| 1 | // Copyright (C) 2005, International Business Machines |
| 2 | // Corporation and others. All Rights Reserved. |
| 3 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 4 | |
| 5 | #if defined(_MSC_VER) |
| 6 | // Turn off compiler warning about long names |
| 7 | # pragma warning(disable:4786) |
| 8 | #endif |
| 9 | |
| 10 | #include "CoinHelperFunctions.hpp" |
| 11 | #include "CoinWarmStartBasis.hpp" |
| 12 | |
| 13 | #include "OsiConfig.h" |
| 14 | #include "CoinFinite.hpp" |
| 15 | |
| 16 | #include "OsiSolverInterface.hpp" |
| 17 | #include "OsiSolverBranch.hpp" |
| 18 | #include <cassert> |
| 19 | #include <cmath> |
| 20 | #include <cfloat> |
| 21 | //############################################################################# |
| 22 | // Constructors / Destructor / Assignment |
| 23 | //############################################################################# |
| 24 | |
| 25 | //------------------------------------------------------------------- |
| 26 | // Default Constructor |
| 27 | //------------------------------------------------------------------- |
| 28 | OsiSolverBranch::OsiSolverBranch () : |
| 29 | indices_(NULL), |
| 30 | bound_(NULL) |
| 31 | { |
| 32 | memset(start_,0,sizeof(start_)); |
| 33 | } |
| 34 | |
| 35 | //------------------------------------------------------------------- |
| 36 | // Copy constructor |
| 37 | //------------------------------------------------------------------- |
| 38 | OsiSolverBranch::OsiSolverBranch (const OsiSolverBranch & rhs) |
| 39 | { |
| 40 | memcpy(start_,rhs.start_,sizeof(start_)); |
| 41 | int size = start_[4]; |
| 42 | if (size) { |
| 43 | indices_ = CoinCopyOfArray(rhs.indices_,size); |
| 44 | bound_ = CoinCopyOfArray(rhs.bound_,size); |
| 45 | } else { |
| 46 | indices_=NULL; |
| 47 | bound_=NULL; |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | //------------------------------------------------------------------- |
| 52 | // Destructor |
| 53 | //------------------------------------------------------------------- |
| 54 | OsiSolverBranch::~OsiSolverBranch () |
| 55 | { |
| 56 | delete [] indices_; |
| 57 | delete [] bound_; |
| 58 | } |
| 59 | |
| 60 | //---------------------------------------------------------------- |
| 61 | // Assignment operator |
| 62 | //------------------------------------------------------------------- |
| 63 | OsiSolverBranch & |
| 64 | OsiSolverBranch::operator=(const OsiSolverBranch& rhs) |
| 65 | { |
| 66 | if (this != &rhs) { |
| 67 | delete [] indices_; |
| 68 | delete [] bound_; |
| 69 | memcpy(start_,rhs.start_,sizeof(start_)); |
| 70 | int size = start_[4]; |
| 71 | if (size) { |
| 72 | indices_ = CoinCopyOfArray(rhs.indices_,size); |
| 73 | bound_ = CoinCopyOfArray(rhs.bound_,size); |
| 74 | } else { |
| 75 | indices_=NULL; |
| 76 | bound_=NULL; |
| 77 | } |
| 78 | } |
| 79 | return *this; |
| 80 | } |
| 81 | |
| 82 | //----------------------------------------------------------------------------- |
| 83 | // add simple branch |
| 84 | //----------------------------------------------------------------------------- |
| 85 | |
| 86 | void |
| 87 | OsiSolverBranch::addBranch(int iColumn, double value) |
| 88 | { |
| 89 | delete [] indices_; |
| 90 | delete [] bound_; |
| 91 | indices_ = new int[2]; |
| 92 | bound_ = new double[2]; |
| 93 | indices_[0]=iColumn; |
| 94 | indices_[1]=iColumn; |
| 95 | start_[0]=0; |
| 96 | start_[1]=0; |
| 97 | start_[2]=1; |
| 98 | bound_[0]=floor(value); |
| 99 | start_[3]=2; |
