | appendMajorVector(matrix.length_[j],matrix.index_+start,matrix.element_+start); |
779 | } |
780 | #else |
781 | for (i = 0; i < numMajor; ++i) { |
782 | const CoinShallowPackedVector reqdBySunCC = matrix.getVector(sortedInd[i]) ; |
783 | appendMajorVector(reqdBySunCC); |
784 | } |
785 | #endif |
786 | |
787 | delete[] sortedIndPtr; |
788 | } |
789 | |
790 | //############################################################################# |
791 | |
792 | void |
793 | CoinPackedMatrix::submatrixOfWithDuplicates(const CoinPackedMatrix& matrix, |
794 | const int numMajor, const int * indMajor) |
795 | { |
796 | int i; |
797 | // we allow duplicates - can be useful |
798 | #ifndef NDEBUG |
799 | for (i=0; i<numMajor;i++) { |
800 | if (indMajor[i]<0||indMajor[i]>=matrix.majorDim_) |
801 | throw CoinError("bad index" , "submatrixOfWithDuplicates" , "CoinPackedMatrix" ); |
802 | } |
803 | #endif |
804 | gutsOfDestructor(); |
805 | // Get rid of gaps |
806 | extraMajor_ = 0; |
807 | extraGap_ = 0; |
808 | colOrdered_ = matrix.colOrdered_; |
809 | maxMajorDim_ = numMajor ; |
810 | |
811 | const int* length = matrix.getVectorLengths(); |
812 | length_ = new int[maxMajorDim_]; |
813 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
814 | // Count how many nonzeros there'll be |
815 | CoinBigIndex nzcnt = 0; |
816 | for (i = 0; i < maxMajorDim_; ++i) { |
817 | start_[i]=nzcnt; |
818 | int thisLength = length[indMajor[i]]; |
819 | nzcnt += thisLength; |
820 | length_[i]=thisLength; |
821 | } |
822 | start_[maxMajorDim_]=nzcnt; |
823 | maxSize_ = nzcnt ; |
824 | index_ = new int[maxSize_]; |
825 | element_ = new double[maxSize_]; |
826 | majorDim_ = maxMajorDim_; |
827 | minorDim_ = matrix.minorDim_; |
828 | size_ = 0; |
829 | const CoinBigIndex * startOld = matrix.start_; |
830 | const double * elementOld = matrix.element_; |
831 | const int * indexOld = matrix.index_; |
832 | for (i = 0; i < maxMajorDim_; ++i) { |
833 | int j = indMajor[i]; |
834 | CoinBigIndex start = startOld[j]; |
835 | int thisLength = length_[i]; |
836 | const double * element = elementOld+start; |
837 | const int * index = indexOld+start; |
838 | for (int j=0;j<thisLength;j++) { |
839 | element_[size_] = element[j]; |
840 | index_[size_++] = index[j]; |
841 | } |
842 | } |
843 | } |
844 | |
845 | //############################################################################# |
846 | |
847 | void |
848 | CoinPackedMatrix::copyOf(const CoinPackedMatrix& rhs) |
849 | { |
850 | if (this != &rhs) { |
851 | gutsOfDestructor(); |
852 | gutsOfCopyOf(rhs.colOrdered_, |
853 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
854 | rhs.element_, rhs.index_, rhs.start_, rhs.length_, |
855 | rhs.extraMajor_, rhs.extraGap_); |
856 | } |
857 | } |
858 | |
859 | //----------------------------------------------------------------------------- |
860 | |
861 | void |
862 | CoinPackedMatrix::copyOf(const bool colordered, |
863 | const int minor, const int major, |
864 | const CoinBigIndex numels, |
865 | const double * elem, const int * ind, |
866 | const CoinBigIndex * start, const int * len, |
867 | const double , const double ) |
868 | { |
869 | gutsOfDestructor(); |
870 | gutsOfCopyOf(colordered, minor, major, numels, elem, ind, start, len, |
871 | extraMajor, extraGap); |
872 | } |
873 | //############################################################################# |
874 | /* Copy method. This method makes an exact replica of the argument, |
875 | including the extra space parameters. |
876 | If there is room it will re-use arrays */ |
877 | void |
878 | CoinPackedMatrix::copyReuseArrays(const CoinPackedMatrix& rhs) |
879 | { |
880 | assert (colOrdered_==rhs.colOrdered_); |
881 | if (maxMajorDim_>=rhs.majorDim_&&maxSize_>=rhs.size_) { |
882 | majorDim_ = rhs.majorDim_; |
883 | minorDim_ = rhs.minorDim_; |
884 | size_ = rhs.size_; |
885 | extraGap_ = rhs.extraGap_; |
886 | extraMajor_ = rhs.extraMajor_; |
887 | CoinMemcpyN(rhs.length_, majorDim_,length_); |
888 | CoinMemcpyN(rhs.start_, majorDim_+1,start_); |
889 | if (size_==start_[majorDim_]) { |
890 | CoinMemcpyN(rhs.index_ , size_, index_); |
891 | CoinMemcpyN(rhs.element_ , size_, element_); |
892 | } else { |
893 | // we can't just simply memcpy these content over, because that can |
894 | // upset memory debuggers like purify if there were gaps and those gaps |
895 | // were uninitialized memory blocks |
896 | for (int i = majorDim_ - 1; i >= 0; --i) { |
897 | CoinMemcpyN(rhs.index_ + start_[i], length_[i], index_ + start_[i]); |
898 | CoinMemcpyN(rhs.element_ + start_[i], length_[i], element_ + start_[i]); |
899 | } |
900 | } |
901 | } else { |
902 | copyOf(rhs); |
903 | } |
904 | } |
905 | |
906 | //############################################################################# |
907 | |
908 | // This method is essentially the same as minorAppendOrthoOrdered(). However, |
909 | // since we start from an empty matrix, lots of fluff can be avoided. |
910 | |
911 | void |
912 | CoinPackedMatrix::reverseOrderedCopyOf(const CoinPackedMatrix& rhs) |
913 | { |
914 | if (this == &rhs) { |
915 | reverseOrdering(); |
916 | return; |
917 | } |
918 | |
919 | int i; |
920 | colOrdered_ = !rhs.colOrdered_; |
921 | majorDim_ = rhs.minorDim_; |
922 | minorDim_ = rhs.majorDim_; |
923 | size_ = rhs.size_; |
924 | |
925 | if (size_ == 0) { |
926 | // we still need to allocate starts and lengths |
927 | maxMajorDim_=majorDim_; |
928 | delete[] start_; |
929 | delete[] length_; |
930 | delete[] index_; |
931 | delete[] element_; |
932 | start_ = new CoinBigIndex[maxMajorDim_ + 1]; |
933 | length_ = new int[maxMajorDim_]; |
934 | for (i = 0; i < majorDim_; ++i) { |
935 | start_[i] = 0; |
936 | length_[i]=0; |
937 | } |
938 | start_[majorDim_]=0; |
939 | index_ = new int[maxSize_]; |
940 | element_ = new double[maxSize_]; |
941 | return; |
942 | } |
943 | |
944 | |
945 | // Allocate sufficient space (resizeForAddingMinorVectors()) |
946 | |
947 | const int newMaxMajorDim_ = |
948 | CoinMax(maxMajorDim_, CoinLengthWithExtra(majorDim_, extraMajor_)); |
949 | |
950 | if (newMaxMajorDim_ > maxMajorDim_) { |
951 | maxMajorDim_ = newMaxMajorDim_; |
952 | delete[] start_; |
953 | delete[] length_; |
954 | start_ = new CoinBigIndex[maxMajorDim_ + 1]; |
955 | length_ = new int[maxMajorDim_]; |
956 | } |
957 | // first compute how long each major-dimension vector will be |
958 | int * COIN_RESTRICT orthoLength = length_; |
959 | rhs.countOrthoLength(orthoLength); |
960 | |
961 | start_[0] = 0; |
962 | if (extraGap_ == 0) { |
963 | for (i = 0; i < majorDim_; ++i) |
964 | start_[i+1] = start_[i] + orthoLength[i]; |
965 | } else { |
966 | const double eg = extraGap_; |
967 | for (i = 0; i < majorDim_; ++i) |
968 | start_[i+1] = start_[i] + CoinLengthWithExtra(orthoLength[i], eg); |
969 | } |
970 | |
971 | const CoinBigIndex newMaxSize = |
972 | CoinMax(maxSize_, CoinLengthWithExtra(getLastStart(), extraMajor_)); |
973 | |
974 | if (newMaxSize > maxSize_) { |
975 | maxSize_ = newMaxSize; |
976 | delete[] index_; |
977 | delete[] element_; |
978 | index_ = new int[maxSize_]; |
979 | element_ = new double[maxSize_]; |
980 | # ifdef ZEROFAULT |
981 | memset(index_,0,(maxSize_*sizeof(int))) ; |
982 | memset(element_,0,(maxSize_*sizeof(double))) ; |
983 | # endif |
984 | } |
985 | |
986 | // now insert the entries of matrix |
987 | |
988 | minorDim_ = rhs.majorDim_; |
989 | const CoinBigIndex * COIN_RESTRICT start = rhs.start_; |
990 | const int * COIN_RESTRICT index = rhs.index_; |
991 | const int * COIN_RESTRICT length = rhs.length_; |
992 | const double * COIN_RESTRICT element = rhs.element_; |
993 | assert (start[0]==0); |
994 | CoinBigIndex first = 0; |
995 | for (i = 0; i < minorDim_; ++i) { |
996 | CoinBigIndex last = first + length[i]; |
997 | CoinBigIndex j = first; |
998 | first = start[i+1]; |
999 | #if 0 |
1000 | if (((last-j)&1)!=0) { |
1001 | const int ind = index[j]; |
1002 | CoinBigIndex put = start_[ind]; |
1003 | start_[ind] = put +1; |
1004 | element_[put] = element[j]; |
1005 | index_[put] = i; |
1006 | j++; |
1007 | } |
1008 | for (; j != last; j+=2) { |
1009 | const int ind0 = index[j]; |
1010 | CoinBigIndex put0 = start_[ind0]; |
1011 | double value0=element[j]; |
1012 | const int ind1 = index[j+1]; |
1013 | CoinBigIndex put1 = start_[ind1]; |
1014 | double value1=element[j+1]; |
1015 | start_[ind0] = put0 +1; |
1016 | start_[ind1] = put1 +1; |
1017 | element_[put0] = value0; |
1018 | index_[put0] = i; |
1019 | element_[put1] = value1; |
1020 | index_[put1] = i; |
1021 | } |
1022 | #else |
1023 | for (; j != last; ++j) { |
1024 | const int ind = index[j]; |
1025 | CoinBigIndex put = start_[ind]; |
1026 | start_[ind] = put +1; |
1027 | element_[put] = element[j]; |
1028 | index_[put] = i; |
1029 | } |
1030 | #endif |
1031 | } |
1032 | // and re-adjust start_ |
1033 | for (i = 0; i < majorDim_; ++i) { |
1034 | start_[i] -= length_[i]; |
1035 | } |
1036 | } |
1037 | |
1038 | //############################################################################# |
1039 | |
1040 | void |
1041 | CoinPackedMatrix::assignMatrix(const bool colordered, |
1042 | const int minor, const int major, |
1043 | const CoinBigIndex numels, |
1044 | double *& elem, int *& ind, |
1045 | CoinBigIndex *& start, int *& len, |
1046 | const int maxmajor, const CoinBigIndex maxsize) |
1047 | { |
1048 | gutsOfDestructor(); |
1049 | colOrdered_ = colordered; |
1050 | element_ = elem; |
1051 | index_ = ind; |
1052 | start_ = start; |
1053 | majorDim_ = major; |
1054 | minorDim_ = minor; |
1055 | size_ = numels; |
1056 | maxMajorDim_ = maxmajor != -1 ? maxmajor : major; |
1057 | maxSize_ = maxsize != -1 ? maxsize : numels; |
1058 | if (len == NULL) { |
1059 | delete [] length_; |
1060 | length_ = new int[maxMajorDim_]; |
1061 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
1062 | length_[0] -= start[0]; |
1063 | } else { |
1064 | length_ = len; |
1065 | } |
1066 | elem = NULL; |
1067 | ind = NULL; |
1068 | start = NULL; |
1069 | len = NULL; |
1070 | } |
1071 | |
1072 | //############################################################################# |
1073 | |
1074 | CoinPackedMatrix & |
1075 | CoinPackedMatrix::operator=(const CoinPackedMatrix& rhs) |
1076 | { |
1077 | if (this != &rhs) { |
1078 | gutsOfDestructor(); |
1079 | extraGap_=rhs.extraGap_; |
1080 | extraMajor_=rhs.extraMajor_; |
1081 | gutsOfOpEqual(rhs.colOrdered_, |
1082 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
1083 | rhs.element_, rhs.index_, rhs.start_, rhs.length_); |
1084 | } |
1085 | return *this; |
1086 | } |
1087 | |
1088 | //############################################################################# |
1089 | |
1090 | void |
1091 | CoinPackedMatrix::reverseOrdering() |
1092 | { |
1093 | CoinPackedMatrix m; |
1094 | m.extraGap_ = extraMajor_; |
1095 | m.extraMajor_ = extraGap_; |
1096 | m.reverseOrderedCopyOf(*this); |
1097 | swap(m); |
1098 | } |
1099 | |
1100 | //----------------------------------------------------------------------------- |
1101 | |
1102 | void |
1103 | CoinPackedMatrix::transpose() |
1104 | { |
1105 | colOrdered_ = ! colOrdered_; |
1106 | } |
1107 | |
1108 | //----------------------------------------------------------------------------- |
1109 | |
1110 | void |
1111 | CoinPackedMatrix::swap(CoinPackedMatrix& m) |
1112 | { |
1113 | std::swap(colOrdered_, m.colOrdered_); |
1114 | std::swap(extraGap_, m.extraGap_); |
1115 | std::swap(extraMajor_, m.extraMajor_); |
1116 | std::swap(element_, m.element_); |
1117 | std::swap(index_, m.index_); |
1118 | std::swap(start_, m.start_); |
1119 | std::swap(length_, m.length_); |
1120 | std::swap(majorDim_, m.majorDim_); |
1121 | std::swap(minorDim_, m.minorDim_); |
1122 | std::swap(size_, m.size_); |
1123 | std::swap(maxMajorDim_, m.maxMajorDim_); |
1124 | std::swap(maxSize_, m.maxSize_); |
1125 | } |
1126 | |
1127 | //############################################################################# |
1128 | //############################################################################# |
1129 | |
1130 | void |
1131 | CoinPackedMatrix::times(const double * x, double * y) const |
1132 | { |
1133 | if (colOrdered_) |
1134 | timesMajor(x, y); |
1135 | else |
1136 | timesMinor(x, y); |
1137 | } |
1138 | |
1139 | //----------------------------------------------------------------------------- |
1140 | #ifndef CLP_NO_VECTOR |
1141 | void |
1142 | CoinPackedMatrix::times(const CoinPackedVectorBase& x, double * y) const |
1143 | { |
1144 | if (colOrdered_) |
1145 | timesMajor(x, y); |
1146 | else |
1147 | timesMinor(x, y); |
1148 | } |
1149 | #endif |
1150 | //----------------------------------------------------------------------------- |
1151 | |
1152 | void |
1153 | CoinPackedMatrix::transposeTimes(const double * x, double * y) const |
1154 | { |
1155 | if (colOrdered_) |
1156 | timesMinor(x, y); |
1157 | else |
1158 | timesMajor(x, y); |
1159 | } |
1160 | |
1161 | //----------------------------------------------------------------------------- |
1162 | #ifndef CLP_NO_VECTOR |
1163 | void |
1164 | CoinPackedMatrix::transposeTimes(const CoinPackedVectorBase& x, double * y) const |
1165 | { |
1166 | if (colOrdered_) |
1167 | timesMinor(x, y); |
1168 | else |
