1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* __ieee754_exp(x) |
27 | * Returns the exponential of x. |
28 | * |
29 | * Method |
30 | * 1. Argument reduction: |
31 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
32 | * Given x, find r and integer k such that |
33 | * |
34 | * x = k*ln2 + r, |r| <= 0.5*ln2. |
35 | * |
36 | * Here r will be represented as r = hi-lo for better |
37 | * accuracy. |
38 | * |
39 | * 2. Approximation of exp(r) by a special rational function on |
40 | * the interval [0,0.34658]: |
41 | * Write |
42 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
43 | * We use a special Reme algorithm on [0,0.34658] to generate |
44 | * a polynomial of degree 5 to approximate R. The maximum error |
45 | * of this polynomial approximation is bounded by 2**-59. In |
46 | * other words, |
47 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
48 | * (where z=r*r, and the values of P1 to P5 are listed below) |
49 | * and |
50 | * | 5 | -59 |
51 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
52 | * | | |
53 | * The computation of exp(r) thus becomes |
54 | * 2*r |
55 | * exp(r) = 1 + ------- |
56 | * R - r |
57 | * r*R1(r) |
58 | * = 1 + r + ----------- (for better accuracy) |
59 | * 2 - R1(r) |
60 | * where |
61 | * 2 4 10 |
62 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
63 | * |
64 | * 3. Scale back to obtain exp(x): |
65 | * From step 1, we have |
66 | * exp(x) = 2^k * exp(r) |
67 | * |
68 | * Special cases: |
69 | * exp(INF) is INF, exp(NaN) is NaN; |
70 | * exp(-INF) is 0, and |
71 | * for finite argument, only exp(0)=1 is exact. |
72 | * |
73 | * Accuracy: |
74 | * according to an error analysis, the error is always less than |
75 | * 1 ulp (unit in the last place). |
76 | * |
77 | * Misc. info. |
78 | * For IEEE double |
79 | * if x > 7.09782712893383973096e+02 then exp(x) overflow |
80 | * if x < -7.45133219101941108420e+02 then exp(x) underflow |
81 | * |
82 | * Constants: |
83 | * The hexadecimal values are the intended ones for the following |
84 | * constants. The decimal values may be used, provided that the |
85 | * compiler will convert from decimal to binary accurately enough |
86 | * to produce the hexadecimal values shown. |
87 | */ |
88 | |
89 | #include "fdlibm.h" |
90 | |
91 | #ifdef __STDC__ |
92 | static const double |
93 | #else |
94 | static double |
95 | #endif |
96 | one = 1.0, |
97 | halF[2] = {0.5,-0.5,}, |
98 | huge = 1.0e+300, |
99 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
100 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
101 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
102 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
103 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
104 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
105 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
106 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
107 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
108 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
109 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
110 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
111 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
112 | |
113 | |
114 | #ifdef __STDC__ |
115 | double __ieee754_exp(double x) /* default IEEE double exp */ |
116 | #else |
117 | double __ieee754_exp(x) /* default IEEE double exp */ |
118 | double x; |
119 | #endif |
120 | { |
121 | double y,hi=0,lo=0,c,t; |
122 | int k=0,xsb; |
123 | unsigned hx; |
124 | |
125 | hx = __HI(x); /* high word of x */ |
126 | xsb = (hx>>31)&1; /* sign bit of x */ |
127 | hx &= 0x7fffffff; /* high word of |x| */ |
128 | |
129 | /* filter out non-finite argument */ |
130 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
131 | if(hx>=0x7ff00000) { |
132 | if(((hx&0xfffff)|__LO(x))!=0) |
133 | return x+x; /* NaN */ |
134 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
135 | } |
136 | if(x > o_threshold) return huge*huge; /* overflow */ |
137 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
138 | } |
139 | |
140 | /* argument reduction */ |
141 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
142 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
143 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
144 | } else { |
145 | k = invln2*x+halF[xsb]; |
146 | t = k; |
147 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
148 | lo = t*ln2LO[0]; |
149 | } |
150 | x = hi - lo; |
151 | } |
152 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
153 | if(huge+x>one) return one+x;/* trigger inexact */ |
154 | } |
155 | else k = 0; |
156 | |
157 | /* x is now in primary range */ |
158 | t = x*x; |
159 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
160 | if(k==0) return one-((x*c)/(c-2.0)-x); |
161 | else y = one-((lo-(x*c)/(2.0-c))-hi); |
162 | if(k >= -1021) { |
163 | __HI(y) += (k<<20); /* add k to y's exponent */ |
164 | return y; |
165 | } else { |
166 | __HI(y) += ((k+1000)<<20);/* add k to y's exponent */ |
167 | return y*twom1000; |
168 | } |
169 | } |
170 | |