| 1 | /** \file |
| 2 | * \brief Tests for ogdf::DisjointSets<>. |
| 3 | * |
| 4 | * \author Mirko Wagner |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include <ogdf/basic/DisjointSets.h> |
| 33 | #include <testing.h> |
| 34 | |
| 35 | template<typename DisjointSetsClass> |
| 36 | static void registerTestSuite(const string typeName) |
| 37 | { |
| 38 | describe(typeName,[&](){ |
| 39 | std::unique_ptr<DisjointSetsClass> disjointSets; |
| 40 | int sets[42]; |
| 41 | |
| 42 | before_each([&](){ |
| 43 | disjointSets.reset(new DisjointSetsClass()); |
| 44 | for (auto &set : sets) { |
| 45 | set = disjointSets->makeSet(); |
| 46 | } |
| 47 | }); |
| 48 | |
| 49 | it("assigns valid set id's" , [&](){ |
| 50 | for (int i : sets) { |
| 51 | AssertThat(i, IsGreaterThan(-1)); |
| 52 | } |
| 53 | }); |
| 54 | |
| 55 | it("is initialized" , [&](){ |
| 56 | DisjointSetsClass emptydisjointSets; |
| 57 | AssertThat(emptydisjointSets.getNumberOfElements(), Equals(0)); |
| 58 | AssertThat(emptydisjointSets.getNumberOfSets(), Equals(0)); |
| 59 | }); |
| 60 | |
| 61 | it("can be filled" , [&](){ |
| 62 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
| 63 | AssertThat(disjointSets->getNumberOfSets(), Equals(42)); |
| 64 | }); |
| 65 | |
| 66 | it("unifies two disjoint sets and doesn't unify two joined sets" , [&](){ |
| 67 | AssertThat(disjointSets->quickUnion(sets[2], sets[1]), IsTrue()); |
| 68 | AssertThat(disjointSets->quickUnion(sets[0], sets[2]), IsTrue()); |
| 69 | AssertThat(disjointSets->quickUnion(sets[0], sets[1]), IsFalse()); |
| 70 | }); |
| 71 | |
| 72 | it("returns the same id for every item of a unified superset" , [&](){ |
| 73 | AssertThat(disjointSets->getRepresentative(sets[13]), Equals(sets[13])); |
| 74 | AssertThat(disjointSets->getRepresentative(sets[13]), Equals(disjointSets->find(sets[13]))); |
| 75 | disjointSets->quickUnion(sets[1], sets[2]); |
| 76 | disjointSets->quickUnion(sets[2], sets[3]); |
| 77 | disjointSets->quickUnion(sets[1], sets[4]); |
| 78 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[2]))); |
| 79 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[3]))); |
| 80 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[4]))); |
| 81 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[1]))); |
| 82 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[2]))); |
| 83 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[3]))); |
| 84 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[4]))); |
| 85 | AssertThat(sets[5], !Equals(disjointSets->find(sets[4]))); |
| 86 | AssertThat(sets[5], !Equals(disjointSets->getRepresentative(sets[4]))); |
| 87 | }); |
| 88 | |
| 89 | it("returns the same id for every item of a linked superset" , [&](){ |
| 90 | AssertThat(disjointSets->getRepresentative(13), Equals(13) && Equals(disjointSets->find(13))); |
| 91 | disjointSets->link(sets[1], sets[2]); |
| 92 | disjointSets->link(disjointSets->find(sets[2]), sets[3]); |
| 93 | disjointSets->link(disjointSets->find(sets[1]), sets[4]); |
| 94 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[2]))); |
| 95 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[3]))); |
| 96 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->getRepresentative(sets[4]))); |
| 97 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[1]))); |
| 98 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[2]))); |
| 99 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[3]))); |
| 100 | AssertThat(disjointSets->getRepresentative(sets[1]), Equals(disjointSets->find(sets[4]))); |
| 101 | AssertThat(sets[5], !Equals(disjointSets->find(sets[4]))); |
| 102 | AssertThat(sets[5], !Equals(disjointSets->getRepresentative(sets[4]))); |
| 103 | }); |
| 104 | |
| 105 | it("tracks the number of elements" , [&](){ |
| 106 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
| 107 | disjointSets->quickUnion(sets[1], sets[2]); |
| 108 | disjointSets->quickUnion(sets[1], sets[2]); |
| 109 | disjointSets->link(disjointSets->getRepresentative(sets[1]), disjointSets->find(sets[3])); |