| 100 | bound_[1]=ceil(value); |
| 101 | start_[4]=2; |
| 102 | assert (bound_[0]!=bound_[1]); |
| 103 | } |
| 104 | //----------------------------------------------------------------------------- |
| 105 | // Add bounds - way =-1 is first , +1 is second |
| 106 | //----------------------------------------------------------------------------- |
| 107 | |
| 108 | void |
| 109 | OsiSolverBranch::addBranch(int way,int numberTighterLower, const int * whichLower, |
| 110 | const double * newLower, |
| 111 | int numberTighterUpper, const int * whichUpper, const double * newUpper) |
| 112 | { |
| 113 | assert (way==-1||way==1); |
| 114 | int numberNew = numberTighterLower+numberTighterUpper; |
| 115 | int base = way+1; // will be 0 or 2 |
| 116 | int numberNow = start_[4-base]-start_[2-base]; |
| 117 | int * tempI = new int[numberNow+numberNew]; |
| 118 | double * tempD = new double[numberNow+numberNew]; |
| 119 | int putNew = (way==-1) ? 0 : start_[2]; |
| 120 | int putNow = (way==-1) ? numberNew : 0; |
| 121 | memcpy(tempI+putNow,indices_+start_[2-base],numberNow*sizeof(int)); |
| 122 | memcpy(tempD+putNow,bound_+start_[2-base],numberNow*sizeof(double)); |
| 123 | memcpy(tempI+putNew,whichLower,numberTighterLower*sizeof(int)); |
| 124 | memcpy(tempD+putNew,newLower,numberTighterLower*sizeof(double)); |
| 125 | putNew += numberTighterLower; |
| 126 | memcpy(tempI+putNew,whichUpper,numberTighterUpper*sizeof(int)); |
| 127 | memcpy(tempD+putNew,newUpper,numberTighterUpper*sizeof(double)); |
| 128 | delete [] indices_; |
| 129 | indices_ = tempI; |
| 130 | delete [] bound_; |
| 131 | bound_ = tempD; |
| 132 | int numberOldLower = start_[3-base]-start_[2-base]; |
| 133 | int numberOldUpper = start_[4-base]-start_[3-base]; |
| 134 | start_[0]=0; |
| 135 | if (way==-1) { |
| 136 | start_[1] = numberTighterLower; |
| 137 | start_[2] = start_[1] + numberTighterUpper; |
| 138 | start_[3] = start_[2] + numberOldLower; |
| 139 | start_[4] = start_[3] + numberOldUpper; |
| 140 | } else { |
| 141 | start_[1] = numberOldLower; |
| 142 | start_[2] = start_[1] + numberOldUpper; |
| 143 | start_[3] = start_[2] + numberTighterLower; |
| 144 | start_[4] = start_[3] + numberTighterUpper; |
| 145 | } |
| 146 | } |
| 147 | //----------------------------------------------------------------------------- |
| 148 | // Add bounds - way =-1 is first , +1 is second |
| 149 | //----------------------------------------------------------------------------- |
| 150 | |
| 151 | void |
| 152 | OsiSolverBranch::addBranch(int way,int numberColumns, const double * oldLower, |
| 153 | const double * newLower2, |
| 154 | const double * oldUpper, const double * newUpper2) |
| 155 | { |
| 156 | assert (way==-1||way==1); |
| 157 | // find |
| 158 | int i; |
| 159 | int * whichLower = new int[numberColumns]; |
| 160 | double * newLower = new double[numberColumns]; |
| 161 | int numberTighterLower=0; |
| 162 | for (i=0;i<numberColumns;i++) { |
| 163 | if (newLower2[i]>oldLower[i]) { |
| 164 | whichLower[numberTighterLower]=i; |
| 165 | newLower[numberTighterLower++]=newLower2[i]; |
| 166 | } |
| 167 | } |
| 168 | int * whichUpper = new int[numberColumns]; |
| 169 | double * newUpper = new double[numberColumns]; |
| 170 | int numberTighterUpper=0; |
| 171 | for (i=0;i<numberColumns;i++) { |
| 172 | if (newUpper2[i]<oldUpper[i]) { |
| 173 | whichUpper[numberTighterUpper]=i; |
| 174 | newUpper[numberTighterUpper++]=newUpper2[i]; |
| 175 | } |
| 176 | } |