1169 | timesMajor(x, y); |
1170 | } |
1171 | #endif |
1172 | //############################################################################# |
1173 | //############################################################################# |
1174 | /* Count the number of entries in every minor-dimension vector and |
1175 | fill in an array containing these lengths. */ |
1176 | void |
1177 | CoinPackedMatrix::countOrthoLength(int * orthoLength) const |
1178 | { |
1179 | CoinZeroN(orthoLength, minorDim_); |
1180 | if (size_!=start_[majorDim_]) { |
1181 | // has gaps |
1182 | for (int i = 0; i <majorDim_ ; ++i) { |
1183 | const CoinBigIndex first = start_[i]; |
1184 | const CoinBigIndex last = first + length_[i]; |
1185 | for (CoinBigIndex j = first; j < last; ++j) { |
1186 | assert( index_[j] < minorDim_ && index_[j]>=0); |
1187 | ++orthoLength[index_[j]]; |
1188 | } |
1189 | } |
1190 | } else { |
1191 | // no gaps |
1192 | const CoinBigIndex last = start_[majorDim_]; |
1193 | for (CoinBigIndex j = 0; j < last; ++j) { |
1194 | assert( index_[j] < minorDim_ && index_[j]>=0); |
1195 | ++orthoLength[index_[j]]; |
1196 | } |
1197 | } |
1198 | } |
1199 | |
1200 | int * |
1201 | CoinPackedMatrix::countOrthoLength() const |
1202 | { |
1203 | int * orthoLength = new int[minorDim_]; |
1204 | countOrthoLength(orthoLength); |
1205 | return orthoLength; |
1206 | } |
1207 | |
1208 | //############################################################################# |
1209 | /* Returns an array containing major indices. The array is |
1210 | getNumElements long and if getVectorStarts() is 0,2,5 then |
1211 | the array would start 0,0,1,1,1,2... |
1212 | This method is provided to go back from a packed format |
1213 | to a triple format. |
1214 | The returned array is allocated with <code>new int[]</code>, |
1215 | free it with <code>delete[]</code>. */ |
1216 | int * |
1217 | CoinPackedMatrix::getMajorIndices() const |
1218 | { |
1219 | // Check valid |
1220 | if (!majorDim_||start_[majorDim_]!=size_) |
1221 | return NULL; |
1222 | int * array = new int [size_]; |
1223 | for (int i=0;i<majorDim_;i++) { |
1224 | for (CoinBigIndex k=start_[i];k<start_[i+1];k++) |
1225 | array[k]=i; |
1226 | } |
1227 | return array; |
1228 | } |
1229 | //############################################################################# |
1230 | |
1231 | void |
1232 | CoinPackedMatrix::appendMajorVector(const int vecsize, |
1233 | const int *vecind, |
1234 | const double *vecelem) |
1235 | { |
1236 | #ifdef COIN_DEBUG |
1237 | for (int i = 0; i < vecsize; ++i) { |
1238 | if (vecind[i] < 0 ) |
1239 | throw CoinError("out of range index" , |
1240 | "appendMajorVector" , "CoinPackedMatrix" ); |
1241 | } |
1242 | #if 0 |
1243 | if (std::find_if(vecind, vecind + vecsize, |
1244 | compose2(logical_or<bool>(), |
1245 | bind2nd(less<int>(), 0), |
1246 | bind2nd(greater_equal<int>(), minorDim_))) != |
1247 | vecind + vecsize) |
1248 | throw CoinError("out of range index" , |
1249 | "appendMajorVector" , "CoinPackedMatrix" ); |
1250 | #endif |
1251 | #endif |
1252 | |
1253 | if (majorDim_ == maxMajorDim_ || vecsize > maxSize_ - getLastStart()) { |
1254 | resizeForAddingMajorVectors(1, &vecsize); |
1255 | } |
1256 | |
1257 | // got to get this again since it might change! |
1258 | const CoinBigIndex last = getLastStart(); |
1259 | |
1260 | // OK, now just append the major-dimension vector to the end |
1261 | |
1262 | length_[majorDim_] = vecsize; |
1263 | CoinMemcpyN(vecind, vecsize, index_ + last); |
1264 | CoinMemcpyN(vecelem, vecsize, element_ + last); |
1265 | if (majorDim_ == 0) |
1266 | start_[0] = 0; |
1267 | start_[majorDim_ + 1] = |
1268 | CoinMin(last + CoinLengthWithExtra(vecsize, extraGap_), maxSize_ ); |
1269 | |
1270 | // LL: Do we want to allow appending a vector that has more entries than |
1271 | // the current size? |
1272 | if (vecsize > 0) { |
1273 | minorDim_ = CoinMax(minorDim_, |
1274 | (*std::max_element(vecind, vecind+vecsize)) + 1); |
1275 | } |
1276 | |
1277 | ++majorDim_; |
1278 | size_ += vecsize; |
1279 | } |
1280 | |
1281 | //----------------------------------------------------------------------------- |
1282 | #ifndef CLP_NO_VECTOR |
1283 | void |
1284 | CoinPackedMatrix::appendMajorVector(const CoinPackedVectorBase& vec) |
1285 | { |
1286 | appendMajorVector(vec.getNumElements(), |
1287 | vec.getIndices(), vec.getElements()); |
1288 | } |
1289 | //----------------------------------------------------------------------------- |
1290 | |
1291 | void |
1292 | CoinPackedMatrix::appendMajorVectors(const int numvecs, |
1293 | const CoinPackedVectorBase * const * vecs) |
1294 | { |
1295 | int i; |
1296 | CoinBigIndex nz = 0; |
1297 | for (i = 0; i < numvecs; ++i) |
1298 | nz += CoinLengthWithExtra(vecs[i]->getNumElements(), extraGap_); |
1299 | reserve(majorDim_ + numvecs, getLastStart() + nz); |
1300 | for (i = 0; i < numvecs; ++i) |
1301 | appendMajorVector(*vecs[i]); |
1302 | } |
1303 | #endif |
1304 | |
1305 | //############################################################################# |
1306 | |
1307 | void |
1308 | CoinPackedMatrix::appendMinorVector(const int vecsize, |
1309 | const int *vecind, |
1310 | const double *vecelem) |
1311 | { |
1312 | if (vecsize == 0) { |
1313 | ++minorDim_; // empty row/column - still need to increase |
1314 | return; |
1315 | } |
1316 | |
1317 | int i; |
1318 | #if COIN_COINUTILS_CHECKLEVEL > 3 |
1319 | // Test if any of the indices are out of range |
1320 | for (i = 0; i < vecsize; ++i) { |
1321 | if (vecind[i] < 0 || vecind[i] >= majorDim_) |
1322 | throw CoinError("out of range index" , |
1323 | "appendMinorVector" , "CoinPackedMatrix" ); |
1324 | } |
1325 | // Test if there are duplicate indices |
1326 | int* sortedind = CoinCopyOfArray(vecind, vecsize); |
1327 | std::sort(sortedind, sortedind+vecsize); |
1328 | if (std::adjacent_find(sortedind, sortedind+vecsize) != sortedind+vecsize) { |
1329 | throw CoinError("identical indices" , |
1330 | "appendMinorVector" , "CoinPackedMatrix" ); |
1331 | } |
1332 | #endif |
1333 | |
1334 | // test that there's a gap at the end of every major-dimension vector where |
1335 | // we want to add a new entry |
1336 | |
1337 | for (i = vecsize - 1; i >= 0; --i) { |
1338 | const int j = vecind[i]; |
1339 | if (start_[j] + length_[j] == start_[j+1]) |
1340 | break; |
1341 | } |
1342 | |
1343 | if (i >= 0) { |
1344 | int * addedEntries = new int[majorDim_]; |
1345 | memset(addedEntries, 0, majorDim_ * sizeof(int)); |
1346 | for (i = vecsize - 1; i >= 0; --i) |
1347 | addedEntries[vecind[i]] = 1; |
1348 | resizeForAddingMinorVectors(addedEntries); |
1349 | delete[] addedEntries; |
1350 | } |
1351 | |
1352 | // OK, now insert the entries of the minor-dimension vector |
1353 | for (i = vecsize - 1; i >= 0; --i) { |
1354 | const int j = vecind[i]; |
1355 | const CoinBigIndex posj = start_[j] + (length_[j]++); |
1356 | index_[posj] = minorDim_; |
1357 | element_[posj] = vecelem[i]; |
1358 | } |
1359 | |
1360 | ++minorDim_; |
1361 | size_ += vecsize; |
1362 | } |
1363 | |
1364 | //----------------------------------------------------------------------------- |
1365 | #ifndef CLP_NO_VECTOR |
1366 | void |
1367 | CoinPackedMatrix::appendMinorVector(const CoinPackedVectorBase& vec) |
1368 | { |
1369 | appendMinorVector(vec.getNumElements(), |
1370 | vec.getIndices(), vec.getElements()); |
1371 | } |
1372 | |
1373 | //----------------------------------------------------------------------------- |
1374 | |
1375 | void |
1376 | CoinPackedMatrix::appendMinorVectors(const int numvecs, |
1377 | const CoinPackedVectorBase * const * vecs) |
1378 | { |
1379 | if (numvecs == 0) |
1380 | return; |
1381 | |
1382 | int i; |
1383 | |
1384 | int * addedEntries = new int[majorDim_]; |
1385 | CoinZeroN(addedEntries, majorDim_); |
1386 | for (i = numvecs - 1; i >= 0; --i) { |
1387 | const int vecsize = vecs[i]->getNumElements(); |
1388 | const int* vecind = vecs[i]->getIndices(); |
1389 | for (int j = vecsize - 1; j >= 0; --j) { |
1390 | #ifdef COIN_DEBUG |
1391 | if (vecind[j] < 0 || vecind[j] >= majorDim_) |
1392 | throw CoinError("out of range index" , "appendMinorVectors" , |
1393 | "CoinPackedMatrix" ); |
1394 | #endif |
1395 | ++addedEntries[vecind[j]]; |
1396 | } |
1397 | } |
1398 | |
1399 | for (i = majorDim_ - 1; i >= 0; --i) { |
1400 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
1401 | break; |
1402 | } |
1403 | if (i >= 0) |
1404 | resizeForAddingMinorVectors(addedEntries); |
1405 | delete[] addedEntries; |
1406 | |
1407 | // now insert the entries of the vectors |
1408 | for (i = 0; i < numvecs; ++i) { |
1409 | const int vecsize = vecs[i]->getNumElements(); |
1410 | const int* vecind = vecs[i]->getIndices(); |
1411 | const double* vecelem = vecs[i]->getElements(); |
1412 | for (int j = vecsize - 1; j >= 0; --j) { |
1413 | const int ind = vecind[j]; |
1414 | element_[start_[ind] + length_[ind]] = vecelem[j]; |
1415 | index_[start_[ind] + (length_[ind]++)] = minorDim_; |
1416 | } |
1417 | ++minorDim_; |
1418 | size_ += vecsize; |
1419 | } |
1420 | } |
1421 | #endif |
1422 | |
1423 | //############################################################################# |
1424 | //############################################################################# |
1425 | |
1426 | void |
1427 | CoinPackedMatrix::majorAppendSameOrdered(const CoinPackedMatrix& matrix) |
1428 | { |
1429 | if (minorDim_ != matrix.minorDim_) { |
1430 | throw CoinError("dimension mismatch" , "rightAppendSameOrdered" , |
1431 | "CoinPackedMatrix" ); |
1432 | } |
1433 | if (matrix.majorDim_ == 0) |
1434 | return; |
1435 | |
1436 | int i; |
1437 | if (majorDim_ + matrix.majorDim_ > maxMajorDim_ || |
1438 | getLastStart() + matrix.getLastStart() > maxSize_) { |
1439 | // we got to resize before we add. note that the resizing method |
1440 | // properly fills out start_ and length_ for the major-dimension |
1441 | // vectors to be added! |
1442 | resizeForAddingMajorVectors(matrix.majorDim_, matrix.length_); |
1443 | start_ += majorDim_; |
1444 | for (i = 0; i < matrix.majorDim_; ++i) { |
1445 | const int l = matrix.length_[i]; |
1446 | CoinMemcpyN(matrix.index_ + matrix.start_[i], l, |
1447 | index_ + start_[i]); |
1448 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
1449 | element_ + start_[i]); |
1450 | } |
1451 | start_ -= majorDim_; |
1452 | } else { |
1453 | start_ += majorDim_; |
1454 | length_ += majorDim_; |
1455 | for (i = 0; i < matrix.majorDim_; ++i) { |
1456 | const int l = matrix.length_[i]; |
1457 | CoinMemcpyN(matrix.index_ + matrix.start_[i], l, |
1458 | index_ + start_[i]); |
1459 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
1460 | element_ + start_[i]); |
1461 | start_[i+1] = start_[i] + matrix.start_[i+1] - matrix.start_[i]; |
1462 | length_[i] = l; |
1463 | } |
1464 | start_ -= majorDim_; |
1465 | length_ -= majorDim_; |
1466 | } |
1467 | majorDim_ += matrix.majorDim_; |
1468 | size_ += matrix.size_; |
1469 | } |
1470 | |
1471 | //----------------------------------------------------------------------------- |
1472 | |
1473 | void |
1474 | CoinPackedMatrix::minorAppendSameOrdered(const CoinPackedMatrix& matrix) |
1475 | { |
1476 | if (majorDim_ != matrix.majorDim_) { |
1477 | throw CoinError("dimension mismatch" , "bottomAppendSameOrdered" , |
1478 | "CoinPackedMatrix" ); |
1479 | } |
1480 | if (matrix.minorDim_ == 0) |
1481 | return; |
1482 | |
1483 | int i; |
1484 | for (i = majorDim_ - 1; i >= 0; --i) { |
1485 | if (start_[i] + length_[i] + matrix.length_[i] > start_[i+1]) |
1486 | break; |
1487 | } |
1488 | if (i >= 0) |
1489 | resizeForAddingMinorVectors(matrix.length_); |
1490 | |
1491 | // now insert the entries of matrix |
1492 | for (i = majorDim_ - 1; i >= 0; --i) { |
1493 | const int l = matrix.length_[i]; |
1494 | std::transform(matrix.index_ + matrix.start_[i], |
1495 | matrix.index_ + (matrix.start_[i] + l), |
1496 | index_ + (start_[i] + length_[i]), |
1497 | std::bind2nd(std::plus<int>(), minorDim_)); |
1498 | CoinMemcpyN(matrix.element_ + matrix.start_[i], l, |
1499 | element_ + (start_[i] + length_[i])); |
1500 | length_[i] += l; |
1501 | } |
1502 | minorDim_ += matrix.minorDim_; |
1503 | size_ += matrix.size_; |
1504 | } |
1505 | |
1506 | //----------------------------------------------------------------------------- |
1507 | |
1508 | void |
1509 | CoinPackedMatrix::majorAppendOrthoOrdered(const CoinPackedMatrix& matrix) |
1510 | { |
1511 | if (minorDim_ != matrix.majorDim_) { |
1512 | throw CoinError("dimension mismatch" , "majorAppendOrthoOrdered" , |
1513 | "CoinPackedMatrix" ); |
1514 | } |
1515 | if (matrix.majorDim_ == 0) |
1516 | return; |
1517 | |
1518 | int i; |
1519 | CoinBigIndex j; |
1520 | // this trickery is needed because MSVC++ is not willing to delete[] a |
1521 | // 'const int *' |
1522 | int * orthoLengthPtr = matrix.countOrthoLength(); |
1523 | const int * orthoLength = orthoLengthPtr; |
1524 | |
1525 | if (majorDim_ + matrix.minorDim_ > maxMajorDim_) { |
1526 | resizeForAddingMajorVectors(matrix.minorDim_, orthoLength); |
1527 | } else { |
1528 | const double = extraGap_; |
1529 | start_ += majorDim_; |
1530 | for (i = 0; i < matrix.minorDim_ ; ++i) { |
1531 | start_[i+1] = start_[i] + CoinLengthWithExtra(orthoLength[i], extra_gap); |
