1 | /** \file |
2 | * \brief Tests for the A* informed search algorithm. |
3 | * |
4 | * \author Tilo Wiedera |
5 | * |
6 | * \par License: |
7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
8 | * |
9 | * \par |
10 | * Copyright (C)<br> |
11 | * See README.md in the OGDF root directory for details. |
12 | * |
13 | * \par |
14 | * This program is free software; you can redistribute it and/or |
15 | * modify it under the terms of the GNU General Public License |
16 | * Version 2 or 3 as published by the Free Software Foundation; |
17 | * see the file LICENSE.txt included in the packaging of this file |
18 | * for details. |
19 | * |
20 | * \par |
21 | * This program is distributed in the hope that it will be useful, |
22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
24 | * GNU General Public License for more details. |
25 | * |
26 | * \par |
27 | * You should have received a copy of the GNU General Public |
28 | * License along with this program; if not, see |
29 | * http://www.gnu.org/copyleft/gpl.html |
30 | */ |
31 | |
32 | #include <iomanip> |
33 | #include <chrono> |
34 | |
35 | #include <ogdf/basic/graph_generators.h> |
36 | #include <ogdf/graphalg/AStarSearch.h> |
37 | #include <ogdf/graphalg/Dijkstra.h> |
38 | |
39 | #include <testing.h> |
40 | |
41 | template<typename T> |
42 | void validatePath( |
43 | const node source, |
44 | const node target, |
45 | const Graph &graph, |
46 | const EdgeArray<T> &cost, |
47 | const NodeArray<edge> &pred, |
48 | const T expectedCost) { |
49 | |
50 | T actualCost = 0; |
51 | |
52 | NodeArray<bool> visited(graph, false); |
53 | |
54 | for(node v = target; v != source; v = pred[v]->opposite(v)) { |
55 | AssertThat(visited[v], IsFalse()); |
56 | actualCost += cost[pred[v]]; |
57 | visited[v] = true; |
58 | } |
59 | |
60 | AssertThat(actualCost, Equals(expectedCost)); |
61 | } |
62 | |
63 | template<typename T> |
64 | void performSingleTest( |
65 | const Graph &graph, |
66 | const node source, |
67 | const node target, |
68 | const EdgeArray<T> cost, |
69 | const double maxGap, |
70 | const bool directed, |
71 | Dijkstra<T> &dijkstra, |
72 | AStarSearch<T> &astar, |
73 | long &ticksDijkstra, |
74 | long &ticksUninformedAStar, |
75 | long &ticksAStarHeuristic) |
76 | { |
77 | NodeArray<T> distance(graph, -1); |
78 | NodeArray<edge> pred(graph); |
79 | |
80 | auto start = std::chrono::system_clock::now(); |
81 | dijkstra.call(graph, cost, source, pred, distance, directed); |
82 | ticksDijkstra += (std::chrono::system_clock::now() - start).count(); |
83 | bool foundPath = pred[target] != nullptr; |
84 | T opt = distance[target]; |
85 | |
86 | if(foundPath) { |
87 | validatePath(source, target, graph, cost, pred, distance[target]); |
88 | |
89 | distance.init(graph, -1); |
90 | pred.init(graph, nullptr); |
91 | |
92 | start = std::chrono::system_clock::now(); |
93 | T result = astar.call(graph, cost, source, target, pred, [&](node v) { |
94 | // utilize distances as returned by Dijkstra for a perfect heuristic |
95 | return distance[v]; |
96 | }); |
97 | ticksAStarHeuristic += (std::chrono::system_clock::now() - start).count(); |
98 | |
99 | validatePath(source, target, graph, cost, pred, result); |
100 | AssertThat(pred[target] != nullptr, IsTrue()); |
101 | AssertThat(distance[target], IsLessThan(opt * maxGap + 1)); |
102 | } |
103 | |
104 | start = std::chrono::system_clock::now(); |
105 | T result = astar.call(graph, cost, source, target, pred); |