| 177 | int numberNew = numberTighterLower+numberTighterUpper; |
| 178 | int base = way+1; // will be 0 or 2 |
| 179 | int numberNow = start_[4-base]-start_[2-base]; |
| 180 | int * tempI = new int[numberNow+numberNew]; |
| 181 | double * tempD = new double[numberNow+numberNew]; |
| 182 | int putNew = (way==-1) ? 0 : start_[2]; |
| 183 | int putNow = (way==-1) ? numberNew : 0; |
| 184 | memcpy(tempI+putNow,indices_+start_[2-base],numberNow*sizeof(int)); |
| 185 | memcpy(tempD+putNow,bound_+start_[2-base],numberNow*sizeof(double)); |
| 186 | memcpy(tempI+putNew,whichLower,numberTighterLower*sizeof(int)); |
| 187 | memcpy(tempD+putNew,newLower,numberTighterLower*sizeof(double)); |
| 188 | putNew += numberTighterLower; |
| 189 | memcpy(tempI+putNew,whichUpper,numberTighterUpper*sizeof(int)); |
| 190 | memcpy(tempD+putNew,newUpper,numberTighterUpper*sizeof(double)); |
| 191 | delete [] indices_; |
| 192 | indices_ = tempI; |
| 193 | delete [] bound_; |
| 194 | bound_ = tempD; |
| 195 | int numberOldLower = start_[3-base]-start_[2-base]; |
| 196 | int numberOldUpper = start_[4-base]-start_[3-base]; |
| 197 | start_[0]=0; |
| 198 | if (way==-1) { |
| 199 | start_[1] = numberTighterLower; |
| 200 | start_[2] = start_[1] + numberTighterUpper; |
| 201 | start_[3] = start_[2] + numberOldLower; |
| 202 | start_[4] = start_[3] + numberOldUpper; |
| 203 | } else { |
| 204 | start_[1] = numberOldLower; |
| 205 | start_[2] = start_[1] + numberOldUpper; |
| 206 | start_[3] = start_[2] + numberTighterLower; |
| 207 | start_[4] = start_[3] + numberTighterUpper; |
| 208 | } |
| 209 | delete [] whichLower; |
| 210 | delete [] newLower; |
| 211 | delete [] whichUpper; |
| 212 | delete [] newUpper; |
| 213 | } |
| 214 | // Apply bounds |
| 215 | void |
| 216 | OsiSolverBranch::applyBounds(OsiSolverInterface & solver,int way) const |
| 217 | { |
| 218 | int base = way+1; |
| 219 | assert (way==-1||way==1); |
| 220 | int numberColumns = solver.getNumCols(); |
| 221 | const double * columnLower = solver.getColLower(); |
| 222 | int i; |
| 223 | for (i=start_[base];i<start_[base+1];i++) { |
| 224 | int iColumn = indices_[i]; |
| 225 | if (iColumn<numberColumns) { |
| 226 | double value = CoinMax(bound_[i],columnLower[iColumn]); |
| 227 | solver.setColLower(iColumn,value); |
| 228 | } else { |
| 229 | int iRow = iColumn-numberColumns; |
| 230 | const double * rowLower = solver.getRowLower(); |
| 231 | double value = CoinMax(bound_[i],rowLower[iRow]); |
| 232 | solver.setRowLower(iRow,value); |
| 233 | } |
| 234 | } |
| 235 | const double * columnUpper = solver.getColUpper(); |
| 236 | for (i=start_[base+1];i<start_[base+2];i++) { |
| 237 | int iColumn = indices_[i]; |
| 238 | if (iColumn<numberColumns) { |
| 239 | double value = CoinMin(bound_[i],columnUpper[iColumn]); |
| 240 | solver.setColUpper(iColumn,value); |
| 241 | } else { |
| 242 | int iRow = iColumn-numberColumns; |
| 243 | const double * rowUpper = solver.getRowUpper(); |
| 244 | double value = CoinMin(bound_[i],rowUpper[iRow]); |
| 245 | solver.setRowUpper(iRow,value); |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | // Returns true if current solution satsifies one side of branch |
| 250 | bool |
| 251 | OsiSolverBranch::feasibleOneWay(const OsiSolverInterface & solver) const |
| 252 | { |
| 253 | bool feasible = false; |
| 254 | int numberColumns = solver.getNumCols(); |
| 255 | const double * columnLower = solver.getColLower(); |
| 256 | const double * columnUpper = solver.getColUpper(); |
