| 1 | /* |
| 2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. Oracle designates this |
| 8 | * particular file as subject to the "Classpath" exception as provided |
| 9 | * by Oracle in the LICENSE file that accompanied this code. |
| 10 | * |
| 11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | * version 2 for more details (a copy is included in the LICENSE file that |
| 15 | * accompanied this code). |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License version |
| 18 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 20 | * |
| 21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 22 | * or visit www.oracle.com if you need additional information or have any |
| 23 | * questions. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * __ieee754_fmod(x,y) |
| 28 | * Return x mod y in exact arithmetic |
| 29 | * Method: shift and subtract |
| 30 | */ |
| 31 | |
| 32 | #include "fdlibm.h" |
| 33 | |
| 34 | #ifdef __STDC__ |
| 35 | static const double one = 1.0, Zero[] = {0.0, -0.0,}; |
| 36 | #else |
| 37 | static double one = 1.0, Zero[] = {0.0, -0.0,}; |
| 38 | #endif |
| 39 | |
| 40 | #ifdef __STDC__ |
| 41 | double __ieee754_fmod(double x, double y) |
| 42 | #else |
| 43 | double __ieee754_fmod(x,y) |
| 44 | double x,y ; |
| 45 | #endif |
| 46 | { |
| 47 | int n,hx,hy,hz,ix,iy,sx,i; |
| 48 | unsigned lx,ly,lz; |
| 49 | |
| 50 | hx = __HI(x); /* high word of x */ |
| 51 | lx = __LO(x); /* low word of x */ |
| 52 | hy = __HI(y); /* high word of y */ |
| 53 | ly = __LO(y); /* low word of y */ |
| 54 | sx = hx&0x80000000; /* sign of x */ |
| 55 | hx ^=sx; /* |x| */ |
| 56 | hy &= 0x7fffffff; /* |y| */ |
| 57 | |
| 58 | /* purge off exception values */ |
| 59 | if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ |
| 60 | ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ |
| 61 | return (x*y)/(x*y); |
| 62 | if(hx<=hy) { |
| 63 | if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ |
| 64 | if(lx==ly) |
| 65 | return Zero[(unsigned)sx>>31]; /* |x|=|y| return x*0*/ |
| 66 | } |
| 67 | |
| 68 | /* determine ix = ilogb(x) */ |
| 69 | if(hx<0x00100000) { /* subnormal x */ |
| 70 | if(hx==0) { |
| 71 | for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; |
| 72 | } else { |
| 73 | for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; |
| 74 | } |
| 75 | } else ix = (hx>>20)-1023; |
| 76 | |
| 77 | /* determine iy = ilogb(y) */ |
| 78 | if(hy<0x00100000) { /* subnormal y */ |
| 79 | if(hy==0) { |
| 80 | for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; |
| 81 | } else { |
| 82 | for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; |
| 83 | } |
| 84 | } else iy = (hy>>20)-1023; |
| 85 | |
| 86 | /* set up {hx,lx}, {hy,ly} and align y to x */ |
| 87 | if(ix >= -1022) |
| 88 | hx = 0x00100000|(0x000fffff&hx); |
| 89 | else { /* subnormal x, shift x to normal */ |
| 90 | n = -1022-ix; |
| 91 | if(n<=31) { |
| 92 | hx = (hx<<n)|(lx>>(32-n)); |
| 93 | lx <<= n; |
| 94 | } else { |
| 95 | hx = lx<<(n-32); |
| 96 | lx = 0; |
| 97 | } |
| 98 | } |
| 99 | if(iy >= -1022) |
| 100 | hy = 0x00100000|(0x000fffff&hy); |
| 101 | else { /* subnormal y, shift y to normal */ |
| 102 | n = -1022-iy; |
| 103 | if(n<=31) { |
| 104 | hy = (hy<<n)|(ly>>(32-n)); |
| 105 | ly <<= n; |
| 106 | } else { |
| 107 | hy = ly<<(n-32); |
| 108 | ly = 0; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | /* fix point fmod */ |
| 113 | n = ix - iy; |
| 114 | while(n--) { |
| 115 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
| 116 | if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} |
| 117 | else { |
| 118 | if((hz|lz)==0) /* return sign(x)*0 */ |
| 119 | return Zero[(unsigned)sx>>31]; |
| 120 | hx = hz+hz+(lz>>31); lx = lz+lz; |
| 121 | } |
| 122 | } |
| 123 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
| 124 | if(hz>=0) {hx=hz;lx=lz;} |
| 125 | |
| 126 | /* convert back to floating value and restore the sign */ |
| 127 | if((hx|lx)==0) /* return sign(x)*0 */ |
| 128 | return Zero[(unsigned)sx>>31]; |
| 129 | while(hx<0x00100000) { /* normalize x */ |
| 130 | hx = hx+hx+(lx>>31); lx = lx+lx; |
| 131 | iy -= 1; |
| 132 | } |
| 133 | if(iy>= -1022) { /* normalize output */ |
| 134 | hx = ((hx-0x00100000)|((iy+1023)<<20)); |
| 135 | __HI(x) = hx|sx; |
| 136 | __LO(x) = lx; |
| 137 | } else { /* subnormal output */ |
| 138 | n = -1022 - iy; |
| 139 | if(n<=20) { |
| 140 | lx = (lx>>n)|((unsigned)hx<<(32-n)); |
| 141 | hx >>= n; |
| 142 | } else if (n<=31) { |
| 143 | lx = (hx<<(32-n))|(lx>>n); hx = sx; |
| 144 | } else { |
| 145 | lx = hx>>(n-32); hx = sx; |
| 146 | } |
| 147 | __HI(x) = hx|sx; |
| 148 | __LO(x) = lx; |
| 149 | x *= one; /* create necessary signal */ |
| 150 | } |
| 151 | return x; /* exact output */ |
| 152 | } |
| 153 | |