106 | ticksUninformedAStar += (std::chrono::system_clock::now() - start).count(); |
107 | |
108 | AssertThat(pred[target] != nullptr, Equals(foundPath)); |
109 | if(foundPath) { |
110 | validatePath(source, target, graph, cost, pred, result); |
111 | AssertThat(distance[target], IsLessThan(opt * maxGap + 1)); |
112 | } |
113 | } |
114 | |
115 | template<typename T> |
116 | void performTests(const bool directed, const double maxGap, const bool pathLike) { |
117 | const int NUMBER_OF_GRAPHS = 10; |
118 | const int MIN_NODES = 100; |
119 | const int MAX_NODES = 200; |
120 | |
121 | AStarSearch<T> astar(directed, maxGap); |
122 | Dijkstra<T> dijkstra; |
123 | |
124 | long ticksDijkstra = 0; |
125 | long ticksUninformedAStar = 0; |
126 | long ticksAStarHeuristic = 0; |
127 | |
128 | for(int i = 0; i < NUMBER_OF_GRAPHS; i++) { |
129 | Graph graph; |
130 | EdgeArray<T> cost(graph); |
131 | node source = nullptr; |
132 | node target = nullptr; |
133 | int n = randomNumber(MIN_NODES, MAX_NODES); |
134 | |
135 | if(pathLike) { |
136 | completeGraph(graph, n); |
137 | cost.init(graph, n); |
138 | |
139 | source = graph.chooseNode(); |
140 | node v = source; |
141 | |
142 | for(int k = 0; k < n/2 || v == source; k++) { |
143 | adjEntry adj = v->firstAdj(); |
144 | |
145 | for(int j = randomNumber(0, v->degree()-1); j > 0; j--) { |
146 | adj = adj->succ(); |
147 | } |
148 | |
149 | edge e = adj->theEdge(); |
150 | cost[e] = randomNumber(1, 10); |
151 | v = e->opposite(v); |
152 | } |
153 | |
154 | target = v; |
155 | } else { |
156 | randomBiconnectedGraph(graph, n, randomNumber(n, (n*(n-1) / 2))); |
157 | |
158 | for(edge e : graph.edges) { |
159 | cost[e] = randomNumber(1, graph.numberOfEdges()); |
160 | } |
161 | |
162 | source = graph.chooseNode(); |
163 | target = graph.chooseNode([&](node v) { return v != source; }); |
164 | } |
165 | |
166 | performSingleTest(graph, source, target, cost, maxGap, directed, dijkstra, astar, |
167 | ticksDijkstra, ticksUninformedAStar, ticksAStarHeuristic); |
168 | } |
169 | |
170 | std::cout << std::endl; |
171 | std::cout << std::left << " Dijkstra : " << std::right << std::setw(16) << ticksDijkstra << std::endl; |
172 | std::cout << std::left << " A* uninformed : " << std::right << std::setw(16) << ticksUninformedAStar << std::endl; |
173 | std::cout << std::left << " A* perfect heuristic : " << std::right << std::setw(16) << ticksAStarHeuristic << std::endl; |
174 | std::cout << std::left; |
175 | } |
176 | |
177 | template<typename T> |
178 | void registerTests(string typeName) { |
179 | EpsilonTest et; |
180 | for(int i = 0; i < 16; i++) { |
181 | bool pathLike = i % 2; |
182 | bool directed = (i / 2) % 2; |
183 | double maxGap = 1 + (i / 4) / (double) 2; |
184 | |
185 | string title = "yields the same result as Dijkstra" ; |
186 | if(!et.equal(maxGap, 1.0)) { |
187 | title = "approximates the optimal solution with a maxmimum gap of " + to_string(maxGap); |
188 | } |
189 | |
190 | title = "[" + typeName + "] " + title; |
191 | |
192 | title += " on " ; |
193 | title += (directed ? "directed " : "" ); |
194 | title += (pathLike ? "path-like" : "biconnected" ); |
195 | title += " graphs" ; |
196 | |
197 | it(title, [&](){ |
198 | performTests<T>(directed, maxGap, pathLike); |
199 | }); |
200 | } |
201 | } |
202 | |
203 | go_bandit([](){ |
204 | describe("A* Informed Search Algorithm" , [](){ |
205 | registerTests<int>("int" ); |
206 | registerTests<double>("double" ); |
207 | }); |
208 | }); |
209 | |