1532 | } |
1533 | start_ -= majorDim_; |
1534 | if (start_[majorDim_ + matrix.minorDim_] > maxSize_) { |
1535 | resizeForAddingMajorVectors(matrix.minorDim_, orthoLength); |
1536 | } |
1537 | } |
1538 | // At this point everything is big enough to accommodate the new entries. |
1539 | // Also, start_ is set to the correct starting points for all the new |
1540 | // major-dimension vectors. The length of the new major-dimension vectors |
1541 | // may or may not be correctly set. Hence we just zero them out and they'll |
1542 | // be set when the entries are actually added below. |
1543 | |
1544 | start_ += majorDim_; |
1545 | length_ += majorDim_; |
1546 | |
1547 | CoinZeroN(length_, matrix.minorDim_); |
1548 | |
1549 | for (i = 0; i < matrix.majorDim_; ++i) { |
1550 | const CoinBigIndex last = matrix.getVectorLast(i); |
1551 | for (j = matrix.getVectorFirst(i); j < last; ++j) { |
1552 | const int ind = matrix.index_[j]; |
1553 | element_[start_[ind] + length_[ind]] = matrix.element_[j]; |
1554 | index_[start_[ind] + (length_[ind]++)] = i; |
1555 | } |
1556 | } |
1557 | |
1558 | length_ -= majorDim_; |
1559 | start_ -= majorDim_; |
1560 | |
1561 | // We need to update majorDim_ and size_. We can just add in from matrix |
1562 | majorDim_ += matrix.minorDim_; |
1563 | size_ += matrix.size_; |
1564 | |
1565 | delete[] orthoLengthPtr; |
1566 | } |
1567 | |
1568 | //----------------------------------------------------------------------------- |
1569 | |
1570 | void |
1571 | CoinPackedMatrix::minorAppendOrthoOrdered(const CoinPackedMatrix& matrix) |
1572 | { |
1573 | if (majorDim_ != matrix.minorDim_) { |
1574 | throw CoinError("dimension mismatch" , "bottomAppendOrthoOrdered" , |
1575 | "CoinPackedMatrix" ); |
1576 | } |
1577 | if (matrix.majorDim_ == 0) |
1578 | return; |
1579 | |
1580 | int i; |
1581 | // first compute how many entries will be added to each major-dimension |
1582 | // vector, and if needed, resize the matrix to accommodate all |
1583 | // this trickery is needed because MSVC++ is not willing to delete[] a |
1584 | // 'const int *' |
1585 | int * addedEntriesPtr = matrix.countOrthoLength(); |
1586 | const int * addedEntries = addedEntriesPtr; |
1587 | for (i = majorDim_ - 1; i >= 0; --i) { |
1588 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
1589 | break; |
1590 | } |
1591 | if (i >= 0) |
1592 | resizeForAddingMinorVectors(addedEntries); |
1593 | delete[] addedEntriesPtr; |
1594 | |
1595 | // now insert the entries of matrix |
1596 | for (i = 0; i < matrix.majorDim_; ++i) { |
1597 | const CoinBigIndex last = matrix.getVectorLast(i); |
1598 | for (CoinBigIndex j = matrix.getVectorFirst(i); j != last; ++j) { |
1599 | const int ind = matrix.index_[j]; |
1600 | element_[start_[ind] + length_[ind]] = matrix.element_[j]; |
1601 | index_[start_[ind] + (length_[ind]++)] = minorDim_; |
1602 | } |
1603 | ++minorDim_; |
1604 | } |
1605 | size_ += matrix.size_; |
1606 | } |
1607 | |
1608 | //############################################################################# |
1609 | //############################################################################# |
1610 | |
1611 | void |
1612 | CoinPackedMatrix::deleteMajorVectors(const int numDel, |
1613 | const int * indDel) |
1614 | { |
1615 | if (numDel == majorDim_) { |
1616 | // everything is deleted |
1617 | majorDim_ = 0; |
1618 | minorDim_ = 0; |
1619 | size_ = 0; |
1620 | // Get rid of memory as well |
1621 | maxMajorDim_ = 0; |
1622 | delete [] length_; |
1623 | length_ = NULL; |
1624 | delete [] start_; |
1625 | start_ = new CoinBigIndex[1]; |
1626 | start_[0]=0; |
1627 | delete [] element_; |
1628 | element_=NULL; |
1629 | delete [] index_; |
1630 | index_=NULL; |
1631 | maxSize_ = 0; |
1632 | return; |
1633 | } |
1634 | |
1635 | if (!extraGap_&&!extraMajor_) { |
1636 | // See if this is faster |
1637 | char * keep = new char[majorDim_]; |
1638 | memset(keep,1,majorDim_); |
1639 | for (int i=0;i<numDel;i++) { |
1640 | int k=indDel[i]; |
1641 | assert (k>=0&&k<majorDim_&&keep[k]); |
1642 | keep[k]=0; |
1643 | } |
1644 | int n; |
1645 | // find first |
1646 | for (n=0;n<majorDim_;n++) { |
1647 | if (!keep[n]) |
1648 | break; |
1649 | } |
1650 | size_=start_[n]; |
1651 | for (int i=n;i<majorDim_;i++) { |
1652 | if (keep[i]) { |
1653 | int length = length_[i]; |
1654 | length_[n]=length; |
1655 | for (CoinBigIndex j=start_[i];j<start_[i+1];j++) { |
1656 | element_[size_]=element_[j]; |
1657 | index_[size_++]=index_[j]; |
1658 | } |
1659 | start_[++n]=size_; |
1660 | } |
1661 | } |
1662 | majorDim_=n; |
1663 | delete [] keep; |
1664 | } else { |
1665 | int *sortedDelPtr = CoinTestIndexSet(numDel, indDel, majorDim_, |
1666 | "deleteMajorVectors" ); |
1667 | const int * sortedDel = sortedDelPtr == 0 ? indDel : sortedDelPtr; |
1668 | |
1669 | CoinBigIndex deleted = 0; |
1670 | const int last = numDel - 1; |
1671 | for (int i = 0; i < last; ++i) { |
1672 | const int ind = sortedDel[i]; |
1673 | const int ind1 = sortedDel[i+1]; |
1674 | deleted += length_[ind]; |
1675 | if (ind1 - ind > 1) { |
1676 | CoinCopy(start_ + (ind + 1), start_ + ind1, start_ + (ind - i)); |
1677 | CoinCopy(length_ + (ind + 1), length_ + ind1, length_ + (ind - i)); |
1678 | } |
1679 | } |
1680 | |
1681 | // copy the last block of length_ and start_ |
1682 | const int ind = sortedDel[last]; |
1683 | deleted += length_[ind]; |
1684 | if (sortedDel[last] != majorDim_ - 1) { |
1685 | const int ind1 = majorDim_; |
1686 | CoinCopy(start_ + (ind + 1), start_ + ind1, start_ + (ind - last)); |
1687 | CoinCopy(length_ + (ind + 1), length_ + ind1, length_ + (ind - last)); |
1688 | } |
1689 | majorDim_ -= numDel; |
1690 | const int lastlength = CoinLengthWithExtra(length_[majorDim_-1], extraGap_); |
1691 | start_[majorDim_] = CoinMin(start_[majorDim_-1] + lastlength, maxSize_); |
1692 | size_ -= deleted; |
1693 | |
1694 | // if the very first major vector was deleted then copy the new first major |
1695 | // vector to the beginning to make certain that start_[0] is 0. This may |
1696 | // not be necessary, but better safe than sorry... |
1697 | if (sortedDel[0] == 0) { |
1698 | CoinCopyN(index_ + start_[0], length_[0], index_); |
1699 | CoinCopyN(element_ + start_[0], length_[0], element_); |
1700 | start_[0] = 0; |
1701 | } |
1702 | |
1703 | delete[] sortedDelPtr; |
1704 | } |
1705 | } |
1706 | |
1707 | //############################################################################# |
1708 | |
1709 | void |
1710 | CoinPackedMatrix::deleteMinorVectors(const int numDel, |
1711 | const int * indDel) |
1712 | { |
1713 | if (numDel == minorDim_) { |
1714 | // everything is deleted |
1715 | minorDim_ = 0; |
1716 | size_ = 0; |
1717 | // Get rid of as much memory as possible |
1718 | memset(length_,0,majorDim_*sizeof(int)); |
1719 | memset(start_,0,(majorDim_+1)*sizeof(CoinBigIndex )); |
1720 | delete [] element_; |
1721 | element_=NULL; |
1722 | delete [] index_; |
1723 | index_=NULL; |
1724 | maxSize_ = 0; |
1725 | return; |
1726 | } |
1727 | int i, j, k; |
1728 | |
1729 | // first compute the new index of every row |
1730 | int* newindexPtr = new int[minorDim_]; |
1731 | CoinZeroN(newindexPtr, minorDim_); |
1732 | for (j = 0; j < numDel; ++j) { |
1733 | const int ind = indDel[j]; |
1734 | #ifdef COIN_DEBUG |
1735 | if (ind < 0 || ind >= minorDim_) |
1736 | throw CoinError("out of range index" , |
1737 | "deleteMinorVectors" , "CoinPackedMatrix" ); |
1738 | if (newindexPtr[ind] == -1) |
1739 | throw CoinError("duplicate index" , |
1740 | "deleteMinorVectors" , "CoinPackedMatrix" ); |
1741 | #endif |
1742 | newindexPtr[ind] = -1; |
1743 | } |
1744 | for (i = 0, k = 0; i < minorDim_; ++i) { |
1745 | if (newindexPtr[i] != -1) { |
1746 | newindexPtr[i] = k++; |
1747 | } |
1748 | } |
1749 | // Now crawl through the matrix |
1750 | const int * newindex = newindexPtr; |
1751 | #ifdef TAKEOUT |
1752 | int mcount[400]; |
1753 | memset(mcount,0,400*sizeof(int)); |
1754 | for (i = 0; i < majorDim_; ++i) { |
1755 | int * index = index_ + start_[i]; |
1756 | double * elem = element_ + start_[i]; |
1757 | const int length_i = length_[i]; |
1758 | for (j = 0, k = 0; j < length_i; ++j) { |
1759 | mcount[index[j]]++; |
1760 | } |
1761 | } |
1762 | for (i=0;i<minorDim_;i++) { |
1763 | if (mcount[i]==10||mcount[i]==15) { |
1764 | if (newindex[i]>=0) |
1765 | printf("Keeping original row %d (new %d) with count of %d\n" , |
1766 | i,newindex[i],mcount[i]); |
1767 | else |
1768 | printf("deleting row %d with count of %d\n" , |
1769 | i,mcount[i]); |
1770 | } |
1771 | } |
1772 | #endif |
1773 | if (!extraGap_) { |
1774 | // pack down |
1775 | size_=0; |
1776 | for (i = 0; i < majorDim_; ++i) { |
1777 | int * index = index_ + start_[i]; |
1778 | double * elem = element_ + start_[i]; |
1779 | start_[i]=size_; |
1780 | const int length_i = length_[i]; |
1781 | for (j = 0; j < length_i; ++j) { |
1782 | const int ind = newindex[index[j]]; |
1783 | if (ind >= 0) { |
1784 | index_[size_] = ind; |
1785 | element_[size_++] = elem[j]; |
1786 | } |
1787 | } |
1788 | length_[i] = size_-start_[i]; |
1789 | } |
1790 | start_[majorDim_]=size_; |
1791 | } else { |
1792 | int deleted = 0; |
1793 | for (i = 0; i < majorDim_; ++i) { |
1794 | int * index = index_ + start_[i]; |
1795 | double * elem = element_ + start_[i]; |
1796 | const int length_i = length_[i]; |
1797 | for (j = 0, k = 0; j < length_i; ++j) { |
1798 | const int ind = newindex[index[j]]; |
1799 | if (ind != -1) { |
1800 | index[k] = ind; |
1801 | elem[k++] = elem[j]; |
1802 | } |
1803 | } |
1804 | deleted += length_i - k; |
1805 | length_[i] = k; |
1806 | } |
1807 | size_ -= deleted; |
1808 | } |
1809 | |
1810 | delete[] newindexPtr; |
1811 | |
1812 | minorDim_ -= numDel; |
1813 | } |
1814 | |
1815 | //############################################################################# |
1816 | //############################################################################# |
1817 | |
1818 | void |
1819 | CoinPackedMatrix::timesMajor(const double * x, double * y) const |
1820 | { |
1821 | memset(y, 0, minorDim_ * sizeof(double)); |
1822 | for (int i = majorDim_ - 1; i >= 0; --i) { |
1823 | const double x_i = x[i]; |
1824 | if (x_i != 0.0) { |
1825 | const CoinBigIndex last = getVectorLast(i); |
1826 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
1827 | y[index_[j]] += x_i * element_[j]; |
1828 | } |
1829 | } |
1830 | } |
1831 | |
1832 | //----------------------------------------------------------------------------- |
1833 | #ifndef CLP_NO_VECTOR |
1834 | void |
1835 | CoinPackedMatrix::timesMajor(const CoinPackedVectorBase& x, double * y) const |
1836 | { |
1837 | memset(y, 0, minorDim_ * sizeof(double)); |
1838 | for (CoinBigIndex i = x.getNumElements() - 1; i >= 0; --i) { |
1839 | const double x_i = x.getElements()[i]; |
1840 | if (x_i != 0.0) { |
1841 | const int ind = x.getIndices()[i]; |
1842 | const CoinBigIndex last = getVectorLast(ind); |
1843 | for (CoinBigIndex j = getVectorFirst(ind); j < last; ++j) |
1844 | y[index_[j]] += x_i * element_[j]; |
1845 | } |
1846 | } |
1847 | } |
1848 | #endif |
1849 | //----------------------------------------------------------------------------- |
1850 | |
1851 | void |
1852 | CoinPackedMatrix::timesMinor(const double * x, double * y) const |
1853 | { |
1854 | memset(y, 0, majorDim_ * sizeof(double)); |
1855 | for (int i = majorDim_ - 1; i >= 0; --i) { |
1856 | double y_i = 0; |
1857 | const CoinBigIndex last = getVectorLast(i); |
1858 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
1859 | y_i += x[index_[j]] * element_[j]; |
1860 | y[i] = y_i; |
1861 | } |
1862 | } |
1863 | |
1864 | //----------------------------------------------------------------------------- |
1865 | #ifndef CLP_NO_VECTOR |
1866 | void |
1867 | CoinPackedMatrix::timesMinor(const CoinPackedVectorBase& x, double * y) const |
1868 | { |
1869 | memset(y, 0, majorDim_ * sizeof(double)); |
1870 | for (int i = majorDim_ - 1; i >= 0; --i) { |
1871 | double y_i = 0; |
1872 | const CoinBigIndex last = getVectorLast(i); |
1873 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) |
1874 | y_i += x[index_[j]] * element_[j]; |
1875 | y[i] = y_i; |
1876 | } |
1877 | } |
1878 | #endif |
1879 | //############################################################################# |
1880 | //############################################################################# |
1881 | |
1882 | CoinPackedMatrix::CoinPackedMatrix() : |
1883 | colOrdered_(true), |
1884 | extraGap_(0.0), |
1885 | extraMajor_(0.0), |
1886 | element_(0), |
1887 | index_(0), |
1888 | length_(0), |
1889 | majorDim_(0), |
1890 | minorDim_(0), |
1891 | size_(0), |
1892 | maxMajorDim_(0), |
1893 | maxSize_(0) |
1894 | { |
1895 | start_ = new CoinBigIndex[1]; |
1896 | start_[0] = 0; |
1897 | } |
1898 | |
1899 | //----------------------------------------------------------------------------- |
1900 | |
1901 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
1902 | const double , |
1903 | const double ) : |
1904 | colOrdered_(colordered), |
1905 | extraGap_(extraGap), |
1906 | extraMajor_(extraMajor), |
1907 | element_(0), |
1908 | index_(0), |
1909 | length_(0), |
1910 | majorDim_(0), |
1911 | minorDim_(0), |
1912 | size_(0), |