| 257 | const double * columnSolution = solver.getColSolution(); |
| 258 | double primalTolerance; |
| 259 | solver.getDblParam(OsiPrimalTolerance,primalTolerance); |
| 260 | for (int base = 0; base<4; base +=2) { |
| 261 | feasible=true; |
| 262 | int i; |
| 263 | for (i=start_[base];i<start_[base+1];i++) { |
| 264 | int iColumn = indices_[i]; |
| 265 | if (iColumn<numberColumns) { |
| 266 | double value = CoinMax(bound_[i],columnLower[iColumn]); |
| 267 | if (columnSolution[iColumn]<value-primalTolerance) { |
| 268 | feasible=false; |
| 269 | break; |
| 270 | } |
| 271 | } else { |
| 272 | abort(); // do later (other stuff messed up anyway - e.g. CBC) |
| 273 | } |
| 274 | } |
| 275 | if (!feasible) |
| 276 | break; |
| 277 | for (i=start_[base+1];i<start_[base+2];i++) { |
| 278 | int iColumn = indices_[i]; |
| 279 | if (iColumn<numberColumns) { |
| 280 | double value = CoinMin(bound_[i],columnUpper[iColumn]); |
| 281 | if (columnSolution[iColumn]>value+primalTolerance) { |
| 282 | feasible=false; |
| 283 | break; |
| 284 | } |
| 285 | } else { |
| 286 | abort(); // do later (other stuff messed up anyway - e.g. CBC) |
| 287 | } |
| 288 | } |
| 289 | if (feasible) |
| 290 | break; // OK this way |
| 291 | } |
| 292 | return feasible; |
| 293 | } |
| 294 | //############################################################################# |
| 295 | // Constructors / Destructor / Assignment |
| 296 | //############################################################################# |
| 297 | |
| 298 | //------------------------------------------------------------------- |
| 299 | // Default Constructor |
| 300 | //------------------------------------------------------------------- |
| 301 | OsiSolverResult::OsiSolverResult () : |
| 302 | objectiveValue_(COIN_DBL_MAX), |
| 303 | primalSolution_(NULL), |
| 304 | dualSolution_(NULL) |
| 305 | { |
| 306 | } |
| 307 | |
| 308 | //------------------------------------------------------------------- |
| 309 | // Constructor from solver |
| 310 | //------------------------------------------------------------------- |
| 311 | OsiSolverResult::OsiSolverResult (const OsiSolverInterface & solver,const double * lowerBefore, |
| 312 | const double * upperBefore) : |
| 313 | objectiveValue_(COIN_DBL_MAX), |
| 314 | primalSolution_(NULL), |
| 315 | dualSolution_(NULL) |
| 316 | { |
| 317 | if (solver.isProvenOptimal()&&!solver.isDualObjectiveLimitReached()) { |
| 318 | objectiveValue_ = solver.getObjValue()*solver.getObjSense(); |
| 319 | CoinWarmStartBasis * basis = dynamic_cast<CoinWarmStartBasis *> (solver.getWarmStart()); |
| 320 | assert (basis); |
| 321 | basis_ = * basis; |
| 322 | delete basis; |
| 323 | int numberRows = basis_.getNumArtificial(); |
| 324 | int numberColumns = basis_.getNumStructural(); |
| 325 | assert (numberColumns==solver.getNumCols()); |
| 326 | assert (numberRows==solver.getNumRows()); |
| 327 | primalSolution_ = CoinCopyOfArray(solver.getColSolution(),numberColumns); |
| 328 | dualSolution_ = CoinCopyOfArray(solver.getRowPrice(),numberRows); |
| 329 | fixed_.addBranch(-1,numberColumns,lowerBefore,solver.getColLower(), |
| 330 | upperBefore,solver.getColUpper()); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | //------------------------------------------------------------------- |
| 335 | // Copy constructor |
| 336 | //------------------------------------------------------------------- |
| 337 | OsiSolverResult::OsiSolverResult (const OsiSolverResult & rhs) |
| 338 | { |
