1 | /** \file |
2 | * \brief Tests for ogdf::DisjointSets<>. |
3 | * |
4 | * \author Mirko Wagner |
5 | * |
6 | * \par License: |
7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
8 | * |
9 | * \par |
10 | * Copyright (C)<br> |
11 | * See README.md in the OGDF root directory for details. |
12 | * |
13 | * \par |
14 | * This program is free software; you can redistribute it and/or |
15 | * modify it under the terms of the GNU General Public License |
16 | * Version 2 or 3 as published by the Free Software Foundation; |
17 | * see the file LICENSE.txt included in the packaging of this file |
18 | * for details. |
19 | * |
20 | * \par |
21 | * This program is distributed in the hope that it will be useful, |
22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
24 | * GNU General Public License for more details. |
25 | * |
26 | * \par |
27 | * You should have received a copy of the GNU General Public |
28 | * License along with this program; if not, see |
29 | * http://www.gnu.org/copyleft/gpl.html |
30 | */ |
31 | |
32 | #include <ogdf/basic/DisjointSets.h> |
33 | #include <testing.h> |
34 | |
35 | template<typename DisjointSetsClass> |
36 | static void registerTestSuite(const string typeName) |
37 | { |
38 | describe(typeName,[&](){ |
39 | std::unique_ptr<DisjointSetsClass> disjointSets; |
40 | int sets[42]; |
41 | |
42 | before_each([&](){ |
43 | disjointSets.reset(new DisjointSetsClass()); |
44 | for (auto &set : sets) { |
45 | set = disjointSets->makeSet(); |
46 | } |
47 | }); |
48 | |
49 | it("assigns valid set id's" , [&](){ |
50 | for (int i : sets) { |
51 | AssertThat(i, IsGreaterThan(-1)); |
52 | } |
53 | }); |
54 | |
55 | it("is initialized" , [&](){ |
56 | DisjointSetsClass emptydisjointSets; |
57 | AssertThat(emptydisjointSets.getNumberOfElements(), Equals(0)); |
58 | AssertThat(emptydisjointSets.getNumberOfSets(), Equals(0)); |
59 | }); |
60 | |
61 | it("can be filled" , [&](){ |
62 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
63 | AssertThat(disjointSets->getNumberOfSets(), Equals(42)); |
64 | }); |
65 | |
66 | it("unifies two disjoint sets and doesn't unify two joined sets" , [&](){ |
67 | AssertThat(disjointSets->quickUnion(sets[2], sets[1]), IsTrue()); |
68 | AssertThat(disjointSets->quickUnion(sets[0], sets[2]), IsTrue()); |
69 | AssertThat(disjointSets->quickUnion(sets[0], sets[1]), IsFalse()); |
70 | }); |
71 | |
72 | it("returns the same id for every item of a unified superset" , [&](){ |
73 | AssertThat(disjointSets->getRepresentative(sets[13]), Equals(sets[13])); |
74 | AssertThat(disjointSets->getRepresentative(sets[13]), Equals(disjointSets->find(sets[13]))); |
75 | disjointSets->quickUnion(sets[1], sets[2]); |
76 | disjointSets->quickUnion(sets[2], sets[3]); |
77 | disjointSets->quickUnion(sets[1], sets[4]); |
78 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[2]))); |
79 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[3]))); |
80 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[4]))); |
81 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[1]))); |
82 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[2]))); |
83 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[3]))); |
84 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[4]))); |
85 | AssertThat(sets[5], !Equals(disjointSets->find(sets[4]))); |
86 | AssertThat(sets[5], !Equals(disjointSets->getRepresentative(sets[4]))); |
87 | }); |
88 | |
89 | it("returns the same id for every item of a linked superset" , [&](){ |
90 | AssertThat(disjointSets->getRepresentative(13), Equals(13) && Equals(disjointSets->find(13))); |
91 | disjointSets->link(sets[1], sets[2]); |
92 | disjointSets->link(disjointSets->find(sets[2]), sets[3]); |
93 | disjointSets->link(disjointSets->find(sets[1]), sets[4]); |
94 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[2]))); |
95 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[3]))); |
96 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[4]))); |
97 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[1]))); |
98 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[2]))); |
99 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[3]))); |
100 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[4]))); |
101 | AssertThat(sets[5], !Equals(disjointSets->find(sets[4]))); |
