1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* __ieee754_asin(x) |
27 | * Method : |
28 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
29 | * we approximate asin(x) on [0,0.5] by |
30 | * asin(x) = x + x*x^2*R(x^2) |
31 | * where |
32 | * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
33 | * and its remez error is bounded by |
34 | * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
35 | * |
36 | * For x in [0.5,1] |
37 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
38 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
39 | * then for x>0.98 |
40 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
41 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
42 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
43 | * f = hi part of s; |
44 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
45 | * and |
46 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
47 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
48 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
49 | * |
50 | * Special cases: |
51 | * if x is NaN, return x itself; |
52 | * if |x|>1, return NaN with invalid signal. |
53 | * |
54 | */ |
55 | |
56 | |
57 | #include "fdlibm.h" |
58 | |
59 | #ifdef __STDC__ |
60 | static const double |
61 | #else |
62 | static double |
63 | #endif |
64 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
65 | huge = 1.000e+300, |
66 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
67 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
68 | pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
69 | /* coefficient for R(x^2) */ |
70 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
71 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
72 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
73 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
74 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
75 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
76 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
77 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
78 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
79 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
80 | |
81 | #ifdef __STDC__ |
82 | double __ieee754_asin(double x) |
83 | #else |
84 | double __ieee754_asin(x) |
85 | double x; |
86 | #endif |
87 | { |
88 | double t=0,w,p,q,c,r,s; |
89 | int hx,ix; |
90 | hx = __HI(x); |
91 | ix = hx&0x7fffffff; |
92 | if(ix>= 0x3ff00000) { /* |x|>= 1 */ |
93 | if(((ix-0x3ff00000)|__LO(x))==0) |
94 | /* asin(1)=+-pi/2 with inexact */ |
95 | return x*pio2_hi+x*pio2_lo; |
96 | return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
97 | } else if (ix<0x3fe00000) { /* |x|<0.5 */ |
98 | if(ix<0x3e400000) { /* if |x| < 2**-27 */ |
99 | if(huge+x>one) return x;/* return x with inexact if x!=0*/ |
100 | } else |
101 | t = x*x; |
102 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
103 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
104 | w = p/q; |
105 | return x+x*w; |
106 | } |
107 | /* 1> |x|>= 0.5 */ |
108 | w = one-fabs(x); |
109 | t = w*0.5; |
110 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
111 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
112 | s = sqrt(t); |
113 | if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ |
114 | w = p/q; |
115 | t = pio2_hi-(2.0*(s+s*w)-pio2_lo); |
116 | } else { |
117 | w = s; |
118 | __LO(w) = 0; |
119 | c = (t-w*w)/(s+w); |
120 | r = p/q; |
121 | p = 2.0*s*r-(pio2_lo-2.0*c); |
122 | q = pio4_hi-2.0*w; |
123 | t = pio4_hi-(p-q); |
124 | } |
125 | if(hx>0) return t; else return -t; |
126 | } |
127 | |