| 339 | objectiveValue_ = rhs.objectiveValue_; |
| 340 | basis_ = rhs.basis_; |
| 341 | fixed_ = rhs.fixed_; |
| 342 | int numberRows = basis_.getNumArtificial(); |
| 343 | int numberColumns = basis_.getNumStructural(); |
| 344 | if (numberColumns) { |
| 345 | primalSolution_ = CoinCopyOfArray(rhs.primalSolution_,numberColumns); |
| 346 | dualSolution_ = CoinCopyOfArray(rhs.dualSolution_,numberRows); |
| 347 | } else { |
| 348 | primalSolution_=NULL; |
| 349 | dualSolution_=NULL; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | //------------------------------------------------------------------- |
| 354 | // Destructor |
| 355 | //------------------------------------------------------------------- |
| 356 | OsiSolverResult::~OsiSolverResult () |
| 357 | { |
| 358 | delete [] primalSolution_; |
| 359 | delete [] dualSolution_; |
| 360 | } |
| 361 | |
| 362 | //---------------------------------------------------------------- |
| 363 | // Assignment operator |
| 364 | //------------------------------------------------------------------- |
| 365 | OsiSolverResult & |
| 366 | OsiSolverResult::operator=(const OsiSolverResult& rhs) |
| 367 | { |
| 368 | if (this != &rhs) { |
| 369 | delete [] primalSolution_; |
| 370 | delete [] dualSolution_; |
| 371 | objectiveValue_ = rhs.objectiveValue_; |
| 372 | basis_ = rhs.basis_; |
| 373 | fixed_ = rhs.fixed_; |
| 374 | int numberRows = basis_.getNumArtificial(); |
| 375 | int numberColumns = basis_.getNumStructural(); |
| 376 | if (numberColumns) { |
| 377 | primalSolution_ = CoinCopyOfArray(rhs.primalSolution_,numberColumns); |
| 378 | dualSolution_ = CoinCopyOfArray(rhs.dualSolution_,numberRows); |
| 379 | } else { |
| 380 | primalSolution_=NULL; |
| 381 | dualSolution_=NULL; |
| 382 | } |
| 383 | } |
| 384 | return *this; |
| 385 | } |
| 386 | // Create result |
| 387 | void |
| 388 | OsiSolverResult::createResult(const OsiSolverInterface & solver, const double * lowerBefore, |
| 389 | const double * upperBefore) |
| 390 | { |
| 391 | delete [] primalSolution_; |
| 392 | delete [] dualSolution_; |
| 393 | if (solver.isProvenOptimal()&&!solver.isDualObjectiveLimitReached()) { |
| 394 | objectiveValue_ = solver.getObjValue()*solver.getObjSense(); |
| 395 | CoinWarmStartBasis * basis = dynamic_cast<CoinWarmStartBasis *> (solver.getWarmStart()); |
| 396 | assert (basis); |
| 397 | basis_ = * basis; |
| 398 | int numberRows = basis_.getNumArtificial(); |
| 399 | int numberColumns = basis_.getNumStructural(); |
| 400 | assert (numberColumns==solver.getNumCols()); |
| 401 | assert (numberRows==solver.getNumRows()); |
| 402 | primalSolution_ = CoinCopyOfArray(solver.getColSolution(),numberColumns); |
| 403 | dualSolution_ = CoinCopyOfArray(solver.getRowPrice(),numberRows); |
| 404 | fixed_.addBranch(-1,numberColumns,lowerBefore,solver.getColLower(), |
| 405 | upperBefore,solver.getColUpper()); |
| 406 | } else { |
| 407 | // infeasible |
| 408 | objectiveValue_ = COIN_DBL_MAX; |
| 409 | basis_ = CoinWarmStartBasis(); |
| 410 | primalSolution_=NULL; |
| 411 | dualSolution_=NULL; |
| 412 | } |
| 413 | } |
| 414 | // Restore result |
| 415 | void |
| 416 | OsiSolverResult::restoreResult(OsiSolverInterface & solver) const |
| 417 | { |
| 418 | //solver.setObjValue(objectiveValue_)*solver.getObjSense(); |
| 419 | solver.setWarmStart(&basis_); |
| 420 | solver.setColSolution(primalSolution_); |
| 421 | solver.setRowPrice(dualSolution_); |
| 422 | fixed_.applyBounds(solver,-1); |
| 423 | } |
| 424 | |