| 110 | disjointSets->link(disjointSets->find(sets[2]), disjointSets->getRepresentative(sets[3])); |
| 111 | AssertThat(disjointSets->getNumberOfElements(), Equals(42)); |
| 112 | disjointSets->makeSet(); |
| 113 | AssertThat(disjointSets->getNumberOfElements(), Equals(43)); |
| 114 | }); |
| 115 | |
| 116 | it("tracks the number of sets when using link" , [&](){ |
| 117 | int successfullLinkCounter = 0; |
| 118 | successfullLinkCounter += disjointSets->link(sets[1], sets[2]) != -1; |
| 119 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[2]), sets[3]) != -1; |
| 120 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[1]), sets[4]) != -1; |
| 121 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[4]), disjointSets->find(sets[3])) != -1; |
| 122 | for (int i = 0; i < 42; i++) { |
| 123 | successfullLinkCounter += disjointSets->link(disjointSets->find(sets[4]), disjointSets->find(sets[3])) != -1; |
| 124 | } |
| 125 | AssertThat(disjointSets->getNumberOfSets(), Equals(42 - successfullLinkCounter)); |
| 126 | AssertThat(successfullLinkCounter, IsLessThan(42)); |
| 127 | }); |
| 128 | |
| 129 | it("tracks the number of sets when using quickUnion" , [&](){ |
| 130 | int successfullUnionCounter = 0; |
| 131 | successfullUnionCounter += disjointSets->quickUnion(sets[1], sets[2]); |
| 132 | successfullUnionCounter += disjointSets->quickUnion(sets[2], sets[3]); |
| 133 | successfullUnionCounter += disjointSets->quickUnion(sets[1], sets[4]); |
| 134 | for (int i = 0; i < 42; i++) { |
| 135 | successfullUnionCounter += disjointSets->quickUnion(sets[4], sets[3]); |
| 136 | } |
| 137 | |
| 138 | AssertThat(disjointSets->getNumberOfSets(), Equals(42-successfullUnionCounter)); |
| 139 | }); |
| 140 | |
| 141 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
| 142 | it("throws an exception, if the user tries to link two non-maximal disjoint sets" , [&](){ |
| 143 | disjointSets->link(sets[3], sets[4]); |
| 144 | int notMaximalSet = (disjointSets->getRepresentative(sets[3]) == sets[4] ? sets[3] : sets[4]); |
| 145 | AssertThrows(AssertionFailed, disjointSets->link(notMaximalSet, sets[5])); |
| 146 | }); |
| 147 | |
| 148 | it("detects invalid set ids" , [&](){ |
| 149 | AssertThrows(AssertionFailed, disjointSets->find(-1)); |
| 150 | AssertThrows(AssertionFailed, disjointSets->getRepresentative(-1)); |
| 151 | int notASetId = 0; |
| 152 | int max = 0; |
| 153 | for (int i : sets) { |
| 154 | max = (i > max ? i : max); |
| 155 | } |
| 156 | notASetId = max+1; |
| 157 | AssertThrows(AssertionFailed, disjointSets->find(notASetId)); |
| 158 | AssertThrows(AssertionFailed, disjointSets->getRepresentative(notASetId)); |
| 159 | }); |
| 160 | #endif |
| 161 | }); |
| 162 | } |
| 163 | |
| 164 | go_bandit([](){ |
| 165 | describe("Disjoint Sets" , [](){ |
| 166 | registerTestSuite<DisjointSets<>>("Default" ); |
| 167 | registerTestSuite<DisjointSets<LinkOptions::Index, |
| 168 | CompressionOptions::PathCompression, |
| 169 | InterleavingOptions::Rem>>("Linking by Index, Path Compression, Rem's Algorithm" ); |
| 170 | registerTestSuite<DisjointSets<LinkOptions::Rank, |
| 171 | CompressionOptions::PathSplitting, |
| 172 | InterleavingOptions::Tarjan>>("Linking by Rank, Path Splitting, Tarjan and van Leeuwen's Algorithm" ); |
| 173 | registerTestSuite<DisjointSets<LinkOptions::Naive, |
| 174 | CompressionOptions::Type1Reversal, |
| 175 | InterleavingOptions::Type0Reversal>>("No Linking, Reversal Type 1, Interleaved Reversal Type 0" ); |
| 176 | registerTestSuite<DisjointSets<LinkOptions::Index, |
| 177 | CompressionOptions::PathHalving, |
| 178 | InterleavingOptions::SplittingCompression>>("Linking by Index, Path Halving, Interleaved Path Splitting Path Compression" ); |
| 179 | registerTestSuite<DisjointSets<LinkOptions::Size, |
| 180 | CompressionOptions::Collapsing, |
| 181 | InterleavingOptions::Disabled>>("Linking by Size, Collapsing, No Interleaving" ); |
| 182 | registerTestSuite<DisjointSets<LinkOptions::Rank, |
| 183 | CompressionOptions::Disabled, |
| 184 | InterleavingOptions::Disabled>>("No Linking, No Compression, No Interleaving" ); |
| 185 | }); |
| 186 | }); |
| 187 | |