1913 | maxMajorDim_(0), |
1914 | maxSize_(0) |
1915 | { |
1916 | start_ = new CoinBigIndex[1]; |
1917 | start_[0] = 0; |
1918 | } |
1919 | |
1920 | //----------------------------------------------------------------------------- |
1921 | |
1922 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
1923 | const int minor, const int major, |
1924 | const CoinBigIndex numels, |
1925 | const double * elem, const int * ind, |
1926 | const CoinBigIndex * start, const int * len, |
1927 | const double , |
1928 | const double ) : |
1929 | colOrdered_(colordered), |
1930 | extraGap_(extraGap), |
1931 | extraMajor_(extraMajor), |
1932 | element_(NULL), |
1933 | index_(NULL), |
1934 | start_(NULL), |
1935 | length_(NULL), |
1936 | majorDim_(0), |
1937 | minorDim_(0), |
1938 | size_(0), |
1939 | maxMajorDim_(0), |
1940 | maxSize_(0) |
1941 | { |
1942 | gutsOfOpEqual(colordered, minor, major, numels, elem, ind, start, len); |
1943 | } |
1944 | |
1945 | //----------------------------------------------------------------------------- |
1946 | |
1947 | CoinPackedMatrix::CoinPackedMatrix(const bool colordered, |
1948 | const int minor, const int major, |
1949 | const CoinBigIndex numels, |
1950 | const double * elem, const int * ind, |
1951 | const CoinBigIndex * start, const int * len) : |
1952 | colOrdered_(colordered), |
1953 | extraGap_(0.0), |
1954 | extraMajor_(0.0), |
1955 | element_(NULL), |
1956 | index_(NULL), |
1957 | start_(NULL), |
1958 | length_(NULL), |
1959 | majorDim_(0), |
1960 | minorDim_(0), |
1961 | size_(0), |
1962 | maxMajorDim_(0), |
1963 | maxSize_(0) |
1964 | { |
1965 | gutsOfOpEqual(colordered, minor, major, numels, elem, ind, start, len); |
1966 | } |
1967 | |
1968 | //----------------------------------------------------------------------------- |
1969 | // makes column ordered from triplets and takes out duplicates |
1970 | // will be sorted |
1971 | // |
1972 | // This is an interesting in-place sorting algorithm; |
1973 | // We have triples, and want to sort them so that triples with the same column |
1974 | // are adjacent. |
1975 | // We begin by computing how many entries there are for each column (columnCount) |
1976 | // and using that to compute where each set of column entries will *end* (startColumn). |
1977 | // As we drop entries into place, startColumn is decremented until it contains |
1978 | // the position where the column entries *start*. |
1979 | // The invalid column index -2 means there's a "hole" in that position; |
1980 | // the invalid column index -1 means the entry in that spot is "where it wants to go". |
1981 | // Initially, no one is where they want to go. |
1982 | // Going back to front, |
1983 | // if that entry is where it wants to go |
1984 | // then leave it there |
1985 | // otherwise pick it up (which leaves a hole), and |
1986 | // for as long as you have an entry in your right hand, |
1987 | // - pick up the entry (with your left hand) in the position where the one in |
1988 | // your right hand wants to go; |
1989 | // - pass the entry in your left hand to your right hand; |
1990 | // - was that entry really just the "hole"? If so, stop. |
1991 | // It could be that all the entries get shuffled in the first loop iteration |
1992 | // and all the rest just confirm that everyone is happy where they are. |
1993 | // We never move an entry that is where it wants to go, so entries are moved at |
1994 | // most once. They may not change position if they happen to initially be |
1995 | // where they want to go when the for loop gets to them. |
1996 | // It depends on how many subpermutations the triples initially defined. |
1997 | // Each while loop takes care of one permutation. |
1998 | // The while loop has to stop, because each time around we mark one entry as happy. |
1999 | // We can't run into a happy entry, because we are decrementing the startColumn |
2000 | // all the time, so we must be running into new entries. |
2001 | // Once we've processed all the slots for a column, it cannot be the case that |
2002 | // there are any others that want to go there. |
2003 | // This all means that we eventually must run into the hole. |
2004 | CoinPackedMatrix::CoinPackedMatrix( |
2005 | const bool colordered, |
2006 | const int * indexRow , |
2007 | const int * indexColumn, |
2008 | const double * element, |
2009 | CoinBigIndex numberElements ) |
2010 | : |
2011 | colOrdered_(colordered), |
2012 | extraGap_(0.0), |
2013 | extraMajor_(0.0), |
2014 | element_(NULL), |
2015 | index_(NULL), |
2016 | start_(NULL), |
2017 | length_(NULL), |
2018 | majorDim_(0), |
2019 | minorDim_(0), |
2020 | size_(0), |
2021 | maxMajorDim_(0), |
2022 | maxSize_(0) |
2023 | { |
2024 | CoinAbsFltEq eq; |
2025 | int * colIndices = new int[numberElements]; |
2026 | int * rowIndices = new int[numberElements]; |
2027 | double * elements = new double[numberElements]; |
2028 | CoinCopyN(element,numberElements,elements); |
2029 | if ( colordered ) { |
2030 | CoinCopyN(indexColumn,numberElements,colIndices); |
2031 | CoinCopyN(indexRow,numberElements,rowIndices); |
2032 | } |
2033 | else { |
2034 | CoinCopyN(indexColumn,numberElements,rowIndices); |
2035 | CoinCopyN(indexRow,numberElements,colIndices); |
2036 | } |
2037 | |
2038 | int numberRows; |
2039 | int numberColumns; |
2040 | if (numberElements ) { |
2041 | numberRows = *std::max_element(rowIndices,rowIndices+numberElements)+1; |
2042 | numberColumns = *std::max_element(colIndices,colIndices+numberElements)+1; |
2043 | } else { |
2044 | numberRows = 0; |
2045 | numberColumns = 0; |
2046 | } |
2047 | int * rowCount = new int[numberRows]; |
2048 | int * columnCount = new int[numberColumns]; |
2049 | CoinBigIndex * startColumn = new CoinBigIndex[numberColumns+1]; |
2050 | int * lengths = new int[numberColumns+1]; |
2051 | |
2052 | int iColumn,i; |
2053 | CoinBigIndex k; |
2054 | for (i=0;i<numberRows;i++) { |
2055 | rowCount[i]=0; |
2056 | } |
2057 | for (i=0;i<numberColumns;i++) { |
2058 | columnCount[i]=0; |
2059 | } |
2060 | for (i=0;i<numberElements;i++) { |
2061 | int iRow=rowIndices[i]; |
2062 | int iColumn=colIndices[i]; |
2063 | rowCount[iRow]++; |
2064 | columnCount[iColumn]++; |
2065 | } |
2066 | CoinBigIndex iCount=0; |
2067 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2068 | /* position after end of Column */ |
2069 | iCount+=columnCount[iColumn]; |
2070 | startColumn[iColumn]=iCount; |
2071 | } /* endfor */ |
2072 | startColumn[iColumn]=iCount; |
2073 | for (k=numberElements-1;k>=0;k--) { |
2074 | iColumn=colIndices[k]; |
2075 | if (iColumn>=0) { |
2076 | /* pick up the entry with your right hand */ |
2077 | double value = elements[k]; |
2078 | int iRow=rowIndices[k]; |
2079 | colIndices[k]=-2; /* the hole */ |
2080 | |
2081 | while (1) { |
2082 | /* pick this up with your left */ |
2083 | CoinBigIndex iLook=startColumn[iColumn]-1; |
2084 | double valueSave=elements[iLook]; |
2085 | int iColumnSave=colIndices[iLook]; |
2086 | int iRowSave=rowIndices[iLook]; |
2087 | |
2088 | /* put the right-hand entry where it wanted to go */ |
2089 | startColumn[iColumn]=iLook; |
2090 | elements[iLook]=value; |
2091 | rowIndices[iLook]=iRow; |
2092 | colIndices[iLook]=-1; /* mark it as being where it wants to be */ |
2093 | |
2094 | /* there was something there */ |
2095 | if (iColumnSave>=0) { |
2096 | iColumn=iColumnSave; |
2097 | value=valueSave; |
2098 | iRow=iRowSave; |
2099 | } else if (iColumnSave == -2) { /* that was the hole */ |
2100 | break; |
2101 | } else { |
2102 | assert(1==0); /* should never happen */ |
2103 | } |
2104 | /* endif */ |
2105 | } /* endwhile */ |
2106 | } /* endif */ |
2107 | } /* endfor */ |
2108 | |
2109 | /* now pack the elements and combine entries with the same row and column */ |
2110 | /* also, drop entries with "small" coefficients */ |
2111 | numberElements=0; |
2112 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2113 | CoinBigIndex start=startColumn[iColumn]; |
2114 | CoinBigIndex end =startColumn[iColumn+1]; |
2115 | lengths[iColumn]=0; |
2116 | startColumn[iColumn]=numberElements; |
2117 | if (end>start) { |
2118 | int lastRow; |
2119 | double lastValue; |
2120 | // sorts on indices dragging elements with |
2121 | CoinSort_2(rowIndices+start,rowIndices+end,elements+start,CoinFirstLess_2<int, double>()); |
2122 | lastRow=rowIndices[start]; |
2123 | lastValue=elements[start]; |
2124 | for (i=start+1;i<end;i++) { |
2125 | int iRow=rowIndices[i]; |
2126 | double value=elements[i]; |
2127 | if (iRow>lastRow) { |
2128 | //if(fabs(lastValue)>tolerance) { |
2129 | if(!eq(lastValue,0.0)) { |
2130 | rowIndices[numberElements]=lastRow; |
2131 | elements[numberElements]=lastValue; |
2132 | numberElements++; |
2133 | lengths[iColumn]++; |
2134 | } |
2135 | lastRow=iRow; |
2136 | lastValue=value; |
2137 | } else { |
2138 | lastValue+=value; |
2139 | } /* endif */ |
2140 | } /* endfor */ |
2141 | //if(fabs(lastValue)>tolerance) { |
2142 | if(!eq(lastValue,0.0)) { |
2143 | rowIndices[numberElements]=lastRow; |
2144 | elements[numberElements]=lastValue; |
2145 | numberElements++; |
2146 | lengths[iColumn]++; |
2147 | } |
2148 | } |
2149 | } /* endfor */ |
2150 | startColumn[numberColumns]=numberElements; |
2151 | #if 0 |
2152 | gutsOfOpEqual(colordered,numberRows,numberColumns,numberElements,elements,rowIndices,startColumn,lengths); |
2153 | |
2154 | delete [] rowCount; |
2155 | delete [] columnCount; |
2156 | delete [] startColumn; |
2157 | delete [] lengths; |
2158 | |
2159 | delete [] colIndices; |
2160 | delete [] rowIndices; |
2161 | delete [] elements; |
2162 | #else |
2163 | assignMatrix(colordered,numberRows,numberColumns,numberElements, |
2164 | elements,rowIndices,startColumn,lengths); |
2165 | delete [] rowCount; |
2166 | delete [] columnCount; |
2167 | delete [] lengths; |
2168 | delete [] colIndices; |
2169 | #endif |
2170 | |
2171 | } |
2172 | |
2173 | //----------------------------------------------------------------------------- |
2174 | |
2175 | CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & rhs) : |
2176 | colOrdered_(true), |
2177 | extraGap_(0.0), |
2178 | extraMajor_(0.0), |
2179 | element_(0), |
2180 | index_(0), |
2181 | start_(0), |
2182 | length_(0), |
2183 | majorDim_(0), |
2184 | minorDim_(0), |
2185 | size_(0), |
2186 | maxMajorDim_(0), |
2187 | maxSize_(0) |
2188 | { |
2189 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
2190 | if (!hasGaps&&!rhs.extraMajor_) { |
2191 | gutsOfCopyOfNoGaps(rhs.colOrdered_, |
2192 | rhs.minorDim_, rhs.majorDim_, |
2193 | rhs.element_, rhs.index_, rhs.start_); |
2194 | } else { |
2195 | gutsOfCopyOf(rhs.colOrdered_, |
2196 | rhs.minorDim_, rhs.majorDim_, rhs.size_, |
2197 | rhs.element_, rhs.index_, rhs.start_, rhs.length_, |
2198 | rhs.extraMajor_, rhs.extraGap_); |
2199 | } |
2200 | } |
2201 | /* Copy constructor - fine tuning - allowing extra space and/or reverse ordering. |
2202 | extraForMajor is exact extra after any possible reverse ordering. |
2203 | extraMajor_ and extraGap_ set to zero. |
2204 | */ |
2205 | CoinPackedMatrix::CoinPackedMatrix(const CoinPackedMatrix& rhs, int , |
2206 | int , bool reverseOrdering) |
2207 | : colOrdered_(rhs.colOrdered_), |
2208 | extraGap_(0), |
2209 | extraMajor_(0), |
2210 | element_(0), |
2211 | index_(0), |
2212 | start_(0), |
2213 | length_(0), |
2214 | majorDim_(rhs.majorDim_), |
2215 | minorDim_(rhs.minorDim_), |
2216 | size_(rhs.size_), |
2217 | maxMajorDim_(0), |
2218 | maxSize_(0) |
2219 | { |
2220 | if (!reverseOrdering) { |
2221 | if (extraForMajor>=0) { |
2222 | maxMajorDim_ = majorDim_+ extraForMajor; |
2223 | maxSize_ = size_ + extraElements; |
2224 | assert (maxMajorDim_>0); |
2225 | assert (maxSize_>0); |
2226 | length_ = new int[maxMajorDim_]; |
2227 | CoinMemcpyN(rhs.length_, majorDim_, length_); |
2228 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2229 | element_ = new double[maxSize_]; |
2230 | index_ = new int[maxSize_]; |
2231 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
2232 | if (hasGaps) { |
2233 | // we can't just simply memcpy these content over, because that can |
2234 | // upset memory debuggers like purify if there were gaps and those gaps |
2235 | // were uninitialized memory blocks |
2236 | CoinBigIndex size=0; |
2237 | for (int i = 0 ; i < majorDim_ ; i++) { |
2238 | start_[i]=size; |
2239 | CoinMemcpyN(rhs.index_ + rhs.start_[i], length_[i], index_ + size); |
2240 | CoinMemcpyN(rhs.element_ + rhs.start_[i], length_[i], element_ + size); |
2241 | size += length_[i]; |
2242 | } |
2243 | start_[majorDim_]=size; |
2244 | assert (size_==size); |
2245 | } else { |
2246 | CoinMemcpyN(rhs.start_, majorDim_+1, start_); |
2247 | CoinMemcpyN(rhs.index_, size_, index_); |
2248 | CoinMemcpyN(rhs.element_, size_, element_ ); |
2249 | } |
2250 | } else { |
2251 | // take out small and gaps |
2252 | maxMajorDim_ = majorDim_; |
2253 | maxSize_ = size_; |
2254 | if (maxMajorDim_>0) { |
2255 | length_ = new int[maxMajorDim_]; |
2256 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2257 | if (maxSize_>0) { |
2258 | element_ = new double[maxSize_]; |
2259 | index_ = new int[maxSize_]; |
2260 | } |
2261 | CoinBigIndex size=0; |
2262 | const double * oldElement = rhs.element_; |
