1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* |
27 | * __ieee754_fmod(x,y) |
28 | * Return x mod y in exact arithmetic |
29 | * Method: shift and subtract |
30 | */ |
31 | |
32 | #include "fdlibm.h" |
33 | |
34 | #ifdef __STDC__ |
35 | static const double one = 1.0, Zero[] = {0.0, -0.0,}; |
36 | #else |
37 | static double one = 1.0, Zero[] = {0.0, -0.0,}; |
38 | #endif |
39 | |
40 | #ifdef __STDC__ |
41 | double __ieee754_fmod(double x, double y) |
42 | #else |
43 | double __ieee754_fmod(x,y) |
44 | double x,y ; |
45 | #endif |
46 | { |
47 | int n,hx,hy,hz,ix,iy,sx,i; |
48 | unsigned lx,ly,lz; |
49 | |
50 | hx = __HI(x); /* high word of x */ |
51 | lx = __LO(x); /* low word of x */ |
52 | hy = __HI(y); /* high word of y */ |
53 | ly = __LO(y); /* low word of y */ |
54 | sx = hx&0x80000000; /* sign of x */ |
55 | hx ^=sx; /* |x| */ |
56 | hy &= 0x7fffffff; /* |y| */ |
57 | |
58 | /* purge off exception values */ |
59 | if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ |
60 | ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ |
61 | return (x*y)/(x*y); |
62 | if(hx<=hy) { |
63 | if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ |
64 | if(lx==ly) |
65 | return Zero[(unsigned)sx>>31]; /* |x|=|y| return x*0*/ |
66 | } |
67 | |
68 | /* determine ix = ilogb(x) */ |
69 | if(hx<0x00100000) { /* subnormal x */ |
70 | if(hx==0) { |
71 | for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; |
72 | } else { |
73 | for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; |
74 | } |
75 | } else ix = (hx>>20)-1023; |
76 | |
77 | /* determine iy = ilogb(y) */ |
78 | if(hy<0x00100000) { /* subnormal y */ |
79 | if(hy==0) { |
80 | for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; |
81 | } else { |
82 | for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; |
83 | } |
84 | } else iy = (hy>>20)-1023; |
85 | |
86 | /* set up {hx,lx}, {hy,ly} and align y to x */ |
87 | if(ix >= -1022) |
88 | hx = 0x00100000|(0x000fffff&hx); |
89 | else { /* subnormal x, shift x to normal */ |
90 | n = -1022-ix; |
91 | if(n<=31) { |
92 | hx = (hx<<n)|(lx>>(32-n)); |
93 | lx <<= n; |
94 | } else { |
95 | hx = lx<<(n-32); |
96 | lx = 0; |
97 | } |
98 | } |
99 | if(iy >= -1022) |
100 | hy = 0x00100000|(0x000fffff&hy); |
101 | else { /* subnormal y, shift y to normal */ |
102 | n = -1022-iy; |
103 | if(n<=31) { |
104 | hy = (hy<<n)|(ly>>(32-n)); |
105 | ly <<= n; |
106 | } else { |
107 | hy = ly<<(n-32); |
108 | ly = 0; |
109 | } |
110 | } |
111 | |
112 | /* fix point fmod */ |
113 | n = ix - iy; |
114 | while(n--) { |
115 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
116 | if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} |
117 | else { |
118 | if((hz|lz)==0) /* return sign(x)*0 */ |
119 | return Zero[(unsigned)sx>>31]; |
120 | hx = hz+hz+(lz>>31); lx = lz+lz; |
121 | } |
122 | } |
123 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
124 | if(hz>=0) {hx=hz;lx=lz;} |
125 | |
126 | /* convert back to floating value and restore the sign */ |
127 | if((hx|lx)==0) /* return sign(x)*0 */ |
128 | return Zero[(unsigned)sx>>31]; |
129 | while(hx<0x00100000) { /* normalize x */ |
130 | hx = hx+hx+(lx>>31); lx = lx+lx; |
131 | iy -= 1; |
132 | } |
133 | if(iy>= -1022) { /* normalize output */ |
134 | hx = ((hx-0x00100000)|((iy+1023)<<20)); |
135 | __HI(x) = hx|sx; |
136 | __LO(x) = lx; |
137 | } else { /* subnormal output */ |
138 | n = -1022 - iy; |
139 | if(n<=20) { |
140 | lx = (lx>>n)|((unsigned)hx<<(32-n)); |
141 | hx >>= n; |
142 | } else if (n<=31) { |
143 | lx = (hx<<(32-n))|(lx>>n); hx = sx; |
144 | } else { |
145 | lx = hx>>(n-32); hx = sx; |
146 | } |
147 | __HI(x) = hx|sx; |
148 | __LO(x) = lx; |
149 | x *= one; /* create necessary signal */ |
150 | } |
151 | return x; /* exact output */ |
152 | } |
153 | |