102 | AssertThat(sets[5], !Equals(disjointSets->getRepresentative(sets[4]))); |
103 | }); |
104 | |
105 | it("tracks the number of elements" , [&](){ |
106 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
107 | disjointSets->quickUnion(sets[1], sets[2]); |
108 | disjointSets->quickUnion(sets[1], sets[2]); |
109 | disjointSets->link(disjointSets->getRepresentative(sets[1]), disjointSets->find(sets[3])); |
110 | disjointSets->link(disjointSets->find(sets[2]), disjointSets->getRepresentative(sets[3])); |
111 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
112 | disjointSets->makeSet(); |
113 | AssertThat(disjointSets->getNumberOfElements(), Equals(43)); |
114 | }); |
115 | |
116 | it("tracks the number of sets when using link" , [&](){ |
117 | int successfullLinkCounter = 0; |
118 | successfullLinkCounter += disjointSets->link(sets[1], sets[2]) != -1; |
119 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[2]), sets[3]) != -1; |
120 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[1]), sets[4]) != -1; |
121 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[4]), disjointSets->find(sets[3])) != -1; |
122 | for (int i = 0; i < 42; i++) { |
123 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[4]), disjointSets->find(sets[3])) != -1; |
124 | } |
125 | AssertThat(disjointSets->getNumberOfSets(), Equals(42 - successfullLinkCounter)); |
126 | AssertThat(successfullLinkCounter, IsLessThan(42)); |
127 | }); |
128 | |
129 | it("tracks the number of sets when using quickUnion" , [&](){ |
130 | int successfullUnionCounter = 0; |
131 | successfullUnionCounter += disjointSets->quickUnion(sets[1], sets[2]); |
132 | successfullUnionCounter += disjointSets->quickUnion(sets[2], sets[3]); |
133 | successfullUnionCounter += disjointSets->quickUnion(sets[1], sets[4]); |
134 | for (int i = 0; i < 42; i++) { |
135 | successfullUnionCounter += disjointSets->quickUnion(sets[4], sets[3]); |
136 | } |
137 | |
138 | AssertThat(disjointSets->getNumberOfSets(), Equals(42-successfullUnionCounter)); |
139 | }); |
140 | |
141 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
142 | it("throws an exception, if the user tries to link two non-maximal disjoint sets" , [&](){ |
143 | disjointSets->link(sets[3], sets[4]); |
144 | int notMaximalSet = (disjointSets->getRepresentative(sets[3]) == sets[4] ? sets[3] : sets[4]); |
145 | AssertThrows(AssertionFailed, disjointSets->link(notMaximalSet, sets[5])); |
146 | }); |
147 | |
148 | it("detects invalid set ids" , [&](){ |
149 | AssertThrows(AssertionFailed, disjointSets->find(-1)); |
150 | AssertThrows(AssertionFailed, disjointSets->getRepresentative(-1)); |
151 | int notASetId = 0; |
152 | int max = 0; |
153 | for (int i : sets) { |
154 | max = (i > max ? i : max); |
155 | } |
156 | notASetId = max+1; |
157 | AssertThrows(AssertionFailed, disjointSets->find(notASetId)); |
158 | AssertThrows(AssertionFailed, disjointSets->getRepresentative(notASetId)); |
159 | }); |
160 | #endif |
161 | }); |
162 | } |
163 | |
164 | go_bandit([](){ |
165 | describe("Disjoint Sets" , [](){ |
166 | registerTestSuite<DisjointSets<>>("Default" ); |
167 | registerTestSuite<DisjointSets<LinkOptions::Index, |
168 | CompressionOptions::PathCompression, |
169 | InterleavingOptions::Rem>>("Linking by Index, Path Compression, Rem's Algorithm" ); |
170 | registerTestSuite<DisjointSets<LinkOptions::Rank, |
171 | CompressionOptions::PathSplitting, |
172 | InterleavingOptions::Tarjan>>("Linking by Rank, Path Splitting, Tarjan and van Leeuwen's Algorithm" ); |
173 | registerTestSuite<DisjointSets<LinkOptions::Naive, |
174 | CompressionOptions::Type1Reversal, |
175 | InterleavingOptions::Type0Reversal>>("No Linking, Reversal Type 1, Interleaved Reversal Type 0" ); |
176 | registerTestSuite<DisjointSets<LinkOptions::Index, |
177 | CompressionOptions::PathHalving, |
178 | InterleavingOptions::SplittingCompression>>("Linking by Index, Path Halving, Interleaved Path Splitting Path Compression" ); |
179 | registerTestSuite<DisjointSets<LinkOptions::Size, |
180 | CompressionOptions::Collapsing, |
181 | InterleavingOptions::Disabled>>("Linking by Size, Collapsing, No Interleaving" ); |
182 | registerTestSuite<DisjointSets<LinkOptions::Rank, |
183 | CompressionOptions::Disabled, |
184 | InterleavingOptions::Disabled>>("No Linking, No Compression, No Interleaving" ); |
185 | }); |
186 | }); |
187 | |