2263 | const CoinBigIndex * oldStart = rhs.start_; |
2264 | const int * oldIndex = rhs.index_; |
2265 | const int * oldLength = rhs.length_; |
2266 | CoinBigIndex tooSmallCount=0; |
2267 | for (int i = 0 ; i < majorDim_ ; i++) { |
2268 | start_[i]=size; |
2269 | for (CoinBigIndex j=oldStart[i]; |
2270 | j<oldStart[i]+oldLength[i];j++) { |
2271 | double value = oldElement[j]; |
2272 | if (fabs(value)>1.0e-21) { |
2273 | element_[size]=value; |
2274 | index_[size++]=oldIndex[j]; |
2275 | } else { |
2276 | tooSmallCount++; |
2277 | } |
2278 | } |
2279 | length_[i]=size-start_[i]; |
2280 | } |
2281 | start_[majorDim_]=size; |
2282 | assert (size_==size+tooSmallCount); |
2283 | size_ = size; |
2284 | } else { |
2285 | start_ = new CoinBigIndex[1]; |
2286 | start_[0]=0; |
2287 | } |
2288 | } |
2289 | } else { |
2290 | // more complicated |
2291 | colOrdered_ = ! colOrdered_; |
2292 | minorDim_ = rhs.majorDim_; |
2293 | majorDim_ = rhs.minorDim_; |
2294 | maxMajorDim_ = majorDim_ + extraForMajor; |
2295 | maxSize_ = CoinMax(size_ + extraElements,1); |
2296 | assert (maxMajorDim_>0); |
2297 | length_ = new int[maxMajorDim_]; |
2298 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2299 | element_ = new double[maxSize_]; |
2300 | index_ = new int[maxSize_]; |
2301 | bool hasGaps = rhs.size_<rhs.start_[rhs.majorDim_]; |
2302 | CoinZeroN(length_, majorDim_); |
2303 | int i; |
2304 | if (hasGaps) { |
2305 | // has gaps |
2306 | for (i = 0; i <rhs.majorDim_ ; ++i) { |
2307 | const CoinBigIndex first = rhs.start_[i]; |
2308 | const CoinBigIndex last = first + rhs.length_[i]; |
2309 | for (CoinBigIndex j = first; j < last; ++j) { |
2310 | assert( rhs.index_[j] < rhs.minorDim_ && rhs.index_[j]>=0); |
2311 | ++length_[rhs.index_[j]]; |
2312 | } |
2313 | } |
2314 | } else { |
2315 | // no gaps |
2316 | const CoinBigIndex last = rhs.start_[rhs.majorDim_]; |
2317 | for (CoinBigIndex j = 0; j < last; ++j) { |
2318 | assert( rhs.index_[j] < rhs.minorDim_ && rhs.index_[j]>=0); |
2319 | ++length_[rhs.index_[j]]; |
2320 | } |
2321 | } |
2322 | // Now do starts |
2323 | CoinBigIndex size=0; |
2324 | for (i = 0; i <majorDim_ ; ++i) { |
2325 | start_[i]=size; |
2326 | size += length_[i]; |
2327 | } |
2328 | start_[majorDim_]=size; |
2329 | assert (size==size_); |
2330 | for (i = 0; i <rhs.majorDim_ ; ++i) { |
2331 | const CoinBigIndex first = rhs.start_[i]; |
2332 | const CoinBigIndex last = first + rhs.length_[i]; |
2333 | for (CoinBigIndex j = first; j < last; ++j) { |
2334 | const int ind = rhs.index_[j]; |
2335 | CoinBigIndex put = start_[ind]; |
2336 | start_[ind] = put +1; |
2337 | element_[put] = rhs.element_[j]; |
2338 | index_[put] = i; |
2339 | } |
2340 | } |
2341 | // and re-adjust start_ |
2342 | for (i = 0; i < majorDim_; ++i) { |
2343 | start_[i] -= length_[i]; |
2344 | } |
2345 | } |
2346 | } |
2347 | // Subset constructor (without gaps) |
2348 | CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & rhs, |
2349 | int numberRows, const int * whichRow, |
2350 | int numberColumns, |
2351 | const int * whichColumn) : |
2352 | colOrdered_(true), |
2353 | extraGap_(0.0), |
2354 | extraMajor_(0.0), |
2355 | element_(NULL), |
2356 | index_(NULL), |
2357 | start_(NULL), |
2358 | length_(NULL), |
2359 | majorDim_(0), |
2360 | minorDim_(0), |
2361 | size_(0), |
2362 | maxMajorDim_(0), |
2363 | maxSize_(0) |
2364 | { |
2365 | if (numberRows<=0||numberColumns<=0) { |
2366 | start_ = new CoinBigIndex[1]; |
2367 | start_[0] = 0; |
2368 | } else { |
2369 | if (!rhs.colOrdered_) { |
2370 | // just swap lists |
2371 | colOrdered_=false; |
2372 | const int * temp = whichRow; |
2373 | whichRow = whichColumn; |
2374 | whichColumn = temp; |
2375 | int n = numberRows; |
2376 | numberRows = numberColumns; |
2377 | numberColumns = n; |
2378 | } |
2379 | const double * element1 = rhs.element_; |
2380 | const int * index1 = rhs.index_; |
2381 | const CoinBigIndex * start1 = rhs.start_; |
2382 | const int * length1 = rhs.length_; |
2383 | |
2384 | majorDim_ = numberColumns; |
2385 | maxMajorDim_ = numberColumns; |
2386 | minorDim_ = numberRows; |
2387 | // Throw exception if rhs empty |
2388 | if (rhs.majorDim_ <= 0 || rhs.minorDim_ <= 0) |
2389 | throw CoinError("empty rhs" , "subset constructor" , "CoinPackedMatrix" ); |
2390 | // Array to say if an old row is in new copy |
2391 | int * newRow = new int [rhs.minorDim_]; |
2392 | int iRow; |
2393 | for (iRow=0;iRow<rhs.minorDim_;iRow++) |
2394 | newRow[iRow] = -1; |
2395 | // and array for duplicating rows |
2396 | int * duplicateRow = new int [numberRows]; |
2397 | int numberBad=0; |
2398 | int numberDuplicate=0; |
2399 | for (iRow=0;iRow<numberRows;iRow++) { |
2400 | duplicateRow[iRow] = -1; |
2401 | int kRow = whichRow[iRow]; |
2402 | if (kRow>=0 && kRow < rhs.minorDim_) { |
2403 | if (newRow[kRow]<0) { |
2404 | // first time |
2405 | newRow[kRow]=iRow; |
2406 | } else { |
2407 | // duplicate |
2408 | numberDuplicate++; |
2409 | int lastRow = newRow[kRow]; |
2410 | newRow[kRow]=iRow; |
2411 | duplicateRow[iRow] = lastRow; |
2412 | } |
2413 | } else { |
2414 | // bad row |
2415 | numberBad++; |
2416 | } |
2417 | } |
2418 | |
2419 | if (numberBad) |
2420 | throw CoinError("bad minor entries" , |
2421 | "subset constructor" , "CoinPackedMatrix" ); |
2422 | // now get size and check columns |
2423 | size_ = 0; |
2424 | int iColumn; |
2425 | numberBad=0; |
2426 | if (!numberDuplicate) { |
2427 | // No duplicates so can do faster |
2428 | // If not much smaller then use original size |
2429 | if (3*majorDim_>2*rhs.majorDim_&& |
2430 | 3*minorDim_>2*rhs.minorDim_) { |
2431 | // now create arrays |
2432 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),rhs.size_); |
2433 | start_ = new CoinBigIndex [numberColumns+1]; |
2434 | length_ = new int [numberColumns]; |
2435 | index_ = new int[maxSize_]; |
2436 | element_ = new double [maxSize_]; |
2437 | // and fill them |
2438 | size_ = 0; |
2439 | start_[0]=0; |
2440 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2441 | int kColumn = whichColumn[iColumn]; |
2442 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
2443 | CoinBigIndex i; |
2444 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
2445 | int kRow = index1[i]; |
2446 | double value = element1[i]; |
2447 | kRow = newRow[kRow]; |
2448 | if (kRow>=0) { |
2449 | index_[size_] = kRow; |
2450 | element_[size_++] = value; |
2451 | } |
2452 | } |
2453 | } else { |
2454 | // bad column |
2455 | numberBad++; |
2456 | } |
2457 | start_[iColumn+1] = size_; |
2458 | length_[iColumn] = size_ - start_[iColumn]; |
2459 | } |
2460 | if (numberBad) |
2461 | throw CoinError("bad major entries" , |
2462 | "subset constructor" , "CoinPackedMatrix" ); |
2463 | } else { |
2464 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2465 | int kColumn = whichColumn[iColumn]; |
2466 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
2467 | CoinBigIndex i; |
2468 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
2469 | int kRow = index1[i]; |
2470 | kRow = newRow[kRow]; |
2471 | if (kRow>=0) |
2472 | size_++; |
2473 | } |
2474 | } else { |
2475 | // bad column |
2476 | numberBad++; |
2477 | } |
2478 | } |
2479 | if (numberBad) |
2480 | throw CoinError("bad major entries" , |
2481 | "subset constructor" , "CoinPackedMatrix" ); |
2482 | // now create arrays |
2483 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),size_); |
2484 | start_ = new CoinBigIndex [numberColumns+1]; |
2485 | length_ = new int [numberColumns]; |
2486 | index_ = new int[maxSize_]; |
2487 | element_ = new double [maxSize_]; |
2488 | // and fill them |
2489 | size_ = 0; |
2490 | start_[0]=0; |
2491 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2492 | int kColumn = whichColumn[iColumn]; |
2493 | CoinBigIndex i; |
2494 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
2495 | int kRow = index1[i]; |
2496 | double value = element1[i]; |
2497 | kRow = newRow[kRow]; |
2498 | if (kRow>=0) { |
2499 | index_[size_] = kRow; |
2500 | element_[size_++] = value; |
2501 | } |
2502 | } |
2503 | start_[iColumn+1] = size_; |
2504 | length_[iColumn] = size_ - start_[iColumn]; |
2505 | } |
2506 | } |
2507 | } else { |
2508 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2509 | int kColumn = whichColumn[iColumn]; |
2510 | if (kColumn>=0 && kColumn <rhs.majorDim_) { |
2511 | CoinBigIndex i; |
2512 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
2513 | int kRow = index1[i]; |
2514 | kRow = newRow[kRow]; |
2515 | while (kRow>=0) { |
2516 | size_++; |
2517 | kRow = duplicateRow[kRow]; |
2518 | } |
2519 | } |
2520 | } else { |
2521 | // bad column |
2522 | numberBad++; |
2523 | } |
2524 | } |
2525 | if (numberBad) |
2526 | throw CoinError("bad major entries" , |
2527 | "subset constructor" , "CoinPackedMatrix" ); |
2528 | // now create arrays |
2529 | maxSize_=CoinMax(static_cast<CoinBigIndex> (1),size_); |
2530 | start_ = new CoinBigIndex [numberColumns+1]; |
2531 | length_ = new int [numberColumns]; |
2532 | index_ = new int[maxSize_]; |
2533 | element_ = new double [maxSize_]; |
2534 | // and fill them |
2535 | size_ = 0; |
2536 | start_[0]=0; |
2537 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
2538 | int kColumn = whichColumn[iColumn]; |
2539 | CoinBigIndex i; |
2540 | for (i=start1[kColumn];i<start1[kColumn]+length1[kColumn];i++) { |
2541 | int kRow = index1[i]; |
2542 | double value = element1[i]; |
2543 | kRow = newRow[kRow]; |
2544 | while (kRow>=0) { |
2545 | index_[size_] = kRow; |
2546 | element_[size_++] = value; |
2547 | kRow = duplicateRow[kRow]; |
2548 | } |
2549 | } |
2550 | start_[iColumn+1] = size_; |
2551 | length_[iColumn] = size_ - start_[iColumn]; |
2552 | } |
2553 | } |
2554 | delete [] newRow; |
2555 | delete [] duplicateRow; |
2556 | } |
2557 | } |
2558 | |
2559 | |
2560 | //----------------------------------------------------------------------------- |
2561 | |
2562 | CoinPackedMatrix::~CoinPackedMatrix () |
2563 | { |
2564 | gutsOfDestructor(); |
2565 | } |
2566 | |
2567 | //############################################################################# |
2568 | //############################################################################# |
2569 | //############################################################################# |
2570 | |
2571 | void |
2572 | CoinPackedMatrix::gutsOfDestructor() |
2573 | { |
2574 | delete[] length_; |
2575 | delete[] start_; |
2576 | delete[] index_; |
2577 | delete[] element_; |
2578 | length_ = 0; |
2579 | start_ = 0; |
2580 | index_ = 0; |
2581 | element_ = 0; |
2582 | } |
2583 | |
2584 | //############################################################################# |
2585 | |
2586 | void |
2587 | CoinPackedMatrix::gutsOfCopyOf(const bool colordered, |
2588 | const int minor, const int major, |
2589 | const CoinBigIndex numels, |
2590 | const double * elem, const int * ind, |
2591 | const CoinBigIndex * start, const int * len, |
2592 | const double , const double ) |
2593 | { |
2594 | colOrdered_ = colordered; |
2595 | majorDim_ = major; |
2596 | minorDim_ = minor; |
2597 | size_ = numels; |
2598 | |
2599 | extraGap_ = extraGap; |
2600 | extraMajor_ = extraMajor; |
2601 | |
2602 | maxMajorDim_ = CoinLengthWithExtra(majorDim_, extraMajor_); |
2603 | |
2604 | if (maxMajorDim_ > 0) { |
2605 | delete [] length_; |
2606 | length_ = new int[maxMajorDim_]; |
2607 | if (len == 0) { |
2608 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
2609 | length_[0] -= start[0]; |
2610 | } else { |
2611 | CoinMemcpyN(len, major, length_); |
2612 | } |
2613 | delete [] start_; |
2614 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2615 | start_[0]=0; |
2616 | CoinMemcpyN(start, major+1, start_); |
2617 | } else { |
2618 | // empty but be safe |
2619 | delete [] length_; |
2620 | length_ = NULL; |
2621 | delete [] start_; |
2622 | start_ = new CoinBigIndex[1]; |
2623 | start_[0]=0; |
2624 | } |
2625 | |
2626 | maxSize_ = maxMajorDim_ > 0 ? start_[major] : 0; |
2627 | maxSize_ = CoinLengthWithExtra(maxSize_, extraMajor_); |
2628 | |
2629 | if (maxSize_ > 0) { |
2630 | delete [] element_; |
2631 | delete []index_; |
2632 | element_ = new double[maxSize_]; |
2633 | index_ = new int[maxSize_]; |
2634 | // we can't just simply memcpy these content over, because that can |
2635 | // upset memory debuggers like purify if there were gaps and those gaps |
2636 | // were uninitialized memory blocks |
2637 | for (int i = majorDim_ - 1; i >= 0; --i) { |
2638 | CoinMemcpyN(ind + start[i], length_[i], index_ + start_[i]); |
2639 | CoinMemcpyN(elem + start[i], length_[i], element_ + start_[i]); |
2640 | } |
2641 | } |
2642 | } |
2643 | |
2644 | //############################################################################# |
2645 | |
2646 | void |
2647 | CoinPackedMatrix::gutsOfCopyOfNoGaps(const bool colordered, |
2648 | const int minor, const int major, |
2649 | const double * elem, const int * ind, |
2650 | const CoinBigIndex * start) |
2651 | { |
2652 | colOrdered_ = colordered; |
2653 | majorDim_ = major; |
2654 | minorDim_ = minor; |
2655 | size_ = start[majorDim_]; |
2656 | |
2657 | extraGap_ = 0; |
2658 | extraMajor_ = 0; |
2659 | |
2660 | maxMajorDim_ = majorDim_; |
2661 | |
2662 | // delete all arrays |
2663 | delete [] length_; |
2664 | delete [] start_; |
2665 | delete [] element_; |
2666 | delete [] index_; |
2667 | |
2668 | if (maxMajorDim_ > 0) { |
2669 | length_ = new int[maxMajorDim_]; |
2670 | assert (!start[0]); |
2671 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2672 | start_[0]=0; |
2673 | CoinBigIndex last = 0; |
2674 | for (int i=0;i<majorDim_;i++) { |
2675 | CoinBigIndex first = last; |
2676 | last = start[i+1]; |
2677 | length_[i] = last-first; |
2678 | start_[i+1]=last; |
2679 | } |
2680 | } else { |
2681 | // empty but be safe |
2682 | length_ = NULL; |
2683 | start_ = new CoinBigIndex[1]; |
2684 | start_[0]=0; |
2685 | } |
2686 | |
2687 | maxSize_ = start_[majorDim_]; |
2688 | |
2689 | if (maxSize_ > 0) { |
2690 | element_ = new double[maxSize_]; |
2691 | index_ = new int[maxSize_]; |
2692 | CoinMemcpyN(ind , maxSize_, index_); |
2693 | CoinMemcpyN(elem , maxSize_, element_); |
2694 | } else { |
2695 | element_ = NULL; |
2696 | index_ = NULL; |
2697 | } |
2698 | } |
2699 | |
2700 | //############################################################################# |
2701 | |
2702 | void |
2703 | CoinPackedMatrix::gutsOfOpEqual(const bool colordered, |
2704 | const int minor, const int major, |
2705 | const CoinBigIndex numels, |
2706 | const double * elem, const int * ind, |
2707 | const CoinBigIndex * start, const int * len) |
2708 | { |
2709 | colOrdered_ = colordered; |
2710 | majorDim_ = major; |
2711 | minorDim_ = minor; |
2712 | size_ = numels; |
2713 | if (!len && numels > 0 && numels==start[major] && start[0]==0) { |
2714 | // No gaps - do faster |
2715 | if (major>maxMajorDim_||!start_) { |
2716 | maxMajorDim_ = major; |
2717 | delete [] length_; |
2718 | length_ = new int[maxMajorDim_]; |
2719 | delete [] start_; |
2720 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2721 | } |
2722 | CoinMemcpyN(start,major+1,start_); |
2723 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
2724 | if (numels>maxSize_||!element_) { |
2725 | maxSize_=numels; |
2726 | delete [] element_; |
2727 | delete [] index_; |
2728 | element_ = new double[maxSize_]; |
2729 | index_ = new int[maxSize_]; |
2730 | } |
2731 | CoinMemcpyN(ind,numels,index_); |
2732 | CoinMemcpyN(elem,numels,element_); |
2733 | } else { |
2734 | |
2735 | maxMajorDim_ = CoinLengthWithExtra(majorDim_, extraMajor_); |
2736 | |
2737 | int i; |
2738 | if (maxMajorDim_ > 0) { |
2739 | delete [] length_; |
2740 | length_ = new int[maxMajorDim_]; |
2741 | if (len == 0) { |
2742 | std::adjacent_difference(start + 1, start + (major + 1), length_); |
2743 | length_[0] -= start[0]; |
2744 | } else { |
2745 | CoinMemcpyN(len, major, length_); |
2746 | } |
2747 | delete [] start_; |
2748 | start_ = new CoinBigIndex[maxMajorDim_+1]; |
2749 | start_[0] = 0; |
2750 | if (extraGap_ == 0) { |
2751 | for (i = 0; i < major; ++i) |
2752 | start_[i+1] = start_[i] + length_[i]; |
2753 | } else { |
2754 | const double = extraGap_; |
2755 | for (i = 0; i < major; ++i) |
2756 | start_[i+1] = start_[i] + CoinLengthWithExtra(length_[i], extra_gap); |
2757 | } |
2758 | } else { |
2759 | // empty matrix |
2760 | delete [] start_; |
2761 | start_ = new CoinBigIndex[1]; |
2762 | start_[0] = 0; |
2763 | } |
2764 | |
2765 | maxSize_ = maxMajorDim_ > 0 ? start_[major] : 0; |
2766 | maxSize_ = CoinLengthWithExtra(maxSize_, extraMajor_); |
2767 | |
2768 | if (maxSize_ > 0) { |
2769 | delete [] element_; |
2770 | delete [] index_; |
2771 | element_ = new double[maxSize_]; |
2772 | index_ = new int[maxSize_]; |
2773 | assert (maxSize_>=start_[majorDim_-1]+length_[majorDim_-1]); |
2774 | // we can't just simply memcpy these content over, because that can |
2775 | // upset memory debuggers like purify if there were gaps and those gaps |
2776 | // were uninitialized memory blocks |
2777 | for (i = majorDim_ - 1; i >= 0; --i) { |
2778 | CoinMemcpyN(ind + start[i], length_[i], index_ + start_[i]); |
2779 | CoinMemcpyN(elem + start[i], length_[i], element_ + start_[i]); |
2780 | } |
2781 | } |
2782 | } |
2783 | #ifndef NDEBUG |
2784 | for (int i = majorDim_ - 1; i >= 0; --i) { |
2785 | const CoinBigIndex last = getVectorLast(i); |
2786 | for (CoinBigIndex j = getVectorFirst(i); j < last; ++j) { |
2787 | int index = index_[j]; |
2788 | assert (index>=0&&index<minorDim_); |
2789 | } |
2790 | } |
2791 | #endif |
2792 | } |
2793 | |
2794 | //############################################################################# |
2795 | |
2796 | // This routine is called only if we MUST resize! |
2797 | void |
2798 | CoinPackedMatrix::resizeForAddingMajorVectors(const int numVec, |
2799 | const int * lengthVec) |
2800 | { |
2801 | const double = extraGap_; |
2802 | int i; |
2803 | |
2804 | maxMajorDim_ = |
2805 | CoinMax(maxMajorDim_, CoinLengthWithExtra(majorDim_ + numVec, extraMajor_)); |
2806 | |
2807 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
2808 | int * newLength = new int[maxMajorDim_]; |
2809 | |
2810 | CoinMemcpyN(length_, majorDim_, newLength); |
2811 | // fake that the new vectors are there |
2812 | CoinMemcpyN(lengthVec, numVec, newLength + majorDim_); |
2813 | majorDim_ += numVec; |
2814 | |
2815 | newStart[0] = 0; |
2816 | if (extra_gap == 0) { |
2817 | for (i = 0; i < majorDim_; ++i) |
2818 | newStart[i+1] = newStart[i] + newLength[i]; |
2819 | } else { |
2820 | for (i = 0; i < majorDim_; ++i) |
2821 | newStart[i+1] = newStart[i] + CoinLengthWithExtra(newLength[i],extra_gap); |
2822 | } |
2823 | |
2824 | maxSize_ = |
2825 | CoinMax(maxSize_, CoinLengthWithExtra(newStart[majorDim_], extraMajor_)); |
2826 | majorDim_ -= numVec; |
2827 | |
2828 | int * newIndex = new int[maxSize_]; |
2829 | double * newElem = new double[maxSize_]; |
2830 | for (i = majorDim_ - 1; i >= 0; --i) { |
2831 | CoinMemcpyN(index_ + start_[i], length_[i], newIndex + newStart[i]); |
2832 | CoinMemcpyN(element_ + start_[i], length_[i], newElem + newStart[i]); |
2833 | } |
2834 | |
2835 | gutsOfDestructor(); |
2836 | start_ = newStart; |
2837 | length_ = newLength; |
2838 | index_ = newIndex; |
2839 | element_ = newElem; |
2840 | } |
2841 | |
2842 | |
2843 | //############################################################################# |
2844 | |
2845 | void |
2846 | CoinPackedMatrix::resizeForAddingMinorVectors(const int * addedEntries) |
2847 | { |
2848 | int i; |
2849 | maxMajorDim_ = |
2850 | CoinMax(CoinLengthWithExtra(majorDim_, extraMajor_), maxMajorDim_); |
2851 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
2852 | int * newLength = new int[maxMajorDim_]; |
2853 | // increase the lengths temporarily so that the correct new start positions |
2854 | // can be easily computed (it's faster to modify the lengths and reset them |
2855 | // than do a test for every entry when the start positions are computed. |
2856 | for (i = majorDim_ - 1; i >= 0; --i) |
2857 | newLength[i] = length_[i] + addedEntries[i]; |
2858 | |
2859 | newStart[0] = 0; |
2860 | if (extraGap_ == 0) { |
2861 | for (i = 0; i < majorDim_; ++i) |
2862 | newStart[i+1] = newStart[i] + newLength[i]; |
2863 | } else { |
2864 | const double eg = extraGap_; |
2865 | for (i = 0; i < majorDim_; ++i) |
2866 | newStart[i+1] = newStart[i] + CoinLengthWithExtra(newLength[i], eg); |
2867 | } |
2868 | |
2869 | // reset the lengths |
2870 | for (i = majorDim_ - 1; i >= 0; --i) |
2871 | newLength[i] -= addedEntries[i]; |
2872 | |
2873 | maxSize_ = |
2874 | CoinMax(maxSize_, CoinLengthWithExtra(newStart[majorDim_], extraMajor_)); |
2875 | int * newIndex = new int[maxSize_]; |
2876 | double * newElem = new double[maxSize_]; |
2877 | for (i = majorDim_ - 1; i >= 0; --i) { |
2878 | CoinMemcpyN(index_ + start_[i], length_[i], |
2879 | newIndex + newStart[i]); |
2880 | CoinMemcpyN(element_ + start_[i], length_[i], |
2881 | newElem + newStart[i]); |
2882 | } |
2883 | |
2884 | gutsOfDestructor(); |
2885 | start_ = newStart; |
2886 | length_ = newLength; |
2887 | index_ = newIndex; |
2888 | element_ = newElem; |
2889 | } |
2890 | |
2891 | //############################################################################# |
2892 | //############################################################################# |
2893 | |
2894 | void |
2895 | CoinPackedMatrix::dumpMatrix(const char* fname) const |
2896 | { |
2897 | if (! fname) { |
2898 | printf("Dumping matrix...\n\n" ); |
2899 | printf("colordered: %i\n" , isColOrdered() ? 1 : 0); |
2900 | const int major = getMajorDim(); |
2901 | const int minor = getMinorDim(); |
2902 | printf("major: %i minor: %i\n" , major, minor); |
2903 | for (int i = 0; i < major; ++i) { |
2904 | printf("vec %i has length %i with entries:\n" , i, length_[i]); |
2905 | for (CoinBigIndex j = start_[i]; j < start_[i] + length_[i]; ++j) { |
2906 | printf(" %15i %40.25f\n" , index_[j], element_[j]); |
2907 | } |
2908 | } |
2909 | printf("\nFinished dumping matrix\n" ); |
2910 | } else { |
2911 | FILE* out = fopen(fname, "w" ); |
2912 | fprintf(out, "Dumping matrix...\n\n" ); |
2913 | fprintf(out, "colordered: %i\n" , isColOrdered() ? 1 : 0); |
2914 | const int major = getMajorDim(); |
2915 | const int minor = getMinorDim(); |
2916 | fprintf(out, "major: %i minor: %i\n" , major, minor); |
2917 | for (int i = 0; i < major; ++i) { |
2918 | fprintf(out, "vec %i has length %i with entries:\n" , i, length_[i]); |
2919 | for (CoinBigIndex j = start_[i]; j < start_[i] + length_[i]; ++j) { |
2920 | fprintf(out, " %15i %40.25f\n" , index_[j], element_[j]); |
2921 | } |
2922 | } |
2923 | fprintf(out, "\nFinished dumping matrix\n" ); |
2924 | fclose(out); |
2925 | } |
2926 | } |
2927 | void |
2928 | CoinPackedMatrix::printMatrixElement (const int row_val, |
2929 | const int col_val) const |
2930 | { |
2931 | int major_index, minor_index; |
2932 | if (isColOrdered()) { |
2933 | major_index = col_val; |
2934 | minor_index = row_val; |
2935 | } else { |
2936 | major_index = row_val; |
2937 | minor_index = col_val; |
2938 | } |
2939 | if (major_index < 0 || major_index > getMajorDim()-1) { |
2940 | std::cout |
2941 | << "Major index " << major_index << " not in range 0.." |
2942 | << getMajorDim()-1 << std::endl ; |
2943 | } else if (minor_index < 0 || minor_index > getMinorDim()-1) { |
2944 | std::cout |
2945 | << "Minor index " << minor_index << " not in range 0.." |
2946 | << getMinorDim()-1 << std::endl ; |
2947 | } else { |
2948 | CoinBigIndex curr_point = start_[major_index]; |
2949 | const CoinBigIndex stop_point = curr_point+length_[major_index]; |
2950 | double aij = 0.0 ; |
2951 | for ( ; curr_point < stop_point ; curr_point++) { |
2952 | if (index_[curr_point] == minor_index) { |
2953 | aij = element_[curr_point]; |
2954 | break; |
2955 | } |
2956 | } |
2957 | std::cout << aij ; |
2958 | } |
2959 | } |
2960 | #ifndef CLP_NO_VECTOR |
2961 | bool |
2962 | CoinPackedMatrix::isEquivalent2(const CoinPackedMatrix& rhs) const |
2963 | { |
2964 | CoinRelFltEq eq; |
2965 | // Both must be column order or both row ordered and must be of same size |
2966 | if (isColOrdered() ^ rhs.isColOrdered()) { |
2967 | std::cerr<<"Ordering " <<isColOrdered()<< |
2968 | " rhs - " <<rhs.isColOrdered()<<std::endl; |
2969 | return false; |
2970 | } |
2971 | if (getNumCols() != rhs.getNumCols()) { |
2972 | std::cerr<<"NumCols " <<getNumCols()<< |
2973 | " rhs - " <<rhs.getNumCols()<<std::endl; |
2974 | return false; |
2975 | } |
2976 | if (getNumRows() != rhs.getNumRows()) { |
2977 | std::cerr<<"NumRows " <<getNumRows()<< |
2978 | " rhs - " <<rhs.getNumRows()<<std::endl; |
2979 | return false; |
2980 | } |
2981 | if (getNumElements() != rhs.getNumElements()) { |
2982 | std::cerr<<"NumElements " <<getNumElements()<< |
2983 | " rhs - " <<rhs.getNumElements()<<std::endl; |
2984 | return false; |
2985 | } |
2986 | |
2987 | for (int i=getMajorDim()-1; i >= 0; --i) { |
2988 | CoinShallowPackedVector pv = getVector(i); |
2989 | CoinShallowPackedVector rhsPv = rhs.getVector(i); |
2990 | if ( !pv.isEquivalent(rhsPv,eq) ) { |
2991 | std::cerr<<"vector # " <<i<<" nel " <<pv.getNumElements()<< |
2992 | " rhs - " <<rhsPv.getNumElements()<<std::endl; |
2993 | int j; |
2994 | const int * inds = pv.getIndices(); |
2995 | const double * elems = pv.getElements(); |
2996 | const int * inds2 = rhsPv.getIndices(); |
2997 | const double * elems2 = rhsPv.getElements(); |
2998 | for ( j = 0 ;j < pv.getNumElements() ; ++j) { |
2999 | double diff = elems[j]-elems2[j]; |
3000 | if (diff) { |
3001 | std::cerr<<j<<"( " <<inds[j]<<", " <<elems[j]<<"), rhs ( " << |
3002 | inds2[j]<<", " <<elems2[j]<<") diff " << |
3003 | diff<<std::endl; |
3004 | const int * xx = reinterpret_cast<const int *> (elems+j); |
3005 | printf("%x %x" ,xx[0],xx[1]); |
3006 | xx = reinterpret_cast<const int *> (elems2+j); |
3007 | printf(" %x %x\n" ,xx[0],xx[1]); |
3008 | } |
3009 | } |
3010 | //return false; |
3011 | } |
3012 | } |
3013 | return true; |
3014 | } |
3015 | #else |
3016 | /* Equivalence. |
3017 | Two matrices are equivalent if they are both by rows or both by columns, |
3018 | they have the same dimensions, and each vector is equivalent. |
3019 | In this method the FloatEqual function operator can be specified. |
3020 | */ |
3021 | bool |
3022 | CoinPackedMatrix::isEquivalent(const CoinPackedMatrix& rhs, const CoinRelFltEq& eq) const |
3023 | { |
3024 | // Both must be column order or both row ordered and must be of same size |
3025 | if ((isColOrdered() ^ rhs.isColOrdered()) || |
3026 | (getNumCols() != rhs.getNumCols()) || |
3027 | (getNumRows() != rhs.getNumRows()) || |
3028 | (getNumElements() != rhs.getNumElements())) |
3029 | return false; |
3030 | |
3031 | const int major = getMajorDim(); |
3032 | const int minor = getMinorDim(); |
3033 | double * values = new double[minor]; |
3034 | memset(values,0,minor*sizeof(double)); |
3035 | bool same=true; |
3036 | for (int i = 0; i < major; ++i) { |
3037 | int length = length_[i]; |
3038 | if (length!=rhs.length_[i]) { |
3039 | same=false; |
3040 | break; |
3041 | } else { |
3042 | CoinBigIndex j; |
3043 | for ( j = start_[i]; j < start_[i] + length; ++j) { |
3044 | int index = index_[j]; |
3045 | values[index]=element_[j]; |
3046 | } |
3047 | for ( j = rhs.start_[i]; j < rhs.start_[i] + length; ++j) { |
3048 | int index = index_[j]; |
3049 | double oldValue = values[index]; |
3050 | values[index]=0.0; |
3051 | if (!eq(oldValue,rhs.element_[j])) { |
3052 | same=false; |
3053 | break; |
3054 | } |
3055 | } |
3056 | if (!same) |
3057 | break; |
3058 | } |
3059 | } |
3060 | delete [] values; |
3061 | return same; |
3062 | } |
3063 | #endif |
3064 | bool CoinPackedMatrix::isEquivalent(const CoinPackedMatrix& rhs) const |
3065 | { |
3066 | return isEquivalent(rhs,CoinRelFltEq()); |
3067 | } |
3068 | /* Sort all columns so indices are increasing.in each column */ |
3069 | void |
3070 | CoinPackedMatrix::orderMatrix() |
3071 | { |
3072 | for (int i=0;i<majorDim_;i++) { |
3073 | CoinBigIndex start = start_[i]; |
3074 | CoinBigIndex end = start + length_[i]; |
3075 | CoinSort_2(index_+start,index_+end,element_+start); |
3076 | } |
3077 | } |
3078 | /* Append a set of rows/columns to the end of the matrix. Returns number of errors |
3079 | i.e. if any of the new rows/columns contain an index that's larger than the |
3080 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
3081 | This version is easy one i.e. adding columns to column ordered */ |
3082 | int |
3083 | CoinPackedMatrix::appendMajor(const int number, |
3084 | const CoinBigIndex * starts, const int * index, |
3085 | const double * element, int numberOther) |
3086 | { |
3087 | int i; |
3088 | int numberErrors=0; |
3089 | CoinBigIndex numberElements = starts[number]; |
3090 | if (majorDim_ + number > maxMajorDim_ || |
3091 | getLastStart() + numberElements > maxSize_) { |
3092 | // we got to resize before we add. note that the resizing method |
3093 | // properly fills out start_ and length_ for the major-dimension |
3094 | // vectors to be added! |
3095 | if (!extraGap_&&!extraMajor_&&numberOther<=0&&!hasGaps()) { |
3096 | // can do faster |
3097 | if (majorDim_+number>maxMajorDim_) { |
3098 | maxMajorDim_ = majorDim_+number; |
3099 | int * newLength = new int[maxMajorDim_]; |
3100 | CoinMemcpyN(length_, majorDim_, newLength); |
3101 | delete [] length_; |
3102 | length_ = newLength; |
3103 | CoinBigIndex * newStart = new CoinBigIndex[maxMajorDim_ + 1]; |
3104 | CoinMemcpyN(start_, majorDim_+1, newStart); |
3105 | delete [] start_; |
3106 | start_ = newStart; |
3107 | } |
3108 | if (size_+numberElements>maxSize_) { |
3109 | maxSize_ = size_+numberElements; |
3110 | double * newElem = new double[maxSize_]; |
3111 | CoinMemcpyN(element_,size_,newElem); |
3112 | delete [] element_; |
3113 | element_ = newElem; |
3114 | int * newIndex = new int[maxSize_]; |
3115 | CoinMemcpyN(index_,size_,newIndex); |
3116 | delete [] index_; |
3117 | index_ = newIndex; |
3118 | } |
3119 | CoinMemcpyN(index,numberElements,index_+size_); |
3120 | CoinMemcpyN(element,numberElements,element_+size_); |
3121 | i=majorDim_; |
3122 | starts -= majorDim_; |
3123 | majorDim_ += number; |
3124 | int iStart=0; |
3125 | for (;i<majorDim_;i++) { |
3126 | int next = starts[i+1]; |
3127 | int length = next-iStart; |
3128 | length_[i]=length; |
3129 | iStart=next; |
3130 | size_ += length; |
3131 | start_[i+1]=size_; |
3132 | } |
3133 | return 0; |
3134 | } else { |
3135 | int * length = new int[number]; |
3136 | for (i=0;i<number;i++) |
3137 | length[i]=starts[i+1]-starts[i]; |
3138 | resizeForAddingMajorVectors(number, length); |
3139 | delete [] length; |
3140 | } |
3141 | if (numberOther>0) { |
3142 | char * which = new char[numberOther]; |
3143 | memset(which,0,numberOther); |
3144 | for (i = 0; i < number; i++) { |
3145 | CoinBigIndex put = start_[majorDim_+i]; |
3146 | CoinBigIndex j; |
3147 | for ( j=starts[i];j<starts[i+1];j++) { |
3148 | int iIndex = index[j]; |
3149 | element_[put]=element[j]; |
3150 | if (iIndex>=0&&iIndex<numberOther) { |
3151 | if (!which[iIndex]) |
3152 | which[iIndex]=1; |
3153 | else |
3154 | numberErrors++; |
3155 | } else { |
3156 | numberErrors++; |
3157 | } |
3158 | index_[put++]=iIndex; |
3159 | } |
3160 | for ( j=starts[i];j<starts[i+1];j++) { |
3161 | int iIndex = index[j]; |
3162 | if (iIndex>=0&&iIndex<numberOther) |
3163 | which[iIndex]=0; |
3164 | } |
3165 | } |
3166 | delete [] which; |
3167 | } else { |
3168 | // easy |
3169 | int lastMinor=-1; |
3170 | if (!extraGap_) { |
3171 | // just one copy |
3172 | int * index2 = index_+start_[majorDim_]; |
3173 | for (CoinBigIndex j=0;j<numberElements;j++) { |
3174 | int iIndex = index[j]; |
3175 | index2[j] = iIndex; |
3176 | lastMinor = CoinMax(lastMinor,iIndex); |
3177 | } |
3178 | CoinMemcpyN(element,numberElements,element_+start_[majorDim_]); |
3179 | } else { |
3180 | start_ += majorDim_; |
3181 | for (i = 0; i < number; i++) { |
3182 | int length = starts[i+1]-starts[i]; |
3183 | int * index2 = index_+start_[i]; |
3184 | const int * index1 = index+starts[i]; |
3185 | for (CoinBigIndex j=0;j<length;j++) { |
3186 | int iIndex = index1[j]; |
3187 | index2[j] = iIndex; |
3188 | lastMinor = CoinMax(lastMinor,iIndex); |
3189 | } |
3190 | CoinMemcpyN(element + starts[i], length, |
3191 | element_ + start_[i]); |
3192 | } |
3193 | start_ -= majorDim_; |
3194 | } |
3195 | // update minorDim if necessary |
3196 | minorDim_ = CoinMax(minorDim_,lastMinor+1); |
3197 | } |
3198 | } else { |
3199 | if (numberOther>0) { |
3200 | char * which = new char[numberOther]; |
3201 | memset(which,0,numberOther); |
3202 | for (i = 0; i < number; i++) { |
3203 | CoinBigIndex put = start_[majorDim_+i]; |
3204 | CoinBigIndex j; |
3205 | for ( j=starts[i];j<starts[i+1];j++) { |
3206 | int iIndex = index[j]; |
3207 | element_[put]=element[j]; |
3208 | if (iIndex>=0&&iIndex<numberOther) { |
3209 | if (!which[iIndex]) |
3210 | which[iIndex]=1; |
3211 | else |
3212 | numberErrors++; |
3213 | } else { |
3214 | numberErrors++; |
3215 | } |
3216 | index_[put++]=iIndex; |
3217 | } |
3218 | start_[majorDim_+i+1] = put; |
3219 | length_[majorDim_+i] = put-start_[majorDim_+i]; |
3220 | for ( j=starts[i];j<starts[i+1];j++) { |
3221 | int iIndex = index[j]; |
3222 | if (iIndex>=0&&iIndex<numberOther) |
3223 | which[iIndex]=0; |
3224 | } |
3225 | } |
3226 | delete [] which; |
3227 | } else { |
3228 | // easy |
3229 | int lastMinor=-1; |
3230 | if (!extraGap_) { |
3231 | // just one copy |
3232 | // just one copy |
3233 | int * index2 = index_+start_[majorDim_]; |
3234 | for (CoinBigIndex j=0;j<numberElements;j++) { |
3235 | int iIndex = index[j]; |
3236 | index2[j] = iIndex; |
3237 | lastMinor = CoinMax(lastMinor,iIndex); |
3238 | } |
3239 | CoinMemcpyN(element,numberElements,element_+start_[majorDim_]); |
3240 | start_ += majorDim_; |
3241 | for (i = 0; i < number; i++) { |
3242 | int length = starts[i+1]-starts[i]; |
3243 | start_[i+1] = start_[i] + length; |
3244 | length_[majorDim_+i] = length; |
3245 | } |
3246 | start_ -= majorDim_; |
3247 | } else { |
3248 | start_ += majorDim_; |
3249 | for (i = 0; i < number; i++) { |
3250 | int length = starts[i+1]-starts[i]; |
3251 | int * index2 = index_+start_[i]; |
3252 | const int * index1 = index+starts[i]; |
3253 | for (CoinBigIndex j=0;j<length;j++) { |
3254 | int iIndex = index1[j]; |
3255 | index2[j] = iIndex; |
3256 | lastMinor = CoinMax(lastMinor,iIndex); |
3257 | } |
3258 | CoinMemcpyN(element + starts[i], length, |
3259 | element_ + start_[i]); |
3260 | start_[i+1] = start_[i] + length; |
3261 | length_[majorDim_+i] = length; |
3262 | } |
3263 | start_ -= majorDim_; |
3264 | } |
3265 | // update minorDim if necessary |
3266 | minorDim_ = CoinMax(minorDim_,lastMinor+1); |
3267 | } |
3268 | } |
3269 | majorDim_ += number; |
3270 | size_ += numberElements; |
3271 | #ifndef NDEBUG |
3272 | int checkSize=0; |
3273 | for (int i=0;i<majorDim_;i++) { |
3274 | checkSize += length_[i]; |
3275 | } |
3276 | assert (checkSize==size_); |
3277 | #endif |
3278 | return numberErrors; |
3279 | } |
3280 | /* Append a set of rows/columns to the end of the matrix. Returns number of errors |
3281 | i.e. if any of the new rows/columns contain an index that's larger than the |
3282 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
3283 | This version is harder one i.e. adding columns to row ordered */ |
3284 | int |
3285 | CoinPackedMatrix::appendMinor(const int number, |
3286 | const CoinBigIndex * starts, const int * index, |
3287 | const double * element, int numberOther) |
3288 | { |
3289 | int i; |
3290 | int numberErrors=0; |
3291 | // first compute how many entries will be added to each major-dimension |
3292 | // vector, and if needed, resize the matrix to accommodate all |
3293 | int * addedEntries = NULL; |
3294 | if (numberOther>0) { |
3295 | addedEntries = new int[majorDim_]; |
3296 | CoinZeroN(addedEntries,majorDim_); |
3297 | numberOther=majorDim_; |
3298 | char * which = new char[numberOther]; |
3299 | memset(which,0,numberOther); |
3300 | for (i = 0; i < number; i++) { |
3301 | CoinBigIndex j; |
3302 | for ( j=starts[i];j<starts[i+1];j++) { |
3303 | int iIndex = index[j]; |
3304 | if (iIndex>=0&&iIndex<numberOther) { |
3305 | addedEntries[iIndex]++; |
3306 | if (!which[iIndex]) |
3307 | which[iIndex]=1; |
3308 | else |
3309 | numberErrors++; |
3310 | } else { |
3311 | numberErrors++; |
3312 | } |
3313 | } |
3314 | for ( j=starts[i];j<starts[i+1];j++) { |
3315 | int iIndex = index[j]; |
3316 | if (iIndex>=0&&iIndex<numberOther) |
3317 | which[iIndex]=0; |
3318 | } |
3319 | } |
3320 | delete [] which; |
3321 | } else { |
3322 | int largest = majorDim_-1; |
3323 | for (i = 0; i < number; i++) { |
3324 | CoinBigIndex j; |
3325 | for ( j=starts[i];j<starts[i+1];j++) { |
3326 | int iIndex = index[j]; |
3327 | largest = CoinMax(largest,iIndex); |
3328 | } |
3329 | } |
3330 | if (largest+1>majorDim_) { |
3331 | if (isColOrdered()) |
3332 | setDimensions(-1,largest+1); |
3333 | else |
3334 | setDimensions(largest+1,-1); |
3335 | } |
3336 | addedEntries = new int[majorDim_]; |
3337 | CoinZeroN(addedEntries,majorDim_); |
3338 | // no checking |
3339 | for (i = 0; i < number; i++) { |
3340 | CoinBigIndex j; |
3341 | for ( j=starts[i];j<starts[i+1];j++) { |
3342 | int iIndex = index[j]; |
3343 | addedEntries[iIndex]++; |
3344 | } |
3345 | } |
3346 | } |
3347 | for (i = majorDim_ - 1; i >= 0; i--) { |
3348 | if (start_[i] + length_[i] + addedEntries[i] > start_[i+1]) |
3349 | break; |
3350 | } |
3351 | if (i >= 0) |
3352 | resizeForAddingMinorVectors(addedEntries); |
3353 | delete[] addedEntries; |
3354 | |
3355 | // now insert the entries of matrix |
3356 | for (i = 0; i < number; i++) { |
3357 | CoinBigIndex j; |
3358 | for ( j=starts[i];j<starts[i+1];j++) { |
3359 | int iIndex = index[j]; |
3360 | element_[start_[iIndex] + length_[iIndex]] = element[j]; |
3361 | index_[start_[iIndex] + (length_[iIndex]++)] = minorDim_; |
3362 | } |
3363 | ++minorDim_; |
3364 | } |
3365 | size_ += starts[number]; |
3366 | #ifndef NDEBUG |
3367 | int checkSize=0; |
3368 | for (int i=0;i<majorDim_;i++) { |
3369 | checkSize += length_[i]; |
3370 | } |
3371 | assert (checkSize==size_); |
3372 | #endif |
3373 | return numberErrors; |
3374 | } |
3375 | //#define ADD_ROW_ANALYZE |
3376 | #ifdef ADD_ROW_ANALYZE |
3377 | static int xxxxxx[10]={0,0,0,0,0,0,0,0,0,0}; |
3378 | #endif |
3379 | /* Append a set of rows/columns to the end of the matrix. This case is |
3380 | when we know there are no gaps and majorDim_ will not change |
3381 | This version is harder one i.e. adding columns to row ordered */ |
3382 | void |
3383 | CoinPackedMatrix::appendMinorFast(const int number, |
3384 | const CoinBigIndex * starts, const int * index, |
3385 | const double * element) |
3386 | { |
3387 | #ifdef ADD_ROW_ANALYZE |
3388 | xxxxxx[0]++; |
3389 | #endif |
3390 | // first compute how many entries will be added to each major-dimension |
3391 | // vector, and if needed, resize the matrix to accommodate all |
3392 | // Will be used as new start array |
3393 | CoinBigIndex * newStart = new CoinBigIndex [maxMajorDim_+1]; |
3394 | CoinZeroN(newStart,maxMajorDim_); |
3395 | // no checking |
3396 | int numberAdded = starts[number]; |
3397 | for (CoinBigIndex j = 0; j < numberAdded; j++) { |
3398 | int iIndex = index[j]; |
3399 | newStart[iIndex]++; |
3400 | } |
3401 | int packType=0; |
3402 | #ifdef ADD_ROW_ANALYZE |
3403 | int nBad=0; |
3404 | #endif |
3405 | if (size_+numberAdded<=maxSize_) { |
3406 | CoinBigIndex nextStart=start_[majorDim_]; |
3407 | // could do other way and then stop moving |
3408 | for (int i = majorDim_ - 1; i >= 0; i--) { |
3409 | CoinBigIndex start = start_[i]; |
3410 | if (start + length_[i] + newStart[i] <= nextStart) { |
3411 | nextStart=start; |
3412 | } else { |
3413 | packType=-1; |
3414 | #ifdef ADD_ROW_ANALYZE |
3415 | nBad++; |
3416 | #else |
3417 | break; |
3418 | #endif |
3419 | } |
3420 | } |
3421 | } else { |
3422 | // Need more space |
3423 | packType=1; |
3424 | } |
3425 | #ifdef ADD_ROW_ANALYZE |
3426 | if (!hasGaps()) |
3427 | xxxxxx[9]++; |
3428 | if (packType==-1&&nBad<6) |
3429 | packType=nBad+1; |
3430 | xxxxxx[packType+2]++; |
3431 | if ((xxxxxx[0]%100)==0) { |
3432 | printf("Append " ); |
3433 | for (int i=0;i<10;i++) |
3434 | printf("%d " ,xxxxxx[i]); |
3435 | printf("\n" ); |
3436 | } |
3437 | #endif |
3438 | if (hasGaps()&&packType) |
3439 | packType=1; |
3440 | CoinBigIndex n = 0; |
3441 | if (packType) { |
3442 | double slack = (static_cast<double> (maxSize_-size_-numberAdded))/ |
3443 | static_cast<double> (majorDim_); |
3444 | slack = CoinMax(0.0,slack-0.01); |
3445 | if (!slack) { |
3446 | for (int i = 0; i < majorDim_; ++i) { |
3447 | int thisCount = newStart[i]; |
3448 | newStart[i]=n; |
3449 | n += length_[i] + thisCount; |
3450 | } |
3451 | } else { |
3452 | double added=0.0; |
3453 | for (int i = 0; i < majorDim_; ++i) { |
3454 | int thisCount = newStart[i]; |
3455 | newStart[i]=n; |
3456 | added += slack; |
3457 | double =0; |
3458 | if (added>=1.0) { |
3459 | extra = floor(added); |
3460 | added -= extra; |
3461 | } |
3462 | n += length_[i] + thisCount+ static_cast<int> (extra); |
3463 | } |
3464 | } |
3465 | newStart[majorDim_]=n; |
3466 | } |
3467 | if (packType) { |
3468 | maxSize_ = CoinMax(maxSize_, n); |
3469 | int * newIndex = new int[maxSize_]; |
3470 | double * newElem = new double[maxSize_]; |
3471 | for (int i = majorDim_ - 1; i >= 0; --i) { |
3472 | CoinBigIndex start = start_[i]; |
3473 | #ifdef USE_MEMCPY |
3474 | int length = length_[i]; |
3475 | CoinBigIndex put = newStart[i]; |
3476 | CoinMemcpyN(index_+start,length,newIndex+put); |
3477 | CoinMemcpyN(element_+start,length,newElem+put); |
3478 | #else |
3479 | CoinBigIndex end = start+length_[i]; |
3480 | CoinBigIndex put = newStart[i]; |
3481 | for (CoinBigIndex j=start;j<end;j++) { |
3482 | newIndex[put]=index_[j]; |
3483 | newElem[put++]=element_[j]; |
3484 | } |
3485 | #endif |
3486 | } |
3487 | |
3488 | delete [] start_; |
3489 | delete [] index_; |
3490 | delete [] element_; |
3491 | start_ = newStart; |
3492 | index_ = newIndex; |
3493 | element_ = newElem; |
3494 | } else if (packType<0) { |
3495 | assert (maxSize_ >= n); |
3496 | for (int i = majorDim_ - 1; i >= 0; --i) { |
3497 | CoinBigIndex start = start_[i]; |
3498 | int length = length_[i]; |
3499 | CoinBigIndex end = start+length; |
3500 | CoinBigIndex put = newStart[i]; |
3501 | //if (put==start) |
3502 | //break; |
3503 | put += length; |
3504 | for (CoinBigIndex j=end-1;j>=start;j--) { |
3505 | index_[--put]=index_[j]; |
3506 | element_[put]=element_[j]; |
3507 | } |
3508 | } |
3509 | delete [] start_; |
3510 | start_ = newStart; |
3511 | } else { |
3512 | delete[] newStart; |
3513 | } |
3514 | |
3515 | // now insert the entries of matrix |
3516 | for (int i = 0; i < number; i++) { |
3517 | CoinBigIndex j; |
3518 | for ( j=starts[i];j<starts[i+1];j++) { |
3519 | int iIndex = index[j]; |
3520 | element_[start_[iIndex] + length_[iIndex]] = element[j]; |
3521 | index_[start_[iIndex] + (length_[iIndex]++)] = minorDim_; |
3522 | } |
3523 | ++minorDim_; |
3524 | } |
3525 | size_ += starts[number]; |
3526 | #ifndef NDEBUG |
3527 | int checkSize=0; |
3528 | for (int i=0;i<majorDim_;i++) { |
3529 | checkSize += length_[i]; |
3530 | } |
3531 | assert (checkSize==size_); |
3532 | #endif |
3533 | } |
3534 | |
3535 | /* |
3536 | Utility to scan a packed matrix for corruption and inconsistencies. Not |
3537 | exhaustive, but useful. By default, the method counts coefficients of zero |
3538 | and reports them, but does not consider them an error. Set zeroesAreError to |
3539 | true if you want an error. |
3540 | */ |
3541 | |
3542 | int CoinPackedMatrix::verifyMtx (int verbosity, bool zeroesAreError) const |
3543 | |
3544 | { |
3545 | const double smallCoeff = 1.0e-50 ; |
3546 | const double largeCoeff = 1.0e50 ; |
3547 | |
3548 | int majDim = majorDim_ ; |
3549 | int minDim = minorDim_ ; |
3550 | |
3551 | std::string majName, minName ; |
3552 | |
3553 | int m, n ; |
3554 | if (colOrdered_) { |
3555 | n = majDim ; |
3556 | majName = "col" ; |
3557 | m = minDim ; |
3558 | minName = "row" ; |
3559 | } else { |
3560 | m = majDim ; |
3561 | majName = "row" ; |
3562 | n = minDim ; |
3563 | minName = "col" ; |
3564 | } |
3565 | |
3566 | /* |
3567 | size_ is the number of coefficients, maxSize_ the size of the bulk store. |
3568 | start_[majDim] should be one past the last valid coefficient in the bulk |
3569 | store. The actual relation is (#coeffs + #gaps) = start_[majDim]. |
3570 | */ |
3571 | bool gaps = (size_ < start_[majDim]) ; |
3572 | CoinBigIndex maxIndex = CoinMin(maxSize_,start_[majDim])-1 ; |
3573 | |
3574 | if (verbosity >= 3) { |
3575 | std::cout |
3576 | << " Matrix is " << ((colOrdered_)?"column" :"row" ) << "-major, " |
3577 | << m << " rows X " << n << " cols; " << size_ << " coeffs." |
3578 | << std::endl ; |
3579 | std::cout |
3580 | << " Bulk store " << maxSize_ << " coeffs, last coeff at " |
3581 | << start_[majDim]-1 << ", ex maj " << extraMajor_ |
3582 | << ", ex gap " << extraGap_ ; |
3583 | if (gaps) std::cout << "; matrix has gaps" ; |
3584 | std::cout << "." << std::endl ; |
3585 | } |
3586 | |
3587 | const CoinBigIndex *const majStarts = start_ ; |
3588 | const int *const majLens = length_ ; |
3589 | const int *const minInds = index_ ; |
3590 | const double *const coeffs = element_ ; |
3591 | /* |
3592 | Set up arrays to track use of bulk store entries. |
3593 | */ |
3594 | int errs = 0 ; |
3595 | int zeroes = 0 ; |
3596 | int *refCnt = new int[maxSize_] ; |
3597 | CoinZeroN(refCnt,maxSize_) ; |
3598 | bool *inGap = new bool[maxSize_] ; |
3599 | CoinZeroN(inGap,maxSize_) ; |
3600 | |
3601 | for (int majndx = 0 ; majndx < majDim ; majndx++) { |
3602 | /* |
3603 | Check that the range of indices for the major vector falls within the bulk |
3604 | store. If any of these checks fail, it's pointless (and possibly unsafe) |
3605 | to do more with this vector. |
3606 | |
3607 | Subtle point: Normally, majStarts[majDim] = maxIndex+1 (one past the |
3608 | end of the bulk store), and majStarts[k], k < majDim, should be a valid |
3609 | index. But ... if the last major vector (k = majDim-1) has length 0, |
3610 | then majStarts[k] = maxIndex. This will propagate back through multiple |
3611 | major vectors of length 0. Hence the check for length = 0. |
3612 | */ |
3613 | CoinBigIndex majStart = majStarts[majndx] ; |
3614 | int majLen = majLens[majndx] ; |
3615 | |
3616 | if (majStart < 0 || (majStart == (maxIndex+1) && majLen != 0) || |
3617 | majStart > maxIndex+1) { |
3618 | if (verbosity >= 1) { |
3619 | std::cout |
3620 | << " " << majName << " " << majndx |
3621 | << ": start " << majStart << " should be between 0 and " |
3622 | << maxIndex << "." << std::endl ; |
3623 | } |
3624 | errs++ ; |
3625 | if (majStart >= maxSize_) { |
3626 | std::cout |
3627 | << " " << "index exceeds bulk store limit " << maxSize_ |
3628 | << "!" << std::endl ; |
3629 | } |
3630 | continue ; |
3631 | } |
3632 | if (majLen < 0 || majLen > minDim) { |
3633 | if (verbosity >= 1) { |
3634 | std::cout |
3635 | << " " << majName << " " << majndx << ": vector length " |
3636 | << majLen << " should be between 0 and " << minDim |
3637 | << std::endl ; |
3638 | } |
3639 | errs++ ; |
3640 | continue ; |
3641 | } |
3642 | CoinBigIndex majEnd = majStart+majLen ; |
3643 | if (majEnd < 0 || majEnd > maxIndex+1) { |
3644 | if (verbosity >= 1) { |
3645 | std::cout |
3646 | << " " << majName << " " << majndx |
3647 | << ": end " << majEnd << " should be between 0 and " |
3648 | << maxIndex << "." << std::endl ; |
3649 | } |
3650 | errs++ ; |
3651 | if (majEnd >= maxSize_) { |
3652 | std::cout |
3653 | << " " << "index exceeds bulk store limit " << maxSize_ |
3654 | << "!" << std::endl ; |
3655 | } |
3656 | continue ; |
3657 | } |
3658 | /* |
3659 | Check that the major vector length is consistent with the distance between |
3660 | majStart[majndx] and majStart[majndx+1]. If the matrix is gap-free, they |
3661 | should be equal. We've already confirmed that majStart+majLen is within the |
3662 | bulk store, so we can continue even if these checks fail. |
3663 | |
3664 | Recall that the final entry in the major vector start array is one past the |
3665 | end of the bulk store. The previous tests will check more carefully if |
3666 | majndx+1 is not the final entry. |
3667 | */ |
3668 | CoinBigIndex majStartp1 = majStarts[majndx+1] ; |
3669 | CoinBigIndex startDist = majStartp1-majStart ; |
3670 | if (majStartp1 < 0 || majStartp1 > maxIndex+1) { |
3671 | if (verbosity >= 1) { |
3672 | std::cout |
3673 | << " " << majName << " " << majndx |
3674 | << ": start of next " << majName << " " << majStartp1 |
3675 | << " should be between 0 and " << maxIndex+1 << "." << std::endl ; |
3676 | } |
3677 | errs++ ; |
3678 | if (majStartp1 >= maxSize_) { |
3679 | std::cout |
3680 | << " " << "index exceeds bulk store limit " << maxSize_ |
3681 | << "!" << std::endl ; |
3682 | } |
3683 | } else if ((startDist < 0) || ((startDist > minDim) && !gaps)) { |
3684 | if (verbosity >= 1) { |
3685 | std::cout |
3686 | << " " << majName << " " << majndx << ": distance between " |
3687 | << majName << " starts " << startDist |
3688 | << " should be between 0 and " << minDim << "." << std::endl ; |
3689 | } |
3690 | errs++ ; |
3691 | } else if (majLen > startDist) { |
3692 | if (verbosity >= 1) { |
3693 | std::cout |
3694 | << " " << majName << " " << majndx << ": vector length " |
3695 | << majLen << " should not be greater than distance between " |
3696 | << majName << " starts " << startDist << std::endl ; |
3697 | } |
3698 | errs++ ; |
3699 | } else if (majLen != startDist && !gaps) { |
3700 | if (verbosity >= 1) { |
3701 | std::cout |
3702 | << " " << majName << " " << majndx |
3703 | << ": " << majName << " length " << majLen |
3704 | << " should equal distance " << startDist << " between " |
3705 | << majName << " starts in gap-free matrix." << std::endl ; |
3706 | } |
3707 | errs++ ; |
3708 | } |
3709 | /* |
3710 | Scan the major dimension vector, checking for obviously bogus minor indices |
3711 | and coefficients. Generate reference counts for each bulk store entry. |
3712 | */ |
3713 | for (CoinBigIndex ii = majStart ; ii < majEnd ; ii++) { |
3714 | refCnt[ii]++ ; |
3715 | int minndx = minInds[ii] ; |
3716 | if (minndx < 0 || minndx >= minDim) { |
3717 | if (verbosity >= 1) { |
3718 | std::cout |
3719 | << " " << majName << " " << majndx << ": " |
3720 | << minName << " index " << ii << " is " << minndx |
3721 | << ", should be between 0 and " << minDim-1 << "." << std::endl ; |
3722 | } |
3723 | errs++ ; |
3724 | } |
3725 | double aij = coeffs[ii] ; |
3726 | if (CoinIsnan(aij) || CoinAbs(aij) > largeCoeff) { |
3727 | if (verbosity >= 1) { |
3728 | std::cout |
3729 | << " (" << ii << ") a<" << majndx << "," << minndx << "> = " |
3730 | << aij << " appears bogus." << std::endl ; |
3731 | } |
3732 | errs++ ; |
3733 | } |
3734 | if (CoinAbs(aij) < smallCoeff) { |
3735 | if (verbosity >= 4 || zeroesAreError) { |
3736 | std::cout |
3737 | << " (" << ii << ") a<" << majndx << "," << minndx << "> = " |
3738 | << aij << " appears bogus." << std::endl ; |
3739 | } |
3740 | zeroes++ ; |
3741 | } |
3742 | } |
3743 | /* |
3744 | And mark the gaps, if any. |
3745 | */ |
3746 | if (gaps) { |
3747 | for (CoinBigIndex ii = majEnd ; ii < majStartp1 ; ii++) |
3748 | inGap[ii] = true ; |
3749 | } |
3750 | } |
3751 | /* |
3752 | Check the reference counts. They should all be 1 unless the entry is in a |
3753 | gap, in which case it should be zero. Anything else is a problem. Allow that |
3754 | the matrix may not use the full size of the bulk store. |
3755 | */ |
3756 | for (CoinBigIndex ii = 0 ; ii <= maxIndex ; ii++) { |
3757 | if (!((refCnt[ii] == 1 && inGap[ii] == false) || |
3758 | (refCnt[ii] == 0 && inGap[ii] == true))) { |
3759 | if (verbosity >= 1) { |
3760 | std::cout |
3761 | << " Bulk store entry " << ii << " has reference count " |
3762 | << refCnt[ii] << "; should be " << ((inGap[ii])?0:1) << "." |
3763 | << std::endl ; |
3764 | } |
3765 | errs++ ; |
3766 | } |
3767 | } |
3768 | delete[] refCnt ; |
3769 | /* |
3770 | Report the result. |
3771 | */ |
3772 | if (zeroesAreError) errs += zeroes ; |
3773 | if (errs > 0) { |
3774 | if (verbosity >= 1) { |
3775 | std::cout << " Detected " << errs << " errors in matrix" ; |
3776 | if (zeroes) std::cout << " (includes " << zeroes << " zeroes)" ; |
3777 | std::cout << "." << std::endl ; |
3778 | } |
3779 | } else { |
3780 | if (verbosity >= 2) { |
3781 | std::cout << " Matrix verified" ; |
3782 | if (zeroes) std::cout << " (" << zeroes << " zeroes)" ; |
3783 | std::cout << "." << std::endl ; |
3784 | } |
3785 | } |
3786 | |
3787 | return (errs) ; |
3788 | } |
3789 | |